1
|
Ji HF, Li M, Han X, Fan YT, Yang JJ, Long Y, Yu J, Ji HY. Lactobacilli-Mediated Regulation of the Microbial-Immune Axis: A Review of Key Mechanisms, Influencing Factors, and Application Prospects. Foods 2025; 14:1763. [PMID: 40428542 PMCID: PMC12111133 DOI: 10.3390/foods14101763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/07/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Lactobacilli, as the main member of food microorganisms, is an important component of the intestinal microbial community and plays crucial roles in regulating the immune capacity of the body. This review provides a comprehensive exploration of the key components of Lactobacilli-mediated immune regulation effects, including the immunogenic components (peptidoglycan and lipoteichoic acid) and metabolites (short-chain fatty acids, bacteriocins, and exopolysaccharides), which can interact with host immune cell receptors to initiate complex immune signaling pathways. In addition, the immunomodulatory activity can be influenced by multiple factors including species differences, host-related factors (age, physiological conditions, and gut microbiota), and environmental factors (nutrient substrates, temperatures, etc.), and the application strategies including precision probiotic development, gene-editing driven engineering, and nanocarrier systems have also been proposed to enhance the immunomodulatory potential. Finally, this review provides the theoretical basis for microbial intervention in immune-related diseases and offers prospects for applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hai-Yu Ji
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (H.-F.J.); (M.L.); (X.H.); (Y.-T.F.); (J.-J.Y.); (Y.L.); (J.Y.)
| |
Collapse
|
2
|
Tang J, Chen L, Shen X, Xia T, Li Z, Chai X, Huang Y, Yang S, Peng X, Lai J, Li R, Xie L. Exploring the Role of Cellular Interactions in the Colorectal Cancer Microenvironment. J Immunol Res 2025; 2025:4109934. [PMID: 40255905 PMCID: PMC12008489 DOI: 10.1155/jimr/4109934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/22/2025] [Indexed: 04/22/2025] Open
Abstract
Colorectal cancer (CRC) stands as one of the tumors with globally high incidence and mortality rates. In recent years, researchers have extensively explored the role of the tumor immune microenvironment (TME) in CRC, highlighting the crucial influence of immune cell populations in driving tumor progression and shaping therapeutic outcomes. The TME encompasses an array of cellular and noncellular constituents, spanning tumor cells, immune cells, myeloid cells, and tumor-associated fibroblasts, among others. However, the cellular composition within the TME is highly dynamic, evolving throughout different stages of tumor progression. These shifts in cell subpopulation proportions lead to a gradual transition in the immune response, shifting from an early antitumor growth to a late-stage environment that supports tumor survival. Therefore, it is crucial to further investigate and understand the complex interactions among the various cell populations within the TME. In this review, we explore the key cellular components of varying origins, subpopulations with shared origins, and noncellular elements within the CRC TME, examining their interconnections and critical considerations for developing personalized and precise immunotherapy strategies.
Collapse
Affiliation(s)
- Jiadai Tang
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Liuhan Chen
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Xin Shen
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Tingrong Xia
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Zhengting Li
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Xiaoying Chai
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Yao Huang
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Shaoqiong Yang
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Xinjun Peng
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Junbo Lai
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Rui Li
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Lin Xie
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| |
Collapse
|
3
|
Zhang YZ, Ma Y, Ma E, Chen X, Zhang Y, Yin B, Zhao J. Sophisticated roles of tumor microenvironment in resistance to immune checkpoint blockade therapy in hepatocellular carcinoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:10. [PMID: 40051497 PMCID: PMC11883234 DOI: 10.20517/cdr.2024.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/13/2025] [Accepted: 02/21/2025] [Indexed: 03/09/2025]
Abstract
Hepatocellular carcinoma (HCC) remains a serious threat to global health, with rising incidence and mortality rates. Therapeutic options for advanced HCC are quite limited, and the overall prognosis remains poor. Recent advancements in immunotherapy, particularly immune-checkpoint blockade (ICB) targeting anti-PD1/PD-L1 and anti-CTLA4, have facilitated a paradigm shift in cancer treatment, demonstrating substantial survival benefits across various cancer types, including HCC. However, only a subset of HCC patients exhibit a favorable response to ICB therapy, and its efficacy is often hindered by the development of resistance. There are many studies to explore the underlying mechanisms of ICB response. In this review, we compiled the latest progression in immunotherapies for HCC and systematically summarized the sophisticated mechanisms by which components of the tumor microenvironment (TME) regulate resistance to ICB therapy. Additionally, we also outlined some scientific rationale strategies to boost antitumor immunity and enhance the efficacy of ICB in HCC. These insights may serve as a roadmap for future research and help improve outcomes for HCC patients.
Collapse
Affiliation(s)
- Yi-Zhe Zhang
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Authors contributed equally
| | - Yunshu Ma
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Authors contributed equally
| | - Ensi Ma
- Liver Transplantation Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Institute of Organ Transplantation, Fudan University, Shanghai 200040, China
| | - Xizhi Chen
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yue Zhang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Baobing Yin
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Hepatobiliary surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China
| | - Jing Zhao
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Hepatobiliary surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China
- Cancer Metastasis Institute, Fudan University, Shanghai 201206, China
| |
Collapse
|
4
|
Zhao H, Lan B, Zhao Z, Zhu P, Wang C, Gao Y. High expression of nucleotide-binding oligomerization domain protein 1 correlates with poor prognosis and immune cell infiltration in Glioblastoma Multiforme patients. Discov Oncol 2025; 16:32. [PMID: 39798050 PMCID: PMC11724815 DOI: 10.1007/s12672-025-01786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/08/2025] [Indexed: 01/13/2025] Open
Abstract
Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors. NOD1 expression in GBM was further validated in the GEO database, and the survival of NOD1 was assessed by the Kaplan-Meier method. Clinical samples were collected to validate NOD1 expression. GSEA was carried out to expound on NOD1-related pathways involved in GBM. NOD1 co-expression and enrichment analysis were performed using the Linked Omics database and R software. The relationship between immune infiltrates and NOD1 expression was assessed by TIMER. Besides, the correlation between NOD1 and immune signatures (immunomodulators and chemokine) was evaluated by TISIDB. We found that NOD1 expression was significantly upregulated in GBM patients, and higher expression of NOD1 was associated with a poor prognosis. GSEA and enrichment analysis revealed that NOD1 might play a vital role in immune response and GBM progression. TIMER analysis showed a positive correlation between NOD1 expression and 17 types of tumor-infiltrating immune cells. Moreover, NOD1 expression was positively correlated with the expression of chemokine and immunomodulators in GBM. Overall, our findings suggest that NOD1 is a promising prognostic biomarker and is associated with immune cell infiltration in GBM, making it a potential diagnostic biomarker for this aggressive brain cancer.
Collapse
Affiliation(s)
- Hongyang Zhao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, 130033, Jilin, China
| | - Beiwu Lan
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, 130033, Jilin, China
| | - Zenghui Zhao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, 130033, Jilin, China
| | - Peining Zhu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, 130033, Jilin, China
| | - Chong Wang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, 130033, Jilin, China
| | - Yufei Gao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, 130033, Jilin, China.
| |
Collapse
|
5
|
Yin E, Liu C, Yao Y, Luo Y, Yang Y, Tang X, Zheng S, Tian L, He J. Unveiling the role of Pleckstrin-2 in tumor progression and immune modulation: insights from a comprehensive pan-cancer analysis with focus on lung cancer. MOLECULAR BIOMEDICINE 2024; 5:59. [PMID: 39546161 PMCID: PMC11568116 DOI: 10.1186/s43556-024-00225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cancer remains a leading cause of mortality globally, highlighting the need for novel biomarkers to enhance prognosis and therapeutic strategies. Pleckstrin-2 (PLEK2), a member of the pleckstrin family, has been implicated in processes critical to tumor progression, but its role across cancers remains underexplored. This study systematically examined the expression patterns, prognostic relevance, and functional impact of PLEK2 across multiple cancer types. Using data from The Cancer Genome Atlas (TCGA), Genotype Tissue Expression Project (GTEx), and the Human Protein Atlas, we analyzed PLEK2 expression in both cancerous and normal tissues, revealing significant overexpression of PLEK2 in various cancers at the mRNA and protein levels. Single-cell RNA sequencing further indicated predominant expression of PLEK2 in tumor cells and macrophages within the tumor microenvironment. Survival analysis demonstrated that elevated PLEK2 expression correlated with poor prognosis in specific cancers, though its impact varied across cancer types. Functional assays showed that PLEK2 knockdown inhibited proliferation and migration in human cancer cell lines. In vivo studies using a Lewis lung carcinoma (LLC) model confirmed that PLEK2 knockdown suppressed tumor growth and enhanced the efficacy of PD-1 immunotherapy. Mechanistically, PLEK2 knockdown was associated with reduced AKT pathway activation, diminished tumor-associated macrophage infiltration, and increased CD8 T cell presence. Compounds like Navitoclax were also identified as potential PLEK2 inhibitors. In conclusion, PLEK2 played a multifaceted role in cancer progression and immune response modulation. Targeting PLEK2 might suppress tumor growth and overcome immunotherapy resistance, offering a promising biomarker and therapeutic target to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Enzhi Yin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chengming Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuxin Yao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuejun Luo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yaning Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaoya Tang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Sufei Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Linyan Tian
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|