1
|
Cramer P. Structural Molecular Biology-A Personal Reflection on the Occasion of John Kendrew's 100th Birthday. J Mol Biol 2017; 429:2603-2610. [PMID: 28501586 DOI: 10.1016/j.jmb.2017.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
Here, I discuss the development and future of structural molecular biology, concentrating on the eukaryotic transcription machinery and reflecting on John Kendrew's legacy from a personal perspective.
Collapse
Affiliation(s)
- Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
2
|
Affiliation(s)
- Robert O J Weinzierl
- Department of Life Sciences, Division of Biomolecular Sciences, Imperial College London , Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
3
|
The Bridge Helix of RNA polymerase acts as a central nanomechanical switchboard for coordinating catalysis and substrate movement. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2012; 2011:608385. [PMID: 22312317 PMCID: PMC3270539 DOI: 10.1155/2011/608385] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/25/2011] [Indexed: 11/17/2022]
Abstract
The availability of in vitro assembly systems to produce recombinant archaeal RNA polymerases (RNAPs) offers one of the most powerful experimental tools for investigating the still relatively poorly understood molecular mechanisms underlying RNAP function. Over the last few years, we pioneered new robot-based high-throughput mutagenesis approaches to study structure/function relationships within various domains surrounding the catalytic center. The Bridge Helix domain, which appears in numerous X-ray structures as a 35-amino-acid-long alpha helix, coordinates the concerted movement of several other domains during catalysis through kinking of two discrete molecular hinges. Mutations affecting these kinking mechanisms have a direct effect on the specific catalytic activity of RNAP and can in some instances more than double it. Molecular dynamics simulations have established themselves as exceptionally useful for providing additional insights and detailed models to explain the underlying structural motions.
Collapse
|
4
|
Heindl H, Greenwell P, Weingarten N, Kiss T, Terstyanszky G, Weinzierl ROJ. Cation-π interactions induce kinking of a molecular hinge in the RNA polymerase bridge-helix domain. Biochem Soc Trans 2011; 39:31-5. [PMID: 21265743 DOI: 10.1042/bst0390031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2025]
Abstract
RNAPs (RNA polymerases) are complex molecular machines that contain a highly conserved catalytic site surrounded by conformationally flexible domains. High-throughput mutagenesis in the archaeal model system Methanocaldococcus jannaschii has demonstrated that the nanomechanical properties of one of these domains, the bridge-helix, exert a key regulatory role on the rate of the NAC (nucleotide-addition cycle). Mutations that increase the probability and/or half-life of kink formation in the BH-HC (bridge-helix C-terminal hinge) cause a substantial increase in specific activity ('superactivity'). Fully atomistic molecular dynamics simulations show that kinking of the BH-HC appears to be driven by cation-π interactions and involve amino acid side chains that are exceptionally highly conserved in all prokaryotic and eukaryotic species.
Collapse
Affiliation(s)
- Hans Heindl
- School of Biosciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | | | | | | | | | | |
Collapse
|
5
|
Weinzierl ROJ. The nucleotide addition cycle of RNA polymerase is controlled by two molecular hinges in the Bridge Helix domain. BMC Biol 2010; 8:134. [PMID: 21034443 PMCID: PMC2988716 DOI: 10.1186/1741-7007-8-134] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 10/29/2010] [Indexed: 01/24/2023] Open
Abstract
Background Cellular RNA polymerases (RNAPs) are complex molecular machines that combine catalysis with concerted conformational changes in the active center. Previous work showed that kinking of a hinge region near the C-terminus of the Bridge Helix (BH-HC) plays a critical role in controlling the catalytic rate. Results Here, new evidence for the existence of an additional hinge region in the amino-terminal portion of the Bridge Helix domain (BH-HN) is presented. The nanomechanical properties of BH-HN emerge as a direct consequence of the highly conserved primary amino acid sequence. Mutations that are predicted to influence its flexibility cause corresponding changes in the rate of the nucleotide addition cycle (NAC). BH-HN displays functional properties that are distinct from BH-HC, suggesting that conformational changes in the Bridge Helix control the NAC via two independent mechanisms. Conclusions The properties of two distinct molecular hinges in the Bridge Helix of RNAP determine the functional contribution of this domain to key stages of the NAC by coordinating conformational changes in surrounding domains.
Collapse
|
6
|
Weinzierl ROJ. Nanomechanical constraints acting on the catalytic site of cellular RNA polymerases. Biochem Soc Trans 2010; 38:428-32. [PMID: 20298196 DOI: 10.1042/bst0380428] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RNAPs (RNA polymerases) are complex molecular machines containing structural domains that co-ordinate the movement of nucleic acid and nucleotide substrates through the catalytic site. X-ray images of bacterial, archaeal and eukaryotic RNAPs have provided a wealth of structural detail over the last decade, but many mechanistic features can only be derived indirectly from such structures. We have therefore implemented a robotic high-throughput structure-function experimental system based on the automatic generation and assaying of hundreds of site-directed mutants in the archaeal RNAP from Methanocaldococcus jannaschii. In the present paper, I focus on recent insights obtained from applying this experimental strategy to the bridge-helix domain. Our work demonstrates that the bridge-helix undergoes substantial conformational changes within a narrowly confined region (mjA' Ala(822)-Gln(823)-Ser(824)) during the nucleotide-addition cycle. Naturally occurring radical sequence variations in plant RNAP IV and V enzymes map to this region. In addition, many mutations within this domain cause a substantial increase in the RNAP catalytic activity ('superactivity'), suggesting that the RNAP active site is conformationally constrained.
Collapse
Affiliation(s)
- Robert O J Weinzierl
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
7
|
Tan L, Wiesler S, Trzaska D, Carney HC, Weinzierl ROJ. Bridge helix and trigger loop perturbations generate superactive RNA polymerases. J Biol 2008; 7:40. [PMID: 19055851 PMCID: PMC2776397 DOI: 10.1186/jbiol98] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/24/2008] [Accepted: 10/31/2008] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cellular RNA polymerases are highly conserved enzymes that undergo complex conformational changes to coordinate the processing of nucleic acid substrates through the active site. Two domains in particular, the bridge helix and the trigger loop, play a key role in this mechanism by adopting different conformations at various stages of the nucleotide addition cycle. The functional relevance of these structural changes has been difficult to assess from the relatively small number of static crystal structures currently available. RESULTS Using a novel robotic approach we characterized the functional properties of 367 site-directed mutants of the Methanocaldococcus jannaschii RNA polymerase A' subunit, revealing a wide spectrum of in vitro phenotypes. We show that a surprisingly large number of single amino acid substitutions in the bridge helix, including a kink-inducing proline substitution, increase the specific activity of RNA polymerase. Other 'superactivating' substitutions are located in the adjacent base helices of the trigger loop. CONCLUSION The results support the hypothesis that the nucleotide addition cycle involves a kinked bridge helix conformation. The active center of RNA polymerase seems to be constrained by a network of functional interactions between the bridge helix and trigger loop that controls fundamental parameters of RNA synthesis.
Collapse
Affiliation(s)
- Lin Tan
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK
| | - Simone Wiesler
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK
| | - Dominika Trzaska
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK
| | - Hannah C Carney
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK
| | - Robert OJ Weinzierl
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK
| |
Collapse
|
8
|
Das D, Das A, Samanta D, Ghosh J, Dasgupta S, Bhattacharya A, Basu A, Sanyal S, Das Gupta C. Role of the ribosome in protein folding. Biotechnol J 2008; 3:999-1009. [PMID: 18702035 DOI: 10.1002/biot.200800098] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In all organisms, the ribosome synthesizes and folds full length polypeptide chains into active three-dimensional conformations. The nascent protein goes through two major interactions, first with the ribosome which synthesizes the polypeptide chain and holds it for a considerable length of time, and then with the chaperones. Some of the chaperones are found in solution as well as associated to the ribosome. A number of in vitro and in vivo experiments revealed that the nascent protein folds through specific interactions of some amino acids with the nucleotides in the peptidyl transferase center (PTC) in the large ribosomal subunit. The mechanism of this folding differs from self-folding. In this article, we highlight the folding of nascent proteins on the ribosome and the influence of chaperones etc. on protein folding.
Collapse
Affiliation(s)
- Debasis Das
- Department of Biophysics, Molecular Biology and Genetics, University College of Science, Kolkata, India
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ritort F. Nonequilibrium Fluctuations in Small Systems: From Physics to Biology. ADVANCES IN CHEMICAL PHYSICS 2008. [DOI: 10.1002/9780470238080.ch2] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Cresawn SG, Condit RC. A targeted approach to identification of vaccinia virus postreplicative transcription elongation factors: genetic evidence for a role of the H5R gene in vaccinia transcription. Virology 2007; 363:333-41. [PMID: 17376501 PMCID: PMC1950266 DOI: 10.1016/j.virol.2007.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 11/18/2006] [Accepted: 02/05/2007] [Indexed: 11/17/2022]
Abstract
Treatment of wild-type vaccinia virus infected cells with the anti-poxviral drug isatin-beta-thiosemicarbazone (IBT) induces the viral postreplicative transcription apparatus to synthesize longer-than-normal mRNAs through an unknown mechanism. Prior studies have shown that virus mutants resistant to or dependent on IBT affect proteins involved in control of viral postreplicative transcription elongation, including G2, J3, and the viral RNA polymerase. Prior studies also suggest that there exist additional unidentified vaccinia genes that influence transcription elongation. The present study was undertaken to target candidate transcription elongation factor genes in an error-prone mutagenesis protocol to determine whether IBT-resistant or -dependent alleles could be isolated in those candidate genes. Mutagenesis of genes in which IBT resistance alleles have previously been isolated, namely A24R (encoding the second largest RNA polymerase subunit, rpo132) and G2R (encoding a positive transcription elongation factor), resulted in isolation of novel IBT resistance and dependence alleles therefore providing proof of principle of the targeted mutagenesis technique. The vaccinia H5 protein has been implicated previously in transcription elongation by virtue of its association with the positive elongation factor G2. Mutagenesis of the vaccinia H5R gene resulted in a novel H5R IBT resistance allele, strongly suggesting that H5 is a positive transcription elongation factor.
Collapse
Affiliation(s)
| | - Richard C. Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610
| |
Collapse
|
11
|
Cresawn SG, Prins C, Latner DR, Condit RC. Mapping and phenotypic analysis of spontaneous isatin-beta-thiosemicarbazone resistant mutants of vaccinia virus. Virology 2007; 363:319-32. [PMID: 17336362 PMCID: PMC1950264 DOI: 10.1016/j.virol.2007.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 02/05/2007] [Accepted: 02/05/2007] [Indexed: 11/22/2022]
Abstract
Treatment of wild type vaccinia virus infected cells with the anti-poxviral drug isatin-beta-thiosemicarbazone (IBT) induces the viral postreplicative transcription apparatus to synthesize longer-than-normal mRNAs through an unknown mechanism. Previous studies have shown that virus mutants resistant to or dependent on IBT affect genes involved in control of viral postreplicative transcription elongation. This study was initiated in order to identify additional viral genes involved in control of vaccinia postreplicative transcription elongation. Eight independent, spontaneous IBT resistant mutants of vaccinia virus were isolated. Marker rescue experiments mapped two mutants to gene G2R, which encodes a previously characterized postreplicative gene positive transcription elongation factor. Three mutants mapped to the largest subunit of the viral RNA polymerase, rpo147, the product of gene J6R. One mutant contained missense mutations in both G2R and A24R (rpo132, the second largest subunit of the RNA polymerase). Two mutants could not be mapped, however sequence analysis demonstrated that neither of these mutants contained mutations in previously identified IBT resistance or dependence genes. Phenotypic and biochemical analysis of the mutants suggests that they possess defects in transcription elongation that compensate for the elongation enhancing effects of IBT. The results implicate the largest subunit of the RNA polymerase (rpo147) in the control of elongation, and suggest that there exist additional gene products which mediate intermediate and late transcription elongation in vaccinia virus.
Collapse
Affiliation(s)
| | | | | | - Richard C. Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610
| |
Collapse
|
12
|
Ritort F. Single-molecule experiments in biological physics: methods and applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2006; 18:R531-R583. [PMID: 21690856 DOI: 10.1088/0953-8984/18/32/r01] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.
Collapse
Affiliation(s)
- F Ritort
- Departament de Física Fonamental, Facultat de Física, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
13
|
Pal M, Luse DS. The initiation-elongation transition: lateral mobility of RNA in RNA polymerase II complexes is greatly reduced at +8/+9 and absent by +23. Proc Natl Acad Sci U S A 2003; 100:5700-5. [PMID: 12719526 PMCID: PMC156264 DOI: 10.1073/pnas.1037057100] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RNA polymerase II transcription complexes stalled shortly after initiation over a repetitive segment of the template can undergo efficient transcript slippage, during which the 3' end of the RNA slides upstream and then re-pairs with the template, allowing transcription to continue. In the present study, we have used transcript slippage as an assay to identify possible structural transitions that occur as the polymerase passes from the initiation to the elongation phase of transcription. We reasoned that transcript slippage would not occur in fully processive complexes. We constructed a series of templates that allowed us to stall RNA polymerase II after the synthesis of a repetitive sequence (5'-CUCUCU-3') at varying distances downstream of +1. We found that polymerase must synthesize at least a 23-nt RNA to attain resistance to transcript slippage. The ability to undergo slippage was lost in two discrete steps, suggestive of two distinct transitions. The first transition is the formation of the 8- to 9-bp mature RNA-DNA hybrid, when slippage abruptly dropped by 10-fold. However, easily detectable slippage continued until 14 more bonds were made. Thus, although the transcript becomes tightly constrained within the transcription complex once the hybrid reaches its final length, much more RNA synthesis is required before the RNA is no longer able to slip upstream along the template. This last point may reflect an important stabilizing role for the interaction of the polymerase with the transcript well upstream of the RNA-DNA hybrid.
Collapse
Affiliation(s)
- Mahadeb Pal
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | |
Collapse
|
14
|
Guillebault D, Sasorith S, Derelle E, Wurtz JM, Lozano JC, Bingham S, Tora L, Moreau H. A new class of transcription initiation factors, intermediate between TATA box-binding proteins (TBPs) and TBP-like factors (TLFs), is present in the marine unicellular organism, the dinoflagellate Crypthecodinium cohnii. J Biol Chem 2002; 277:40881-6. [PMID: 12154093 DOI: 10.1074/jbc.m205624200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dinoflagellates are marine unicellular eukaryotes that exhibit unique features including a very low level of basic proteins bound to the chromatin and the complete absence of histones and nucleosomal structure. A cDNA encoding a protein with a strong homology to the TATA box-binding proteins (TBP) has been isolated from an expressed sequence tag library of the dinoflagellate Crypthecodinium cohnii. The typical TBP repeat signature and the amino acid motives involved in TFIIA and TFIIB interactions were conserved in this new TBP-like protein. However, the four phenylalanines known to interact with the TATA box were substituted with hydrophilic residues (His(77), Arg(94), Tyr(171), Thr(188)) as has been described for TBP-like factors (TLF)/TBP-related proteins (TRP). A phylogenetic analysis showed that cTBP is intermediate between TBP and TLF/TRP protein families, and the structural similarity of cTBP with TLF was confirmed by low affinity binding to a consensus' TATA box in an equivalent manner to that usually observed for TLFs. Six 5'-upstream gene regions of dinoflagellate genes have been analyzed and neither a TATA box nor a consensus-promoting element could be found within these different sequences. Our results showed that cTBP could bind stronger to a TTTT box sequence than to the canonical TATA box, especially at high salt concentration. Same binding results were obtained with a mutated cTBP (mcTBP), in which the four phenylalanines were restored. To our knowledge, this is the first description of a TBP-like protein in a unicellular organism, which also appears as the major form of TBP present in C. cohnii.
Collapse
Affiliation(s)
- Delphine Guillebault
- Observatoire océanologique, laboratoire Arago, UMR 7628 CNRS-Université Paris VI, BP 44, F-66651 Banyuls-sur-mer cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Epshtein V, Mustaev A, Markovtsov V, Bereshchenko O, Nikiforov V, Goldfarb A. Swing-gate model of nucleotide entry into the RNA polymerase active center. Mol Cell 2002; 10:623-34. [PMID: 12408829 DOI: 10.1016/s1097-2765(02)00640-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Each elementary step of transcription involves translocation of the 3' terminus of RNA in the RNA polymerase active center, followed by the entry of a nucleoside triphosphate. The structural basis of these transitions was studied using RNA-protein crosslinks. The contacts were mapped and projected onto the crystal structure, in which the "F bridge" helix in the beta' subunit is either bent or relaxed. Bending/relaxation of the F bridge correlates with lateral movements of the RNA 3' terminus. The bent conformation is sterically incompatable with the occupancy of the nucleotide site, suggesting that the switch regulates both the entry of substrates and the translocation of the transcript. The switch occurs as part of a cooperative transition of a larger structural domain that consists of the F helix and the supporting G loop.
Collapse
|
16
|
Abstract
Essential components of the eukaryotic transcription apparatus include RNA polymerase II, a common set of initiation factors, and a Mediator complex that transmits regulatory information to the enzyme. Insights into mechanisms of transcription have been gained by three-dimensional structures for many of these factors and their complexes, especially for yeast RNA polymerase II at atomic resolution.
Collapse
Affiliation(s)
- Nancy A Woychik
- Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
17
|
Bushnell DA, Cramer P, Kornberg RD. Structural basis of transcription: alpha-amanitin-RNA polymerase II cocrystal at 2.8 A resolution. Proc Natl Acad Sci U S A 2002; 99:1218-22. [PMID: 11805306 PMCID: PMC122170 DOI: 10.1073/pnas.251664698] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2001] [Indexed: 02/07/2023] Open
Abstract
The structure of RNA polymerase II in a complex with the inhibitor alpha-amanitin has been determined by x-ray crystallography. The structure of the complex indicates the likely basis of inhibition and gives unexpected insight into the transcription mechanism.
Collapse
Affiliation(s)
- David A Bushnell
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | | | | |
Collapse
|