1
|
Exel CE, Tamminga SM, Man-Bovenkerk S, Temming AR, Hendriks A, Spaninks M, van Sorge NM, Benedictus L. Wall teichoic acid glycosylation of bovine-associated Staphylococcus aureus strains. Vet Microbiol 2025; 302:110403. [PMID: 39842365 DOI: 10.1016/j.vetmic.2025.110403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Staphylococcus aureus (S. aureus) is one of the major causes of bovine mastitis, a disease with detrimental effects on health and wellbeing. Current control measures are costly, laborious and not always effective in eradicating S. aureus. The cell wall-linked polysaccharide wall teichoic acid (WTA) is highly immunogenic in humans and is considered as a prospective vaccine antigen based on promising pre-clinical studies in animals. WTA consist of polymerized ribitol-phosphate backbone that is modified with N-acetylglucosamine (GlcNAc) moieties in different configurations by the glycosyltransferases TarS (β-1,4-GlcNAc), TarM (α-1,4-GlcNAc) and TarP (β-1,3-GlcNAc). This study aimed to characterize the presence and genetic variation in tarS, tarM and tarP in bovine-associated S. aureus strains and how this impacts WTA-glycoprofile. Bioinformatic analyses of a whole genome sequence database consisting of 1047 S. aureus, 10 S. schweitzeri, and 6 S. argenteus strains showed that over 99% of strains contained tarS, 34 % also contained tarM, while 5 % of the strains encoded tarP in addition to tarS. The distribution of WTA-glycosyltransferase genes was similar to what has been reported for human-associated S. aureus strains. Phenotypic analysis of WTA glycosylation by flow cytometry corroborated with tarS/tarM/tarP gene presence. The WTA glycoprofile was variable between bovine-associated strains and the levels and ratios of GlcNAcylation were affected by growth conditions. Interestingly, a divergent tarM allele was present in strains of clonal complexes (CC) 49 and the mastitis-associated CC151, but its function was similar to canonical tarM. In conclusion, we demonstrated that bovine-associated S. aureus strains show similar variation in WTA GlcNAc decoration as human S. aureus strains, despite the presence of a divergent tarM allele.
Collapse
Affiliation(s)
- Catharina E Exel
- Department Population Health Sciences, Division Farm Animal Health, Utrecht University, Utrecht, the Netherlands
| | - Sara M Tamminga
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Sandra Man-Bovenkerk
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, the Netherlands
| | - A Robin Temming
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Astrid Hendriks
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Mirlin Spaninks
- Department Population Health Sciences, Division Farm Animal Health, Utrecht University, Utrecht, the Netherlands
| | - Nina M van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam UMC location AMC, Amsterdam, the Netherlands
| | - Lindert Benedictus
- Department Population Health Sciences, Division Farm Animal Health, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Monteiro R, Cereija TB, Pombinho R, Voskuilen T, Codée JDC, Sousa S, Morais-Cabral JH, Cabanes D. Molecular properties of the RmlT wall teichoic acid rhamnosyltransferase that modulates virulence in Listeria monocytogenes. Nat Commun 2025; 16:24. [PMID: 39746981 PMCID: PMC11697029 DOI: 10.1038/s41467-024-55360-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Wall teichoic acids (WTAs) from the major Gram-positive foodborne pathogen Listeria monocytogenes are peptidoglycan-associated glycopolymers decorated by monosaccharides that, while not essential for bacterial growth, are required for bacterial virulence and resistance to antimicrobials. Here we report the structure and function of a bacterial WTAs rhamnosyltransferase, RmlT, strictly required for L. monocytogenes WTAs rhamnosylation. In particular, we demonstrated that RmlT transfers rhamnose from dTDP-L-rhamnose to naked WTAs, and that specificity towards TDP-rhamnose is not determined by its binding affinity. Structures of RmlT with and without its substrates showed that this enzyme is a dimer, revealed the residues responsible for interaction with the substrates and that the catalytic residue pre-orients the acceptor substrate towards the nucleophilic attack to the sugar. Additionally, the structures provided indications for two potential interaction pathways for the long WTAs on the surface of RmlT. Finally, we confirmed that WTAs glycosyltransferases are promising targets for next-generation strategies against Gram-positive pathogens by showing that inactivation of the RmlT catalytic activity results in a decreased infection in vivo.
Collapse
Affiliation(s)
- Ricardo Monteiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | - Tatiana B Cereija
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Rita Pombinho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Thijs Voskuilen
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Sandra Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - João H Morais-Cabral
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Didier Cabanes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
3
|
Beck C, Krusche J, Elsherbini AMA, Du X, Peschel A. Phage susceptibility determinants of the opportunistic pathogen Staphylococcus epidermidis. Curr Opin Microbiol 2024; 78:102434. [PMID: 38364502 DOI: 10.1016/j.mib.2024.102434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
Staphylococcus epidermidis is a common member of the human skin and nose microbiomes and a frequent cause of invasive infections. Transducing phages accomplish the horizontal transfer of resistance and virulence genes by mispackaging of mobile-genetic elements, contributing to severe, therapy-refractory S. epidermidis infections. Lytic phages on the other hand can be interesting candidates for new anti-S. epidermidis phage therapies. Despite the importance of phages, we are only beginning to unravel S. epidermidis phage interactions. Recent studies shed new light on S. epidermidis phage diversity, host range, and receptor specificities. Modulation of cell wall teichoic acids, the major phage receptor structures, along with other phage defense mechanisms, are crucial determinants for S. epidermidis susceptibility to different phage groups.
Collapse
Affiliation(s)
- Christian Beck
- Cluster of Excellence "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, 72076 Tübingen, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Janes Krusche
- Cluster of Excellence "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, 72076 Tübingen, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Ahmed M A Elsherbini
- Cluster of Excellence "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, 72076 Tübingen, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Xin Du
- Cluster of Excellence "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, 72076 Tübingen, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Andreas Peschel
- Cluster of Excellence "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, 72076 Tübingen, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|