1
|
Guo D, Pan Q, Gao Y. Platinum compounds constructing interface structure strategies for electrolysis hydrogen production. Chem Commun (Camb) 2025; 61:7543-7562. [PMID: 40337830 DOI: 10.1039/d5cc01094b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
With the continuous growth of global energy demand, designing efficient hydrogen evolution reaction (HER) catalysts has become increasingly important. However, current interface structure synthesis strategies for platinum-based compounds are not yet adequate, limiting their application efficiency in hydrogen production. Therefore, this paper reviews a series of interface construction strategies, including the solvothermal method, gas-phase chemical method, heat treatment method, reduction method, electromagnetic synthesis method, electrochemical method, constructing heterojunctions method and constructing substrates method. These methods significantly enhance the overall performance of platinum-based catalysts by optimizing the interactions between the catalyst and support materials, improving electron transfer efficiency, and increasing the exposed area of active sites. Additionally, this paper introduces various interface structure strategies that can increase HER active sites, such as single-atom catalysts, diatomic catalysts, nanoparticles, nanowires, nanotubes, and porous structures. These nanostructures further enhance catalytic activity and stability by increasing the specific surface area and providing abundant reaction sites. Furthermore, this paper thoroughly elucidates the mechanisms of the HER in acidic and alkaline media, exploring the key factors for optimizing catalyst performance under different pH conditions. By understanding the HER mechanisms and combining advanced interface construction strategies with diverse nanostructure designs, researchers can better construct interfaces and design nanostructures, thereby developing platinum-based catalysts that are efficient, stable, and economical. This review provides a systematic guide for constructing interface structures of platinum compounds, aiming to promote the sustainable development of hydrogen energy technologies, facilitate their widespread application in the global energy transition, and contribute to achieving carbon neutrality goals and addressing increasingly severe environmental challenges.
Collapse
Affiliation(s)
- Dezheng Guo
- Automotive Institute, Tongji University, Shanghai 200000, China.
| | - Qiwen Pan
- Automotive Institute, Tongji University, Shanghai 200000, China.
| | - Yuan Gao
- Automotive Institute, Tongji University, Shanghai 200000, China.
| |
Collapse
|
2
|
Zeng H, Chen Z, Jiang Q, Zhong Q, Ji Y, Chen Y, Li J, Liu C, Zhang R, Tang J, Xiong X, Zhang Z, Chen Z, Dai Y, Li C, Chen Y, Zhao D, Li X, Zheng T, Xu X, Xia C. Sustainable and cost-efficient hydrogen production using platinum clusters at minimal loading. Nat Commun 2025; 16:4314. [PMID: 40341062 PMCID: PMC12062374 DOI: 10.1038/s41467-025-59450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 04/23/2025] [Indexed: 05/10/2025] Open
Abstract
Proton exchange membrane water electrolysis stands as a promising technology for sustainable hydrogen production, although its viability hinges on minimizing platinum (Pt) usage without sacrificing catalytic efficiency. Central to this challenge is enhancing the intrinsic activity of Pt while ensuring the stability of the catalyst. We herein present a Mo2TiC2 MXene-supported Pt nanocluster catalyst (Mo2TiC2-PtNC) that requires a minimal Pt content (36 μg cm-2) to function, yet remains highly active and stable. Operando spectroscopy and theoretical simulation provide evidence for anomalous charge transfer from the MXene substrate to PtNC, thus generating highly efficient electron-rich Pt sites for robust hydrogen evolution. When incorporated into a proton exchange membrane electrolyzer, the catalyst affords more than 8700 h at 200 mA cm-2 under ambient temperature with a decay rate of just 2.2 μV h-1. All the performance metrics of the present Mo2TiC2-PtNC catalysts are on par with or even surpass those of current hydrogen evolution electrocatalysts under identical operation conditions, thereby challenging the monopoly of high-loading Pt/C-20% in the current electrolyzer design.
Collapse
Affiliation(s)
- Hongliang Zeng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Zheng Chen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Fudan University, Shanghai, P. R. China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China.
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, P. R. China.
| | - Qingtian Zhong
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Yuan Ji
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Yizhen Chen
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Jiawei Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Chunxiao Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Runhao Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Jialin Tang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Xiaoxia Xiong
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Zhongyue Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Zhaoyang Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Yizhou Dai
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Chengbo Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Yinfang Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Donghao Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Xu Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Xin Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Fudan University, Shanghai, P. R. China.
- Hefei National Laboratory, Hefei, P. R. China.
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China.
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, P. R. China.
| |
Collapse
|
3
|
Wan Y, Wei W, Li L, Wu L, Qin H, Yuan X. Modulating Support Effect in High-Entropy Sulfide via La Single-Atom for Boosted Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502039. [PMID: 40244050 DOI: 10.1002/smll.202502039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/06/2025] [Indexed: 04/18/2025]
Abstract
Reduced energy barrier induced enhanced oxygen evolution reaction (OER) kinetics can be achieved by implementing an efficient electrocatalyst. Herein, positive effect of lanthanum (La) single-atom modified hollow carbon sphere (HCS) support on OER activity of high-entropy sulfide (HES) material (FeCoNiCrCuAl)S has been reported. Briefly, La single-atom boosts the aggregation of electrons at adjacent Fe, Co, Ni, Cr, and Cu sites and dissipation of electrons at Al site in HES material, facilitating reconstruction of electronic structure and down-shifting their d-band center away from Fermi level, resulting in reduced adsorption energy of OER intermediates. As developed (FeCoNiCrCuAl)S@La-HCS depicts high OER performance with an overpotential of only 297 mV at 100 mA cm-2, surpassing (FeCoNiCrCuAl)S@HCS (324 mV) and commercial RuO2 catalyst (419 mV). This work provides an insight into the integration of single atom with high-entropy sulfide toward efficient oxygen evolution.
Collapse
Affiliation(s)
- Yi Wan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenrui Wei
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lin Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiying Qin
- New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xianxia Yuan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Niu Z, Qiao Z, Sun P, Chen J, Wang S, Huo F, Cao D. Single-Atom Sb-Doped RuSbO x Bifunctional Catalysts for Ultra-Stable PEM Water Electrolyzers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502088. [PMID: 40244887 DOI: 10.1002/smll.202502088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Indexed: 04/19/2025]
Abstract
Developing highly efficient and stable Pt/Ir-free bifunctional catalysts is very urgent for lowering the catalyst cost of proton exchange membrane water electrolyzer (PEMWE). Herein, a single-atom Sb-doped RuSbOx bifunctional catalyst is developed for ultra-stable PEMWE. RuSbOx exhibits excellent stability with a long-term operation of 150 h for oxygen evolution reaction (OER) and 300 h for hydrogen evolution reaction (HER) at 100 mA cm-2 in acidic media, respectively. Impressively, the PEMWE with RuSbOx as bifunctional catalysts only needs 1.72 to reach 1.0 A cm-2, and can maintain stable operation for 200 h at 200 mA cm-2. The in situ Raman and molecular probe methods reveal that the single-atom Sb doping can reconstruct the interfacial water structure on the surface of RuSbOx, resulting in an enriched supply of free water, accelerating the deprotonation process and reducing the local acidity of the catalyst surface, thereby improving the acidic OER activity and stability. Density functional theory calculations further confirm the above experimental results. In short, this work reveals that Sb is an outstanding structural stabilizer, and single-atom Sb-doping can maximize the OER stability of Ru-based catalysts in acid, which provides a useful strategy for designing ultra-stable electrocatalysts for PEMWE.
Collapse
Affiliation(s)
- Ziqiang Niu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China
| | - Zelong Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Panpan Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingzhao Chen
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Feng Huo
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
5
|
Wang L, Hung SF, Zhao S, Wang Y, Bi S, Li S, Ma JJ, Zhang C, Zhang Y, Li L, Chen TY, Chen HY, Hu F, Wu Y, Peng S. Modulating the covalency of Ru-O bonds by dynamic reconstruction for efficient acidic oxygen evolution. Nat Commun 2025; 16:3502. [PMID: 40221408 PMCID: PMC11993612 DOI: 10.1038/s41467-025-58654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Developing ruthenium-based oxide catalysts capable of suppressing lattice oxygen participation in the catalytic reaction process is crucial for maintaining stable oxygen evolution reaction (OER) under acidic conditions. Herein, we delicately construct a RuO2 nanoparticle-anchored LiCoO2 nanosheet electrocatalyst (RuO2/LiCoO2), achieving dynamic optimization of RuO2 during the reaction process and improving catalytic stability. Benefiting from the unique electrochemical delithiation characteristics of the LiCoO2 support, the covalency of the Ru-O bond is effectively regulated during the OER process. The weakened Ru-O covalent bond inhibits the participation of lattice oxygen in the catalytic reaction and ensures the continuous operation of the Ru active sites. Moreover, the extended Ru-O bond in the optimized RuO2/LiCoO2 catalyst reduces the formation energy barrier of the *OOH intermediates, accelerating the progress of the OER. As a result, the RuO2/LiCoO2 catalyst requires only an overpotential of 150 ± 2 mV at 10 mA cm-2 in 0.5 M H2SO4 and operates stably for 2000 h at 1 A cm-2 in a proton exchange membrane water electrolysis. This work opens new avenues for designing efficient ruthenium-based catalysts.
Collapse
Affiliation(s)
- Luqi Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Sheng Zhao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yue Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Suwan Bi
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shaoxiong Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jian-Jie Ma
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chenchen Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Tsung-Yi Chen
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Yuping Wu
- Confucius Energy Storage Lab, School of Energy and Environment & Z Energy Storage Center, Southeast University, Nanjing, 211189, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
- Confucius Energy Storage Lab, School of Energy and Environment & Z Energy Storage Center, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
6
|
Du H, Sun T, Wang M, Tang Y, Yu Y, Wang J. Impact of harmful ions in seawater on electrolysis catalysts: challenges and mitigation strategies. Chem Commun (Camb) 2025; 61:5719-5730. [PMID: 40130362 DOI: 10.1039/d5cc00844a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Direct seawater electrolysis presents a promising solution to address both freshwater scarcity and the growing demand for green hydrogen in regions abundant in renewable energy. This study first investigates the electrochemical mechanisms of seawater electrolysis, decomposing the process into cathodic and anodic reactions. It then reviews the impact of seawater's complex ionic composition on electrocatalyst performance, focusing on activity, selectivity, and stability. The challenges posed by anionic interference from Cl- and Br-, and cationic interference from Mg2+ and Ca2+, are discussed, along with effective mitigation strategies. Solutions to mitigate the impact of anions on the anode, such as heterojunction engineering, nanostructure design and constructing anti-corrosion layers, are proposed. Anodic small molecule oxidation is employed as an alternative to the oxygen evolution reaction (OER) to decrease the overall energy consumption. For the cationic interference on the cathode, strategies like maintaining the hydrophobicity of the electrode and electrolysis cell design are suggested. Finally, this review summarizes the remaining challenges, presents feasible solutions, and highlights key considerations for scaling up seawater electrolysis for commercial hydrogen production. This review provides valuable insights to accelerate the development of sustainable, large-scale seawater hydrogen production technologies.
Collapse
Affiliation(s)
- Hanxiao Du
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Institute of Electrochemistry, School of Materials Science and Engineering, Taizhou University, Taizhou, 318000, Zhejiang, China.
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongming Sun
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Minmin Wang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Yanfeng Tang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Yang Yu
- School of Pharmaceutical Sciences, Taizhou University, Taizhou, 318000, Zhejiang, China.
| | - Jiacheng Wang
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Institute of Electrochemistry, School of Materials Science and Engineering, Taizhou University, Taizhou, 318000, Zhejiang, China.
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| |
Collapse
|
7
|
Zuo X, Qiu Y, Zhen M, Liu D, Zhang Y. Review on MXenes-Based Electrocatalysts for High-Energy-Density Lithium-Sulfur Batteries. NANO-MICRO LETTERS 2025; 17:209. [PMID: 40208556 PMCID: PMC11985747 DOI: 10.1007/s40820-025-01726-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/09/2025] [Indexed: 04/11/2025]
Abstract
Lithium-sulfur batteries (LSBs) hold significant promise as advanced energy storage systems due to their high energy density, low cost, and environmental advantages. However, despite recent advancements, their practical energy density still falls short of the levels required for commercial viability. The energy density is critically dependent on both sulfur loading and the amount of electrolyte used. High-sulfur loading coupled with lean electrolyte conditions presents several challenges, including the insulating nature of sulfur and Li2S, insufficient electrolyte absorption, degradation of the cathode structure, severe lithium polysulfide shuttling, slow redox reaction kinetics, and instability of the Li metal anode. MXenes-based materials, with their metallic conductivity, large polar surfaces, and abundant active sites, have been identified as promising electrocatalysts to improve the redox reactions in LSBs. This review focuses on the significance and challenges associated with high-sulfur loading and lean electrolytes in LSBs, highlighting recent advancements in MXenes-based electrocatalysts aimed at optimizing sulfur cathodes and lithium anodes. It provides a comprehensive discussion on MXenes as both active materials and substrates in LSBs, with the goal of enhancing understanding of the regulatory mechanisms that govern sulfur conversion reactions and lithium plating/stripping behavior. Finally, the review explores future opportunities for MXenes-based electrocatalysts, paving the way for the practical application of LSBs.
Collapse
Affiliation(s)
- Xintao Zuo
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, People's Republic of China
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Yanhui Qiu
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, People's Republic of China
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Mengmeng Zhen
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300071, People's Republic of China.
| | - Dapeng Liu
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, People's Republic of China.
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
| | - Yu Zhang
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, People's Republic of China.
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
8
|
Shi L, Zhang F, Wang X, Li J, Liu Y, Fu W, Yao S, Wang S, Ji K, Ji Y, Yang Z, Xie J, Yan YM. Overcoming Interfacial Hydrogen Site-Blocking during Alkaline Formate Oxidation: Insights from Lattice-Compressed PdZr/C Catalysts. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15413-15422. [PMID: 40014854 DOI: 10.1021/acsami.4c21195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Improving the electrocatalytic conversion of formate in alkaline solutions is crucial for the commercial application of formate fuel cells. However, palladium-based catalysts used for formate oxidation reactions (FOR) face challenges due to the strong adsorption of hydrogen intermediates, resulting in lower catalytic efficiency in alkaline environments. Herein, we prepared a PdZr/C catalyst aimed at employing a doping-induced strain strategy to reduce the hydrogen binding energy of palladium and release more active sites for the oxidation of formate. Through density functional theory calculations and experimental investigations, we find that the lattice compression induced by Zr doping regulates the electronic structure of Pd. Specifically, the incorporation of Zr dopant shifts the d-band center of Pd downward, weakening the binding energy of hydrogen at the Pd sites. This adjustment promotes the desorption of hydrogen intermediates, thus accelerating the FOR kinetics by alleviating the site-blocking effect. As a result, the PdZr/C catalyst exhibited a 2.4-fold increase in activity compared to the conventional Pd/C catalyst. It also achieved a lower peak potential and delivered a significantly higher peak current of 1917 mA mg-1. These findings highlight the critical role of lattice strain in tuning the catalytic properties of Pd and offer valuable insights into the design of high-performance electrocatalysts for energy conversion technologies.
Collapse
Affiliation(s)
- Lanlan Shi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Feike Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaojun Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jingxian Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yuanming Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Weijie Fu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shuyun Yao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shiyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Kang Ji
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yingjie Ji
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zhiyu Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jiangzhou Xie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yi-Ming Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
9
|
Zhao S, Hung SF, Wang Y, Li S, Yang J, Zeng WJ, Zhang Y, Chang HH, Chen HY, Hu F, Li L, Peng S. Dynamic Deprotonation Enhancement Triggered by Accelerated Electrochemical Delithiation Reconstruction during Acidic Water Oxidation. J Am Chem Soc 2025; 147:7993-8003. [PMID: 39967426 DOI: 10.1021/jacs.5c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The structure-dependent transition in reaction pathways during acidic oxygen evolution (OER) is pivotal due to the active site oxidation accompanied by the coordination environment changes. In this work, charge-polarized Ir-O-Co units are constructed in alkali metal cobalt oxides (LiCoO2, and Na0.74CoO2) to modify the lower Hubbard band. Benefiting from the accelerated delithiation reconstruction induced by the altered band structure, typical Ir-LiCoO2 produces high-valent Ir sites with unsaturated coordination through the charge compensation during OER. Oxygen atoms shared by trimetallic sites exhibit strong Bro̷nsted acidity, promoting proton migration for unsaturated Ir sites and dynamically enhancing deprotonation. Furthermore, the stable coordination environment, along with electron donation from Co sites, significantly improves the stability of Ir sites. The unique electrochemical activation results in a low overpotential of 190 mV at 10 mA cm-2 during acidic OER and delivers exceptional stability at 1 A cm-2 for 150 h with a slight voltage degradation in a proton exchange membrane electrolyzer. This work provides in-depth insights into the relationship between catalyst reconstruction and reaction mechanisms.
Collapse
Affiliation(s)
- Sheng Zhao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yue Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Shaoxiong Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Juan Yang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wen-Jing Zeng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Ying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao-Hsiang Chang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
10
|
Wang LL, Wang XR, Wang HJ, Zhang C, Li JJ, Feng GJ, Cheng XX, Qin XR, Yu ZY, Lu TB. Tailoring Lewis Acidity of Metal Oxides on Nickel to Boost Electrocatalytic Hydrogen Evolution in Neutral Electrolyte. J Am Chem Soc 2025; 147:7555-7563. [PMID: 39965184 DOI: 10.1021/jacs.4c16596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Neutral-pH water splitting for hydrogen production features a benign environment that could alleviate catalyst and electrolyzer corrosion but calls for the corresponding high-efficiency and earth-abundant hydrogen evolution reaction (HER) catalysts. Herein, we first designed a series of metal oxides decorated on Ni as the model catalysts and found a volcano-shaped relationship between the Lewis acidity of Ni/metal oxides and HER activity in neutral media. The Ni/ZnO with the optimum Lewis acidity could balance water dissociation and hydroxyl desorption, thereby greatly boosting the HER. On the basis of this finding, we further in situ grew the Ni/ZnO heterostructure on a three-dimensional conductive support. The resulting catalyst requires overpotentials of merely 34 and 194 mV to deliver the current densities of 10 and 200 mA cm-2, respectively, and can stably operate at these current densities for 2000 h in 1 M phosphate buffer solution (pH 7), representing the most active and durable HER catalyst in neutral electrolyte reported thus far. Our work provides an effective design scheme for low-cost and high-performance neutral HER catalysts.
Collapse
Affiliation(s)
- Lin-Lin Wang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiao-Ran Wang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hong-Juan Wang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Chong Zhang
- The Instruments Center for Physical Science, University of Science and Technology of China, Hefei 230026, China
| | - Jing-Jing Li
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Guo-Jin Feng
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xuan-Xuan Cheng
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xue-Rong Qin
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zi-You Yu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
11
|
Feng Y, Zhu W, Xu J, Zhang D, Ma Q, Zhao L, Lin L, Su Q, Wang Y, Liu Q, Wei Y, Li X, Huang J, Ye Y, Zhao J, Wu B. Steering the Electronic Microenvironment of Ruthenium Sites via Boron Buffering Enables Enhanced Hydrogen Evolution under a Universal pH Range. ACS NANO 2025; 19:7948-7961. [PMID: 39985472 DOI: 10.1021/acsnano.4c14866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Optimizing the microenvironment of active sites is crucial for enhancing the catalytic activity of the hydrogen evolution reaction (HER) across various pH conditions. Here, guided by theoretical predictions of boron (B)-doping's electronic buffering effect on ruthenium (Ru) at the atomic scale, a highly efficient and universal-pH Ru-based HER electrocatalyst (Ru-NBC) by introducing B and nitrogen (N) into a carbon (C) matrix was designed. The Ru-NBC catalyst demonstrated exceptional HER activity, requiring overpotentials of 27, 40, and 68 mV in 1 M KOH, 0.5 M H2SO4, and 1 M phosphate buffer solution (PBS), respectively, to achieve a current density of 10 mA cm-2. In situ Raman spectroscopy, ambient-pressure X-ray photoelectron spectroscopy, and potential of zero charge measurements revealed that B-doping modulates the local Ru microenvironment, restructuring the distribution balance of the interfacial water hydrogen-bond network within the electrochemical double layer and thereby facilitating water adsorption and dissociation. Density functional theory calculations further verified that the electronic buffering effect of B optimizes hydrogen adsorption in acidic media and water activation in alkaline conditions, resultantly contributing to the universal-pH HER performance. This study could provide guidance for the design of advanced electrocatalysts through modulation of the local microenvironment of active sites for energy storage and conversion.
Collapse
Affiliation(s)
- Yongqiang Feng
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjie Zhu
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jilong Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Dantong Zhang
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qunzhi Ma
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lu Zhao
- Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Liping Lin
- Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Qiwen Su
- College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Ying Wang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingqing Liu
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ying Wei
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xu Li
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianfeng Huang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yifan Ye
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Jingxiang Zhao
- College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Bin Wu
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, Berlin 12489, Germany
| |
Collapse
|
12
|
Liu Y, Zhang L, Tan Z, Sun W, Zhang L, Qiao ZA. Molecular-level Modulation of N, S-Co-Doped Mesoporous Carbon Nanospheres for Selective Aqueous Catalytic Oxidation of Ethylbenzene. Angew Chem Int Ed Engl 2025; 64:e202419438. [PMID: 39592406 DOI: 10.1002/anie.202419438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 11/28/2024]
Abstract
Selective oxidation of aromatic alkanes into high value-added products through benzylic C-H bond activation is one of the main reactions in chemical industry. On account of the constantly increasing demand for mass production, efficient, eco-friendly and sustainable catalysts are urgently needed. Herein, we describe a facile and versatile emulsion-assisted interface self-assembly strategy towards molecular-level fabrication of co-doped mesoporous carbon nanospheres with controllable active N and S species. The method enables a high degree of control over nanoparticle sizes, mesoporous nanostructures, contents of heteroatoms and the chemical composition. The optimized catalyst exhibits high catalytic performance of 97 % ethylbenzene conversion and 98 % selectivity to acetophenone. Density functional theory simulations reveal that N, S-co-doping leads to the redistribution of charge and spin densities, introducing more active carbon atoms and realizing aerobic oxidation of ethylbenzene efficiently. This work presents a general strategy for molecular-level design of carbon-based catalysts, and also provides new insight into the influence of heteroatom-doping on catalytic properties.
Collapse
Affiliation(s)
- Yumeng Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Liangliang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Zhengwen Tan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Wenyue Sun
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Ling Zhang
- State Key Laboratory of Supramolecular Structure and Materials, C, ollege of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
13
|
Zhao C, Ding Z, Zhang K, Du Z, Fang H, Chen L, Jiang H, Wang M, Wu M. Comprehensive Chlorine Suppression: Advances in Materials and System Technologies for Direct Seawater Electrolysis. NANO-MICRO LETTERS 2025; 17:113. [PMID: 39841341 PMCID: PMC11754585 DOI: 10.1007/s40820-025-01653-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/01/2025] [Indexed: 01/23/2025]
Abstract
Seawater electrolysis offers a promising pathway to generate green hydrogen, which is crucial for the net-zero emission targets. Indirect seawater electrolysis is severely limited by high energy demands and system complexity, while the direct seawater electrolysis bypasses pre-treatment, offering a simpler and more cost-effective solution. However, the chlorine evolution reaction and impurities in the seawater lead to severe corrosion and hinder electrolysis's efficiency. Herein, we review recent advances in the rational design of chlorine-suppressive catalysts and integrated electrolysis systems architectures for chloride-induced corrosion, with simultaneous enhancement of Faradaic efficiency and reduction of electrolysis's cost. Furthermore, promising directions are proposed for durable and efficient seawater electrolysis systems. This review provides perspectives for seawater electrolysis toward sustainable energy conversion and environmental protection.
Collapse
Affiliation(s)
- Cenkai Zhao
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Zheyuan Ding
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Kunye Zhang
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Ziting Du
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Haiqiu Fang
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Ling Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hao Jiang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Min Wang
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
| |
Collapse
|
14
|
Wang D, Lin F, Luo H, Zhou J, Zhang W, Li L, Wei Y, Zhang Q, Gu L, Wang Y, Luo M, Lv F, Guo S. Ir-O-Mn embedded in porous nanosheets enhances charge transfer in low-iridium PEM electrolyzers. Nat Commun 2025; 16:181. [PMID: 39746916 PMCID: PMC11696821 DOI: 10.1038/s41467-024-54646-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025] Open
Abstract
Using metal oxides to disperse iridium (Ir) in the anode layer proves effective for lowering Ir loading in proton exchange membrane water electrolyzers (PEMWE). However, the reported low-Ir-based catalysts still suffer from unsatisfying electrolytic efficiency and durability under practical industrial working conditions, mainly due to insufficient catalytic activity and mass transport in the catalyst layer. Herein we report a class of porous heterogeneous nanosheet catalyst with abundant Ir-O-Mn bonds, achieving a notable mass activity of 4 A mgIr-1 for oxygen evolution reaction at an overpotential of 300 mV, which is 150.6 times higher than that of commercial IrO2. Ir-O-Mn bonds are unraveled to serve as efficient charge-transfer channels between in-situ electrochemically-formed IrOx clusters and MnOx matrix, fostering the generation and stabilization of highly active Ir3+ species. Notably, Ir/MnOx-based PEMWE demonstrates comparable performance under 10-fold lower Ir loading (0.2 mgIr cm-2), taking a low cell voltage of 1.63 V to deliver 1 A cm-2 for over 300 h, which positions it among the elite of low Ir-based PEMWEs.
Collapse
Affiliation(s)
- Dawei Wang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Heng Luo
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Jinhui Zhou
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Wenshu Zhang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Lu Li
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Yi Wei
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics Chinese Academy of Science, Beijing, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics Chinese Academy of Science, Beijing, China
| | - Yanfei Wang
- Petrochemical Research Institute, PetroChina, Beijing, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Fan Lv
- School of Materials Science and Engineering, Peking University, Beijing, China.
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, China.
| |
Collapse
|
15
|
Shi X, Zhou D, Chen G, An P, Zhang J, Li Y, Liu SF, Yan J. Novel Gel method MXene-Supported Dual-Site PtNi-NiO for Electrocatalytic Water Reduction and Urea Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409461. [PMID: 39479756 DOI: 10.1002/smll.202409461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Indexed: 01/11/2025]
Abstract
Compared to the traditional oxygen evolution reaction (OER), the urea oxidation reaction (UOR) generally exhibits a lower overpotential during the electrolytic process, which is conducive to the hydrogen evolution reaction (HER) at the cathode. The superior structure and abundant sites play a crucial role in promoting the adsorption and cleavage of urea molecules. Therefore, this paper introduces a simple metal cation-induced gelation method to prepare an electrocatalyst with PtNi alloy-NiO dual sites supported on Ti3C2Tx, which simultaneously exhibits excellent UOR and HER performance. PtNi-NiOx/Ti3C2Tx demonstrates good catalytic activity for the urea oxidation reaction, requiring only 1.364 V (overpotential of 0.994 V) to achieve a current density of 100 mA cm-2 in UOR, and also exhibits remarkable catalytic activity in the hydrogen evolution reaction, with PtNi-NiOx/Ti3C2Tx achieving a current density of 10 mA cm-2 in HER with only 24 mV of overpotential. In the UOR//HER two-electrode electrolysis cell, it requires only 1.361 and 1.538 V to reach current densities of 10 and 100 mA cm-2, respectively. According to density functional theory (DFT) calculations, the dual active sites can intelligently adsorb the electron-donating/electron-withdrawing groups in urea molecules, activate chemical bonds, and thereby initiate urea decomposition.
Collapse
Affiliation(s)
- Xintong Shi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Dingyanyan Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Guilin Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shengzhong F Liu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junqing Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
16
|
Deng L, Chen H, Hung SF, Zhang Y, Yu H, Chen HY, Li L, Peng S. Lewis Acid-Mediated Interfacial Water Supply for Sustainable Proton Exchange Membrane Water Electrolysis. J Am Chem Soc 2024; 146:35438-35448. [PMID: 39660962 DOI: 10.1021/jacs.4c14529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The catalyst-electrolyte interface plays a crucial role in proton exchange membrane water electrolysis (PEMWE). However, optimizing the interfacial hydrogen bonding to enhance both catalytic activity and stability remains a significant challenge. Here, a novel catalyst design strategy is proposed based on the hard-soft acid-base principle, employing hard Lewis acids (LAs = ZrO2, TiO2, HfO2) to mediate the reconfiguration of interfacial hydrogen bonding, thereby enhancing the acidic oxygen evolution reaction (OER) performance of RuO2. Mechanistic analysis indicates that LAs prompt a directional evolution from a rigid hydrogen bonding network to free water, enhancing the trapping of interfacial water on the RuO2 surface, which continuously supplies reactants to the catalytic sites. Moreover, the interconnected hydrogen bonding network facilitates rapid proton transfer, reducing local acidity on the catalyst surface and preventing structural corrosion, thus significantly improving long-term stability. The tandem pathway of water supply and deprotonation transforms the dissolution mechanism of traditional Ru-based catalysts, emphasizing the widespread applicability. Consequently, ZrO2-RuO2 displays a significantly reduced overpotential of 170 mV and exhibits high durability, sustaining 1800 h at 10 mA cm-2 under acidic OER, and maintains robust activity for 100 h at 2 A cm-2 in PEMWE, outperforming most Ru/Ir-based catalysts.
Collapse
Affiliation(s)
- Liming Deng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hongjun Chen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Ying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hanzhi Yu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | | |
Collapse
|
17
|
Zhu Y, Li L, Cheng H, Ma J. Alkaline Hydrogen Evolution Reaction Electrocatalysts for Anion Exchange Membrane Water Electrolyzers: Progress and Perspective. JACS AU 2024; 4:4639-4654. [PMID: 39735935 PMCID: PMC11672133 DOI: 10.1021/jacsau.4c00898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/31/2024]
Abstract
For the aim of achieving the carbon-free energy scenario, green hydrogen (H2) with non-CO2 emission and high energy density is regarded as a potential alternative to traditional fossil fuels. Over the last decades, significant breakthroughs have been realized on the alkaline hydrogen evolution reaction (HER), which is a fundamental advancement and efficient process to generate high-purity H2 in the laboratory. Based on this, the development of the practical industry-oriented anion exchange membrane water electrolyzer (AEMWE) is on the rise, showing competitiveness with the incumbent megawatt-scale H2 production technologies. Still, great challenges lie in exploring the electrocatalysts with remarkable activity and stability for alkaline HER, as well as bridging the gap of performance difference between the three-electrode cell and AEMWE devices. In this perspective, we systematically discuss the in-depth mechanisms for activating alkaline HER electrocatalysts, including electronic modification, defect construction, morphology control, synergistic function, field effect, etc. In addition, the current status of AEMWE is reviewed, and the underlying bottlenecks that impede the application of HER electrocatalysts in AEMWE are summarized. Finally, we share our thoughts regarding the future development directions of electrocatalysts toward both alkaline HER and AEMWE, in the hope of advancing the commercialization of water electrolysis technology for green H2 production.
Collapse
Affiliation(s)
- Yiming Zhu
- Shanghai
Key Laboratory for R&D and Application of Metallic Functional
Materials, Institute of New Energy for Vehicles, School of Materials
Science and Engineering, Tongji University, 201804, Shanghai, China
| | - Ling Li
- Center
of Artificial Photosynthesis for Solar Fuels and Department of Chemistry,
School of Science and Research Center for Industries of the Future, Westlake University, 310024, Zhejiang, China
| | - Hongfei Cheng
- Shanghai
Key Laboratory for R&D and Application of Metallic Functional
Materials, Institute of New Energy for Vehicles, School of Materials
Science and Engineering, Tongji University, 201804, Shanghai, China
| | - Jiwei Ma
- Shanghai
Key Laboratory for R&D and Application of Metallic Functional
Materials, Institute of New Energy for Vehicles, School of Materials
Science and Engineering, Tongji University, 201804, Shanghai, China
| |
Collapse
|
18
|
Luo Y, Zhang Y, Zhu J, Tian X, Liu G, Feng Z, Pan L, Liu X, Han N, Tan R. Material Engineering Strategies for Efficient Hydrogen Evolution Reaction Catalysts. SMALL METHODS 2024; 8:e2400158. [PMID: 38745530 PMCID: PMC11672190 DOI: 10.1002/smtd.202400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/27/2024] [Indexed: 05/16/2024]
Abstract
Water electrolysis, a key enabler of hydrogen energy production, presents significant potential as a strategy for achieving net-zero emissions. However, the widespread deployment of water electrolysis is currently limited by the high-cost and scarce noble metal electrocatalysts in hydrogen evolution reaction (HER). Given this challenge, design and synthesis of cost-effective and high-performance alternative catalysts have become a research focus, which necessitates insightful understandings of HER fundamentals and material engineering strategies. Distinct from typical reviews that concentrate only on the summary of recent catalyst materials, this review article shifts focus to material engineering strategies for developing efficient HER catalysts. In-depth analysis of key material design approaches for HER catalysts, such as doping, vacancy defect creation, phase engineering, and metal-support engineering, are illustrated along with typical research cases. A special emphasis is placed on designing noble metal-free catalysts with a brief discussion on recent advancements in electrocatalytic water-splitting technology. The article also delves into important descriptors, reliable evaluation parameters and characterization techniques, aiming to link the fundamental mechanisms of HER with its catalytic performance. In conclusion, it explores future trends in HER catalysts by integrating theoretical, experimental and industrial perspectives, while acknowledging the challenges that remain.
Collapse
Affiliation(s)
- Yue Luo
- School of ResourcesEnvironment and MaterialsGuangxi UniversityNanning530004China
| | - Yulong Zhang
- College of Mechatronical and Electrical EngineeringHebei Agricultrual UnivesityBaoding07001China
| | - Jiayi Zhu
- Warwick Electrochemical EngineeringWMGUniversity of WarwickCoventryCV4 7ALUK
| | - Xingpeng Tian
- Warwick Electrochemical EngineeringWMGUniversity of WarwickCoventryCV4 7ALUK
| | - Gang Liu
- IDTECH (Suzhou) Co. Ltd.Suzhou215217China
| | - Zhiming Feng
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Liwen Pan
- School of ResourcesEnvironment and MaterialsGuangxi UniversityNanning530004China
- Education Department of Guangxi Zhuang Autonomous RegionKey Laboratory of High Performance Structural Materials and Thermo‐surface Processing (Guangxi University)Nanning530004China
| | - Xinhua Liu
- School of Transportation Science and EngineeringBeihang UniversityBeijing100191China
| | - Ning Han
- Department of Materials EngineeringKU LeuvenKasteelpark Arenberg 44, bus 2450HeverleeB‐3001Belgium
| | - Rui Tan
- Warwick Electrochemical EngineeringWMGUniversity of WarwickCoventryCV4 7ALUK
- Department of Chemcial EngineeringSwansea UniversitySwanseaSA1 8ENUnited Kingdom
| |
Collapse
|
19
|
Zhang H, Chi K, Qiao L, Gao P, Li Z, Guo X, Li Z, Cao D, Cheng D. Boosting Acidic Hydrogen Evolution Kinetics Induced by Weak Strain Effect in PdPt Alloy for Proton Exchange Membrane Water Electrolyzers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406935. [PMID: 39377311 DOI: 10.1002/smll.202406935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/27/2024] [Indexed: 10/09/2024]
Abstract
Strain engineering is an effective strategy for manipulating the electronic structure of active sites and altering the binding strength toward adsorbates during the hydrogen evolution reaction (HER). However, the effects of weak and strong strain engineering on the HER catalytic activity have not been fully explored. Herein, the core-shell PdPt alloys with two-layer Pt shells (PdPt2L) and multi-layer Pt shells (PdPtML) is constructed, which exhibit distinct lattice strains. Notably, PdPt2L with weak strain effect just requires a low overpotential of 18 mV to reach 10 mA cm-2 for the HER and shows the superior long-term stability for 510 h with negligible activity degradation in 0.5 M H2SO4. The intrinsic activity of PdPt2L is 6.2 and 24.5 times higher than that of PdPtML and commercial Pt/C, respectively. Furthermore, PdPt2L||IrO2 exhibits superior activity over Pt/C||IrO2 in proton exchange membrane water electrolyzers and maintains stable operation for 100 h at large current density of 500 mA cm-2. In situ/operando measurements verify that PdPt2L exhibits lower apparent activation energy and accelerated ad-/desorption kinetics, benefiting from the weak strain effect. Density functional theory calculations also reveal that PdPt2L displays weaker H* adsorption energy compared to PdPtML, favoring for H* desorption and promoting H2 generation.
Collapse
Affiliation(s)
- Huimin Zhang
- College of Chemistry and Chemical Engineering, Tarim University, Alar, Xinjiang, 843300, P. R. China
- State Key Laboratory of Organic-Inorganic Composite, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Kebin Chi
- PetroChina Petrochemical Research Institute, Beijing, 843300, China
| | - Liang Qiao
- PetroChina Petrochemical Research Institute, Beijing, 843300, China
| | - Peng Gao
- State Key Laboratory of Organic-Inorganic Composite, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhenhao Li
- PetroChina Petrochemical Research Institute, Beijing, 843300, China
| | - Xiaoyan Guo
- State Key Laboratory of Organic-Inorganic Composite, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhong Li
- College of Chemistry and Chemical Engineering, Tarim University, Alar, Xinjiang, 843300, P. R. China
- State Key Laboratory of Organic-Inorganic Composite, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dong Cao
- State Key Laboratory of Organic-Inorganic Composite, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Daojian Cheng
- College of Chemistry and Chemical Engineering, Tarim University, Alar, Xinjiang, 843300, P. R. China
- State Key Laboratory of Organic-Inorganic Composite, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
20
|
Li Y, Li W, Zhang M, Zhuang Y, Li H, Pan Z, Min H, Chen TY, Chen HY, Yang H, Wang J. Electron-Spin Regulation Driving Heterointerface Electron Distribution and Phase Transition toward Ultrafast and Durable Sodium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405819. [PMID: 39279397 DOI: 10.1002/smll.202405819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Indexed: 09/18/2024]
Abstract
Phase engineering is an effective strategy for modulating the electronic structure and electron transfer mobility of cobalt selenide (CoSe2) with remarkable sodium storage. Nevertheless, it remains challenging to improve fast-charging and cycling performance. Herein, a heterointerface coupling induces phase transformation from cubic CoSe2 to orthorhombic CoSe2 accompanied by the formation of MoSe2 to construct a CoSe2/MoSe2 heterostructure decorated with N-doped carbon layer on a 3D graphene foam (CoSe2/MoSe2@NC/GF). The incorporated Mo cations in the bridged o-CoSe2/MoSe2 not only act an electron donor to regulate charge-spin configurations with more active electronic states but also trigger the upshift of d/p band centers and a decreased ∆d-p band center gap, which greatly enhances ion adsorption capability and lowers the ion diffusion barrier. As expected, the CoSe2/MoSe2@NC/GF anode demonstrates a high-rate capability of 447 mAh g-1 at 2 A g-1 and an excellent cyclability of 298 mAh g-1 at 1 A g-1 over 1000 cycles. The work deepens the understanding of the elaborate construction of heterostructured electrodes for high-performance SIBs.
Collapse
Affiliation(s)
- Yuhang Li
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Wenying Li
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Meng Zhang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yanhui Zhuang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Huaidong Li
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Zhigang Pan
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Huihua Min
- Electron Microscope Lab, Nanjing Forestry University, Nanjing, Jiangsu, 210037, P. R. China
| | - Tsung-Yi Chen
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, 300092, Taiwan
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - Hao Yang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jin Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
21
|
Wen B, Xiao J, Miao Y, Zhang Z, Li N, Liu M, Yang G, Ding S. Selenium-induced anion vacancy and active site migration stimulating remarkable sulfide Na-Ion storage. J Colloid Interface Sci 2024; 675:980-988. [PMID: 39003817 DOI: 10.1016/j.jcis.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Heterojunctions and controllable anionic vacancies are perceived to be powerful means of ameliorating the performance of sodium-ion batteries assignable to their unique physical and chemical properties. However, the mechanism by which heterojunction and vacancy structures affect sodium-ion battery storage remains to be systemically explored. In this study, the Se doped CoS2@CoS1.035@Carbon (Se-CoS2@CoS1.035@C) heterostructure with anion vacancy was synthesized by a one-step calcination. These heterostructures with lower metal oxidation states and anionic vacancies exhibit exceptional Na+ storage performance (554.3 mA h g-1 after 1500 cycles at 5.0 A g-1). Both electrochemical tests and theoretical calculations demonstrate excellent pseudocapacitive behavior and enhanced Na+ adsorption during discharge because of anionic vacancies and Se doping. Additionally, introducing weaker Co-Se bonds and extending Co-S and Co-Se bonds reduce binding energies, which effectively accelerates the conversion reaction. Our findings provide a feasible way to rationally design and facilely prepare heterostructured anode materials with rich anionic vacancies for sodium-ion batteries.
Collapse
Affiliation(s)
- Bo Wen
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiyuan Xiao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yunzi Miao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhijie Zhang
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Na Li
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mengjie Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guorui Yang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shujiang Ding
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
22
|
Wan Y, Wei W, Ding S, Wu L, Yuan X. Achieving Efficient Oxygen Evolution on High-Entropy Sulfide Utilizing Low Electronegativity of Al. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404689. [PMID: 39115098 DOI: 10.1002/smll.202404689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/24/2024] [Indexed: 11/21/2024]
Abstract
Efficient and stable catalysts are in high demand for accelerating the oxygen evolution reaction (OER). Herein, a high-entropy sulfide (HES) of (FeCoNiCrCuAl)S@HCS with a 3D structure is successfully prepared by utilizing a simple one-step solvothermal method and employed as catalyst toward OER. The lower electronegativity of Al compared to the other metal elements and its anti-corrosion character enable an outstanding OER performance of (FeCoNiCrCuAl)S@HCS with an overpotential of 253 mV at 10 mA cm-2 and an excellent durability after 20 000 CV cycles, outperforming the commercial RuO2 and most reported metal-sulfide catalysts. Experiments coupled with theoretical calculations reveal that Al atom primarily serves as electron donor and promotes a redistribution of local electrons from Co and Cr toward adjacent Fe, Ni, and Cu sites. As a result, the Cr-Al site possesses a lowest energy barrier during the rate-determining step and works as the dominant active site for OER process. This study provides a novel insight and strategy into structural design and performance enhancement for HES materials.
Collapse
Affiliation(s)
- Yi Wan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenrui Wei
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shengqi Ding
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xianxia Yuan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
23
|
Zhang C, Li Z, Zhou B, Li G, Wan C, Fan W, Lu L. Direct Electrolysis of Municipal Reclaimed Water for Efficient Hydrogen Production Using a Bifunctional Non-Noble-Metal Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18202-18212. [PMID: 39351847 DOI: 10.1021/acs.est.4c05395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Water electrolysis for green H2 production traditionally requires a stable supply of renewable electricity and pure water. However, spatial separation of renewables and water resources as well as water scarcity per capita in China necessitate unconventional water resources for electrolysis. Reclaimed water produced from municipal wastewater treatment plants is widely distributed with quality improved significantly in recent years, which may be a promising alternative to feedstock. However, there are few reports on the direct use of this wastewater for H2 production. Here, we present a direct electrolysis of reclaimed water for decentralized H2 production by developing a highly efficient and stable bifunctional 3D-dandelion-like (DL) vanadium(V)-doped CoP catalyst grown in situ on Ni foam (NF) in an alkaline electrolyzer. The V-CoP-DL/NF electrode decreases 6.5 and 25% overpotentials of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively, compared to noble-metal Pt (HER) and IrO2 (OER) catalysts, and exhibits exceptional durability, as a voltage required for overall reclaimed water splitting only increases by 80 mV (1.81-1.89 V) after 90 days of operation at a current density of 10 mA cm-2. The maximum stable current can reach 1000 mA cm-2. The impacts of potential pollutants in reclaimed water on the performance of electrolysis and the behavior of major wastewater ions in alkaline electrolyte were investigated. The observed exceptional performance is attributed to the catalyst's unique nanostructure, which enhances charge transfer and reactant/electrolyte diffusion. The in situ growth strategy further enhances the conductivity and stability of the catalyst. This work underscores the feasibility of utilizing reclaimed water instead of pure water as the feedstock for sustainable hydrogen production.
Collapse
Affiliation(s)
- Chunyue Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Zhida Li
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Baiqin Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Guifeng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Chengfeng Wan
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Wenqi Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| |
Collapse
|
24
|
Shao W, Xing Z, Xu X, Ye D, Yan R, Ma T, Wang Y, Zeng Z, Yin B, Cheng C, Li S. Bioinspired Proton Pump on Ferroelectric HfO 2-Coupled Ir Catalysts with Bidirectional Hydrogen Spillover for pH-Universal and Superior Hydrogen Production. J Am Chem Soc 2024; 146:27486-27498. [PMID: 39198263 DOI: 10.1021/jacs.4c08100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
The improvement of hydrogen evolution reaction kinetics can be largely accelerated by introducing a well-designed hydrogen spillover pathway into the catalysts. However, the driving force and mechanism of hydrogen migration on the surface of catalysts are poorly understood and are rarely explored in depth. Here, inspired by the specific ferroelectric property of HfO2, Mn-O-Ca sites in Mn4CaO5, and Fe-Fe sites in hydrogenases, we constructed a bioinspired HfO2 coupled with Ir catalysts (Ir/HfO2@C) with an alkaline hydrogen reverse spillover effect from HfO2 to interface and acid hydrogen spillover effect from Ir to interface. Benefiting from the bidirectional hydrogen spillover pathways controlled by pH, Ir/HfO2@C displays a narrow overpotential difference between acidic and alkaline electrolytes. Remarkably, Ir/HfO2@C shows a remarkable mass current density and turnover frequency value, far exceeding the benchmark Ir/C by 20.6 times. More importantly, this Ir/HfO2@C achieves extraordinarily low overpotentials of 146 and 39 mV at 10 mV cm-2 in seawater and alkaline seawater, respectively. The anion-exchange membrane water electrolyzer equipped with Ir/HfO2@C as a cathode exhibits excellent and stable H2-evolution performance on 2.22 V at 1.0 A cm-2. We expect that the bioinspired strategy will provide a new concept for designing catalytic materials for efficient and pH-universal electrochemical hydrogen production.
Collapse
Affiliation(s)
- Wenjie Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhenyu Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaohui Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Daoping Ye
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Wang
- Center for Microscopy and Analysis, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Bo Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
25
|
Song X, Ke S, Ye Q, Kang W, Guan Q, Deng Z. Innovative Charge-Tuning for Highly Dispersed Pt Catalysts: Achieving Deep CO Removal in Industrial H 2 Purification for Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52529-52538. [PMID: 39291640 DOI: 10.1021/acsami.4c12573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Proton exchange membrane fuel cells have strict requirements for the CO concentration in H2-rich fuel gas. Here, from the perspective of industrial practicability, a highly dispersed Pt catalyst (2-4 nm) supported on activated carbon (AC), which was modified by electronic promoters (K+) and structural promoters (isopropanol), is studied in detail. Compared with traditional metal oxide supports, the K-Pt/AC catalysts, which benefit from the tuned charge distribution, achieve a significant reduction of CO (from 1% to <0.1 ppb) under H2-rich conditions and show potential for used in large-scale industrial hydrogen purification. Experimental results and theoretical calculations reveal that the K atom, with its lower electronegativity, contributes to the shift of surface Pt2+ to a lower binding energy due to the presence of oxygen species on the AC surface. This facilitates oxygen activation and accelerates desorption of the CO2 product, thereby accelerating the reaction process and enabling the deep removal of CO in a hydrogen-rich atmosphere.
Collapse
Affiliation(s)
- Xiaoyun Song
- Beijing Institute of Smart Energy, Beijing 102209, China
| | - Shaojie Ke
- Beijing Institute of Smart Energy, Beijing 102209, China
| | - Qing Ye
- Beijing Institute of Smart Energy, Beijing 102209, China
| | - Wei Kang
- Beijing Institute of Smart Energy, Beijing 102209, China
| | - Qingxin Guan
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Zhanfeng Deng
- Beijing Institute of Smart Energy, Beijing 102209, China
| |
Collapse
|
26
|
Zhang S, Xu W, Chen H, Yang Q, Liu H, Bao S, Tian Z, Slavcheva E, Lu Z. Progress in Anode Stability Improvement for Seawater Electrolysis to Produce Hydrogen. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311322. [PMID: 38299450 DOI: 10.1002/adma.202311322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/07/2024] [Indexed: 02/02/2024]
Abstract
Seawater electrolysis for hydrogen production is a sustainable and economical approach that can mitigate the energy crisis and global warming issues. Although various catalysts/electrodes with excellent activities have been developed for high-efficiency seawater electrolysis, their unsatisfactory durability, especially for anodes, severely impedes their industrial applications. In this review, attention is paid to the factors that affect the stability of anodes and the corresponding strategies for designing catalytic materials to prolong the anode's lifetime. In addition, two important aspects-electrolyte optimization and electrolyzer design-with respect to anode stability improvement are summarized. Furthermore, several methods for rapid stability assessment are proposed for the fast screening of both highly active and stable catalysts/electrodes. Finally, perspectives on future investigations aimed at improving the stability of seawater electrolysis systems are outlined.
Collapse
Affiliation(s)
- Sixie Zhang
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenwen Xu
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Haocheng Chen
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Qihao Yang
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hua Liu
- Department of Strategic Development, Zhejiang Qiming Electric Power Group CO.LTD, Zhoushan, 316099, P. R. China
| | - Shanjun Bao
- Department of Strategic Development, Zhejiang Qiming Electric Power Group CO.LTD, Zhoushan, 316099, P. R. China
| | - Ziqi Tian
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Evelina Slavcheva
- "Acad. Evgeni Budevski" Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, Akad. G. Bonchev 10, Sofia, 1113, Bulgaria
| | - Zhiyi Lu
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
27
|
Deng L, Hung SF, Liu S, Zhao S, Lin ZY, Zhang C, Zhang Y, Wang AY, Chen HY, Peng J, Ma R, Jiao L, Hu F, Li L, Peng S. Accelerated Proton Transfer in Asymmetric Active Units for Sustainable Acidic Oxygen Evolution Reaction. J Am Chem Soc 2024; 146:23146-23157. [PMID: 39109994 DOI: 10.1021/jacs.4c05070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The poor durability of Ru-based catalysts limits the practical application in proton exchange membrane water electrolysis (PEMWE). Here, we report that the asymmetric active units in Ru1-xMxO2 (M = Sb, In, and Sn) binary solid solution oxides are constructed by introducing acid-resistant p-block metal sites, breaking the activity and stability limitations of RuO2 in acidic oxygen evolution reaction (OER). Constructing highly asymmetric Ru-O-Sb units with a strong electron delocalization effect significantly shortens the spatial distance between Ru and Sb sites, improving the bonding strength of the overall structure. The unique two-electron redox couples at Sb sites in asymmetric active units trigger additional chemical steps at different OER stages, facilitating continuous proton transfer. The optimized Ru0.8Sb0.2O2 solid solution requires a superlow overpotential of 160 mV at 10 mA cm-2 and a record-breaking stability of 1100 h in an acidic electrolyte. Notably, the scale-prepared Ru0.8Sb0.2O2 achieves efficient PEMWE performance under industrial conditions. General mechanism analysis shows that the enhanced proton transport in the asymmetric Ru-O-M unit provides a new working pathway for acidic OER, breaking the scaling relationship without sacrificing stability.
Collapse
Affiliation(s)
- Liming Deng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Shuyi Liu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Sheng Zhao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zih-Yi Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chenchen Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ai-Yin Wang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jian Peng
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW 2522, Australia
| | - Rongpeng Ma
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
28
|
Zhang Y, Wu Q, Seow JZY, Jia Y, Ren X, Xu ZJ. Spin states of metal centers in electrocatalysis. Chem Soc Rev 2024; 53:8123-8136. [PMID: 39005214 DOI: 10.1039/d3cs00913k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Understanding the electronic structure of active sites is crucial in efficient catalyst design. The spin state, spin configurations of d-electrons, has been frequently discussed recently. However, its systematic depiction in electrocatalysis is lacking. In this tutorial review, a comprehensive interpretation of the spin state of metal centers in electrocatalysts and its role in electrocatalysis is provided. This review starts with the basics of spin states, including molecular field theory, crystal field theory, and ligand field theory. It further introduces the differences in low spin, intermediate spin, and high spin, and intrinsic factors affecting the spin state. Popular characterization techniques and modeling approaches that can reveal the spin state, such as X-ray absorption microscopy, electron spin resonance spectroscopy, Mössbauer spectroscopy, and density functional theory (DFT) calculations, are introduced as well with examples from the literature. The examples include the most recent progress in tuning the spin state of metal centers for various reactions, e.g., the oxygen evolution reaction, oxygen reduction reaction, hydrogen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, nitrate reduction reaction, and urea oxidation reaction. Challenges and potential implications for future research related to the spin state are discussed at the end.
Collapse
Affiliation(s)
- Yuwei Zhang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Qian Wu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Justin Zhu Yeow Seow
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
- Energy Research Institute@NTU (ERI@N), Interdisciplinary Graduate Programme, Nanyang Technological University, 639798, Singapore
| | - Yingjie Jia
- Beijing National Laboratory for Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, 100871, China.
| | - Xiao Ren
- Beijing National Laboratory for Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, 100871, China.
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
- Energy Research Institute@NTU (ERI@N), Interdisciplinary Graduate Programme, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
29
|
Yu PC, Zhang XL, Zhang TY, Tao XYN, Yang Y, Wang YH, Zhang SC, Gao FY, Niu ZZ, Fan MH, Gao MR. Nitrogen-Mediated Promotion of Cobalt-Based Oxygen Evolution Catalyst for Practical Anion-Exchange Membrane Electrolysis. J Am Chem Soc 2024; 146:20379-20390. [PMID: 39011931 DOI: 10.1021/jacs.4c05983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Scarce and expensive iridium oxide is still the cornerstone catalyst of polymer-electrolyte membrane electrolyzers for green hydrogen production because of its exceptional stability under industrially relevant oxygen evolution reaction (OER) conditions. Earth-abundant transition metal oxides used for this task, however, show poor long-term stability. We demonstrate here the use of nitrogen-doped cobalt oxide as an effective iridium substitute. The catalyst exhibits a low overpotential of 240 mV at 10 mA cm-2 and negligible activity decay after 1000 h of operation in an alkaline electrolyte. Incorporation of nitrogen dopants not only triggers the OER mechanism switched from the traditional adsorbate evolution route to the lattice oxygen oxidation route but also achieves oxygen nonbonding (ONB) states as electron donors, thereby preventing structural destabilization. In a practical anion-exchange membrane water electrolyzer, this catalyst at anode delivers a current density of 1000 mA cm-2 at 1.78 V and an electrical efficiency of 47.8 kW-hours per kilogram hydrogen.
Collapse
Affiliation(s)
- Peng-Cheng Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Tian-Yun Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xu-Ying-Nan Tao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yu Yang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Ye-Hua Wang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Si-Chao Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Fei-Yue Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zhuang-Zhuang Niu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Ming-Hui Fan
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Min-Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
30
|
Yu J, Huang C, Usoltsev O, Black AP, Gupta K, Spadaro MC, Pinto-Huguet I, Botifoll M, Li C, Herrero-Martín J, Zhou J, Ponrouch A, Zhao R, Balcells L, Zhang CY, Cabot A, Arbiol J. Promoting Polysulfide Redox Reactions through Electronic Spin Manipulation. ACS NANO 2024; 18:19268-19282. [PMID: 38981060 PMCID: PMC11271176 DOI: 10.1021/acsnano.4c05278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Catalytic additives able to accelerate the lithium-sulfur redox reaction are a key component of sulfur cathodes in lithium-sulfur batteries (LSBs). Their design focuses on optimizing the charge distribution within the energy spectra, which involves refinement of the distribution and occupancy of the electronic density of states. Herein, beyond charge distribution, we explore the role of the electronic spin configuration on the polysulfide adsorption properties and catalytic activity of the additive. We showcase the importance of this electronic parameter by generating spin polarization through a defect engineering approach based on the introduction of Co vacancies on the surface of CoSe nanosheets. We show vacancies change the electron spin state distribution, increasing the number of unpaired electrons with aligned spins. This local electronic rearrangement enhances the polysulfide adsorption, reducing the activation energy of the Li-S redox reactions. As a result, more uniform nucleation and growth of Li2S and an accelerated liquid-solid conversion in LSB cathodes are obtained. These translate into LSB cathodes exhibiting capacities up to 1089 mA h g-1 at 1 C with 0.017% average capacity loss after 1500 cycles, and up to 5.2 mA h cm-2, with 0.16% decay per cycle after 200 cycles in high sulfur loading cells.
Collapse
Affiliation(s)
- Jing Yu
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,
Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
- Catalonia
Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930 Catalonia, Spain
| | - Chen Huang
- Catalonia
Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930 Catalonia, Spain
- Department
of Chemistry, University of Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Oleg Usoltsev
- ALBA
Synchrotron, 08290 Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Ashley P. Black
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Kapil Gupta
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,
Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Maria Chiara Spadaro
- Department
of Physics and Astronomy “Ettore Majorana”, University of Catania, via S. Sofia 64, 95123 Catania, Italy
- CNR-IMM, via S. Sofia
64, 95123 Catania, Italy
| | - Ivan Pinto-Huguet
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,
Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Marc Botifoll
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,
Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Canhuang Li
- Catalonia
Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930 Catalonia, Spain
- Department
of Chemistry, University of Barcelona, 08028 Barcelona, Catalonia, Spain
| | | | - Jinyuan Zhou
- Key
Laboratory for Magnetism and Magnetic Materials of the Ministry of
Education & School of Physical Science & Technology, Lanzhou University, 730000 Lanzhou, China
| | - Alexandre Ponrouch
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Ruirui Zhao
- School
of Chemistry, South China Normal University, 510006 Guangzhou, China
| | - Lluís Balcells
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Chao Yue Zhang
- Key
Laboratory for Magnetism and Magnetic Materials of the Ministry of
Education & School of Physical Science & Technology, Lanzhou University, 730000 Lanzhou, China
| | - Andreu Cabot
- Catalonia
Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930 Catalonia, Spain
- ICREA, Passeig Lluìs
Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Jordi Arbiol
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,
Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
- ICREA, Passeig Lluìs
Companys 23, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
31
|
Zhang J, Cheng C, Xiao L, Han C, Zhao X, Yin P, Dong C, Liu H, Du X, Yang J. Construction of Co-Se-W at Interfaces of Phase-Mixed Cobalt Selenide via Spontaneous Phase Transition for Platinum-Like Hydrogen Evolution Activity and Long-Term Durability in Alkaline and Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401880. [PMID: 38655767 DOI: 10.1002/adma.202401880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Cost-effective transition metal chalcogenides are highly promising electrocatalysts for both alkaline and acidic hydrogen evolution reactions (HER). However, unsatisfactory HER kinetics and stability have severely hindered their applications in industrial water electrolysis. Herein, a nanoflowers-shaped W-doped cubic/orthorhombic phase-mixed CoSe2 catalyst ((c/o)-CoSe2-W) is reported. The W doping induces spontaneous phase transition from stable phase cubic CoSe2 (c-CoSe2) to metastable phase orthorhombic CoSe2, which not only enables precise regulation of the ratio of two phases but also realizes W doping at the interfaces of two phases. The (c/o)-CoSe2-W catalyst exhibits a Pt-like HER activity in both alkaline and acidic media, with record-low HER overpotentials of 29.8 mV (alkaline) and 35.9 mV (acidic) at 10 mA cm-2, respectively, surpassing the vast majority of previously reported non-precious metal electrocatalysts for both alkaline and acidic HER. The Pt-like HER activities originate from the formation of Co-Se-W active species on the c-CoSe2 side at the phase interface, which effectively modulates electron structures of active sites, not only enhancing H2O adsorption and dissociation at Co sites but also optimizing H* adsorption to ΔGH* ≈ 0 at W sites. Benefiting from the abundant phase interfaces, the catalyst also displays outstanding long-term durability in both acidic and alkaline media.
Collapse
Affiliation(s)
- Jingtong Zhang
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Chuanqi Cheng
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Liyang Xiao
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Chunyan Han
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xueru Zhao
- Chemistry Division, Brookhaven National Laboratory, Upton, New York, NY, 11973, USA
| | - Pengfei Yin
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Cunku Dong
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Hui Liu
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiwen Du
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jing Yang
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
32
|
Chen Z, Ma T, Wei W, Wong WY, Zhao C, Ni BJ. Work Function-Guided Electrocatalyst Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401568. [PMID: 38682861 DOI: 10.1002/adma.202401568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Indexed: 05/01/2024]
Abstract
The development of high-performance electrocatalysts for energy conversion reactions is crucial for advancing global energy sustainability. The design of catalysts based on their electronic properties (e.g., work function) has gained significant attention recently. Although numerous reviews on electrocatalysis have been provided, no such reports on work function-guided electrocatalyst design are available. Herein, a comprehensive summary of the latest advancements in work function-guided electrocatalyst design for diverse electrochemical energy applications is provided. This includes the development of work function-based catalytic activity descriptors, and the design of both monolithic and heterostructural catalysts. The measurement of work function is first discussed and the applications of work function-based catalytic activity descriptors for various reactions are fully analyzed. Subsequently, the work function-regulated material-electrolyte interfacial electron transfer (IET) is employed for monolithic catalyst design, and methods for regulating the work function and optimizing the catalytic performance of catalysts are discussed. In addition, key strategies for tuning the work function-governed material-material IET in heterostructural catalyst design are examined. Finally, perspectives on work function determination, work function-based activity descriptors, and catalyst design are put forward to guide future research. This work paves the way to the work function-guided rational design of efficient electrocatalysts for sustainable energy applications.
Collapse
Affiliation(s)
- Zhijie Chen
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong, P. R. China
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
33
|
Kang Y, Li S, Cretu O, Kimoto K, Zhao Y, Zhu L, Wei X, Fu L, Jiang D, Wan C, Jiang B, Asahi T, Zhang D, Li H, Yamauchi Y. Mesoporous amorphous non-noble metals as versatile substrates for high loading and uniform dispersion of Pt-group single atoms. SCIENCE ADVANCES 2024; 10:eado2442. [PMID: 38905333 PMCID: PMC11192073 DOI: 10.1126/sciadv.ado2442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Atomically dispersed Pt-group metals are promising as nanocatalysts because of their unique geometric structures and ultrahigh atomic utilization. However, loading isolated Pt-group metals in single-atom alloys (SAAs) with distinctive bimetallic sites is challenging. In this study, we present amorphous mesoporous Ni boride (Ni-B) as an ideal substrate to uniformly disperse Pt atoms with tunable loadings (1.7 to 12.2 wt %). The effect of the morphology, composition, and crystal phase of the Ni-B host on the growth and dispersion of Pt atoms is discussed. The resulting amorphous Pt-Ni-B mesoporous nanospheres exhibit superior electrocatalytic H2 evolution performance in acidic media. This strategy holds the potential to synthesize a diverse library of mesoporous amorphous Pt-group SAAs, by leveraging functional amorphous nanostructured 3d transition-metal borides as substrates, thereby proposing a comprehensive strategy to control atomically dispersed Pt-group metals.
Collapse
Affiliation(s)
- Yunqing Kang
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou 451163, Henan, China
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Shuangjun Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Ovidiu Cretu
- Electron Microscopy Group, Center for Basic Research on Materials, NIMS, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Koji Kimoto
- Electron Microscopy Group, Center for Basic Research on Materials, NIMS, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Yingji Zhao
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Liyang Zhu
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Xiaoqian Wei
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Lei Fu
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Dong Jiang
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Chao Wan
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Bo Jiang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Dieqing Zhang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464–8603, Japan
| |
Collapse
|
34
|
Li L, Liu Y, Chen Y, Zhai W, Dai Z. Research progress on layered metal oxide electrocatalysts for an efficient oxygen evolution reaction. Dalton Trans 2024; 53:8872-8886. [PMID: 38738345 DOI: 10.1039/d4dt00619d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Hydrogen, highly valued for its pristine cleanliness and remarkable efficiency as an emerging energy source, is anticipated to ascend to a preeminent status within the forthcoming energy landscape. Electrocatalytic water splitting is considered a pivotal, eco-friendly, and sustainable strategy for hydrogen production. The substantial energy consumption stemming from oxygen evolution side reactions significantly impedes the commercial viability of water electrolysis. Consequently, the pursuit of a cost-effective and efficacious oxygen evolution reaction (OER) catalyst stands as an imperative strategy for realizing hydrogen production via water electrolysis. Layered metal oxides, owing to their robust anisotropic properties, versatile adjustability, and extensive surface area, have emerged as suitable candidates for OER catalysts. However, owing to the distinctive attributes of layered metal oxides, ongoing investigations into these materials are slightly fragmented, lacking universal consensus. This article comprehensively surveys the recent advancements in layered metal oxide-based OER catalysts, categorized into single metal oxides, alkali cobalt oxides, perovskites, and miscellaneous metal oxides. Initially, the main OER intermediate reaction steps of layered metal oxides are scrutinized. Subsequently, the design, mechanism, and application of several pivotal layered metal oxides in the OER are systematically delineated. Finally, a summary is provided, alongside the proposal of future research trajectories and challenges encountered by layered metal oxides, with the aspiration that this paper may serve as a valuable reference for scholars in the field.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yaoda Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Ya Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Wenfang Zhai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhengfei Dai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
35
|
Zhu S, Yang R, Li HJW, Huang S, Wang H, Liu Y, Li H, Zhai T. Reconstructing Hydrogen-Bond Network for Efficient Acidic Oxygen Evolution. Angew Chem Int Ed Engl 2024; 63:e202319462. [PMID: 38286750 DOI: 10.1002/anie.202319462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
Developing highly active oxygen evolution reaction (OER) catalysts in acidic conditions is a pressing demand for proton-exchange membrane water electrolysis. Manipulating proton character at the electrified interface, as the crux of all proton-coupled electrochemical reactions, is highly desirable but elusive. Herein we present a promising protocol, which reconstructs a connected hydrogen-bond network between the catalyst-electrolyte interface by coupling hydrophilic units to boost acidic OER activity. Modelling on N-doped-carbon-layer clothed Mn-doped-Co3O4 (Mn-Co3O4@CN), we unravel that the hydrogen-bond interaction between CN units and H2O molecule not only drags the free water to enrich the surface of Mn-Co3O4 but also serves as a channel to promote the dehydrogenation process. Meanwhile, the modulated local charge of the Co sites from CN units/Mn dopant lowers the OER barrier. Therefore, Mn-Co3O4@CN surpasses RuO2 at high current density (100 mA cm-2 @ ~538 mV).
Collapse
Affiliation(s)
- Shicheng Zhu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Ruoou Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Huang Jing Wei Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Sirui Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Haozhi Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, and School of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
36
|
Chen S, Yue K, Shi J, Zheng Z, He Y, Wan H, Chen G, Zhang N, Liu X, Ma R. Crystal Structure Regulation of CoSe 2 Induced by Fe Dopant for Promoted Surface Reconstitution toward Energetic Oxygen Evolution Reaction. Inorg Chem 2024; 63:7430-7441. [PMID: 38605566 DOI: 10.1021/acs.inorgchem.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Most nonoxide catalysts based on transition metal elements will inevitably change their primitive phases under anodic oxidation conditions in alkaline media. Establishing a relationship between the bulk phase and surface evolution is imperative to reveal the intrinsic catalytic active sites. In this work, it is demonstrated that the introduction of Fe facilitates the phase transition of orthorhombic CoSe2 into its cubic counterpart and then accelerates the Co-Fe hydroxide layer generation on the surface during electrocatalytic oxygen evolution reaction (OER). As a result, the Fe-doped cubic CoSe2 catalyst exhibits a significantly enhanced activity with a considerable overpotential decrease of 79.9 and 66.9 mV to deliver 10 mA·cm-2 accompanied by a Tafel slope of 48.0 mV·dec-1 toward OER when compared to orthorhombic CoSe2 and Fe-doped orthorhombic CoSe2, respectively. Density functional theory (DFT) calculations reveal that the introduction of Fe on the surface hydroxide layers will tune electron density around Co atoms and raise the d-band center. These findings will provide deep insights into the surface reconstitution of the OER electrocatalysts based on transition metal elements.
Collapse
Affiliation(s)
- Shuo Chen
- Zhongyuan Critical Metals Laboratory & School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Kaiqin Yue
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Jiawei Shi
- Zhongyuan Critical Metals Laboratory & School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhicheng Zheng
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Yuanqing He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Hao Wan
- Zhongyuan Critical Metals Laboratory & School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Gen Chen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Ning Zhang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Xiaohe Liu
- Zhongyuan Critical Metals Laboratory & School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Renzhi Ma
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
37
|
Zhao S, Hung SF, Deng L, Zeng WJ, Xiao T, Li S, Kuo CH, Chen HY, Hu F, Peng S. Constructing regulable supports via non-stoichiometric engineering to stabilize ruthenium nanoparticles for enhanced pH-universal water splitting. Nat Commun 2024; 15:2728. [PMID: 38553434 PMCID: PMC10980754 DOI: 10.1038/s41467-024-46750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/06/2024] [Indexed: 04/02/2024] Open
Abstract
Establishing appropriate metal-support interactions is imperative for acquiring efficient and corrosion-resistant catalysts for water splitting. Herein, the interaction mechanism between Ru nanoparticles and a series of titanium oxides, including TiO, Ti4O7 and TiO2, designed via facile non-stoichiometric engineering is systematically studied. Ti4O7, with the unique band structure, high conductivity and chemical stability, endows with ingenious metal-support interaction through interfacial Ti-O-Ru units, which stabilizes Ru species during OER and triggers hydrogen spillover to accelerate HER kinetics. As expected, Ru/Ti4O7 displays ultralow overpotentials of 8 mV and 150 mV for HER and OER with a long operation of 500 h at 10 mA cm-2 in acidic media, which is expanded in pH-universal environments. Benefitting from the excellent bifunctional performance, the proton exchange membrane and anion exchange membrane electrolyzer assembled with Ru/Ti4O7 achieves superior performance and robust operation. The work paves the way for efficient energy conversion devices.
Collapse
Affiliation(s)
- Sheng Zhao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Liming Deng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Wen-Jing Zeng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Tian Xiao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shaoxiong Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Chun-Han Kuo
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| |
Collapse
|
38
|
Ng LS, Chah ELC, Ngieng MH, Boong SK, Chong C, Raja Mogan T, Lee JK, Li H, Lee CLK, Lee HK. Chaotropic Nanoelectrocatalysis: Chemically Disrupting Water Intermolecular Network at the Point-of-Catalysis to Boost Green Hydrogen Electrosynthesis. Angew Chem Int Ed Engl 2024; 63:e202317751. [PMID: 38179729 DOI: 10.1002/anie.202317751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Efficient green hydrogen production through electrocatalytic water splitting serves as a powerful catalyst for realizing a carbon-free hydrogen economy. However, current electrocatalytic designs face challenges such as poor hydrogen evolution reaction (HER) performance (Tafel slope, 100-140 mV dec-1 ) because water molecules are thermodynamically trapped within their extensive hydrogen bonding network. Herein, we drive efficient HER by manipulating the local water microenvironment near the electrocatalyst. This is achieved by functionalizing the nanoelectrocatalyst's surface with a monolayer of chaotropic molecules to chemically weaken water-water interactions directly at the point-of-catalysis. Notably, our chaotropic design demonstrates a superior Tafel slope (77 mV dec-1 ) and the lowest overpotential (0.3 V at 10 mA cm-2 ECSA ), surpassing its kosmotropic counterparts (which reinforces the water molecular network) and previously reported electrocatalytic designs by up to ≈2-fold and ≈3-fold, respectively. Comprehensive mechanistic investigations highlight the critical role of chaotropic surface chemistry in disrupting the water intermolecular network, thereby releasing free/weakly bound water molecules that strongly interact with the electrocatalyst to boost HER. Our study provides a unique molecular approach that can be readily integrated with emerging electrocatalytic materials to rapidly advance the electrosynthesis of green hydrogen, holding immense promise for sustainable chemical and energy applications.
Collapse
Affiliation(s)
- Li Shiuan Ng
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Eu Li Chloe Chah
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Min Hui Ngieng
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Siew Kheng Boong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Carice Chong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Tharishinny Raja Mogan
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Jinn-Kye Lee
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Haitao Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, P R. China
| | - Chi-Lik Ken Lee
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), The Agency for Science, Technology and Research (A*STAR), Jurong Island, 627833, Singapore, Singapore
| | - Hiang Kwee Lee
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, 138634, Singapore, Singapore
- Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering Drive 3, 117580, Singapore, Singapore
| |
Collapse
|
39
|
Qin Q, Jang H, Jiang X, Wang L, Wang X, Kim MG, Liu S, Liu X, Cho J. Constructing Interfacial Oxygen Vacancy and Ruthenium Lewis Acid-Base Pairs to Boost the Alkaline Hydrogen Evolution Reaction Kinetics. Angew Chem Int Ed Engl 2024; 63:e202317622. [PMID: 38061991 DOI: 10.1002/anie.202317622] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Indexed: 01/10/2024]
Abstract
Simultaneous optimization of the energy level of water dissociation, hydrogen and hydroxide desorption is the key to achieving fast kinetics for the alkaline hydrogen evolution reaction (HER). Herein, the well-dispersed Ru clusters on the surface of amorphous/crystalline CeO2-δ (Ru/ac-CeO2-δ ) is demonstrated to be an excellent electrocatalyst for significantly boosting the alkaline HER kinetics owing to the presence of unique oxygen vacancy (VO ) and Ru Lewis acid-base pairs (LABPs). The representative Ru/ac-CeO2-δ exhibits an outstanding mass activity of 7180 mA mgRu -1 that is approximately 9 times higher than that of commercial Pt/C at the potential of -0.1 V (V vs RHE) and an extremely low overpotential of 21.2 mV at a geometric current density of 10 mA cm-2 . Experimental and theoretical studies reveal that the VO as Lewis acid sites facilitate the adsorption of H2 O and cleavage of H-OH bonds, meanwhile, the weak Lewis basic Ru clusters favor for the hydrogen desorption. Importantly, the desorption of OH from VO sites is accelerated via a water-assisted proton exchange pathway, and thus boost the kinetics of alkaline HER. This study sheds new light on the design of high-efficiency electrocatalysts with LABPs for the enhanced alkaline HER.
Collapse
Affiliation(s)
- Qing Qin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Haeseong Jang
- Department of Advanced Materials Engineering, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Korea
| | - Xiaoli Jiang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Liu Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xuefeng Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang, 37673, South Korea
| | - Shangguo Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xien Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jaephil Cho
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, South Korea
| |
Collapse
|
40
|
Yu Z, Liu L. Recent Advances in Hybrid Seawater Electrolysis for Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308647. [PMID: 38143285 DOI: 10.1002/adma.202308647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/04/2023] [Indexed: 12/26/2023]
Abstract
Seawater electrolysis (SWE) is a promising and potentially cost-effective approach to hydrogen production, considering that seawater is vastly abundant and SWE is able to combine with offshore renewables producing green hydrogen. However, SWE has long been suffering from technical challenges including the high energy demand and interference of chlorine chemistry, leading electrolyzers to a low efficiency and short lifespan. In this context, hybrid SWE, operated by replacing the energy-demanding oxygen evolution reaction and interfering chlorine evolution reaction (CER) with a thermodynamically more favorable anodic oxidation reaction (AOR) or by designing innovative electrolyzer cells, has recently emerged as a better alternative, which not only allows SWE to occur in a safe and energy-saving manner without the notorious CER, but also enables co-production of value-added chemicals or elimination of environmental pollutants. This review provides a first account of recent advances in hybrid SWE for hydrogen production. The substitutional AOR of various small molecules or redox mediators, in couple with hydrogen evolution from seawater, is comprehensively summarized. Moreover, how the electrolyzer cell design helps in hybrid SWE is briefly discussed. Last, the current challenges and future outlook about the development of the hybrid SWE technology are outlined.
Collapse
Affiliation(s)
- Zhipeng Yu
- Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan, 523808, P. R. China
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, Braga, 4715-330, Portugal
| | - Lifeng Liu
- Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan, 523808, P. R. China
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, Braga, 4715-330, Portugal
| |
Collapse
|
41
|
Li Y, Delmo EP, Hou G, Cui X, Zhao M, Tian Z, Zhang Y, Shao M. Enhancing Local CO 2 Adsorption by L-histidine Incorporation for Selective Formate Production Over the Wide Potential Window. Angew Chem Int Ed Engl 2023; 62:e202313522. [PMID: 37855722 DOI: 10.1002/anie.202313522] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Electrochemical carbon dioxide reduction reaction (CO2 RR) to produce valuable chemicals is a promising pathway to alleviate the energy crisis and global warming issues. However, simultaneously achieving high Faradaic efficiency (FE) and current densities of CO2 RR in a wide potential range remains as a huge challenge for practical implements. Herein, we demonstrate that incorporating bismuth-based (BH) catalysts with L-histidine, a common amino acid molecule of proteins, is an effective strategy to overcome the inherent trade-off between the activity and selectivity. Benefiting from the significantly enhanced CO2 adsorption capability and promoted electron-rich nature by L-histidine integrity, the BH catalyst exhibits excellent FEformate in the unprecedented wide potential windows (>90 % within -0.1--1.8 V and >95 % within -0.2--1.6 V versus reversible hydrogen electrode, RHE). Excellent CO2 RR performance can still be achieved under the low-concentration CO2 feeding (e.g., 20 vol.%). Besides, an extremely low onset potential of -0.05 VRHE (close to the theoretical thermodynamic potential of -0.02 VRHE ) was detected by in situ ultraviolet-visible (UV-Vis) measurements, together with stable operation over 50 h with preserved FEformate of ≈95 % and high partial current density of 326.2 mA cm-2 at -1.0 VRHE .
Collapse
Affiliation(s)
- Yicheng Li
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ernest Pahuyo Delmo
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, China
| | - Guoyu Hou
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xianglong Cui
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ming Zhao
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Zhihong Tian
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
| | - Yu Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|