1
|
Catapano A, Cimmino F, Petrella L, Pizzella A, D'Angelo M, Ambrosio K, Marino F, Sabbatini A, Petrelli M, Paolini B, Lucchin L, Cavaliere G, Cristino L, Crispino M, Trinchese G, Mollica MP. Iron metabolism and ferroptosis in health and diseases: The crucial role of mitochondria in metabolically active tissues. J Nutr Biochem 2025; 140:109888. [PMID: 40057002 DOI: 10.1016/j.jnutbio.2025.109888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/15/2024] [Accepted: 02/27/2025] [Indexed: 03/30/2025]
Abstract
Iron is essential in various physiological processes, but its accumulation leads to oxidative stress and cell damage, thus iron homeostasis has to be tightly regulated. Ferroptosis is an iron-dependent non-apoptotic regulated cell death characterized by iron overload and reactive oxygen species accumulation. Mitochondria are organelles playing a crucial role in iron metabolism and involved in ferroptosis. MitoNEET, a protein of mitochondrial outer membrane, is a key element in this process. Ferroptosis, altering iron levels in several metabolically active organs, is linked to several non-communicable diseases. For example, iron overload in the liver leads to hepatic fibrosis and cirrhosis, accelerating non-alcholic fatty liver diseases progression, in the muscle cells contributes to oxidative damage leading to sarcopenia, and in the brain is associated to neurodegeneration. The aim of this review is to investigate the intricate balance of iron regulation focusing on the role of mitochondria and oxidative stress, and analyzing the ferroptosis implications in health and disease.
Collapse
Affiliation(s)
- Angela Catapano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, Naples, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Lidia Petrella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Amelia Pizzella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Margherita D'Angelo
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Katia Ambrosio
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Francesca Marino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Annarita Sabbatini
- Dietetic and Clinical Nutrition Unit, IEO European Institute of Oncology IRCSS, Milan, Italy
| | - Massimiliano Petrelli
- Department of Clinical and Molecular Sciences, Clinic of Endocrinology and Metabolic Diseases, Università Politecnica delle Marche, Ancona, Italy
| | - Barbara Paolini
- Department of Innovation, experimentation and clinical research, Unit of dietetics and clinical nutrition, S. Maria Alle Scotte Hospital, University of Siena, Siena, Italy
| | - Lucio Lucchin
- Dietetics and Clinical Nutrition, Bolzano Health District, Bolzano, Italy
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Luigia Cristino
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | | | | |
Collapse
|
2
|
Lei P, Walker T, Ayton S. Neuroferroptosis in health and diseases. Nat Rev Neurosci 2025:10.1038/s41583-025-00930-5. [PMID: 40389615 DOI: 10.1038/s41583-025-00930-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2025] [Indexed: 05/21/2025]
Abstract
Ferroptosis is a type of cell death process defined by iron-dependent peroxidation of phospholipids leading to the destruction of cellular membranes and death of the cell. Ferroptosis occurs throughout the body, but a considerable research focus on ferroptosis in the brain - neuroferroptosis - has been driven by the rich lipid and iron content of the brain as well as its high oxygen consumption. Neurons also have an exceptionally large surface area and metabolic demand, which necessitates specific mechanisms (such as lipid antioxidants) to engage constantly to protect the plasma membrane against lipid peroxidation. Ferroptosis has been extensively linked to neurodegeneration and ischaemia and is increasingly implicated in physiological processes such as neuronal reprogramming. Astrocytes provide metabolic support to neurons, enabling them to defend against ferroptosis, yet ferroptotic signals in microglia can propagate damage to astrocytes and neurons, highlighting the complex intercellular (patho)physiology of neuroferroptosis.
Collapse
Affiliation(s)
- Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| | - Tara Walker
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Xie C, Wu N, Guo J, Ma L, Zhang C. The key role of the ferroptosis mechanism in neurological diseases and prospects for targeted therapy. Front Neurosci 2025; 19:1591417. [PMID: 40421132 PMCID: PMC12104224 DOI: 10.3389/fnins.2025.1591417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/24/2025] [Indexed: 05/28/2025] Open
Abstract
Neurological disorders represent a major global health concern owing to their intricate pathological processes. Ferroptosis, defined as a form of cell death that is reliant on iron, has been closely linked to various neurological conditions. The fundamental process underlying ferroptosis is defined by the excessive buildup of iron ions, which initiates lipid peroxidation processes leading to cellular demise. Neurons, as highly metabolically active cells, are susceptible to oxidative stress, and imbalances in iron metabolism can directly initiate the ferroptosis process. In neurodegenerative disorders like Alzheimer's disease and Parkinson's disease, ferroptosis driven by iron accumulation represents a fundamental pathological connection. Although the connection between ferroptosis and neurological diseases is clear, clinical application still faces challenges, such as precise regulation of iron metabolism, development of specific drugs, and assessment of efficacy. The limited comprehension of the ferroptosis mechanism hinders the development of personalized treatment approaches. Consequently, subsequent investigations must tackle these obstacles to facilitate the clinical application of ferroptosis-associated therapies in neurological disorders. This article provides a comprehensive overview of the most recent advancements regarding the underlying mechanisms of ferroptosis. Subsequently, the study investigates the mechanistic contributions of ferroptosis within the nervous system. In conclusion, we evaluate and deliberate on targeted therapeutic strategies associated with ferroptosis and neurological disorders.
Collapse
Affiliation(s)
- Chenyu Xie
- Department of Rehabilitation, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Nan Wu
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jiaojiao Guo
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Liangliang Ma
- Department of Rehabilitation, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Congcong Zhang
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Ivantsik O, Exarchos TP, Vrahatis AG, Vlamos P, Krokidis MG. Exploring Protein Misfolding in Amyotrophic Lateral Sclerosis: Structural and Functional Insights. Biomedicines 2025; 13:1146. [PMID: 40426973 PMCID: PMC12109280 DOI: 10.3390/biomedicines13051146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/29/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Protein functionality depends on its proper folding, making protein misfolding crucial for the function of proteins and, by extension, cells and the whole organism. Increasing evidence supports the role of protein misfolding in the pathogenesis of neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS). ALS is a rapidly progressive disease diagnosed at a prevalence of 5 cases per 100,000, with approximately 2-3 patients per 100,000 diagnosed each year. To date, there is no cure, and the disease usually leads to death within 2 to 5 years from diagnosis. There are two types of the disorder: familial ALS (fALS), accounting for approximately 10% of cases, and sporadic (sALS), accounting for the remaining 90%. The hallmark of ALS, regardless of type, is the protein aggregates found in patients' tissues. This suggests that the disruption of proteostasis plays a critical role in the development of the disease. Herein, we stress the distinct factors that lead to protein misfolding and aggregate formation in ALS. Specifically, we highlight several triggering factors affecting protein misfolding, namely mutations, errors in the processes of protein production and trafficking, and failures of folding and chaperone machinery. Gaining a deeper understanding of protein aggregation will improve our comprehension of disease pathogenesis and potentially uncover new therapeutic approaches.
Collapse
Affiliation(s)
- Ouliana Ivantsik
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece
| | - Themis P. Exarchos
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece
- Institute of Digital Biomedicine, University Center for Research and Innovation, Ionian University, 49100 Corfu, Greece
| | - Aristidis G. Vrahatis
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece
- Institute of Digital Biomedicine, University Center for Research and Innovation, Ionian University, 49100 Corfu, Greece
| | - Panagiotis Vlamos
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece
- Institute of Digital Biomedicine, University Center for Research and Innovation, Ionian University, 49100 Corfu, Greece
| | - Marios G. Krokidis
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece
- Institute of Digital Biomedicine, University Center for Research and Innovation, Ionian University, 49100 Corfu, Greece
| |
Collapse
|
5
|
Guo N, Huang W, Huang J, Liu Y, Zhu K, Gao W. Global research trends in biomarkers, therapeutic targets, and drugs for amyotrophic lateral sclerosis: a bibliometric and visualization analysis. Front Pharmacol 2025; 16:1588968. [PMID: 40260387 PMCID: PMC12009895 DOI: 10.3389/fphar.2025.1588968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 03/24/2025] [Indexed: 04/23/2025] Open
Abstract
Background Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive degeneration of motor neurons, marked by complex pathological mechanisms and a lack of effective treatments. Despite substantial global research efforts, no comprehensive bibliometric analysis has systematically mapped the evolution of ALS biomarkers, therapeutic targets, and pharmacological advancements. Methods This study, based on 4,250 publications retrieved from the Web of Science Core Collection (2005-2025), employs bibliometric tools such as CiteSpace and VOSviewer to conduct the first multidimensional analysis of global trends in ALS biomarkers, therapeutic targets, and drug research. Results The results revealed contributions from 20,168 authors across 92 countries, with annual publications growing at an average rate of 16.5%. The United States dominated research output, accounting for 34.07% (n=1,448, TLCS=7,100), while the United Kingdom achieved the highest research impact with an average of 68 citations per article. Leading institutions, including the University of Oxford and the University of Milan, consistently produced high-impact studies. Pioneering scholars such as Turner MR and Kiernan MC made significant contributions to advancing therapeutic targets and drug discovery. The interdisciplinary integration of molecular biology and genetics emerged as a core driver of progress in ALS research. Neurofilament light chain (NfL), antisense oligonucleotide (ASO) drugs, transcranial magnetic stimulation (TMS), oxygen free radicals (oxidative stress), and gene therapy have consistently remained central research focuses in the ALS therapeutic field. Looking ahead, stem cell therapy, blood-brain barrier (BBB) penetration technologies, and skeletal muscle targeting are poised to emerge as prominent research directions. Conclusion The United States dominates ALS research productivity, whereas the United Kingdom demonstrates superior citation influence. Despite China's substantial publication volume, its limited citation impact underscores the necessity for enhanced methodological rigor and strategic international collaboration. Current research priorities encompass NfL, TMS, and ASO therapies, with emerging innovations in stem cell therapy, BBB penetration technologies and skeletal muscle targeting showing therapeutic promise. Future directions should prioritize biomarker standardization, optimization of drug delivery systems, and Clinical Translation.
Collapse
Affiliation(s)
- Na Guo
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weicheng Huang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jianliang Huang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, China
| | - Ying Liu
- Medical College of Jishou University, Jishou, Hunan, China
| | - Kai Zhu
- Medical College of Jishou University, Jishou, Hunan, China
| | - Wei Gao
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, China
| |
Collapse
|
6
|
Russo A, Putaggio S, Tellone E, Calderaro A, Cirmi S, Laganà G, Ficarra S, Barreca D, Patanè GT. Emerging Ferroptosis Involvement in Amyotrophic Lateral Sclerosis Pathogenesis: Neuroprotective Activity of Polyphenols. Molecules 2025; 30:1211. [PMID: 40141987 PMCID: PMC11944684 DOI: 10.3390/molecules30061211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Neurodegenerative diseases are a group of diseases that share common features, such as the generation of misfolded protein deposits and increased oxidative stress. Among them, amyotrophic lateral sclerosis (ALS), whose pathogenesis is still not entirely clear, is a complex neurodegenerative disease linked both to gene mutations affecting different proteins, such as superoxide dismutase 1, Tar DNA binding protein 43, Chromosome 9 open frame 72, and Fused in Sarcoma, and to altered iron homeostasis, mitochondrial dysfunction, oxidative stress, and impaired glutamate metabolism. The purpose of this review is to highlight the molecular targets common to ALS and ferroptosis. Indeed, many pathways implicated in the disease are hallmarks of ferroptosis, a recently discovered type of iron-dependent programmed cell death characterized by increased reactive oxygen species (ROS) and lipid peroxidation. Iron accumulation results in mitochondrial dysfunction and increased levels of ROS, lipid peroxidation, and ferroptosis triggers; in addition, the inhibition of the Xc- system results in reduced cystine levels and glutamate accumulation, leading to excitotoxicity and the inhibition of GPx4 synthesis. These results highlight the potential involvement of ferroptosis in ALS, providing new molecular and biochemical targets that could be exploited in the treatment of the disease using polyphenols.
Collapse
Affiliation(s)
| | - Stefano Putaggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.R.); (A.C.); (S.C.); (G.L.); (S.F.); (D.B.); (G.T.P.)
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.R.); (A.C.); (S.C.); (G.L.); (S.F.); (D.B.); (G.T.P.)
| | | | | | | | | | | | | |
Collapse
|
7
|
Yu S, Liang J, Liu L, Chen M, Chen C, Zhou D. AC129507.1 is a ferroptosis-related target identified by a novel mitochondria-related lncRNA signature that is involved in the tumor immune microenvironment in gastric cancer. J Transl Med 2025; 23:290. [PMID: 40050892 PMCID: PMC11887229 DOI: 10.1186/s12967-025-06287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/23/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignancies. Previous studies have shown that mitochondrial metabolism is associated with malignancies. However, relevant research on mitochondria-related lncRNAs in GC is lacking. METHODS We integrated the corresponding information of patients with GC from The Cancer Genome Atlas (TCGA) database. Mitochondria-related lncRNAs were selected based on differential expression and a correlation analysis to construct a prognostic model. The mutation data were analyzed to distinguish differences in the tumor mutation burden (TMB). Single-sample gene set enrichment analysis (ssGSEA) was performed to evaluate immunological differences. A series of cell-based experiments were adopted to evaluate the biological behavior of GC. RESULTS A total of 1571 mitochondria-related lncRNAs were identified. A prognostic signature incorporating nine lncRNAs was built based on 293 suitable GC cases and could predict patient prognosis. The TMB and ssGSEA indicated that the low-risk group displayed increased immune function. The enrichment analysis indicated that the differentially expressed genes were enriched in metabolic functions. AC129507.1 was significantly upregulated in GC cells and associated with a poor prognosis, and its knockdown inhibited the proliferation and migration of GC cells. Mechanistically, silencing AC129507.1 led to abnormal glycolipid metabolism and oxidative stress, thus inducing ferroptosis. CONCLUSIONS Our nine-lncRNA risk signature could powerfully predict patient prognosis. AC129507.1 promoted the malignant phenotypes of GC cells. AC129507.1 could play a nonnegligible role in GC by promoting the formation of a immunosuppressive tumor microenvironment by inhibiting the initiation of ferroptosis, which needs to be further explored.
Collapse
Affiliation(s)
- Shanshan Yu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Jinxiao Liang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Lixiao Liu
- Department of Obstetrics and Gynecology, Ningbo City First Hospital, Ningbo University, Ningbo, China
| | - Ming Chen
- Department of Surgical Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Donghui Zhou
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|