1
|
Ma Y, Tang Q, Cheng X, Athertya JS, Coughlin D, Chang EY, Johnson CE, Cui J, Gu Z, Du J. UTE MRI for assessing demyelination in an mTBI mouse model: An open-field low-intensity blast study. Neuroimage 2025; 310:121103. [PMID: 40024556 DOI: 10.1016/j.neuroimage.2025.121103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/28/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025] Open
Abstract
Mild traumatic brain injury (mTBI) is a leading cause of long-term disability. Following mTBI, secondary chemical cascades and neuroinflammation can result in myelin damage, significantly impairing cognitive function. This study aims to assess demyelination in mice with mTBI induced by open-field low-intensity blast (LIB) using a novel three-dimensional short repetition time adiabatic inversion recovery UTE (3D STAIR-UTE) magnetic resonance imaging (MRI) sequence. Thirty male C57BL/6 mice, with 15 experiencing mTBI and 15 serving as sham controls, were included in this study. Behavioral tests were performed starting at 5 days post-injury to assess motor activity and anxiety-like responses followed by STAIR-UTE imaging using a pre-clinical 3T MRI scanner. Additionally, a proton density-weighted UTE sequence was scanned alongside the STAIR-UTE for quantification of myelin proton fraction (MPF). Luxol fast blue (LFB) staining was performed to evaluate myelin changes between the mTBI group and the control group. The behavioral tests indicated decreased motor activity in the center zone and increased anxiety-like response in the mTBI mice compared to sham controls. The STAIR-UTE sequence revealed significantly lower MPFs in the corpus callosum of mTBI mice (8.4 ± 0.4 % vs. 8.7 ± 0.4 %; P = 0.003), consistent with the myelin reduction observed in the LFB staining (0.77 ± 0.22 vs. 1.09 ± 0.15; P = 0.004). Our findings demonstrate that the STAIR-UTE sequence facilitates quantitative myelin imaging at 3T MRI, enabling the detection of demyelination in the white matter of the mouse brain associated with alterations in motor and anxiety domains post-LIB exposure.
Collapse
Affiliation(s)
- Yajun Ma
- Department of Radiology, University of California San Diego, CA, USA.
| | - Qingbo Tang
- Department of Radiology, University of California San Diego, CA, USA; Radiology Service, VA San Diego Healthcare System, CA, USA
| | - Xin Cheng
- Department of Radiology, University of California San Diego, CA, USA; Radiology Service, VA San Diego Healthcare System, CA, USA
| | - Jiyo S Athertya
- Department of Radiology, University of California San Diego, CA, USA
| | - David Coughlin
- Department of Neurosciences, University of California San Diego, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California San Diego, CA, USA; Radiology Service, VA San Diego Healthcare System, CA, USA
| | - Catherine E Johnson
- Department of Explosive Engineering, Missouri University of Science and Technology, MO, USA
| | - Jiankun Cui
- Department of Pathology and Anatomical Sciences, University of Missouri, MO, USA; Research Division, Harry S Truman Memorial Hospital, Columbia, MO, USA
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri, MO, USA; Research Division, Harry S Truman Memorial Hospital, Columbia, MO, USA
| | - Jiang Du
- Department of Radiology, University of California San Diego, CA, USA; Radiology Service, VA San Diego Healthcare System, CA, USA; Department of Bioengineering, University of California San Diego, CA, USA.
| |
Collapse
|
2
|
Shen X, Caverzasi E, Yang Y, Liu X, Green A, Henry RG, Emir U, Larson PEZ. 3D balanced SSFP UTE MRI for multiple contrasts whole brain imaging. Magn Reson Med 2024; 92:702-714. [PMID: 38525680 DOI: 10.1002/mrm.30093] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE This study aimed to develop a new high-resolution MRI sequence for the imaging of the ultra-short transverse relaxation time (uT2) components in the brain, while simultaneously providing proton density (PD) contrast for reference and quantification. THEORY The sequence combines low flip angle balanced SSFP (bSSFP) and UTE techniques, together with a 3D dual-echo rosette k-space trajectory for readout. METHODS The expected image contrast was evaluated by simulations. A study cohort of six healthy volunteers and eight multiple sclerosis (MS) patients was recruited to test the proposed sequence. Subtraction between two TEs was performed to extract uT2 signals. In addition, conventional longitudinal relaxation time (T1) weighted, T2-weighted, and PD-weighted MRI sequences were also acquired for comparison. RESULTS Typical PD-contrast was found in the second TE images, while uT2 signals were selectively captured in the first TE images. The subtraction images presented signals primarily originating from uT2 components, but only if the first TE is short enough. Lesions in the MS subjects showed hyperintense signals in the second TE images but were hypointense signals in the subtraction images. The lesions had significantly lower signal intensity in subtraction images than normal white matter (WM), which indicated a reduction of uT2 components likely associated with myelin. CONCLUSION 3D isotropic sub-millimeter (0.94 mm) spatial resolution images were acquired with the novel bSSFP UTE sequence within 3 min. It provided easy extraction of uT2 signals and PD-contrast for reference within a single acquisition.
Collapse
Affiliation(s)
- Xin Shen
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Eduardo Caverzasi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Yang Yang
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Xiaoxi Liu
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Ari Green
- Neurology, University of California San Francisco, San Francisco, California, USA
| | - Roland G Henry
- Neurology, University of California San Francisco, San Francisco, California, USA
| | - Uzay Emir
- School of Health Science, Purdue University, West Lafayette, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Peder E Z Larson
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
Shin SH, Moazamian D, Suprana A, Zeng C, Athertya JS, Carl M, Ma Y, Jang H, Du J. Yet more evidence that non-aqueous myelin lipids can be directly imaged with ultrashort echo time (UTE) MRI on a clinical 3T scanner: a lyophilized red blood cell membrane lipid study. Neuroimage 2024; 296:120666. [PMID: 38830440 PMCID: PMC11380916 DOI: 10.1016/j.neuroimage.2024.120666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024] Open
Abstract
Direct imaging of semi-solid lipids, such as myelin, is of great interest as a noninvasive biomarker of neurodegenerative diseases. Yet, the short T2 relaxation times of semi-solid lipid protons hamper direct detection through conventional magnetic resonance imaging (MRI) pulse sequences. In this study, we examined whether a three-dimensional ultrashort echo time (3D UTE) sequence can directly acquire signals from membrane lipids. Membrane lipids from red blood cells (RBC) were collected from commercially available blood as a general model of the myelin lipid bilayer and subjected to D2O exchange and freeze-drying for complete water removal. Sufficiently high MR signals were detected with the 3D UTE sequence, which showed an ultrashort T2* of ∼77-271 µs and a short T1 of ∼189 ms for semi-solid RBC membrane lipids. These measurements can guide designing UTE-based sequences for direct in vivo imaging of membrane lipids.
Collapse
Affiliation(s)
- Soo Hyun Shin
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Dina Moazamian
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Arya Suprana
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Chun Zeng
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Jiyo S Athertya
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | | | - Yajun Ma
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA.
| |
Collapse
|