1
|
Carrington JT, Wilson RHC, de La Vega E, Thiyagarajan S, Barker T, Catchpole L, Durrant A, Knitlhoffer V, Watkins C, Gharbi K, Nieduszynski CA. Most human DNA replication initiation is dispersed throughout the genome with only a minority within previously identified initiation zones. Genome Biol 2025; 26:122. [PMID: 40346587 PMCID: PMC12063229 DOI: 10.1186/s13059-025-03591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 04/25/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND The identification of sites of DNA replication initiation in mammalian cells has been challenging. Here, we present unbiased detection of replication initiation events in human cells using BrdU incorporation and single-molecule nanopore sequencing. RESULTS Increases in BrdU incorporation allow us to measure DNA replication dynamics, including identification of replication initiation, fork direction, and termination on individual nanopore sequencing reads. Importantly, initiation and termination events are identified on single molecules with high resolution, throughout S-phase, genome-wide, and at high coverage at specific loci using targeted enrichment. We find a significant enrichment of initiation sites within the broad initiation zones identified by population-level studies. However, these focused initiation sites only account for ~ 20% of all identified replication initiation events. Most initiation events are dispersed throughout the genome and are missed by cell population approaches. This indicates that most initiation occurs at sites that, individually, are rarely used. These dispersed initiation sites contrast with the focused sites identified by population studies, in that they do not show a strong relationship to transcription or a particular epigenetic signature. CONCLUSIONS We show here that single-molecule sequencing enables unbiased detection and characterization of DNA replication initiation events, including the numerous dispersed initiation events that replicate most of the human genome.
Collapse
Affiliation(s)
| | | | | | | | - Tom Barker
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Leah Catchpole
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Alex Durrant
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | | | - Chris Watkins
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Karim Gharbi
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Conrad A Nieduszynski
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.
- University of East Anglia, Norwich, UK.
| |
Collapse
|
2
|
Takesue H, Okada S, Doi G, Sugiyama Y, Kusumoto E, Ito T. Strategic targeting of Cas9 nickase expands tandem gene arrays. CELL GENOMICS 2025; 5:100811. [PMID: 40118067 PMCID: PMC12008805 DOI: 10.1016/j.xgen.2025.100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/20/2024] [Accepted: 02/17/2025] [Indexed: 03/23/2025]
Abstract
Expanding tandem gene arrays facilitates adaptation through dosage effects and gene family formation via sequence diversification. However, experimental induction of such expansions remains challenging. Here, we introduce a method termed break-induced replication (BIR)-mediated tandem repeat expansion (BITREx) to address this challenge. BITREx places Cas9 nickase adjacent to a tandem gene array to break the replication fork that has just replicated the array, forming a single-ended double-strand break. This break is subsequently end-resected to become single stranded. Since there is no repeat unit downstream of the break, the single-stranded DNA often invades an upstream unit to initiate ectopic BIR, resulting in array expansion. BITREx has successfully expanded gene arrays in budding yeast, with the CUP1 array reaching ∼1 Mb. Furthermore, appropriate splint DNAs allow BITREx to generate tandem arrays de novo from single-copy genes. We have also demonstrated BITREx in mammalian cells. Therefore, BITREx will find various unique applications in genome engineering.
Collapse
Affiliation(s)
- Hiroaki Takesue
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Satoshi Okada
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Goro Doi
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Yuki Sugiyama
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Emiko Kusumoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan.
| |
Collapse
|
3
|
Zhu X, Kanemaki MT. Replication initiation sites and zones in the mammalian genome: Where are they located and how are they defined? DNA Repair (Amst) 2024; 141:103713. [PMID: 38959715 DOI: 10.1016/j.dnarep.2024.103713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024]
Abstract
Eukaryotic DNA replication is a tightly controlled process that occurs in two main steps, i.e., licensing and firing, which take place in the G1 and S phases of the cell cycle, respectively. In Saccharomyces cerevisiae, the budding yeast, replication origins contain consensus sequences that are recognized and bound by the licensing factor Orc1-6, which then recruits the replicative Mcm2-7 helicase. By contrast, mammalian initiation sites lack such consensus sequences, and the mammalian ORC does not exhibit sequence specificity. Studies performed over the past decades have identified replication initiation sites in the mammalian genome using sequencing-based assays, raising the question of whether replication initiation occurs at confined sites or in broad zones across the genome. Although recent reports have shown that the licensed MCMs in mammalian cells are broadly distributed, suggesting that ORC-dependent licensing may not determine the initiation sites/zones, they are predominantly located upstream of actively transcribed genes. This review compares the mechanism of replication initiation in yeast and mammalian cells, summarizes the sequencing-based technologies used for the identification of initiation sites/zones, and proposes a possible mechanism of initiation-site/zone selection in mammalian cells. Future directions and challenges in this field are also discussed.
Collapse
Affiliation(s)
- Xiaoxuan Zhu
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Shizuoka, Mishima 411-8540, Japan.
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Shizuoka, Mishima 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Yata 1111, Shizuoka, Mishima 411-8540, Japan; Department of Biological Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
4
|
Reuter LM, Khadayate SP, Mossler A, Liebl K, Faull SV, Karimi MM, Speck C. MCM2-7 loading-dependent ORC release ensures genome-wide origin licensing. Nat Commun 2024; 15:7306. [PMID: 39181881 PMCID: PMC11344781 DOI: 10.1038/s41467-024-51538-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
Origin recognition complex (ORC)-dependent loading of the replicative helicase MCM2-7 onto replication origins in G1-phase forms the basis of replication fork establishment in S-phase. However, how ORC and MCM2-7 facilitate genome-wide DNA licensing is not fully understood. Mapping the molecular footprints of budding yeast ORC and MCM2-7 genome-wide, we discovered that MCM2-7 loading is associated with ORC release from origins and redistribution to non-origin sites. Our bioinformatic analysis revealed that origins are compact units, where a single MCM2-7 double hexamer blocks repetitive loading through steric ORC binding site occlusion. Analyses of A-elements and an improved B2-element consensus motif uncovered that DNA shape, DNA flexibility, and the correct, face-to-face spacing of the two DNA elements are hallmarks of ORC-binding and efficient helicase loading sites. Thus, our work identified fundamental principles for MCM2-7 helicase loading that explain how origin licensing is realised across the genome.
Collapse
Affiliation(s)
- L Maximilian Reuter
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, Mainz, Germany.
| | | | - Audrey Mossler
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Korbinian Liebl
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Sarah V Faull
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mohammad M Karimi
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom.
| |
Collapse
|
5
|
Foss EJ, Lichauco C, Gatbonton-Schwager T, Gonske SJ, Lofts B, Lao U, Bedalov A. Identification of 1600 replication origins in S. cerevisiae. eLife 2024; 12:RP88087. [PMID: 38315095 PMCID: PMC10945306 DOI: 10.7554/elife.88087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
There are approximately 500 known origins of replication in the yeast genome, and the process by which DNA replication initiates at these locations is well understood. In particular, these sites are made competent to initiate replication by loading of the Mcm replicative helicase prior to the start of S phase; thus, 'a site that binds Mcm in G1' might be considered to provide an operational definition of a replication origin. By fusing a subunit of Mcm to micrococcal nuclease, we previously showed that known origins are typically bound by a single Mcm double hexamer, loaded adjacent to the ARS consensus sequence (ACS). Here, we extend this analysis from known origins to the entire genome, identifying candidate Mcm binding sites whose signal intensity varies over at least three orders of magnitude. Published data quantifying single-stranded DNA (ssDNA) during S phase revealed replication initiation among the most abundant 1600 of these sites, with replication activity decreasing with Mcm abundance and disappearing at the limit of detection of ssDNA. Three other hallmarks of replication origins were apparent among the most abundant 5500 sites. Specifically, these sites: (1) appeared in intergenic nucleosome-free regions flanked on one or both sides by well-positioned nucleosomes; (2) were flanked by ACSs; and (3) exhibited a pattern of GC skew characteristic of replication initiation. We conclude that, if sites at which Mcm double hexamers are loaded can function as replication origins, then DNA replication origins are at least threefold more abundant than previously assumed, and we suggest that replication may occasionally initiate in essentially every intergenic region. These results shed light on recent reports that as many as 15% of replication events initiate outside of known origins, and this broader distribution of replication origins suggest that S phase in yeast may be less distinct from that in humans than widely assumed.
Collapse
Affiliation(s)
- Eric J Foss
- Clinical Research Division, Fred Hutch Cancer CenterSeattleUnited States
| | - Carmina Lichauco
- Clinical Research Division, Fred Hutch Cancer CenterSeattleUnited States
| | | | - Sara J Gonske
- Clinical Research Division, Fred Hutch Cancer CenterSeattleUnited States
| | - Brandon Lofts
- Clinical Research Division, Fred Hutch Cancer CenterSeattleUnited States
| | - Uyen Lao
- Clinical Research Division, Fred Hutch Cancer CenterSeattleUnited States
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutch Cancer CenterSeattleUnited States
| |
Collapse
|
6
|
Pflug FG, Bhat D, Pigolotti S. Genome replication in asynchronously growing microbial populations. PLoS Comput Biol 2024; 20:e1011753. [PMID: 38181054 PMCID: PMC10796026 DOI: 10.1371/journal.pcbi.1011753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/18/2024] [Accepted: 12/11/2023] [Indexed: 01/07/2024] Open
Abstract
Biological cells replicate their genomes in a well-planned manner. The DNA replication program of an organism determines the timing at which different genomic regions are replicated, with fundamental consequences for cell homeostasis and genome stability. In a growing cell culture, genomic regions that are replicated early should be more abundant than regions that are replicated late. This abundance pattern can be experimentally measured using deep sequencing. However, a general quantitative theory linking this pattern to the replication program is still lacking. In this paper, we predict the abundance of DNA fragments in asynchronously growing cultures from any given stochastic model of the DNA replication program. As key examples, we present stochastic models of the DNA replication programs in budding yeast and Escherichia coli. In both cases, our model results are in excellent agreement with experimental data and permit to infer key information about the replication program. In particular, our method is able to infer the locations of known replication origins in budding yeast with high accuracy. These examples demonstrate that our method can provide insight into a broad range of organisms, from bacteria to eukaryotes.
Collapse
Affiliation(s)
- Florian G. Pflug
- Biological Complexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Deepak Bhat
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Simone Pigolotti
- Biological Complexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| |
Collapse
|
7
|
Lee CSK, Weiβ M, Hamperl S. Where and when to start: Regulating DNA replication origin activity in eukaryotic genomes. Nucleus 2023; 14:2229642. [PMID: 37469113 PMCID: PMC10361152 DOI: 10.1080/19491034.2023.2229642] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
In eukaryotic genomes, hundreds to thousands of potential start sites of DNA replication named origins are dispersed across each of the linear chromosomes. During S-phase, only a subset of origins is selected in a stochastic manner to assemble bidirectional replication forks and initiate DNA synthesis. Despite substantial progress in our understanding of this complex process, a comprehensive 'identity code' that defines origins based on specific nucleotide sequences, DNA structural features, the local chromatin environment, or 3D genome architecture is still missing. In this article, we review the genetic and epigenetic features of replication origins in yeast and metazoan chromosomes and highlight recent insights into how this flexibility in origin usage contributes to nuclear organization, cell growth, differentiation, and genome stability.
Collapse
Affiliation(s)
- Clare S K Lee
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Matthias Weiβ
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Stephan Hamperl
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
8
|
Foss EJ, Lichauco C, Gatbonton-Schwager T, Gonske SJ, Lofts B, Lao U, Bedalov A. Identification of 1600 replication origins in S. cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536402. [PMID: 38014147 PMCID: PMC10680564 DOI: 10.1101/2023.04.11.536402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
There are approximately 500 known origins of replication in the yeast genome, and the process by which DNA replication initiates at these locations is well understood. In particular, these sites are made competent to initiate replication by loading of the Mcm replicative helicase prior to the start of S phase; thus, "a site to which MCM is bound in G1" might be considered to provide an operational definition of a replication origin. By fusing a subunit of Mcm to micrococcal nuclease, a technique referred to as "Chromatin Endogenous Cleavage", we previously showed that known origins are typically bound by a single Mcm double hexamer, loaded adjacent to the ARS consensus sequence (ACS). Here we extend this analysis from known origins to the entire genome, identifying candidate Mcm binding sites whose signal intensity varies over at least 3 orders of magnitude. Published data quantifying the production of ssDNA during S phase showed clear evidence of replication initiation among the most abundant 1600 of these sites, with replication activity decreasing in concert with Mcm abundance and disappearing at the limit of detection of ssDNA. Three other hallmarks of replication origins were apparent among the most abundant 5,500 sites. Specifically, these sites (1) appeared in intergenic nucleosome-free regions that were flanked on one or both sides by well-positioned nucleosomes; (2) were flanked by ACSs; and (3) exhibited a pattern of GC skew characteristic of replication initiation. Furthermore, the high resolution of this technique allowed us to demonstrate a strong bias for detecting Mcm double-hexamers downstream rather than upstream of the ACS, which is consistent with the directionality of Mcm loading by Orc that has been observed in vitro. We conclude that, if sites at which Mcm double-hexamers are loaded can function as replication origins, then DNA replication origins are at least 3-fold more abundant than previously assumed, and we suggest that replication may occasionally initiate in essentially every intergenic region. These results shed light on recent reports that as many as 15% of replication events initiate outside of known origins, and this broader distribution of replication origins suggest that S phase in yeast may be less distinct from that in humans than is widely assumed.
Collapse
Affiliation(s)
- Eric J Foss
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | - Carmina Lichauco
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | | | - Sara J Gonske
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | - Brandon Lofts
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | - Uyen Lao
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| |
Collapse
|
9
|
Shekhar S, Verma S, Gupta MK, Roy SS, Kaur I, Krishnamachari A, Dhar SK. Genome-wide binding sites of Plasmodium falciparum mini chromosome maintenance protein MCM6 show new insights into parasite DNA replication. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119546. [PMID: 37482133 DOI: 10.1016/j.bbamcr.2023.119546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/08/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Multiple rounds of DNA replication take place in various stages of the life cycle in the human malaria parasite Plasmodium falciparum. Previous bioinformatics analysis has shown the presence of putative Autonomously Replicating Sequence (ARS) like sequences in the Plasmodium genome. However, the actual sites and frequency of replication origins in the P. falciparum genome based on experimental data still remain elusive. Minichromosome maintenance (MCM) proteins are recruited by the Origin recognition complex (ORC) to the origins of replication in eukaryotes including P. falciparum. We used PfMCM6 for chromatin immunoprecipitation followed by sequencing (ChIP-seq) in the quest for identification of putative replication origins in the parasite. PfMCM6 DNA binding sites annotation revealed high enrichment at exon regions. This is contrary to higher eukaryotes that show an inclination of origin sites towards transcriptional start sites. ChIP-seq results were further validated by ChIP-qPCR results as well as nascent strand abundance assay at the selected PfMCM6 enriched sites that also showed preferential binding of PfORC1 suggesting potential of these sites as origin sites. Further, PfMCM6 ChIP-seq data showed a positive correlation with previously published histone H4K8Ac genome-wide binding sites but not with H3K9Ac sites suggesting epigenetic control of replication initiation sites in the parasites. Overall, our data show the genome-wide distribution of PfMCM6 binding sites with their potential as replication origins in this deadly human pathogen that not only broadens our knowledge of parasite DNA replication and its unique biology, it may help to find new avenues for intervention processes.
Collapse
Affiliation(s)
- Shashank Shekhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sunita Verma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohit Kumar Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sourav Singha Roy
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Inderjeet Kaur
- Department of Biotechnology, Central University of Haryana, Mahendergargh, India
| | | | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
10
|
Petrie MV, He Y, Gan Y, Ostrow AZ, Aparicio OM. Broadly Applicable Control Approaches Improve Accuracy of ChIP-Seq Data. Int J Mol Sci 2023; 24:9271. [PMID: 37298223 PMCID: PMC10252487 DOI: 10.3390/ijms24119271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Chromatin ImmunoPrecipitation (ChIP) is a widely used method for the analysis of protein-DNA interactions in vivo; however, ChIP has pitfalls, particularly false-positive signal enrichment that permeates the data. We have developed a new approach to control for non-specific enrichment in ChIP that involves the expression of a non-genome-binding protein targeted in the IP alongside the experimental target protein due to the sharing of epitope tags. ChIP of the protein provides a "sensor" for non-specific enrichment that can be used for the normalization of the experimental data, thereby correcting for non-specific signals and improving data quality as validated against known binding sites for several proteins that we tested, including Fkh1, Orc1, Mcm4, and Sir2. We also tested a DNA-binding mutant approach and showed that, when feasible, ChIP of a site-specific DNA-binding mutant of the target protein is likely an ideal control. These methods vastly improve our ChIP-seq results in S. cerevisiae and should be applicable in other systems.
Collapse
Affiliation(s)
| | | | | | | | - Oscar M. Aparicio
- Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089, USA; (M.V.P.); (Y.H.); (Y.G.); (A.Z.O.)
| |
Collapse
|
11
|
Identification of the Interaction between Minichromosome Maintenance Proteins and the Core Protein of Hepatitis B Virus. Curr Issues Mol Biol 2023; 45:752-764. [PMID: 36661536 PMCID: PMC9857746 DOI: 10.3390/cimb45010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Chronic HBV infection is a major cause of cirrhosis and hepatocellular carcinoma. Finding host factors involved in the viral life cycle and elucidating their mechanisms is essential for developing innovative strategies for treating HBV. The HBV core protein has pleiotropic roles in HBV replication; thus, finding the interactions between the core protein and host factors is important in clarifying the mechanism of viral infection and proliferation. Recent studies have revealed that core proteins are involved in cccDNA formation, transcriptional regulation, and RNA metabolism, in addition to their primary functions of capsid formation and pgRNA packaging. Here, we report the interaction of the core protein with MCMs, which have an essential role in host DNA replication. The knockdown of MCM2 led to increased viral replication during infection, suggesting that MCM2 serves as a restriction factor for HBV proliferation. This study opens the possibility of elucidating the relationship between core proteins and host factors and their function in viral proliferation.
Collapse
|
12
|
Richards L, Lord CL, Benton ML, Capra JA, Nordman JT. Nucleoporins facilitate ORC loading onto chromatin. Cell Rep 2022; 41:111590. [PMID: 36351393 PMCID: PMC10040217 DOI: 10.1016/j.celrep.2022.111590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/10/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
The origin recognition complex (ORC) binds throughout the genome to initiate DNA replication. In metazoans, it is still unclear how ORC is targeted to specific loci to facilitate helicase loading and replication initiation. Here, we perform immunoprecipitations coupled with mass spectrometry for ORC2 in Drosophila embryos. Surprisingly, we find that ORC2 associates with multiple subunits of the Nup107-160 subcomplex of the nuclear pore. Bioinformatic analysis reveals that, relative to all modENCODE factors, nucleoporins are among the most enriched factors at ORC2 binding sites. Critically, depletion of the nucleoporin Elys, a member of the Nup107-160 complex, decreases ORC2 loading onto chromatin. Depleting Elys also sensitizes cells to replication fork stalling, which could reflect a defect in establishing dormant replication origins. Our work reveals a connection between ORC, replication initiation, and nucleoporins, suggesting a function for nucleoporins in metazoan replication initiation.
Collapse
Affiliation(s)
- Logan Richards
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Christopher L Lord
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | | | - John A Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA 94143, USA
| | - Jared T Nordman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
13
|
González‐Garrido C, Prado F. Novel insights into the roles of Cdc7 in response to replication stress. FEBS J 2022. [DOI: 10.1111/febs.16456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Cristina González‐Garrido
- Centro Andaluz de Biología Molecular y Medicina Regenerativa–CABIMER Consejo Superior de Investigaciones Científicas Universidad de Sevilla Universidad Pablo de Olavide Spain
| | - Félix Prado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa–CABIMER Consejo Superior de Investigaciones Científicas Universidad de Sevilla Universidad Pablo de Olavide Spain
| |
Collapse
|
14
|
Joshi I, Peng J, Alvino G, Kwan E, Feng W. Exceptional origin activation revealed by comparative analysis in two laboratory yeast strains. PLoS One 2022; 17:e0263569. [PMID: 35157703 PMCID: PMC8843211 DOI: 10.1371/journal.pone.0263569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 01/21/2022] [Indexed: 11/18/2022] Open
Abstract
We performed a comparative analysis of replication origin activation by genome-wide single-stranded DNA mapping in two yeast strains challenged by hydroxyurea, an inhibitor of the ribonucleotide reductase. We gained understanding of the impact on origin activation by three factors: S-phase checkpoint control, DNA sequence polymorphisms, and relative positioning of origin and transcription unit. Wild type W303 showed a significant reduction of fork progression accompanied by an elevated level of Rad53 phosphorylation as well as physical presence at origins compared to A364a. Moreover, a rad53K227A mutant in W303 activated more origins, accompanied by global reduction of ssDNA across all origins, compared to A364a. Sequence polymorphism in the consensus motifs of origins plays a minor role in determining strain-specific activity. Finally, we identified a new class of origins only active in checkpoint-proficient cells, which we named “Rad53-dependent origins”. Our study presents a comprehensive list of differentially used origins and provide new insights into the mechanisms of origin activation.
Collapse
Affiliation(s)
- Ishita Joshi
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Jie Peng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Gina Alvino
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Elizabeth Kwan
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Rhind N. f = m* a: A Framework for Investigating the Regulation of Replication Timing. Genes (Basel) 2022; 13:249. [PMID: 35205293 PMCID: PMC8872135 DOI: 10.3390/genes13020249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/04/2022] Open
Abstract
Stochastic models of replication timing posit that origin firing timing is regulated by origin firing probability, with early-firing origins having a high probability of firing and late-firing origins having a lower probability. However, they offer no insight into why one origin should have a higher firing probability than another. Here, a simple framework is suggested for how to approach the question by noting that the firing probability (f) must be the product of the stoichiometry of the MCM replicative helicase loaded at the origin (m) and the probability with which that MCM is activated (a). This framework emphasizes that mechanistic understanding of replication timing must focus on MCM loading and activation and can be simplified to the equation f = m*a.
Collapse
Affiliation(s)
- Nicholas Rhind
- Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
16
|
Whale AJ, King M, Hull RM, Krueger F, Houseley J. Stimulation of adaptive gene amplification by origin firing under replication fork constraint. Nucleic Acids Res 2022; 50:915-936. [PMID: 35018465 PMCID: PMC8789084 DOI: 10.1093/nar/gkab1257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Adaptive mutations can cause drug resistance in cancers and pathogens, and increase the tolerance of agricultural pests and diseases to chemical treatment. When and how adaptive mutations form is often hard to discern, but we have shown that adaptive copy number amplification of the copper resistance gene CUP1 occurs in response to environmental copper due to CUP1 transcriptional activation. Here we dissect the mechanism by which CUP1 transcription in budding yeast stimulates copy number variation (CNV). We show that transcriptionally stimulated CNV requires TREX-2 and Mediator, such that cells lacking TREX-2 or Mediator respond normally to copper but cannot acquire increased resistance. Mediator and TREX-2 can cause replication stress by tethering transcribed loci to nuclear pores, a process known as gene gating, and transcription at the CUP1 locus causes a TREX-2-dependent accumulation of replication forks indicative of replication fork stalling. TREX-2-dependent CUP1 gene amplification occurs by a Rad52 and Rad51-mediated homologous recombination mechanism that is enhanced by histone H3K56 acetylation and repressed by Pol32 and Pif1. CUP1 amplification is also critically dependent on late-firing replication origins present in the CUP1 repeats, and mutations that remove or inactivate these origins strongly suppress the acquisition of copper resistance. We propose that replicative stress imposed by nuclear pore association causes replication bubbles from these origins to collapse soon after activation, leaving a tract of H3K56-acetylated chromatin that promotes secondary recombination events during elongation after replication fork re-start events. The capacity for inefficient replication origins to promote copy number variation renders certain genomic regions more fragile than others, and therefore more likely to undergo adaptive evolution through de novo gene amplification.
Collapse
Affiliation(s)
- Alex J Whale
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Michelle King
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Ryan M Hull
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Felix Krueger
- Babraham Bioinformatics, Babraham Institute, Cambridge, UK
| | | |
Collapse
|
17
|
Li Y, Hartemink AJ, MacAlpine DM. Cell-Cycle-Dependent Chromatin Dynamics at Replication Origins. Genes (Basel) 2021; 12:genes12121998. [PMID: 34946946 PMCID: PMC8701747 DOI: 10.3390/genes12121998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 01/20/2023] Open
Abstract
Origins of DNA replication are specified by the ordered recruitment of replication factors in a cell-cycle–dependent manner. The assembly of the pre-replicative complex in G1 and the pre-initiation complex prior to activation in S phase are well characterized; however, the interplay between the assembly of these complexes and the local chromatin environment is less well understood. To investigate the dynamic changes in chromatin organization at and surrounding replication origins, we used micrococcal nuclease (MNase) to generate genome-wide chromatin occupancy profiles of nucleosomes, transcription factors, and replication proteins through consecutive cell cycles in Saccharomyces cerevisiae. During each G1 phase of two consecutive cell cycles, we observed the downstream repositioning of the origin-proximal +1 nucleosome and an increase in protected DNA fragments spanning the ARS consensus sequence (ACS) indicative of pre-RC assembly. We also found that the strongest correlation between chromatin occupancy at the ACS and origin efficiency occurred in early S phase, consistent with the rate-limiting formation of the Cdc45–Mcm2-7–GINS (CMG) complex being a determinant of origin activity. Finally, we observed nucleosome disruption and disorganization emanating from replication origins and traveling with the elongating replication forks across the genome in S phase, likely reflecting the disassembly and assembly of chromatin ahead of and behind the replication fork, respectively. These results provide insights into cell-cycle–regulated chromatin dynamics and how they relate to the regulation of origin activity.
Collapse
Affiliation(s)
- Yulong Li
- Department of Computer Science, Duke University, Durham, NC 27708, USA;
| | - Alexander J. Hartemink
- Department of Computer Science, Duke University, Durham, NC 27708, USA;
- Correspondence: (A.J.H.); (D.M.M.)
| | - David M. MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Correspondence: (A.J.H.); (D.M.M.)
| |
Collapse
|
18
|
Foss EJ, Sripathy S, Gatbonton-Schwager T, Kwak H, Thiesen AH, Lao U, Bedalov A. Chromosomal Mcm2-7 distribution and the genome replication program in species from yeast to humans. PLoS Genet 2021; 17:e1009714. [PMID: 34473702 PMCID: PMC8443269 DOI: 10.1371/journal.pgen.1009714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 09/15/2021] [Accepted: 07/13/2021] [Indexed: 01/24/2023] Open
Abstract
The spatio-temporal program of genome replication across eukaryotes is thought to be driven both by the uneven loading of pre-replication complexes (pre-RCs) across the genome at the onset of S-phase, and by differences in the timing of activation of these complexes during S phase. To determine the degree to which distribution of pre-RC loading alone could account for chromosomal replication patterns, we mapped the binding sites of the Mcm2-7 helicase complex (MCM) in budding yeast, fission yeast, mouse and humans. We observed similar individual MCM double-hexamer (DH) footprints across the species, but notable differences in their distribution: Footprints in budding yeast were more sharply focused compared to the other three organisms, consistent with the relative sequence specificity of replication origins in S. cerevisiae. Nonetheless, with some clear exceptions, most notably the inactive X-chromosome, much of the fluctuation in replication timing along the chromosomes in all four organisms reflected uneven chromosomal distribution of pre-replication complexes. Gene-rich regions of the genome tend to replicate earlier in S phase than do repetitive and other non-genic regions. This may be an evolutionary consequence of the fact that replication later in S phase is associated with higher frequencies of mutation and genome rearrangement. Replication timing along the chromosome is determined by 1) events prior to S-phase that specify the locations where DNA replication can be initiated, referred to as origin licensing; and 2) the timing of activation of these licensed origins during S-phase, referred to as origin firing. To determine the relative importance of these two mechanisms, here we identify both the binding sites and the abundance of a key component of the origin licensing machinery in budding yeast, fission yeast, mice, and humans, namely the replicative helicase complex. We discovered that, with a few notable exceptions, which include the inactive X chromosome in mammals, the program of replication timing can be largely explained simply on the basis of origin licensing. Our results support a model for replication timing that emphasizes stochastic firing of origins that have been licensed before S phase begins.
Collapse
Affiliation(s)
- Eric J. Foss
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Smitha Sripathy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Tonibelle Gatbonton-Schwager
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Hyunchang Kwak
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Adam H. Thiesen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Uyen Lao
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, Department of Biochemistry, University of Washington, Seattle Washington, United States of America
- * E-mail:
| |
Collapse
|
19
|
Tan X, Wu X, Han M, Wang L, Xu L, Li B, Yuan Y. Yeast autonomously replicating sequence (ARS): Identification, function, and modification. Eng Life Sci 2021. [DOI: 10.1002/elsc.202000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Xiao‐Yu Tan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin P. R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin P. R. China
| | - Xiao‐Le Wu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin P. R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin P. R. China
| | - Ming‐Zhe Han
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin P. R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin P. R. China
| | - Li Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin P. R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin P. R. China
| | - Li Xu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin P. R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin P. R. China
| | - Bing‐Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin P. R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin P. R. China
| | - Ying‐Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin P. R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin P. R. China
| |
Collapse
|
20
|
Cabello-Lobato MJ, González-Garrido C, Cano-Linares MI, Wong RP, Yáñez-Vílchez A, Morillo-Huesca M, Roldán-Romero JM, Vicioso M, González-Prieto R, Ulrich HD, Prado F. Physical interactions between MCM and Rad51 facilitate replication fork lesion bypass and ssDNA gap filling by non-recombinogenic functions. Cell Rep 2021; 36:109440. [PMID: 34320356 DOI: 10.1016/j.celrep.2021.109440] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/28/2021] [Accepted: 07/01/2021] [Indexed: 11/15/2022] Open
Abstract
The minichromosome maintenance (MCM) helicase physically interacts with the recombination proteins Rad51 and Rad52 from yeast to human cells. We show, in Saccharomyces cerevisiae, that these interactions occur within a nuclease-insoluble scaffold enriched in replication/repair factors. Rad51 accumulates in a MCM- and DNA-binding-independent manner and interacts with MCM helicases located outside of the replication origins and forks. MCM, Rad51, and Rad52 accumulate in this scaffold in G1 and are released during the S phase. In the presence of replication-blocking lesions, Cdc7 prevents their release from the scaffold, thus maintaining the interactions. We identify a rad51 mutant that is impaired in its ability to bind to MCM but not to the scaffold. This mutant is proficient in recombination but partially defective in single-stranded DNA (ssDNA) gap filling and replication fork progression through damaged DNA. Therefore, cells accumulate MCM/Rad51/Rad52 complexes at specific nuclear scaffolds in G1 to assist stressed forks through non-recombinogenic functions.
Collapse
Affiliation(s)
- María J Cabello-Lobato
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Universidad Pablo de Olavide; Seville, Spain
| | - Cristina González-Garrido
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Universidad Pablo de Olavide; Seville, Spain
| | - María I Cano-Linares
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Universidad Pablo de Olavide; Seville, Spain
| | - Ronald P Wong
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Aurora Yáñez-Vílchez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Universidad Pablo de Olavide; Seville, Spain
| | - Macarena Morillo-Huesca
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Universidad Pablo de Olavide; Seville, Spain
| | - Juan M Roldán-Romero
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Universidad Pablo de Olavide; Seville, Spain
| | - Marta Vicioso
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Universidad Pablo de Olavide; Seville, Spain
| | - Román González-Prieto
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Universidad Pablo de Olavide; Seville, Spain
| | | | - Félix Prado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Universidad Pablo de Olavide; Seville, Spain.
| |
Collapse
|
21
|
Hoggard T, Hollatz AJ, Cherney RE, Seman MR, Fox CA. The Fkh1 Forkhead associated domain promotes ORC binding to a subset of DNA replication origins in budding yeast. Nucleic Acids Res 2021; 49:10207-10220. [PMID: 34095951 PMCID: PMC8501964 DOI: 10.1093/nar/gkab450] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/03/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
The pioneer event in eukaryotic DNA replication is binding of chromosomal DNA by the origin recognitioncomplex (ORC). The ORC-DNA complex directs the formation of origins, the specific chromosomal regions where DNA synthesis initiates. In all eukaryotes, incompletely understood features of chromatin promote ORC-DNA binding. Here, we uncover a role for the Fkh1 (Forkhead homolog) protein and its forkhead associated (FHA) domain in promoting ORC-origin binding and origin activity at a subset of origins in Saccharomyces cerevisiae. Several of the FHA-dependent origins examined required a distinct Fkh1 binding site located 5′ of and proximal to their ORC sites (5′-FKH-T site). Genetic and molecular experiments provided evidence that the Fkh1-FHA domain promoted origin activity directly through Fkh1 binding to this 5′ FKH-T site. Nucleotide substitutions within two relevant origins that enhanced their ORC-DNA affinity bypassed the requirement for their 5′ FKH-T sites and for the Fkh1-FHA domain. Significantly, assessment of ORC-origin binding by ChIPSeq provided evidence that this mechanism was relevant at ∼25% of yeast origins. Thus, the FHA domain of the conserved cell-cycle transcription factor Fkh1 enhanced origin selection in yeast at the level of ORC-origin binding.
Collapse
Affiliation(s)
- Timothy Hoggard
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Allison J Hollatz
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA.,Integrated Program in Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Rachel E Cherney
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Melissa R Seman
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Catherine A Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA.,Integrated Program in Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
22
|
Sreekumar L, Kumari K, Guin K, Bakshi A, Varshney N, Thimmappa BC, Narlikar L, Padinhateeri R, Siddharthan R, Sanyal K. Orc4 spatiotemporally stabilizes centromeric chromatin. Genome Res 2021; 31:607-621. [PMID: 33514624 PMCID: PMC8015856 DOI: 10.1101/gr.265900.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/27/2021] [Indexed: 11/24/2022]
Abstract
The establishment of centromeric chromatin and its propagation by the centromere-specific histone CENPA is mediated by epigenetic mechanisms in most eukaryotes. DNA replication origins, origin binding proteins, and replication timing of centromere DNA are important determinants of centromere function. The epigenetically regulated regional centromeres in the budding yeast Candida albicans have unique DNA sequences that replicate earliest in every chromosome and are clustered throughout the cell cycle. In this study, the genome-wide occupancy of the replication initiation protein Orc4 reveals its abundance at all centromeres in C. albicans Orc4 is associated with four different DNA sequence motifs, one of which coincides with tRNA genes (tDNA) that replicate early and cluster together in space. Hi-C combined with genome-wide replication timing analyses identify that early replicating Orc4-bound regions interact with themselves stronger than with late replicating Orc4-bound regions. We simulate a polymer model of chromosomes of C. albicans and propose that the early replicating and highly enriched Orc4-bound sites preferentially localize around the clustered kinetochores. We also observe that Orc4 is constitutively localized to centromeres, and both Orc4 and the helicase Mcm2 are essential for cell viability and CENPA stability in C. albicans Finally, we show that new molecules of CENPA are recruited to centromeres during late anaphase/telophase, which coincides with the stage at which the CENPA-specific chaperone Scm3 localizes to the kinetochore. We propose that the spatiotemporal localization of Orc4 within the nucleus, in collaboration with Mcm2 and Scm3, maintains centromeric chromatin stability and CENPA recruitment in C. albicans.
Collapse
Affiliation(s)
- Lakshmi Sreekumar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Kiran Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- IITB-Monash Research Academy, Mumbai 400076, India
- Department of Chemical Engineering, Monash University, Melbourne 3800, Australia
| | - Krishnendu Guin
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Asif Bakshi
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Neha Varshney
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Bhagya C Thimmappa
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Leelavati Narlikar
- Department of Chemical Engineering, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rahul Siddharthan
- The Institute of Mathematical Sciences/HBNI, Taramani, Chennai 600113, India
| | - Kaustuv Sanyal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Amin A, Wu R, Cheung MH, Scott JF, Wang Z, Zhou Z, Liu C, Zhu G, Wong CKC, Yu Z, Liang C. An Essential and Cell-Cycle-Dependent ORC Dimerization Cycle Regulates Eukaryotic Chromosomal DNA Replication. Cell Rep 2021; 30:3323-3338.e6. [PMID: 32160540 DOI: 10.1016/j.celrep.2020.02.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 10/04/2019] [Accepted: 02/10/2020] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic DNA replication licensing is a prerequisite for, and plays a role in, regulating genome duplication that occurs exactly once per cell cycle. ORC (origin recognition complex) binds to and marks replication origins throughout the cell cycle and loads other replication-initiation proteins onto replication origins to form pre-replicative complexes (pre-RCs), completing replication licensing. However, how an asymmetric single-heterohexameric ORC structure loads the symmetric MCM (minichromosome maintenance) double hexamers is controversial, and importantly, it remains unknown when and how ORC proteins associate with the newly replicated origins to protect them from invasion by histones. Here, we report an essential and cell-cycle-dependent ORC "dimerization cycle" that plays three fundamental roles in the regulation of DNA replication: providing a symmetric platform to load the symmetric pre-RCs, marking and protecting the nascent sister replication origins for the next licensing, and playing a crucial role to prevent origin re-licensing within the same cell cycle.
Collapse
Affiliation(s)
- Aftab Amin
- School of Chinese Medicine and Department of Biology, Hong Kong Baptist University, Hong Kong, China; Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Rentian Wu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Man Hei Cheung
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - John F Scott
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ziyi Wang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zijing Zhou
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Changdong Liu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Guang Zhu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Chris Kong-Chu Wong
- School of Chinese Medicine and Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zhiling Yu
- School of Chinese Medicine and Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| | - Chun Liang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China; The First Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, China; EnKang Pharmaceuticals Limited, Guangzhou, China.
| |
Collapse
|
24
|
Prospect of reprogramming replication licensing for cancer drug development. Biomed Pharmacother 2021; 136:111190. [PMID: 33497909 DOI: 10.1016/j.biopha.2020.111190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic chromosomal DNA replication is preceded by replication licensing which involves the identification of the origin of replication by origin recognition complex (ORC). The ORC loads pre-replication complexes (pre-RCs) through a series of tightly regulated mechanisms where the ORC interacts with Cdc6 to recruit cdt1-MCM2-7 complexes to the origin of replication. In eukaryotes, adherence to regulatory mechanisms of the replication program is required to ensure that all daughter cells carry the exact copy of genetic material as the parent cell. Failure of which leads to the development of genome instability syndromes like cancer, diabetes, etc. In an event of such occurrence, preventing cells from carrying the defaulted genetic material and passing it to other cells hinges on the regulation of chromosomal DNA replication. Thus, understanding the mechanisms underpinning chromosomal DNA replication and particularly replication licensing can expose druggable enzymes, effector molecules, and secondary messengers that can be targeted for diagnosis and therapeutic purposes. Effectively drugging these molecular markers to reprogram pre-replication events can be used to control the fate of chromosomal DNA replication for the treatment of genome instability disorders and in this case, cancer. This review discusses available knowledge of replication licensing in the contest of molecular drug discovery for the treatment of cancer.
Collapse
|
25
|
Ding Q, Koren A. Positive and Negative Regulation of DNA Replication Initiation. Trends Genet 2020; 36:868-879. [PMID: 32739030 PMCID: PMC7572746 DOI: 10.1016/j.tig.2020.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022]
Abstract
Genomic DNA is replicated every cell cycle by the programmed activation of replication origins at specific times and chromosomal locations. The factors that define the locations of replication origins and their typical activation times in eukaryotic cells are poorly understood. Previous studies highlighted the role of activating factors and epigenetic modifications in regulating replication initiation. Here, we review the role that repressive pathways - and their alleviation - play in establishing the genomic landscape of replication initiation. Several factors mediate this repression, in particular, factors associated with inactive chromatin. Repression can support organized, yet stochastic, replication initiation, and its absence could explain instances of rapid and random replication or re-replication.
Collapse
Affiliation(s)
- Qiliang Ding
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
26
|
Álvarez V, Frattini C, Sacristán MP, Gallego-Sánchez A, Bermejo R, Bueno A. PCNA Deubiquitylases Control DNA Damage Bypass at Replication Forks. Cell Rep 2020; 29:1323-1335.e5. [PMID: 31665643 DOI: 10.1016/j.celrep.2019.09.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/01/2019] [Accepted: 09/17/2019] [Indexed: 01/06/2023] Open
Abstract
DNA damage tolerance plays a key role in protecting cell viability through translesion synthesis and template switching-mediated bypass of genotoxic polymerase-blocking base lesions. Both tolerance pathways critically rely on ubiquitylation of the proliferating-cell nuclear antigen (PCNA) on lysine 164 and have been proposed to operate uncoupled from replication. We report that Ubp10 and Ubp12 ubiquitin proteases differentially cooperate in PCNA deubiquitylation, owing to distinct activities on PCNA-linked ubiquitin chains. Ubp10 and Ubp12 associate with replication forks in a fashion determined by Ubp10 dependency on lagging-strand PCNA residence, and they downregulate translesion polymerase recruitment and template switch events engaging nascent strands. These findings reveal PCNAK164 deubiquitylation as a key mechanism for the modulation of lesion bypass during replication, which might set a framework for establishing strand-differential pathway choices. We propose that damage tolerance is tempered at replication forks to limit the extension of bypass events and sustain chromosome replication rates.
Collapse
Affiliation(s)
- Vanesa Álvarez
- Instituto de Biología Molecular y Celular del Cáncer (USAL/CSIC), Salamanca, Spain
| | | | - María P Sacristán
- Instituto de Biología Molecular y Celular del Cáncer (USAL/CSIC), Salamanca, Spain; Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | | | | | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer (USAL/CSIC), Salamanca, Spain; Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
27
|
Wang D, Lai FL, Gao F. Ori-Finder 3: a web server for genome-wide prediction of replication origins in Saccharomyces cerevisiae. Brief Bioinform 2020; 22:6278693. [PMID: 34020544 DOI: 10.1093/bib/bbaa182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
DNA replication is a fundamental process in all organisms; this event initiates at sites termed origins of replication. The characteristics of eukaryotic replication origins are best understood in Saccharomyces cerevisiae. For this species, origin prediction algorithms or web servers have been developed based on the sequence features of autonomously replicating sequences (ARSs). However, their performances are far from satisfactory. By utilizing the Z-curve methodology, we present a novel pipeline, Ori-Finder 3, for the computational prediction of replication origins in S. cerevisiae at the genome-wide level based solely on DNA sequences. The ARS exhibiting both an AT-rich stretch and ARS consensus sequence element can be predicted at the single-nucleotide level. For the identified ARSs in the S. cerevisiae reference genome, 83 and 60% of the top 100 and top 300 predictions matched the known ARS records, respectively. Based on Ori-Finder 3, we subsequently built a database of the predicted ARSs identified in more than a hundred S. cerevisiae genomes. Consequently, we developed a user-friendly web server including the ARS prediction pipeline and the predicted ARSs database, which can be freely accessed at http://tubic.tju.edu.cn/Ori-Finder3.
Collapse
Affiliation(s)
- Dan Wang
- Department of Physics, School of Science, Tianjin University
| | - Fei-Liao Lai
- Department of Physics, School of Science, Tianjin University
| | - Feng Gao
- Department of Physics, School of Science, and the Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University
| |
Collapse
|
28
|
Sir2 mitigates an intrinsic imbalance in origin licensing efficiency between early- and late-replicating euchromatin. Proc Natl Acad Sci U S A 2020; 117:14314-14321. [PMID: 32513739 PMCID: PMC7322022 DOI: 10.1073/pnas.2004664117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A eukaryotic chromosome relies on the function of multiple spatially distributed DNA replication origins for its stable inheritance. The spatial location of an origin is determined by the chromosomal position of an MCM complex, the inactive form of the DNA replicative helicase that is assembled onto DNA in G1-phase (also known as origin licensing). While the biochemistry of origin licensing is understood, the mechanisms that promote an adequate spatial distribution of MCM complexes across chromosomes are not. We have elucidated a role for the Sir2 histone deacetylase in establishing the normal distribution of MCM complexes across Saccharomyces cerevisiae chromosomes. In the absence of Sir2, MCM complexes accumulated within both early-replicating euchromatin and telomeric heterochromatin, and replication activity within these regions was enhanced. Concomitantly, the duplication of several regions of late-replicating euchromatin were delayed. Thus, Sir2-mediated attenuation of origin licensing within both euchromatin and telomeric heterochromatin established the normal spatial distribution of origins across yeast chromosomes important for normal genome duplication.
Collapse
|
29
|
Comparative Analysis of the Minimum Number of Replication Origins in Trypanosomatids and Yeasts. Genes (Basel) 2020; 11:genes11050523. [PMID: 32397111 PMCID: PMC7288466 DOI: 10.3390/genes11050523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Single-celled eukaryote genomes predominantly replicate through multiple origins. Although origin usage during the S-phase has been elucidated in some of these organisms, few studies have comparatively approached this dynamic. Here, we developed a user-friendly website able to calculate the length of the cell cycle phases for any organism. Next, using a formula developed by our group, we showed a comparative analysis among the minimum number of replication origins (MO) required to duplicate an entire chromosome within the S-phase duration in trypanosomatids (Trypanosoma cruzi, Leishmania major, and Trypanosoma brucei) and yeasts (Saccharomyces cerevisiae and Schizosaccharomyces pombe). Using the data obtained by our analysis, it was possible to predict the MO required in a situation of replication stress. Also, our findings allow establishing a threshold for the number of origins, which serves as a parameter for genome approaches that map origins. Moreover, our data suggest that when compared to yeasts, trypanosomatids use much more origins than the minimum needed. This is the first time a comparative analysis of the minimum number of origins has been successfully applied. These data may provide new insight into the understanding of the replication mechanism and a new methodological framework for studying single-celled eukaryote genomes.
Collapse
|
30
|
Hulke ML, Massey DJ, Koren A. Genomic methods for measuring DNA replication dynamics. Chromosome Res 2020; 28:49-67. [PMID: 31848781 PMCID: PMC7131883 DOI: 10.1007/s10577-019-09624-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/27/2022]
Abstract
Genomic DNA replicates according to a defined temporal program in which early-replicating loci are associated with open chromatin, higher gene density, and increased gene expression levels, while late-replicating loci tend to be heterochromatic and show higher rates of genomic instability. The ability to measure DNA replication dynamics at genome scale has proven crucial for understanding the mechanisms and cellular consequences of DNA replication timing. Several methods, such as quantification of nucleotide analog incorporation and DNA copy number analyses, can accurately reconstruct the genomic replication timing profiles of various species and cell types. More recent developments have expanded the DNA replication genomic toolkit to assays that directly measure the activity of replication origins, while single-cell replication timing assays are beginning to reveal a new level of replication timing regulation. The combination of these methods, applied on a genomic scale and in multiple biological systems, promises to resolve many open questions and lead to a holistic understanding of how eukaryotic cells replicate their genomes accurately and efficiently.
Collapse
Affiliation(s)
- Michelle L Hulke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Dashiell J Massey
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
31
|
Wang D, Gao F. Comprehensive Analysis of Replication Origins in Saccharomyces cerevisiae Genomes. Front Microbiol 2019; 10:2122. [PMID: 31572328 PMCID: PMC6753640 DOI: 10.3389/fmicb.2019.02122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
DNA replication initiates from multiple replication origins (ORIs) in eukaryotes. Discovery and characterization of replication origins are essential for a better understanding of the molecular mechanism of DNA replication. In this study, the features of autonomously replicating sequences (ARSs) in Saccharomyces cerevisiae have been comprehensively analyzed as follows. Firstly, we carried out the analysis of the ARSs available in S. cerevisiae S288C. By evaluating the sequence similarity of experimentally established ARSs, we found that 94.32% of ARSs are unique across the whole genome of S. cerevisiae S288C and those with high sequence similarity are prone to locate in subtelomeres. Subsequently, we built a non-redundant dataset with a total of 520 ARSs, which are based on ARSs annotation of S. cerevisiae S288C from SGD and then supplemented with those from OriDB and DeOri databases. We conducted a large-scale comparison of ORIs among the diverse budding yeast strains from a population genomics perspective. We found that 82.7% of ARSs are not only conserved in genomic sequence but also relatively conserved in chromosomal position. The non-conserved ARSs tend to distribute in the subtelomeric regions. We also conducted a pan-genome analysis of ARSs among the S. cerevisiae strains, and a total of 183 core ARSs existing in all yeast strains were determined. We extracted the genes adjacent to replication origins among the 104 yeast strains to examine whether there are differences in their gene functions. The result showed that the genes involved in the initiation of DNA replication, such as orc3, mcm2, mcm4, mcm6, and cdc45, are conservatively located adjacent to the replication origins. Furthermore, we found the genes adjacent to conserved ARSs are significantly enriched in DNA binding, enzyme activity, transportation, and energy, whereas for the genes adjacent to non-conserved ARSs are significantly enriched in response to environmental stress, metabolites biosynthetic process and biosynthesis of antibiotics. In general, we characterized the replication origins from the genome-wide and population genomics perspectives, which would provide new insights into the replication mechanism of S. cerevisiae and facilitate the design of algorithms to identify genome-wide replication origins in yeast.
Collapse
Affiliation(s)
- Dan Wang
- Department of Physics, School of Science, Tianjin University, Tianjin, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| |
Collapse
|
32
|
Wu XL, Bi YH, Gao F, Xie ZX, Li X, Zhou X, Ma DJ, Li BZ, Yuan YJ. The effect of autonomously replicating sequences on gene expression in saccharomyces cerevisiae. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Sugimoto N, Maehara K, Yoshida K, Ohkawa Y, Fujita M. Genome-wide analysis of the spatiotemporal regulation of firing and dormant replication origins in human cells. Nucleic Acids Res 2019; 46:6683-6696. [PMID: 29893900 PMCID: PMC6061783 DOI: 10.1093/nar/gky476] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/16/2018] [Indexed: 12/25/2022] Open
Abstract
In metazoan cells, only a limited number of mini chromosome maintenance (MCM) complexes are fired during S phase, while the majority remain dormant. Several methods have been used to map replication origins, but such methods cannot identify dormant origins. Herein, we determined MCM7-binding sites in human cells using ChIP-Seq, classified them into firing and dormant origins using origin data and analysed their association with various chromatin signatures. Firing origins, but not dormant origins, were well correlated with open chromatin regions and were enriched upstream of transcription start sites (TSSs) of transcribed genes. Aggregation plots of MCM7 signals revealed minimal difference in the efficacy of MCM loading between firing and dormant origins. We also analysed common fragile sites (CFSs) and found a low density of origins at these sites. Nevertheless, firing origins were enriched upstream of the TSSs. Based on the results, we propose a model in which excessive MCMs are actively loaded in a genome-wide manner, irrespective of chromatin status, but only a fraction are passively fired in chromatin areas with an accessible open structure, such as regions upstream of TSSs of transcribed genes. This plasticity in the specification of replication origins may minimize collisions between replication and transcription.
Collapse
Affiliation(s)
- Nozomi Sugimoto
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582, Japan
| | - Kazumasa Yoshida
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582, Japan
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582, Japan
| |
Collapse
|
34
|
Pohl TJ, Zakian VA. Pif1 family DNA helicases: A helpmate to RNase H? DNA Repair (Amst) 2019; 84:102633. [PMID: 31231063 DOI: 10.1016/j.dnarep.2019.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 01/21/2023]
Abstract
An R-loop is a structure that forms when an RNA transcript stays bound to the DNA strand that encodes it and leaves the complementary strand exposed as a loop of single stranded DNA. R-loops accumulate when the processing of RNA transcripts is impaired. The failure to remove these RNA-DNA hybrids can lead to replication fork stalling and genome instability. Resolution of R-loops is thought to be mediated mainly by RNase H enzymes through the removal and degradation of the RNA in the hybrid. However, DNA helicases can also dismantle R-loops by displacing the bound RNA. In particular, the Pif1 family DNA helicases have been shown to regulate R-loop formation at specific genomic loci, such as tRNA genes and centromeres. Here we review the roles of Pif1 family helicases in vivo and in vitro and discuss evidence that Pif1 family helicases act on RNA-DNA hybrids and highlight their potential roles in complementing RNase H for R-loop resolution.
Collapse
Affiliation(s)
- Thomas J Pohl
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, United States
| | - Virginia A Zakian
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, United States.
| |
Collapse
|
35
|
Wang HY, Zhang B, Zhou JN, Wang DX, Xu YC, Zeng Q, Jia YL, Xi JF, Nan X, He LJ, Yue W, Pei XT. Arsenic trioxide inhibits liver cancer stem cells and metastasis by targeting SRF/MCM7 complex. Cell Death Dis 2019; 10:453. [PMID: 31186405 PMCID: PMC6560089 DOI: 10.1038/s41419-019-1676-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) has a high mortality rate due to the lack of effective treatments and drugs. Arsenic trioxide (ATO), which has been proved to successfully treat acute promyelocytic leukemia (APL), was recently reported to show therapeutic potential in solid tumors including HCC. However, its anticancer mechanisms in HCC still need further investigation. In this study, we demonstrated that ATO inhibits tumorigenesis and distant metastasis in mouse models, corresponding with a prolonged mice survival time. Also, ATO was found to significantly decrease the cancer stem cell (CSC)-associated traits. Minichromosome maintenance protein (MCM) 7 was further identified to be a potential target suppressed dramatically by ATO, of which protein expression is increased in patients and significantly correlated with tumor size, cellular differentiation, portal venous emboli, and poor patient survival. Moreover, MCM7 knockdown recapitulates the effects of ATO on CSCs and metastasis, while ectopic expression of MCM7 abolishes them. Mechanistically, our results suggested that ATO suppresses MCM7 transcription by targeting serum response factor (SRF)/MCM7 complex, which functions as an important transcriptional regulator modulating MCM7 expression. Taken together, our findings highlight the importance of ATO in the treatment of solid tumors. The identification of SRF/MCM7 complex as a target of ATO provides new insights into ATO’s mechanism, which may benefit the appropriate use of this agent in the treatment of HCC.
Collapse
Affiliation(s)
- Hai-Yang Wang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Biao Zhang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Jun-Nian Zhou
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China. .,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China. .,Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Dong-Xing Wang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Ying-Chen Xu
- Department of Hepatobiliary Surgery, Beijing Tongren Hospital, Beijing, 100730, China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Ya-Li Jia
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China.,Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jia-Fei Xi
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Xue Nan
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Li-Juan He
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China. .,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China.
| | - Xue-Tao Pei
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China. .,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China.
| |
Collapse
|
36
|
Taxis TM, Kehrli ME, D'Orey-Branco R, Casas E. Association of Transfer RNA Fragments in White Blood Cells With Antibody Response to Bovine Leukemia Virus in Holstein Cattle. Front Genet 2018; 9:236. [PMID: 30023000 PMCID: PMC6039543 DOI: 10.3389/fgene.2018.00236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/14/2018] [Indexed: 11/17/2022] Open
Abstract
Bovine leukemia virus (BLV) affects cattle health and productivity worldwide, causing abnormal immune function and immunosuppression. Transfer RNA fragments (tRFs) are known to be involved in inhibition of gene expression and have been associated with stress and immune response, tumor growth, and viral infection. The objective of this study was to identify tRFs associated with antibody response to BLV in Holstein cattle. Sera from 14 animals were collected to establish IgG reactivity to BLV by ELISA. Seven animals were seropositive (positive group) and seven were seronegative (negative group) for BLV exposure. Leukocytes from each animal were collected and tRFs were extracted for sequencing. tRF5GlnCTG, tRF5GlnTTG, and tRF5HisGTG, were significantly different between seropositive and seronegative groups (P < 0.0067). In all cases the positive group had a lower number of normalized sequences for tRFs when compared to the negative group. Result suggests that tRF5s could potentially be used as biomarkers to establish exposure of cattle to BLV.
Collapse
Affiliation(s)
- Tasia M Taxis
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States.,Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Marcus E Kehrli
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Rui D'Orey-Branco
- Department of Animal Science, Texas A&M University, Overton, TX, United States
| | - Eduardo Casas
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| |
Collapse
|
37
|
Mimura S, Kubota Y, Takisawa H. MCM interference during licensing of DNA replication in Xenopus egg extracts-Possible Role of a C-terminal region of MCM3. Cell Cycle 2018; 17:492-505. [PMID: 29261034 DOI: 10.1080/15384101.2017.1415681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The minichromosome maintenance (MCM) complex, consisting of six subunits, Mcm2-7, is loaded onto replication origins through loading factors (origin recognition complex [ORC], Cdc6, and Cdt1) and forms an MCM double hexamer that licenses the initiation of DNA replication. Previous studies with Xenopus egg extracts showed that loading factors, especially Cdc6, dissociate from chromatin on MCM loading, but the molecular mechanism and physiological significance remain largely unknown. Using a cell-free system for MCM loading onto plasmid DNA in Xenopus egg extracts, we found that MCM loaded onto DNA prevents DNA binding of the loading factors ORC, Cdc6, and Cdt1. We further report that a peptide of the C-terminal region of MCM3 (MCM3-C), previously implicated in the initial association with ORC/Cdc6 in budding yeast, prevents ORC/Cdc6/Cdt1 binding to DNA in the absence of MCM loading. ATP-γ-S suppresses inhibitory activities of both the MCM loaded onto DNA and the MCM3-C peptide. Other soluble factors in the extract, but neither MCM nor Cdt1, are required for the activity. Conservation of the amino acid sequences of MCM3-C and its activity in vertebrates implies a novel negative autoregulatory mechanism that interferes with MCM loading in the vicinity of licensed origins to ensure proper origin licensing.
Collapse
Affiliation(s)
- Satoru Mimura
- a Department of Biological Sciences, Graduate School of Science , Osaka University , Machikaneyama 1-1, Toyonaka , Osaka , Japan
| | - Yumiko Kubota
- a Department of Biological Sciences, Graduate School of Science , Osaka University , Machikaneyama 1-1, Toyonaka , Osaka , Japan
| | - Haruhiko Takisawa
- a Department of Biological Sciences, Graduate School of Science , Osaka University , Machikaneyama 1-1, Toyonaka , Osaka , Japan
| |
Collapse
|
38
|
Kim JS, Chae S, Jun KM, Pahk YM, Lee TH, Chung PJ, Kim YK, Nahm BH. Genome-wide identification of grain filling genes regulated by the OsSMF1 transcription factor in rice. RICE (NEW YORK, N.Y.) 2017; 10:16. [PMID: 28444616 PMCID: PMC5405039 DOI: 10.1186/s12284-017-0155-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/13/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND Spatial- and temporal-specific expression patterns are primarily regulated at the transcriptional level by gene promoters. Therefore, it is important to identify the binding motifs of transcription factors to better understand the networks associated with embryogenesis. RESULTS Here, we used a protein-binding microarray (PBM) to identify the binding motifs of OsSMF1, which is a basic leucine zipper transcription factor involved in the regulation of rice seed maturation. OsSMF1 (previously called RISBZ1 or OsbZIP58) is known to interact with GCN4 motifs (TGA(G/C)TCA) to regulate seed storage protein synthesis, and it functions as a key regulator of starch synthesis. Quadruple 9-mer-based PBM analysis and electrophoretic mobility shift assay revealed that OsSMF1 bound to the GCN4 (TGA(G/C)TCA), ACGT (CCACGT(C/G)), and ATGA (GGATGAC) motifs with three different affinities. We predicted 44 putative OsSMF1 target genes using data obtained from both the PBM and RiceArrayNet. Among these putative target genes, 18, 21, and 13 genes contained GCN4, ACGT, and ATGA motifs within their 1-kb promoter regions, respectively. Among them, six genes encoding major grain filling proteins and transcription factors were chosen to confirm the activation of their expression in vivo. OsSMF1 was shown to bind directly to the promoters of Os03g0168500 (GCN4 motif), patatin-like gene (GCN4 motif), α-globulin (ACGT motif), rice prolamin box-binding factor (RPBF) (ATGA motif), and ONAC024 (GCN4 and ACGT motifs) and to regulate their expression. CONCLUSIONS The results of this study suggest that OsSMF1 is one of the key transcription factors that functions in a wide range of seed developmental processes with different specific binding affinities for the three DNA-binding motifs.
Collapse
Affiliation(s)
- Joung Sug Kim
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyonggido, 449-728, Republic of Korea
| | - Songhwa Chae
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyonggido, 449-728, Republic of Korea
| | - Kyong Mi Jun
- Genomics Genetics Institute, GreenGene BioTech Inc., Yongin, Kyonggido, 449-728, Republic of Korea
| | - Yoon-Mok Pahk
- Genomics Genetics Institute, GreenGene BioTech Inc., Yongin, Kyonggido, 449-728, Republic of Korea
| | - Tae-Ho Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, 370 Nongsaengmyeong-ro, Wansan-gu, Jeonju, North Jeolla Province, 54874, Republic of Korea
| | - Pil Joong Chung
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Yeon-Ki Kim
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyonggido, 449-728, Republic of Korea
| | - Baek Hie Nahm
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyonggido, 449-728, Republic of Korea.
- Genomics Genetics Institute, GreenGene BioTech Inc., Yongin, Kyonggido, 449-728, Republic of Korea.
| |
Collapse
|
39
|
Cabral M, Cheng X, Singh S, Ivessa AS. Absence of Non-histone Protein Complexes at Natural Chromosomal Pause Sites Results in Reduced Replication Pausing in Aging Yeast Cells. Cell Rep 2017; 17:1747-1754. [PMID: 27829146 DOI: 10.1016/j.celrep.2016.10.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/08/2016] [Accepted: 10/14/2016] [Indexed: 11/26/2022] Open
Abstract
There is substantial evidence that genomic instability increases during aging. Replication pausing (and stalling) at difficult-to-replicate chromosomal sites may induce genomic instability. Interestingly, in aging yeast cells, we observed reduced replication pausing at various natural replication pause sites (RPSs) in ribosomal DNA (rDNA) and non-rDNA locations (e.g., silent replication origins and tRNA genes). The reduced pausing occurs independent of the DNA helicase Rrm3p, which facilitates replication past these non-histone protein-complex-bound RPSs, and is independent of the deacetylase Sir2p. Conditions of caloric restriction (CR), which extend life span, also cause reduced replication pausing at the 5S rDNA and at tRNA genes. In aged and CR cells, the RPSs are less occupied by their specific non-histone protein complexes (e.g., the preinitiation complex TFIIIC), likely because members of these complexes have primarily cytosolic localization. These conditions may lead to reduced replication pausing and may lower replication stress at these sites during aging.
Collapse
Affiliation(s)
- Marleny Cabral
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ 07101-1709, USA
| | - Xin Cheng
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ 07101-1709, USA
| | - Sukhwinder Singh
- Pathology and Laboratory Medicine/Flow Cytometry and Immunology Core Laboratory, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ 07101-1709, USA
| | - Andreas S Ivessa
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ 07101-1709, USA.
| |
Collapse
|
40
|
Seoane AI, Morgan DO. Firing of Replication Origins Frees Dbf4-Cdc7 to Target Eco1 for Destruction. Curr Biol 2017; 27:2849-2855.e2. [PMID: 28918948 DOI: 10.1016/j.cub.2017.07.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/12/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Robust progression through the cell-division cycle depends on the precisely ordered phosphorylation of hundreds of different proteins by cyclin-dependent kinases (CDKs) and other kinases. The order of CDK substrate phosphorylation depends on rising CDK activity, coupled with variations in substrate affinities for different CDK-cyclin complexes and the opposing phosphatases [1-4]. Here, we address the ordering of substrate phosphorylation by a second major cell-cycle kinase, Cdc7-Dbf4 or Dbf4-dependent kinase (DDK). The primary function of DDK is to initiate DNA replication by phosphorylating the Mcm2-7 replicative helicase [5-7]. DDK also phosphorylates the cohesin acetyltransferase Eco1 [8]. Sequential phosphorylations of Eco1 by CDK, DDK, and Mck1 create a phosphodegron that is recognized by the ubiquitin ligase SCFCdc4. DDK, despite being activated in early S phase, does not phosphorylate Eco1 to trigger its degradation until late S phase [8]. DDK associates with docking sites on loaded Mcm double hexamers at unfired replication origins [9, 10]. We hypothesized that these docking interactions sequester limiting amounts of DDK, delaying Eco1 phosphorylation by DDK until replication is complete. Consistent with this hypothesis, we find that overproduction of DDK leads to premature Eco1 degradation. Eco1 degradation also occurs prematurely if Mcm complex loading at origins is prevented by depletion of Cdc6, and Eco1 is stabilized if loaded Mcm complexes are prevented from firing by a Cdc45 mutant. We propose that the timing of Eco1 phosphorylation, and potentially that of other DDK substrates, is determined in part by sequestration of DDK at unfired replication origins during S phase.
Collapse
Affiliation(s)
- Agustin I Seoane
- Departments of Physiology and Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David O Morgan
- Departments of Physiology and Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
41
|
Agarwal M, Bhowmick K, Shah K, Krishnamachari A, Dhar SK. Identification and characterization of ARS-like sequences as putative origin(s) of replication in human malaria parasite Plasmodium falciparum. FEBS J 2017. [PMID: 28644560 DOI: 10.1111/febs.14150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
DNA replication is a fundamental process in genome maintenance, and initiates from several genomic sites (origins) in eukaryotes. In Saccharomyces cerevisiae, conserved sequences known as autonomously replicating sequences (ARSs) provide a landing pad for the origin recognition complex (ORC), leading to replication initiation. Although origins from higher eukaryotes share some common sequence features, the definitive genomic organization of these sites remains elusive. The human malaria parasite Plasmodium falciparum undergoes multiple rounds of DNA replication; therefore, control of initiation events is crucial to ensure proper replication. However, the sites of DNA replication initiation and the mechanism by which replication is initiated are poorly understood. Here, we have identified and characterized putative origins in P. falciparum by bioinformatics analyses and experimental approaches. An autocorrelation measure method was initially used to search for regions with marked fluctuation (dips) in the chromosome, which we hypothesized might contain potential origins. Indeed, S. cerevisiae ARS consensus sequences were found in dip regions. Several of these P. falciparum sequences were validated with chromatin immunoprecipitation-quantitative PCR, nascent strand abundance and a plasmid stability assay. Subsequently, the same sequences were used in yeast to confirm their potential as origins in vivo. Our results identify the presence of functional ARSs in P. falciparum and provide meaningful insights into replication origins in these deadly parasites. These data could be useful in designing transgenic vectors with improved stability for transfection in P. falciparum.
Collapse
Affiliation(s)
- Meetu Agarwal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Krishanu Bhowmick
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Kushal Shah
- Department of Electrical Engineering, Indian Institute of Technology, New Delhi, India
| | | | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
42
|
Erlendson AA, Friedman S, Freitag M. A Matter of Scale and Dimensions: Chromatin of Chromosome Landmarks in the Fungi. Microbiol Spectr 2017; 5:10.1128/microbiolspec.FUNK-0054-2017. [PMID: 28752814 PMCID: PMC5536859 DOI: 10.1128/microbiolspec.funk-0054-2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 02/06/2023] Open
Abstract
Chromatin and chromosomes of fungi are highly diverse and dynamic, even within species. Much of what we know about histone modification enzymes, RNA interference, DNA methylation, and cell cycle control was first addressed in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus nidulans, and Neurospora crassa. Here, we examine the three landmark regions that are required for maintenance of stable chromosomes and their faithful inheritance, namely, origins of DNA replication, telomeres and centromeres. We summarize the state of recent chromatin research that explains what is required for normal function of these specialized chromosomal regions in different fungi, with an emphasis on the silencing mechanism associated with subtelomeric regions, initiated by sirtuin histone deacetylases and histone H3 lysine 27 (H3K27) methyltransferases. We explore mechanisms for the appearance of "accessory" or "conditionally dispensable" chromosomes and contrast what has been learned from studies on genome-wide chromosome conformation capture in S. cerevisiae, S. pombe, N. crassa, and Trichoderma reesei. While most of the current knowledge is based on work in a handful of genetically and biochemically tractable model organisms, we suggest where major knowledge gaps remain to be closed. Fungi will continue to serve as facile organisms to uncover the basic processes of life because they make excellent model organisms for genetics, biochemistry, cell biology, and evolutionary biology.
Collapse
Affiliation(s)
- Allyson A. Erlendson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| | - Steven Friedman
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
43
|
Müller CA, Nieduszynski CA. DNA replication timing influences gene expression level. J Cell Biol 2017; 216:1907-1914. [PMID: 28539386 PMCID: PMC5496624 DOI: 10.1083/jcb.201701061] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/06/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic genomes are replicated in a reproducible temporal order whose physiological significance is poorly understood. Müller and Nieduszynski compare the temporal order of genome replication in phylogenetically diverse yeast species and identify genes for which conserved replication timing contributes to maximal expression. Eukaryotic genomes are replicated in a reproducible temporal order; however, the physiological significance is poorly understood. We compared replication timing in divergent yeast species and identified genomic features with conserved replication times. Histone genes were among the earliest replicating loci in all species. We specifically delayed the replication of HTA1-HTB1 and discovered that this halved the expression of these histone genes. Finally, we showed that histone and cell cycle genes in general are exempt from Rtt109-dependent dosage compensation, suggesting the existence of pathways excluding specific loci from dosage compensation mechanisms. Thus, we have uncovered one of the first physiological requirements for regulated replication time and demonstrated a direct link between replication timing and gene expression.
Collapse
Affiliation(s)
- Carolin A Müller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | | |
Collapse
|
44
|
Abstract
The accurate and complete replication of genomic DNA is essential for all life. In eukaryotic cells, the assembly of the multi-enzyme replisomes that perform replication is divided into stages that occur at distinct phases of the cell cycle. Replicative DNA helicases are loaded around origins of DNA replication exclusively during G1 phase. The loaded helicases are then activated during S phase and associate with the replicative DNA polymerases and other accessory proteins. The function of the resulting replisomes is monitored by checkpoint proteins that protect arrested replisomes and inhibit new initiation when replication is inhibited. The replisome also coordinates nucleosome disassembly, assembly, and the establishment of sister chromatid cohesion. Finally, when two replisomes converge they are disassembled. Studies in Saccharomyces cerevisiae have led the way in our understanding of these processes. Here, we review our increasingly molecular understanding of these events and their regulation.
Collapse
|
45
|
Abstract
In this review, Prioleau and MacAlpine summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages. For more than three decades, investigators have sought to identify the precise locations where DNA replication initiates in mammalian genomes. The development of molecular and biochemical approaches to identify start sites of DNA replication (origins) based on the presence of defining and characteristic replication intermediates at specific loci led to the identification of only a handful of mammalian replication origins. The limited number of identified origins prevented a comprehensive and exhaustive search for conserved genomic features that were capable of specifying origins of DNA replication. More recently, the adaptation of origin-mapping assays to genome-wide approaches has led to the identification of tens of thousands of replication origins throughout mammalian genomes, providing an unprecedented opportunity to identify both genetic and epigenetic features that define and regulate their distribution and utilization. Here we summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages.
Collapse
Affiliation(s)
- Marie-Noëlle Prioleau
- Institut Jacques Monod, UMR7592, Centre National de la Recherche Scientifique, Universite Paris Diderot, Equipe Labellisee Association pour la Recherche sur le Cancer, Paris 75013, France
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710. USA
| |
Collapse
|
46
|
Azmi IF, Watanabe S, Maloney MF, Kang S, Belsky JA, MacAlpine DM, Peterson CL, Bell SP. Nucleosomes influence multiple steps during replication initiation. eLife 2017; 6. [PMID: 28322723 PMCID: PMC5400510 DOI: 10.7554/elife.22512] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/20/2017] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic replication origin licensing, activation and timing are influenced by chromatin but a mechanistic understanding is lacking. Using reconstituted nucleosomal DNA replication assays, we assessed the impact of nucleosomes on replication initiation. To generate distinct nucleosomal landscapes, different chromatin-remodeling enzymes (CREs) were used to remodel nucleosomes on origin-DNA templates. Nucleosomal organization influenced two steps of replication initiation: origin licensing and helicase activation. Origin licensing assays showed that local nucleosome positioning enhanced origin specificity and modulated helicase loading by influencing ORC DNA binding. Interestingly, SWI/SNF- and RSC-remodeled nucleosomes were permissive for origin licensing but showed reduced helicase activation. Specific CREs rescued replication of these templates if added prior to helicase activation, indicating a permissive chromatin state must be established during origin licensing to allow efficient origin activation. Our studies show nucleosomes directly modulate origin licensing and activation through distinct mechanisms and provide insights into the regulation of replication initiation by chromatin.
Collapse
Affiliation(s)
- Ishara F Azmi
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Shinya Watanabe
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Michael F Maloney
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Sukhyun Kang
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States.,Center for Genomic Integrity, Institute for Basic Science, Ulsan, South Korea
| | - Jason A Belsky
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, United States.,Program in Computational Biology and Bioinformatics, Duke University, Durham, United States
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, United States
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Stephen P Bell
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
47
|
Mcm10: A Dynamic Scaffold at Eukaryotic Replication Forks. Genes (Basel) 2017; 8:genes8020073. [PMID: 28218679 PMCID: PMC5333062 DOI: 10.3390/genes8020073] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 12/13/2022] Open
Abstract
To complete the duplication of large genomes efficiently, mechanisms have evolved that coordinate DNA unwinding with DNA synthesis and provide quality control measures prior to cell division. Minichromosome maintenance protein 10 (Mcm10) is a conserved component of the eukaryotic replisome that contributes to this process in multiple ways. Mcm10 promotes the initiation of DNA replication through direct interactions with the cell division cycle 45 (Cdc45)-minichromosome maintenance complex proteins 2-7 (Mcm2-7)-go-ichi-ni-san GINS complex proteins, as well as single- and double-stranded DNA. After origin firing, Mcm10 controls replication fork stability to support elongation, primarily facilitating Okazaki fragment synthesis through recruitment of DNA polymerase-α and proliferating cell nuclear antigen. Based on its multivalent properties, Mcm10 serves as an essential scaffold to promote DNA replication and guard against replication stress. Under pathological conditions, Mcm10 is often dysregulated. Genetic amplification and/or overexpression of MCM10 are common in cancer, and can serve as a strong prognostic marker of poor survival. These findings are compatible with a heightened requirement for Mcm10 in transformed cells to overcome limitations for DNA replication dictated by altered cell cycle control. In this review, we highlight advances in our understanding of when, where and how Mcm10 functions within the replisome to protect against barriers that cause incomplete replication.
Collapse
|
48
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
49
|
Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork. Proc Natl Acad Sci U S A 2017; 114:675-680. [PMID: 28069954 DOI: 10.1073/pnas.1619748114] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The eukaryotic genome is primarily replicated by two DNA polymerases, Pol ε and Pol δ, that function on the leading and lagging strands, respectively. Previous studies have established recruitment mechanisms whereby Cdc45-Mcm2-7-GINS (CMG) helicase binds Pol ε and tethers it to the leading strand, and PCNA (proliferating cell nuclear antigen) binds tightly to Pol δ and recruits it to the lagging strand. The current report identifies quality control mechanisms that exclude the improper polymerase from a particular strand. We find that the replication factor C (RFC) clamp loader specifically inhibits Pol ε on the lagging strand, and CMG protects Pol ε against RFC inhibition on the leading strand. Previous studies show that Pol δ is slow and distributive with CMG on the leading strand. However, Saccharomyces cerevisiae Pol δ-PCNA is a rapid and processive enzyme, suggesting that CMG may bind and alter Pol δ activity or position it on the lagging strand. Measurements of polymerase binding to CMG demonstrate Pol ε binds CMG with a Kd value of 12 nM, but Pol δ binding CMG is undetectable. Pol δ, like bacterial replicases, undergoes collision release upon completing replication, and we propose Pol δ-PCNA collides with the slower CMG, and in the absence of a stabilizing Pol δ-CMG interaction, the collision release process is triggered, ejecting Pol δ on the leading strand. Hence, by eviction of incorrect polymerases at the fork, the clamp machinery directs quality control on the lagging strand and CMG enforces quality control on the leading strand.
Collapse
|
50
|
Abstract
DNA topological transitions occur when replication forks encounter other DNA transactions such as transcription. Failure in resolving such conflicts leads to generation of aberrant replication and transcription intermediates that might have adverse effects on genome stability. Cells have evolved numerous surveillance mechanisms to avoid, tolerate, and resolve such replication-transcription conflicts. Defects or non-coordination in such cellular mechanisms might have catastrophic effect on cell viability. In this chapter, we review consequences of replication encounters with transcription and its associated events, topological challenges, and how these inevitable conflicts alter the genome structure and functions.
Collapse
|