1
|
Li X, Fang L, Zhou R, Yao L, Clayton SW, Muscat S, Kamm DR, Wang C, Liu CJ, Qin L, Tower RJ, Karner CM, Guilak F, Tang SY, Loiselle AE, Meyer GA, Shen J. Current cutting-edge omics techniques on musculoskeletal tissues and diseases. Bone Res 2025; 13:59. [PMID: 40484858 DOI: 10.1038/s41413-025-00442-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/31/2025] [Accepted: 04/27/2025] [Indexed: 06/11/2025] Open
Abstract
Musculoskeletal disorders, including osteoarthritis, rheumatoid arthritis, osteoporosis, bone fracture, intervertebral disc degeneration, tendinopathy, and myopathy, are prevalent conditions that profoundly impact quality of life and place substantial economic burdens on healthcare systems. Traditional bulk transcriptomics, genomics, proteomics, and metabolomics have played a pivotal role in uncovering disease-associated alterations at the population level. However, these approaches are inherently limited in their ability to resolve cellular heterogeneity or to capture the spatial organization of cells within tissues, thus hindering a comprehensive understanding of the complex cellular and molecular mechanisms underlying these diseases. To address these limitations, advanced single-cell and spatial omics techniques have emerged in recent years, offering unparalleled resolution for investigating cellular diversity, tissue microenvironments, and biomolecular interactions within musculoskeletal tissues. These cutting-edge techniques enable the detailed mapping of the molecular landscapes in diseased tissues, providing transformative insights into pathophysiological processes at both the single-cell and spatial levels. This review presents a comprehensive overview of the latest omics technologies as applied to musculoskeletal research, with a particular focus on their potential to revolutionize our understanding of disease mechanisms. Additionally, we explore the power of multi-omics integration in identifying novel therapeutic targets and highlight key challenges that must be overcome to successfully translate these advancements into clinical applications.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Liang Fang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Renpeng Zhou
- Department of Orthopaedics and Rehabilitation, Yale University, New Haven, CT, USA
| | - Lutian Yao
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Sade W Clayton
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Samantha Muscat
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics & Physical Performance, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Dakota R Kamm
- Program in Physical Therapy, Washington University, St. Louis, MO, USA
| | - Cuicui Wang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University, New Haven, CT, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert J Tower
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Courtney M Karner
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, USA
| | - Simon Y Tang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Alayna E Loiselle
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics & Physical Performance, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Gretchen A Meyer
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Program in Physical Therapy, Washington University, St. Louis, MO, USA
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.
| |
Collapse
|
2
|
Duran M, Barkan E, Tresenrider A, Lee H, Friedman RZ, Lammers N, Colón M, Franks J, Ewing B, Kimelman D, Trapnell C. A statistical framework for inferring genetic requirements from embryo-scale single-cell sequencing experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.646654. [PMID: 40236139 PMCID: PMC11996557 DOI: 10.1101/2025.04.03.646654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Improvements in single-cell sequencing protocols have democratized their use for phenotyping at organism-scale and molecular resolution, but interpreting such experiments poses computational challenges. Identifying the genes and cell types directly impacted by genetic, chemical, or environmental perturbations requires explicit modeling of lineage relationships amongst many cell types, over time, from datasets with millions of cells collected from thousands of specimens. We describe two software tools, "Hooke" and "Platt", which exploit the rich statistical patterns within single-cell datasets to characterize the direct molecular and cellular consequences of experimental perturbations. We apply Hooke and Platt to a single-cell atlas of thousands of perturbed zebrafish embryos to synthesize a coherent map of lineage dependencies and leverage it to reveal previously unappreciated roles for fate-determining transcription factors. We show that the co-variation between cell types in single-cell datasets is a powerful source of information for inferring how cells depend on genes and one another in the program of vertebrate development.
Collapse
|
3
|
Dewar MB, Ehsan F, Izumi A, Zhang H, Zhou YQ, Shah H, Langburt D, Suresh H, Wang T, Hacker A, Hinz B, Gillis J, Husain M, Heximer SP. Defining Transcriptomic Heterogeneity between Left and Right Ventricle-Derived Cardiac Fibroblasts. Cells 2024; 13:327. [PMID: 38391940 PMCID: PMC10887120 DOI: 10.3390/cells13040327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Cardiac fibrosis is a key aspect of heart failure, leading to reduced ventricular compliance and impaired electrical conduction in the myocardium. Various pathophysiologic conditions can lead to fibrosis in the left ventricle (LV) and/or right ventricle (RV). Despite growing evidence to support the transcriptomic heterogeneity of cardiac fibroblasts (CFs) in healthy and diseased states, there have been no direct comparisons of CFs in the LV and RV. Given the distinct natures of the ventricles, we hypothesized that LV- and RV-derived CFs would display baseline transcriptomic differences that influence their proliferation and differentiation following injury. Bulk RNA sequencing of CFs isolated from healthy murine left and right ventricles indicated that LV-derived CFs may be further along the myofibroblast transdifferentiation trajectory than cells isolated from the RV. Single-cell RNA-sequencing analysis of the two populations confirmed that Postn+ CFs were more enriched in the LV, whereas Igfbp3+ CFs were enriched in the RV at baseline. Notably, following pressure overload injury, the LV developed a larger subpopulation of pro-fibrotic Thbs4+/Cthrc1+ injury-induced CFs, while the RV showed a unique expansion of two less-well-characterized CF subpopulations (Igfbp3+ and Inmt+). These findings demonstrate that LV- and RV-derived CFs display baseline subpopulation differences that may dictate their diverging responses to pressure overload injury. Further study of these subpopulations will elucidate their role in the development of fibrosis and inform on whether LV and RV fibrosis require distinct treatments.
Collapse
Affiliation(s)
- Michael Bradley Dewar
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Fahad Ehsan
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Aliya Izumi
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Hangjun Zhang
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Yu-Qing Zhou
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
- Institute of Biomaterial & Biomedical Engineering, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Haisam Shah
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Dylan Langburt
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Hamsini Suresh
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Tao Wang
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Alison Hacker
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Jesse Gillis
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Mansoor Husain
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Scott Patrick Heximer
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|