1
|
Durán-Fuentes JA, Maronna MM, Palacios-Gimenez OM, Castillo ER, Ryan JF, Daly M, Stampar SN. Repeatome diversity in sea anemone genomics (Cnidaria: Actiniaria) based on the Actiniaria-REPlib library. BMC Genomics 2025; 26:473. [PMID: 40361000 PMCID: PMC12070523 DOI: 10.1186/s12864-025-11591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Genomic repetitive DNA sequences (Repeatomes, REPs) are widespread in eukaryotes, influencing biological form and function. In Cnidaria, an early-diverging animal lineage, these sequences remain largely uncharacterized. This study investigates sea anemone REPs (Cnidaria: Actiniaria) in a phylogenetic context. We sequenced and assembled de novo the genome of Actinostella flosculifera and analyzed a total of 38 nuclear genomes to create the first ActiniariaREP library (Actiniaria-REPlib). We compared Actiniaria-REPlib with Repbase and RepeatModeler2 libraries, and used dnaPipeTE to annotate REPs from genomic short-read datasets of 36 species for divergence landscapes. RESULTS Our study assembled and annotated the mitochondrial genomes, including 27 newly assembled ones. We re-annotated ~92% of the unknown sequences from the initial nuclear genome library, finding that 6.4-30.6% were DNA transposons, 2.1-11.6% retrotransposons, 1-28.4% tandem repeat sequences, and 1.2-7% unclassifiable sequences. Actiniaria-REPlib recovered 9.4x more REP sequences from actiniarian genomes than Dfam and 10.4x more than Repbase. It yielded 79,903 annotated TE consensus sequences (74,643 known, 5,260 unknown), compared to Dfam with 7,697 (3,742 known, 3,944 unknown) and Repbae (763 known). CONCLUSIONS Our study significantly enhances the characterization of sea anemone repetitive DNA, assembling mitochondrial genomes, re-annotating nuclear sequences, and identifying diverse repeat elements. Actiniaria-REPlib vastly outperforms existing databases, recovering significantly more REP sequences and providing a comprehensive resource for future genomic and evolutionary studies in Actiniaria.
Collapse
Affiliation(s)
- Jeferson A Durán-Fuentes
- Laboratory of Evolution and Aquatic Diversity (LEDALab), São Paulo State University (UNESP), São Paulo, Bauru, Brazil.
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA.
| | - Maximiliano M Maronna
- Laboratory of Evolution and Aquatic Diversity (LEDALab), São Paulo State University (UNESP), São Paulo, Bauru, Brazil.
- Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Rio Grande Do Sul, Brazil.
| | - Octavio M Palacios-Gimenez
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, E07743, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, SE-75236, Sweden
| | - Elio R Castillo
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, E07743, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
- Instituto de Biología Subtropical (IBS) CONICET-UNaM, Universidad Nacional de Misiones LQH, Posadas, Misiones, Argentina
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience and the Department of Biology, University of Florida, Florida, USA
| | - Marymegan Daly
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Sérgio N Stampar
- Laboratory of Evolution and Aquatic Diversity (LEDALab), São Paulo State University (UNESP), São Paulo, Bauru, Brazil
| |
Collapse
|
2
|
Zhang H, Pan X, Weigang C. Transcriptomics-driven exploration of genetic variation and peptide discovery in the sea anemones Anthopleura midori and Actinia equina. Sci Rep 2025; 15:12061. [PMID: 40200035 PMCID: PMC11978773 DOI: 10.1038/s41598-025-96976-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025] Open
Abstract
Exploring sea anemone polypeptides enables us to understand the evolutionary history and ecological adaptation strategies of species at the microscopic level. More importantly, it aims to provide a solid theoretical foundation for drug development and biodiversity conservation research. Through systematic research, we discovered a total of 51 toxin sequences in species Anthopleura midori and Acyinia equina. The toxin sequences between the two species exhibited significant differences, with notable diversity observed among individuals. In terms of genetic diversity, species Anthopleura midori primarily exhibits variations due to single nucleotide polymorphisms (SNPs), whereas species Actinia equina shows frequent insertion and deletion events. In transcription factor analysis, both species Anthopleura midori and Actinia equina share common transcription factors TEA (TEA Domain Transcription Factor), SPL(Squamosa Promoter Binding Protein-like), and bHLH (Basic Helix-Loop-Helix). Notably. Notably, bHLH is highly expressed in Actinia equina, which may give it advantages in muscle and nervous system development. On the other hand, Anthopleura midori may rely on other transcription factors. Furthermore, by employing transcriptomics and mass spectrometry techniques, two new gene families were successfully identified, and five structurally novel cyclic peptides were predicted. Kinetic simulations further confirmed that the peptide segment B3a-c29555_c4_g4 binds primarily through hydrogen bonds and hydrophobic interactions with the Cav3.1 (PDB ID:6 KZO) protein, and this peptide has the potential to act as a channel modulator for Cav3.1. Overall, this research not only deepens our understanding of the genetic basis of toxin diversity but also highlights the great potential of these toxins in the development of novel drugs.
Collapse
Affiliation(s)
- Han Zhang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, No. 1023-1063, Satai South Road, Baiyun District, Dongguan, China.
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Chen Weigang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, No. 1023-1063, Satai South Road, Baiyun District, Dongguan, China.
| |
Collapse
|
3
|
Lin M, Liu L, Chen CA. Transcriptomics of the Anthopleura Sea Anemone Reveals Unique Adaptive Strategies to Shallow-Water Hydrothermal Vent. Ecol Evol 2025; 15:e71252. [PMID: 40225888 PMCID: PMC11985324 DOI: 10.1002/ece3.71252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/13/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
The nonsymbiotic sea anemone Anthopleura nigrescens dominates the shallow-water hydrothermal vents off the coast of Kueishan Island, Taiwan. These vents represent some of the world's most extreme environments, with recorded pH values as low as 1.52 and temperatures reaching 121°C. To investigate the adaptations of A. nigrescens to these extreme conditions, transcriptomic analyses were conducted to compare populations inhabiting vent and non-vent areas. To identify shared genetic mechanisms in vent-dwelling anemones, specific orthologs conserved in vent sea anemones were identified by comparing the genomic data of Anthopleura species and other sea anemones. Tank experiments with elevated temperatures were also performed to evaluate the expression profiles of genes associated with heat resistance. The transcriptomic analysis revealed that enriched genes in vent populations are involved in H2S homeostasis and stress resistance, suggesting that detoxification and thermal stress resistance are critical adaptive strategies. Two significantly upregulated genes encoding hydroxyacylglutathione hydrolase and thiosulfate sulfurtransferase may play a role in managing sulfur toxicity and maintaining redox balance. The enriched genes and vent-specific gene expression patterns also suggest that efficient DNA repair mechanisms play a crucial role in the thermal stress resistance of vent populations. Interestingly, some genes associated with circadian rhythms were upregulated in vent populations, suggesting these genes may help vent anemones adapt to the highly dynamic conditions of hydrothermal vents. Furthermore, the expression profiles of stress-resistance-related genes reveal that vent anemones have developed unique molecular regulatory mechanisms to cope with elevated temperatures, as observed in the tank experiment. These transcriptomic findings advance our understanding of the life adaptations in shallow-water hydrothermal vent environments.
Collapse
Affiliation(s)
- Mei‐Fang Lin
- Department of Marine Biotechnology and ResourcesNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Doctoral Degree Program in Marine BiotechnologyNational Sun Yat‐Sen UniversityKaohsiungTaiwan
| | - Li‐Lian Liu
- Frontier Center for Ocean Science and TechnologyNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Department of OceanographyNational Sun Yat‐Sen UniversityKaohsiungTaiwan
| | | |
Collapse
|
4
|
Zhang H, Sun S, Liu J, Guo Q, Meng L, Chen J, Xiang X, Zhou Y, Zhang N, Liu H, Liu Y, Yan G, Ji Q, He L, Cai S, Cai C, Huang X, Xu S, Xiao Y, Zhang Y, Wang K, Liu Y, Chen H, Yue Z, He S, Wang J, Yang H, Liu X, Seim I, Gu Y, Li Q, Zhang G, Lee SMY, Kristiansen K, Xu X, Liu S, Fan G. The amphipod genome reveals population dynamics and adaptations to hadal environment. Cell 2025; 188:1378-1392.e18. [PMID: 40054448 DOI: 10.1016/j.cell.2025.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/16/2024] [Accepted: 01/20/2025] [Indexed: 05/13/2025]
Abstract
The amphipod Hirondellea gigas is a dominant species inhabiting the deepest part of the ocean (∼6,800-11,000 m), but little is known about its genetic adaptation and population dynamics. Here, we present a chromosome-level genome of H. gigas, characterized by a large genome size of 13.92 Gb. Whole-genome sequencing of 510 individuals from the Mariana Trench indicates no population differentiation across depths, suggesting its capacity to tolerate hydrostatic pressure across wide ranges. H. gigas in the West Philippine Basin is genetically divergent from the Mariana and Yap Trenches, suggesting genetic isolation attributed to the geographic separation of hadal features. A drastic reduction in effective population size potentially reflects glacial-interglacial changes. By integrating multi-omics analysis, we propose host-symbiotic microbial interactions may be crucial in the adaptation of H. gigas to the extremely high-pressure and food-limited environment. Our findings provide clues for adaptation to the hadal zone and population genetics.
Collapse
Affiliation(s)
- Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; Institution of Deep-sea Life Sciences, IDSSE-BGI, Hainan Deep-sea Technology Laboratory, Sanya 57200, China.
| | - Shuai Sun
- BGI Research, Qingdao 266555, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Key Laboratory of Marine Biology Genomics, BGI Research, Shenzhen 518083, China
| | - Jun Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Qunfei Guo
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China
| | - Liang Meng
- BGI Research, Qingdao 266555, China; BGI Research, Sanya 572025, China; Institution of Deep-sea Life Sciences, IDSSE-BGI, Hainan Deep-sea Technology Laboratory, Sanya 57200, China
| | - Jianwei Chen
- BGI Research, Qingdao 266555, China; Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao 266555, China; Laboratory of Integrative Biomedicine, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Xueyan Xiang
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China; Shenzhen Key Laboratory of Marine Biology Genomics, BGI Research, Shenzhen 518083, China
| | - Yang Zhou
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Nannan Zhang
- BGI Research, Qingdao 266555, China; BGI Research, Sanya 572025, China
| | - Helu Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | | | - Guoyong Yan
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | | | - Lisheng He
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Shanya Cai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | | | - Xin Huang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Shiyu Xu
- BGI Research, Qingdao 266555, China
| | - Yunlu Xiao
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | | | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | | | - Haixin Chen
- BGI Research, Sanya 572025, China; Institution of Deep-sea Life Sciences, IDSSE-BGI, Hainan Deep-sea Technology Laboratory, Sanya 57200, China
| | - Zhen Yue
- BGI Research, Sanya 572025, China; Institution of Deep-sea Life Sciences, IDSSE-BGI, Hainan Deep-sea Technology Laboratory, Sanya 57200, China
| | - Shunping He
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | | | - Huanming Yang
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Xin Liu
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China; Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao 266555, China
| | - Inge Seim
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Ying Gu
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Qiye Li
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Guojie Zhang
- Center of Evolutionary & Organismal Biology and Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Simon Ming-Yuen Lee
- Department of Food Science and Nutrition and PolyU-BGI Joint Research Centre for Genomics and Synthetic Biology in Global Ocean Resources, The Hong Kong Polytechnic University, Hong Kong, China
| | - Karsten Kristiansen
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao 266555, China; Laboratory of Integrative Biomedicine, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Xun Xu
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China; Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao 266555, China; BGI Research, Hangzhou 310030, China.
| | - Shanshan Liu
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China; Institution of Deep-sea Life Sciences, IDSSE-BGI, Hainan Deep-sea Technology Laboratory, Sanya 57200, China; BGI, Shenzhen 518083, China; Shenzhen Key Laboratory of Marine Biology Genomics, BGI Research, Shenzhen 518083, China.
| | - Guangyi Fan
- BGI Research, Qingdao 266555, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China; Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao 266555, China; BGI Research, Sanya 572025, China; Department of Food Science and Nutrition and PolyU-BGI Joint Research Centre for Genomics and Synthetic Biology in Global Ocean Resources, The Hong Kong Polytechnic University, Hong Kong, China; Shenzhen Key Laboratory of Marine Biology Genomics, BGI Research, Shenzhen 518083, China.
| |
Collapse
|
5
|
Xu H, Fang C, Xu W, Wang C, Song Y, Zhu C, Fang W, Fan G, Lv W, Bo J, Zeng H, Sha Z, Liu H, Jing H, Liu H, Wei T, Li J, He L, Cai S, Gan X, Chen Y, Zhang H, Wang K, He S. Evolution and genetic adaptation of fishes to the deep sea. Cell 2025; 188:1393-1408.e13. [PMID: 40054449 DOI: 10.1016/j.cell.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 09/09/2024] [Accepted: 01/02/2025] [Indexed: 05/13/2025]
Abstract
The deep sea, especially hadal zones, characterized by high-hydrostatic pressure, low temperatures, and near-total darkness, present some of the most challenging environments for life on Earth. However, teleost fish have successfully colonized these extreme habitats through complex adaptations. We generated genome assemblies of 12 species, including 11 deep-sea fishes. Our findings reconstructed the teleost deep-sea colonization history and revealed the overall impact of the deep-sea environment on fishes. Interestingly, our results question the previously assumed linear correlation between trimethylamine oxide (TMAO) content and depth. By contrast, we observed a convergent aa replacement in the rtf1 gene in most deep-sea fishes under 3,000 m, and in vitro experiments suggest that this mutation can influence transcriptional efficiency, which is likely to be advantageous in the deep-sea environment. Moreover, our study underlines the pervasive impact of human activities, as we detected the presence of persistent organic pollutants in species from the Mariana Trench.
Collapse
Affiliation(s)
- Han Xu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chengchi Fang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wenjie Xu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Cheng Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yue Song
- BGI-Qingdao, Qingdao 266555, China
| | - Chenglong Zhu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenyu Fang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | | | - Wenqi Lv
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jing Bo
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Honghui Zeng
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | - Helu Liu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Hongmei Jing
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Hao Liu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Taoshu Wei
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Jiwei Li
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Lisheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Shanya Cai
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Xiaoni Gan
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yiyu Chen
- National Natural Science Foundation of China, Beijing 100085, China
| | - Haibin Zhang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Kun Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Shunping He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 101408, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
6
|
Zhang F, Zhang T, Dong H, Jiang J, Yang G, Seim I, Tian R. Comparative Genomics Uncovers Molecular Adaptations for Cetacean Deep-Sea Diving. Mol Ecol 2025:e17678. [PMID: 39898416 DOI: 10.1111/mec.17678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
Cetaceans show remarkable diversity in diving capability, implying a range of adaptive strategies to hazards such as hydrostatic pressure and oxidative stress, but few studies have considered the evolution of extreme diving. Here, we first examined the relationship between morphological and physiological factors and diving capability and then considered the molecular evolution of candidate deep-sea diving traits in a genomic dataset of cetaceans. Our dataset included six super-divers, sperm whales (families Physeteridae and Kogiidae) and beaked whales (Ziphiidae), species that can dive deeper than 1000 m for about an hour or longer. We found a positive association between diving capability and oxygen-linked globins, and super-diver myoglobin (MB) is under positive selection and harbours a reported functional amino acid change. Blubber thickness was positively associated, likely to provide thermal insulation and hydrostatic pressure resistance. Super-divers have gene changes that may contribute to differences in the composition of outer blubber neutral lipids (triacylglycerols and wax esters), fatty acids and cholesterol. Total lung capacity relative to body mass showed a negative association, ostensibly to limit gas bubbles that can cause decompression sickness. A functional assay suggests that an ATP8B1 amino acid substitution may reduce lung injury in super-divers. Super-diver XDH has two unique amino acids and a decreased ability to produce uric acid under hypoxia when its ROS-generating XO isoform is prevalent, suggesting that it reduces cell damage from oxidative stress and uric acid accumulation in species with prolonged dives. Our study deepens the understanding of how deep-sea diving emerged in the cetacean lineage.
Collapse
Affiliation(s)
- Fan Zhang
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of the Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Tong Zhang
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of the Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Hao Dong
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of the Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jie Jiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Guang Yang
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of the Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Inge Seim
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ran Tian
- Jiangsu Key Laboratory for the Biodiversity Conservation and Sustainable Utilization in the Middle and Lower Reaches of the Yangtze River Basin, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
7
|
Sun L, Liu X, Zhou L, Wang H, Lian C, Zhong Z, Wang M, Chen H, Li C. Shallow-water mussels (Mytilus galloprovincialis) adapt to deep-sea environment through transcriptomic and metagenomic insights. Commun Biol 2025; 8:46. [PMID: 39806046 PMCID: PMC11729891 DOI: 10.1038/s42003-024-07382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Recent studies have unveiled the deep sea as a rich biosphere, populated by species descended from shallow-water ancestors post-mass extinctions. Research on genomic evolution and microbial symbiosis has shed light on how these species thrive in extreme deep-sea conditions. However, early adaptation stages, particularly the roles of conserved genes and symbiotic microbes, remain inadequately understood. This study examined transcriptomic and microbiome changes in shallow-water mussels Mytilus galloprovincialis exposed to deep-sea conditions at the Site-F cold seep in the South China Sea. Results reveal complex gene expression adjustments in stress response, immune defense, homeostasis, and energy metabolism pathways during adaptation. After 10 days of deep-sea exposure, shallow-water mussels and their microbial communities closely resembled those of native deep-sea mussels, demonstrating host and microbiome convergence in response to adaptive shifts. Notably, methanotrophic bacteria, key symbionts in native deep-sea mussels, emerged as a dominant group in the exposed mussels. Host genes involved in immune recognition and endocytosis correlated significantly with the abundance of these bacteria. Overall, our analyses provide insights into adaptive transcriptional regulation and microbiome dynamics of mussels in deep-sea environments, highlighting the roles of conserved genes and microbial community shifts in adapting to extreme environments.
Collapse
Affiliation(s)
- Luyang Sun
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 266104, Qingdao, China.
- University of Chinese Academy of Sciences, 10049, Beijing, China.
| | - Xiaolu Liu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 266104, Qingdao, China
- University of Chinese Academy of Sciences, 10049, Beijing, China
| | - Li Zhou
- University of Chinese Academy of Sciences, 10049, Beijing, China
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Hao Wang
- University of Chinese Academy of Sciences, 10049, Beijing, China
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Chao Lian
- University of Chinese Academy of Sciences, 10049, Beijing, China
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Zhaoshan Zhong
- University of Chinese Academy of Sciences, 10049, Beijing, China
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Minxiao Wang
- University of Chinese Academy of Sciences, 10049, Beijing, China
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Hao Chen
- University of Chinese Academy of Sciences, 10049, Beijing, China
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Chaolun Li
- University of Chinese Academy of Sciences, 10049, Beijing, China.
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China.
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China.
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China.
| |
Collapse
|
8
|
Yan Y, Seim I, Guo Y, Chi X, Zhong Z, Wang D, Li M, Wang H, Zhang H, Wang M, Li C. Degenerated vision, altered lipid metabolism, and expanded chemoreceptor repertoires enable Lindaspio polybranchiata to thrive in deep-sea cold seeps. BMC Biol 2025; 23:13. [PMID: 39806408 PMCID: PMC11730519 DOI: 10.1186/s12915-025-02112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Lindaspio polybranchiata, a member of the Spionidae family, has been reported at the Lingshui Cold Seep, where it formed a dense population around this nascent methane vent. We sequenced and assembled the genome of L. polybranchiata and performed comparative genomic analyses to investigate the genetic basis of adaptation to the deep sea. Supporting this, transcriptomic and fatty acid data further corroborate our findings. RESULTS We report the first genome of a deep-sea spionid, L. polybranchiata. Over long-term adaptive evolution, genes associated with vision and biological rhythmicity were lost, which may indirectly benefit oligotrophy by eliminating energetically costly processes. Compared to its shallow-sea relatives, L. polybranchiata has a significantly higher proportion of polyunsaturated fatty acids (PUFAs) and expanded gene families involved in the biosynthesis of unsaturated fatty acids and chromatin stabilization, possibly in response to high hydrostatic pressure. Additionally, L. polybranchiata has broad digestive scope, allowing it to fully utilize the limited food resources in the deep sea to sustain a large population. As a pioneer species, L. polybranchiata has an expanded repertoire of genes encoding potential chemoreceptor proteins, including ionotropic receptors (IRs) and gustatory receptor-like receptors (GRLs). These proteins, characterized by their conserved 3D structures, may enhance the organism's ability to detect chemical cues in chemosynthetic ecosystems, facilitating rapid settlement in suitable environments. CONCLUSIONS Our results shed light on the adaptation of Lindaspio to the darkness, high hydrostatic pressure, and food deprivation in the deep sea, providing insights into the molecular basis for L. polybranchiata becoming a pioneer species.
Collapse
Affiliation(s)
- Yujie Yan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Inge Seim
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Yang Guo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xupeng Chi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhaoshan Zhong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | | | - Mengna Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- National Deep Sea Center, Qingdao, 266071, China
| | - Haining Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Huan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Minxiao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266071, China.
| | - Chaolun Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266071, China.
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
9
|
Zhang H, Zhou Y, Yang Z. Genetic adaptations of marine invertebrates to hydrothermal vent habitats. Trends Genet 2024; 40:1047-1059. [PMID: 39277449 DOI: 10.1016/j.tig.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
Hydrothermal vents are unique habitats like an oases of life compared with typical deep-sea, soft-sediment environments. Most animals that live in these habitats are invertebrates, and they have adapted to extreme vent environments that include high temperatures, hypoxia, high sulfide, high metal concentration, and darkness. The advent of next-generation sequencing technology, especially the coming of the new era of omics, allowed more studies to focus on the molecular adaptation of these invertebrates to vent habitats. Many genes linked to hydrothermal adaptation have been studied. We summarize the findings related to these genetic adaptations and discuss which new techniques can facilitate studies in the future.
Collapse
Affiliation(s)
- Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Yang Zhou
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Zhuo Yang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Han FY, Wu RX, Miao BB, Niu SF, Wang QH, Liang ZB. Whole-Genome Sequencing Analyses Reveal the Whip-like Tail Formation, Innate Immune Evolution, and DNA Repair Mechanisms of Eupleurogrammus muticus. Animals (Basel) 2024; 14:434. [PMID: 38338077 PMCID: PMC10854985 DOI: 10.3390/ani14030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Smallhead hairtail (Eupleurogrammus muticus) is an important marine economic fish distributed along the northern Indian Ocean and the northwest Pacific coast; however, little is known about the mechanism of its genetic evolution. This study generated the first genome assembly of E. muticus at the chromosomal level using a combination of PacBio SMRT, Illumina Nova-Seq, and Hi-C technologies. The final assembled genome size was 709.27 Mb, with a contig N50 of 25.07 Mb, GC content of 40.81%, heterozygosity rate of 1.18%, and repetitive sequence rate of 35.43%. E. muticus genome contained 21,949 protein-coding genes (97.92% of the genes were functionally annotated) and 24 chromosomes. There were 143 expansion gene families, 708 contraction gene families, and 4888 positively selected genes in the genome. Based on the comparative genomic analyses, we screened several candidate genes and pathways related to whip-like tail formation, innate immunity, and DNA repair in E. muticus. These findings preliminarily reveal some molecular evolutionary mechanisms of E. muticus at the genomic level and provide important reference genomic data for the genetic studies of other trichiurids.
Collapse
Affiliation(s)
- Fang-Yuan Han
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (F.-Y.H.); (S.-F.N.); (Z.-B.L.)
| | - Ren-Xie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (F.-Y.H.); (S.-F.N.); (Z.-B.L.)
| | - Ben-Ben Miao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;
| | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (F.-Y.H.); (S.-F.N.); (Z.-B.L.)
| | - Qing-Hua Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Sciences School, Sun Yat-sen University, Guangzhou 510275, China;
| | - Zhen-Bang Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (F.-Y.H.); (S.-F.N.); (Z.-B.L.)
| |
Collapse
|