1
|
Tettey-Matey A, Donati V, Cimmino C, Di Pietro C, Buratto D, Panarelli M, Reale A, Calistri A, Fornaini MV, Zhou R, Yang G, Zonta F, Marazziti D, Mammano F. A fully human IgG1 antibody targeting connexin 32 extracellular domain blocks CMTX1 hemichannel dysfunction in an in vitro model. Cell Commun Signal 2024; 22:589. [PMID: 39639332 PMCID: PMC11619691 DOI: 10.1186/s12964-024-01969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
Connexins (Cxs) are fundamental in cell-cell communication, functioning as gap junction channels (GJCs) that facilitate solute exchange between adjacent cells and as hemichannels (HCs) that mediate solute exchange between the cytoplasm and the extracellular environment. Mutations in the GJB1 gene, which encodes Cx32, lead to X-linked Charcot-Marie-Tooth type 1 (CMTX1), a rare hereditary demyelinating disorder of the peripheral nervous system (PNS) without an effective cure or treatment. In Schwann cells, Cx32 HCs are thought to play a role in myelination by enhancing intracellular and intercellular Ca2+ signaling, which is crucial for proper PNS myelination. Single-point mutations (p.S85C, p.D178Y, p.F235C) generate pathological Cx32 HCs characterized by increased permeability ("leaky") or excessive activity ("hyperactive").We investigated the effects of abEC1.1-hIgG1, a fully human immunoglobulin G1 (hIgG1) monoclonal antibody, on wild-type (WT) and mutant Cx32D178Y HCs. Using HeLa DH cells conditionally co-expressing Cx and a genetically encoded Ca2+ biosensor (GCaMP6s), we demonstrated that mutant HCs facilitated 58% greater Ca2+ uptake in response to elevated extracellular Ca2+ concentrations ([Ca2+]ex) compared to WT HCs. abEC1.1-hIgG1 dose-dependently inhibited Ca2+ uptake, achieving a 50% inhibitory concentration (EC50) of ~ 10 nM for WT HCs and ~ 80 nM for mutant HCs. Additionally, the antibody suppressed DAPI uptake and ATP release. An atomistic computational model revealed that serine 56 (S56) of the antibody interacts with aspartate 178 (D178) of WT Cx32 HCs, contributing to binding affinity. Despite the p.D178Y mutation weakening this interaction, the antibody maintained binding to the mutant HC epitope at sub-micromolar concentrations.In conclusion, our study shows that abEC1.1-hIgG1 effectively inhibits both WT and mutant Cx32 HCs, highlighting its potential as a therapeutic approach for CMTX1. These findings expand the antibody's applicability for treating diseases associated with Cx HCs and inform the rational design of next-generation antibodies with enhanced affinity and efficacy against mutant HCs.
Collapse
Affiliation(s)
- Abraham Tettey-Matey
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy
- Present Address, CNR Institute of Biophysics, Genoa, 16149, Italy
| | - Viola Donati
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy
- Department of Biomedical Sciences, University of Padua, Padua, 35131, Italy
| | - Chiara Cimmino
- CNR Institute of Endocrinology and Experimental Oncology "G. Salvatore", Naples, 80131, Italy
- Present Address: Interdisciplinary Research Centre On Biomaterials, University of Naples Federico II, Naples, 80125, Italy
| | - Chiara Di Pietro
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy
| | - Damiano Buratto
- Institute of Quantitative Biology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | | | - Alberto Reale
- Department of Molecular Medicine, University of Padua, Padua, 35131, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, Padua, 35131, Italy
| | | | - Ruhong Zhou
- Institute of Quantitative Biology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Francesco Zonta
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, P. R. China.
| | - Daniela Marazziti
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy.
| | - Fabio Mammano
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy.
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua, 35131, Italy.
| |
Collapse
|
2
|
Lucaciu SA, Laird DW. The genetic and molecular basis of a connexin-linked skin disease. Biochem J 2024; 481:1639-1655. [PMID: 39513663 PMCID: PMC11668363 DOI: 10.1042/bcj20240374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
Erythrokeratodermia variabilis et progressiva (EKVP) is a rare hereditary skin disorder characterized by hyperkeratotic plaques and erythematous patches that progressively worsen with age. This disorder has been associated with variants in three connexin encoding genes (GJA1, GJB3, GJB4) and four unrelated genes (KRT83, KDSR, TRPM4, PERP). Most cases of connexin-linked EKVP exhibit an autosomal dominant mode of inheritance, with rare autosomal recessive cases. Collectively, evidence suggests that connexin variants associated with EKVP elicit a plethora of molecular defects including impaired gap junction (GJ) formation, dysregulated hemichannel and/or GJ channel function, cytotoxicity, dominant disruption of co-expressed connexins, and/or altered turnover kinetics. Here, we review the progress made in understanding the genetic and molecular basis of EKVP associated with connexin gene variants. We also discuss the landscape of treatment options used for this disorder and the future directions for research into this rare condition.
Collapse
Affiliation(s)
- Sergiu A. Lucaciu
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Dale W. Laird
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
3
|
Brotherton DH, Nijjar S, Savva CG, Dale N, Cameron AD. Structures of wild-type and a constitutively closed mutant of connexin26 shed light on channel regulation by CO 2. eLife 2024; 13:RP93686. [PMID: 38829031 PMCID: PMC11147507 DOI: 10.7554/elife.93686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Connexins allow intercellular communication by forming gap junction channels (GJCs) between juxtaposed cells. Connexin26 (Cx26) can be regulated directly by CO2. This is proposed to be mediated through carbamylation of K125. We show that mutating K125 to glutamate, mimicking the negative charge of carbamylation, causes Cx26 GJCs to be constitutively closed. Through cryo-EM we observe that the K125E mutation pushes a conformational equilibrium towards the channel having a constricted pore entrance, similar to effects seen on raising the partial pressure of CO2. In previous structures of connexins, the cytoplasmic loop, important in regulation and where K125 is located, is disordered. Through further cryo-EM studies we trap distinct states of Cx26 and observe density for the cytoplasmic loop. The interplay between the position of this loop, the conformations of the transmembrane helices and the position of the N-terminal helix, which controls the aperture to the pore, provides a mechanism for regulation.
Collapse
Affiliation(s)
| | - Sarbjit Nijjar
- School of Life Sciences, University of WarwickCoventryUnited Kingdom
| | - Christos G Savva
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of LeicesterLeicesterUnited Kingdom
| | - Nicholas Dale
- School of Life Sciences, University of WarwickCoventryUnited Kingdom
| | | |
Collapse
|
4
|
Jagielnicki M, Kucharska I, Bennett BC, Harris AL, Yeager M. Connexin Gap Junction Channels and Hemichannels: Insights from High-Resolution Structures. BIOLOGY 2024; 13:298. [PMID: 38785780 PMCID: PMC11117596 DOI: 10.3390/biology13050298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024]
Abstract
Connexins (Cxs) are a family of integral membrane proteins, which function as both hexameric hemichannels (HCs) and dodecameric gap junction channels (GJCs), behaving as conduits for the electrical and molecular communication between cells and between cells and the extracellular environment, respectively. Their proper functioning is crucial for many processes, including development, physiology, and response to disease and trauma. Abnormal GJC and HC communication can lead to numerous pathological states including inflammation, skin diseases, deafness, nervous system disorders, and cardiac arrhythmias. Over the last 15 years, high-resolution X-ray and electron cryomicroscopy (cryoEM) structures for seven Cx isoforms have revealed conservation in the four-helix transmembrane (TM) bundle of each subunit; an αβ fold in the disulfide-bonded extracellular loops and inter-subunit hydrogen bonding across the extracellular gap that mediates end-to-end docking to form a tight seal between hexamers in the GJC. Tissue injury is associated with cellular Ca2+ overload. Surprisingly, the binding of 12 Ca2+ ions in the Cx26 GJC results in a novel electrostatic gating mechanism that blocks cation permeation. In contrast, acidic pH during tissue injury elicits association of the N-terminal (NT) domains that sterically blocks the pore in a "ball-and-chain" fashion. The NT domains under physiologic conditions display multiple conformational states, stabilized by protein-protein and protein-lipid interactions, which may relate to gating mechanisms. The cryoEM maps also revealed putative lipid densities within the pore, intercalated among transmembrane α-helices and between protomers, the functions of which are unknown. For the future, time-resolved cryoEM of isolated Cx channels as well as cryotomography of GJCs and HCs in cells and tissues will yield a deeper insight into the mechanisms for channel regulation. The cytoplasmic loop (CL) and C-terminal (CT) domains are divergent in sequence and length, are likely involved in channel regulation, but are not visualized in the high-resolution X-ray and cryoEM maps presumably due to conformational flexibility. We expect that the integrated use of synergistic physicochemical, spectroscopic, biophysical, and computational methods will reveal conformational dynamics relevant to functional states. We anticipate that such a wealth of results under different pathologic conditions will accelerate drug discovery related to Cx channel modulation.
Collapse
Affiliation(s)
- Maciej Jagielnicki
- The Phillip and Patricia Frost Institute for Chemistry and Molecular Science, Department of Chemistry, University of Miami, 1201 Memorial Drive, Miami, FL 33146, USA; (M.J.); (I.K.)
| | - Iga Kucharska
- The Phillip and Patricia Frost Institute for Chemistry and Molecular Science, Department of Chemistry, University of Miami, 1201 Memorial Drive, Miami, FL 33146, USA; (M.J.); (I.K.)
| | - Brad C. Bennett
- Department of Biological and Environmental Sciences, Howard College of Arts and Sciences, Samford University, Birmingham, AL 35229, USA;
| | - Andrew L. Harris
- Rutgers New Jersey Medical School, Department of Pharmacology, Physiology and Neuroscience, Newark, NJ 07103, USA;
| | - Mark Yeager
- The Phillip and Patricia Frost Institute for Chemistry and Molecular Science, Department of Chemistry, University of Miami, 1201 Memorial Drive, Miami, FL 33146, USA; (M.J.); (I.K.)
- The Phillip and Patricia Frost Institute for Chemistry and Molecular Science, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33146, USA
| |
Collapse
|
5
|
Leighton SE, Wong RS, Lucaciu SA, Hauser A, Johnston D, Stathopulos PB, Bai D, Penuela S, Laird DW. Cx31.1 can selectively intermix with co-expressed connexins to facilitate its assembly into gap junctions. J Cell Sci 2024; 137:jcs261631. [PMID: 38533727 PMCID: PMC11058089 DOI: 10.1242/jcs.261631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Connexins are channel-forming proteins that function to facilitate gap junctional intercellular communication. Here, we use dual cell voltage clamp and dye transfer studies to corroborate past findings showing that Cx31.1 (encoded by GJB5) is defective in gap junction channel formation, illustrating that Cx31.1 alone does not form functional gap junction channels in connexin-deficient mammalian cells. Rather Cx31.1 transiently localizes to the secretory pathway with a subpopulation reaching the cell surface, which is rarely seen in puncta reminiscent of gap junctions. Intracellular retained Cx31.1 was subject to degradation as Cx31.1 accumulated in the presence of proteasomal inhibition, had a faster turnover when Cx43 was present and ultimately reached lysosomes. Although intracellularly retained Cx31.1 was found to interact with Cx43, this interaction did not rescue its delivery to the cell surface. Conversely, the co-expression of Cx31 dramatically rescued the assembly of Cx31.1 into gap junctions where gap junction-mediated dye transfer was enhanced. Collectively, our results indicate that the localization and functional status of Cx31.1 is altered through selective interplay with co-expressed connexins, perhaps suggesting Cx31.1 is a key regulator of intercellular signaling in keratinocytes.
Collapse
Affiliation(s)
- Stephanie E. Leighton
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Robert S. Wong
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Sergiu A. Lucaciu
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Alexandra Hauser
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Danielle Johnston
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Peter B. Stathopulos
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Donglin Bai
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, ON N6A 5B9, Canada
- Division of Experimental Oncology, Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada
| | - Dale W. Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
6
|
Wong RS, Chen H, Li YX, Esseltine JL, Stathopulos PB, Bai D. Human Cx50 Isoleucine177 prevents heterotypic docking and formation of functional gap junction channels with Cx43. Am J Physiol Cell Physiol 2024; 326:C414-C428. [PMID: 38145302 DOI: 10.1152/ajpcell.00634.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
The human lens is an avascular organ, and its transparency is dependent on gap junction (GJ)-mediated microcirculation. Lens GJs are composed of three connexins with Cx46 and Cx50 being expressed in lens fiber cells and Cx43 and Cx50 in the epithelial cells. Impairment of GJ communication by either Cx46 or Cx50 mutations has been shown to be one of the main molecular mechanisms of congenital cataracts in mutant carrier families. The docking compatibility and formation of functional heterotypic GJs for human lens connexins have not been studied. Previous study on rodent lens connexins revealed that Cx46 can form functional heterotypic GJs with Cx50 and Cx43, but Cx50 cannot form heterotypic GJ with Cx43 due to its second extracellular (EL2) domain. To study human lens connexin docking and formation of functional heterotypic GJs, we developed a genetically engineered HEK293 cell line with endogenously expressed Cx43 and Cx45 ablated. The human lens connexins showed docking compatibility identical to those found in the rodent connexins. To reveal the structural mechanisms of the docking incompatibility between Cx50 and Cx43, we designed eight variants based on the differences between the EL2 of Cx50 and Cx46. We found that Cx50I177L is sufficient to establish heterotypic docking with Cx43 with some interesting gating properties. Our structure models indicate this residue is important for interdomain interactions within a single connexin, Cx50 I177L showed an increased interdomain interaction which might alter the docking interface structure to be compatible with Cx43.NEW & NOTEWORTHY The human lens is an avascular organ, and its transparency is partially dependent on gap junction (GJ) network composed of Cx46, Cx50, and Cx43. We found that human Cx46 can dock and form functional heterotypic GJs with Cx50 and Cx43, but Cx50 is unable to form functional heterotypic GJs with Cx43. Through mutagenesis and patch-clamp study of several designed variants, we found that Cx50 I177L was sufficient to form functional heterotypic GJs with Cx43.
Collapse
Affiliation(s)
- Robert S Wong
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Honghong Chen
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Yi X Li
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Jessica L Esseltine
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Donglin Bai
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|