1
|
Gunes S, Mahmutoglu AM, Hekim N. Epigenetics of nonobstructive azoospermia. Asian J Androl 2025; 27:311-321. [PMID: 39225008 DOI: 10.4103/aja202463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
ABSTRACT Nonobstructive azoospermia (NOA) is a severe and heterogeneous form of male factor infertility caused by dysfunction of spermatogenesis. Although various factors are well defined in the disruption of spermatogenesis, not all aspects due to the heterogeneity of the disorder have been determined yet. In this review, we focus on the recent findings and summarize the current data on epigenetic mechanisms such as DNA methylation and different metabolites produced during methylation and demethylation and various types of small noncoding RNAs involved in the pathogenesis of different groups of NOA.
Collapse
Affiliation(s)
- Sezgin Gunes
- Department of Medical Biology, Medical Faculty, Ondokuz Mayis University, Samsun 55139, Türkiye
| | - Asli Metin Mahmutoglu
- Department of Medical Biology, Medical Faculty, Yozgat Bozok University, Yozgat 66100, Türkiye
| | - Neslihan Hekim
- Department of Medical Biology, Medical Faculty, Ondokuz Mayis University, Samsun 55139, Türkiye
| |
Collapse
|
2
|
Li L, Tang X, Guo X, Rao D, Zeng L, Xue J, Liu S, Tu S, Shen EZ. Spatiotemporal single-cell architecture of gene expression in the Caenorhabditis elegans germ cells. Cell Discov 2025; 11:26. [PMID: 40097379 PMCID: PMC11914268 DOI: 10.1038/s41421-025-00790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
Spermatogenesis is an intricate and tightly controlled process encompassing various layers of gene expression regulation. Despite the advance of our current understanding, the developmental trajectory and regulatory mechanisms dictating spermatogenesis remain elusive. In this study, we have generated single-cell gene expression profiles for Caenorhabditis elegans sperm cells and constructed gene regulatory networks alongside the developmental trajectories of these cells. Our findings indicate that each pre- and post-developmental stage is closely linked by co-expressed genes, while simultaneously being uniquely identified by the combined expression of specific gene families. To illustrate the applicability of this exhaustive gene expression catalog, we used gene regulatory networks to uncover potential transcription factors for (1) the expression of genes in the phosphorylation pathway, identifying NHR-23-to-phosphatase regulation for the meiotic cell division process; and (2) the expression of constituent components of small RNA pathways, identifying ELT-1-to-Argonaute protein regulation for siRNA maintenance and sperm activation. We expect that this sperm cell-specific gene expression directory will prompt investigations into the underlying mechanisms determining anatomy, differentiation, and function across the reproductive system. Finally, our expression data can be explored using the web application CelegansGermAtlas ( https://scgerm-atlas.sjtu.edu.cn/website/#/home ).
Collapse
Affiliation(s)
- Lili Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaoyin Tang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xuanxuan Guo
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Di Rao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lin Zeng
- Department of Computer Science and Engineering, Center for Cognitive Machines and Computational Health (CMaCH), Shanghai Jiao Tong University, Shanghai, China
| | - Junchao Xue
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shuxian Liu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shikui Tu
- Department of Computer Science and Engineering, Center for Cognitive Machines and Computational Health (CMaCH), Shanghai Jiao Tong University, Shanghai, China
| | - En-Zhi Shen
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Bellutti L, Chan Sock Peng E, Cluzet V, Guerquin MJ, Rolland A, Messiaen S, Llano E, Dereli I, Martini E, Tóth A, Pendás A, Chalmel F, Livera G. Genome-wide transcriptional silencing and mRNA stabilization allow the coordinated expression of the meiotic program in mice. Nucleic Acids Res 2025; 53:gkaf146. [PMID: 40103226 PMCID: PMC11915508 DOI: 10.1093/nar/gkaf146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 02/06/2025] [Accepted: 03/13/2025] [Indexed: 03/20/2025] Open
Abstract
The transcriptional dynamic of mammalian cells when these transit from the ubiquitous mitotic to a meiotic-specific program is key to understand this switch central to sexual reproduction. By quantifying active RNA polymerase II and nascent transcripts using single cell dataset and ethynyl-uridine pool-down with sorted cells from synchronized testes, we detailed the transcriptional activity of murine male germ cells. When spermatogonia differentiate, transcription slows down, reaching minimal activity at meiotic entry and resumes during pachytene stage. This event, we termed EMLT (for early meiotic low transcription), is distinct from the silencing of sex chromosomes as it is independent of Setdb1, though it is accompanied by the same chromatin mark, H3K9me3. EMLT is delayed in Stra8KO but occurs in mutants altering meiotic chromosome structure or double-strand break formation or repair. By comparing transcript abundance and nascent transcription we unveil a massive event of messenger RNA stabilization that parallels EMLT. Altogether our data indicate that meiosis is initiated with a nearly silent genome, and we propose that the stabilization of transcripts at that time facilitates the meiotic entry by synchronizing the expression of several meiotic subprograms.
Collapse
Affiliation(s)
- Laura Bellutti
- Université Paris Cité, CEA, Genetic Stability Stem Cells and Radiation, Laboratory of Development of the Gonads, F-92265 Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA, Genetic Stability Stem Cells and Radiation, LDG/IRCM/IBFJ, F-92265 Fontenay-aux-Roses, France
| | - Edith Chan Sock Peng
- Inserm, EHESP, Univ Rennes, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
| | - Victoria Cluzet
- Université Paris Cité, CEA, Genetic Stability Stem Cells and Radiation, Laboratory of Development of the Gonads, F-92265 Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA, Genetic Stability Stem Cells and Radiation, LDG/IRCM/IBFJ, F-92265 Fontenay-aux-Roses, France
| | - Marie-Justine Guerquin
- Université Paris Cité, CEA, Genetic Stability Stem Cells and Radiation, Laboratory of Development of the Gonads, F-92265 Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA, Genetic Stability Stem Cells and Radiation, LDG/IRCM/IBFJ, F-92265 Fontenay-aux-Roses, France
| | - Antoine Rolland
- Inserm, EHESP, Univ Rennes, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
| | - Sébastien Messiaen
- Université Paris Cité, CEA, Genetic Stability Stem Cells and Radiation, Laboratory of Development of the Gonads, F-92265 Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA, Genetic Stability Stem Cells and Radiation, LDG/IRCM/IBFJ, F-92265 Fontenay-aux-Roses, France
| | - Elena Llano
- Molecular Mechanism Program, Centro de Investigation del Cancer (Universidad de Salamanca-CSIC), 37007 Salamanca, Spain
| | - Ihsan Dereli
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42 01307 Dresden, Germany
| | - Emmanuelle Martini
- Université Paris Cité, CEA, Genetic Stability Stem Cells and Radiation, Laboratory of Development of the Gonads, F-92265 Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA, Genetic Stability Stem Cells and Radiation, LDG/IRCM/IBFJ, F-92265 Fontenay-aux-Roses, France
| | - Attila Tóth
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Fiedlerstrasse 42 01307 Dresden, Germany
| | - Alberto M Pendás
- Molecular Mechanism Program, Centro de Investigation del Cancer (Universidad de Salamanca-CSIC), 37007 Salamanca, Spain
| | - Frederic Chalmel
- Inserm, EHESP, Univ Rennes, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
| | - Gabriel Livera
- Université Paris Cité, CEA, Genetic Stability Stem Cells and Radiation, Laboratory of Development of the Gonads, F-92265 Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA, Genetic Stability Stem Cells and Radiation, LDG/IRCM/IBFJ, F-92265 Fontenay-aux-Roses, France
| |
Collapse
|
4
|
Kaur R, Bordenstein SR. Cytoplasmic incompatibility factor proteins from Wolbachia prophage are costly to sperm development in Drosophila melanogaster. Proc Biol Sci 2025; 292:20243016. [PMID: 39933580 PMCID: PMC11813569 DOI: 10.1098/rspb.2024.3016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
The symbiosis between arthropods and Wolbachia bacteria is globally widespread, largely due to selfish-drive systems that favour the fitness of symbiont-transmitting females. The most common drive, cytoplasmic incompatibility (CI), is central to arboviral control efforts. In Drosophila melanogaster carrying wMel Wolbachia deployed in mosquito control, two prophage genes in Wolbachia, cifA and cifB, cause CI that results in a paternal-effect lethality of embryos in crosses between Wolbachia-bearing males and aposymbiotic females. While the CI mechanism by which Cif proteins alter sperm development has recently been elucidated in D. melanogaster and Aedes aegypti mosquitoes, the Cifs' extended impact on male reproductive fitness such as sperm morphology and quantity remains unclear. Here, using cytochemical, microscopic and transgenic assays in D. melanogaster, we demonstrate that both CifA and CifB cause a significant portion of defects in elongating spermatids, culminating in malformed mature sperm nuclei. Males expressing Cifs have reduced spermatid bundles and sperm counts, and transgenic expression of Cifs can occasionally result in no mature sperm formation. We reflect on Cifs' varied functional impacts on the Host Modification model of CI as well as host evolution, behaviour and vector control strategies.
Collapse
Affiliation(s)
- Rupinder Kaur
- Departments of Biology and Entomology, Pennsylvania State University, University Park, PA, USA
- One Health Microbiome Center, Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA, USA
| | - Seth R. Bordenstein
- Departments of Biology and Entomology, Pennsylvania State University, University Park, PA, USA
- One Health Microbiome Center, Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA, USA
| |
Collapse
|
5
|
Kang Z, Xu C, Lu S, Gong J, Yan R, Luo G, Wang Y, He Q, Wu Y, Yan Y, Qian B, Han S, Bu Z, Zhang J, Xia X, Chen L, Hu Z, Lin M, Sun Z, Gu Y, Ye L. NKAPL facilitates transcription pause-release and bridges elongation to initiation during meiosis exit. Nat Commun 2025; 16:791. [PMID: 39824811 PMCID: PMC11742055 DOI: 10.1038/s41467-024-55579-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/16/2024] [Indexed: 01/20/2025] Open
Abstract
Transcription elongation, especially RNA polymerase II (Pol II) pause-release, is less studied than transcription initiation in regulating gene expression during meiosis. It is also unclear how transcription elongation interplays with transcription initiation. Here, we show that depletion of NKAPL, a testis-specific protein distantly related to RNA splicing factors, causes male infertility in mice by blocking the meiotic exit and downregulating haploid genes. NKAPL binds to promoter-associated nascent transcripts and co-localizes with DNA-RNA hybrid R-loop structures at GAA-rich loci to enhance R-loop formation and facilitate Pol II pause-release. NKAPL depletion prolongs Pol II pauses and stalls the SOX30/HDAC3 transcription initiation complex on the chromatin. Genetic variants in NKAPL are associated with azoospermia in humans, while mice carrying an NKAPL frameshift mutation (M349fs) show defective meiotic exit and transcriptomic changes similar to NKAPL depletion. These findings identify NKAPL as an R-loop-recognizing factor that regulates transcription elongation, which coordinates the meiotic-to-postmeiotic transcriptome switch in alliance with the SOX30/HDAC3-mediated transcription initiation.
Collapse
Affiliation(s)
- Zhenlong Kang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Chen Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Shuai Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
- Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Jie Gong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Ruoyu Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Gan Luo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Qing He
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yifei Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yitong Yan
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, People's Republic of China
| | - Baomei Qian
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shenglin Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Zhiwen Bu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Jinwen Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Xian Xia
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Liang Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, People's Republic of China.
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
- Reproductive Genetic Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Suzhou, Jiangsu, China.
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, Jiangsu, China.
- National Center of Technology Innovation for Biopharmaceuticals, Suzhou, Jiangsu, China.
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, Jiangsu, China.
- National Center of Technology Innovation for Biopharmaceuticals, Suzhou, Jiangsu, China.
| |
Collapse
|
6
|
Zapata-Carmona H, Díaz ES, Morales P, Jara M. Differential Activity and Expression of Proteasome in Seminiferous Epithelium During Mouse Spermatogenesis. Int J Mol Sci 2025; 26:494. [PMID: 39859218 PMCID: PMC11764840 DOI: 10.3390/ijms26020494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Proteasome-mediated protein degradation is essential for maintaining cellular homeostasis, particularly during spermatogenesis, where extensive cellular transformations, such as spermatid differentiation, require precise protein turnover. A key player in this process is the ubiquitin-proteasome system (UPS). This study aimed to investigate proteasome enzymatic activity at different stages of the spermatogenic cycle within the seminiferous tubules of mice and explore the regulatory mechanisms that influence its proteolytic function. Specifically, we assessed the trypsin-like, chymotrypsin-like, and peptidyl-glutamyl-peptide-hydrolyzing (PGPH) activities of the proteasome. Additionally, we examined the expression of catalytic and structural subunits of the 20S core, the assembly of the 20S core with regulatory complexes, and the phosphorylation status of proteasome subunits in various segments of the seminiferous tubules. Our findings demonstrated distinct patterns of proteasomal enzymatic activity in the analyzed segments. While the expression levels of structural and catalytic subunits of the 20S core remained consistent, significant differences were detected in the assembly of the 20S core, the expression of regulatory complexes, and the phosphorylation of proteasome subunits mediated by protein kinase A. These results indicate that proteasomal activity is finely regulated through multiple mechanisms depending on the specific stage of the seminiferous epithelial cycle, highlighting the complexity of proteostasis during spermatogenesis.
Collapse
Affiliation(s)
- Héctor Zapata-Carmona
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile; (H.Z.-C.); (E.S.D.); (P.M.)
| | - Emilce Silvina Díaz
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile; (H.Z.-C.); (E.S.D.); (P.M.)
| | - Patricio Morales
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile; (H.Z.-C.); (E.S.D.); (P.M.)
- Instituto Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile
| | - Marco Jara
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile; (H.Z.-C.); (E.S.D.); (P.M.)
| |
Collapse
|
7
|
Lv P, Xu W, Xin S, Deng Y, Yang B, Xu D, Bai J, Ma D, Wang T, Liu J, Liu X. HnRNPM modulates alternative splicing in germ cells by recruiting PTBP1. Reprod Biol Endocrinol 2025; 23:3. [PMID: 39780247 PMCID: PMC11708004 DOI: 10.1186/s12958-024-01340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Heterogeneous nuclear ribonucleoprotein M (HnRNPM) is a key splicing factor involved in various biological processes, including the epithelial‒mesenchymal transition and cancer development. Alternative splicing is widely involved in the process of spermatogenesis. However, the function of hnRNPM as a splicing factor during spermatogenesis remains unknown. METHODS The expression of hnRNPM in germ cells at different stages was detected by polymerase chain reaction, western blotting, a single-cell database, and chromosome spreading assays. Conditional hnRNPM knockout mice were generated to observe the development of testes and germ cells in male mice. Histological staining, immunofluorescence staining and transmission electron microscopy were used to observe the abnormal development of sperm from conditional hnRNPM-deficient mice. Coimmunoprecipitation and mass spectrometry analyses revealed the proteins that interact with hnRNPM. RNA sequencing was performed to analyse the different alternative splicing events in the testes of control and hnRNPM-deficient mice. RESULTS In this study, we revealed that hnRNPM is highly expressed in spermatocytes and round spermatids, with the exception of XY bodies and metaphase. Therefore, we generated a germ cell-specific hnRNPM conditional knockout mouse model to investigate the role of hnRNPM in spermatogenesis. A lack of hnRNPM led to male infertility under natural conditions. Male hnRNPM-deficient mice presented lower numbers of sperm, lower motility, significantly more malformed sperm and even tailless sperm. Moreover, we found that hnRNPM interacted with PTBP1 to collectively regulate the process of spermatogenesis. In addition, we found that hnRNPM deficiency caused 1617 different alternative splicing events, and we detected abnormal exon skipping events in Cep152, Cyld, Inpp4b and Cd59b. CONCLUSIONS Together, our results suggest that hnRNPM regulates the alternative splicing of mRNAs during spermatogenesis by recruiting PTBP1 and is required for male mouse fertility.
Collapse
Affiliation(s)
- Peng Lv
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng Xin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanxuan Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dengjianyi Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Bai
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Deilin Ma
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Ozsait-Selcuk B, Bulgurcuoglu-Kuran S, Sever-Kaya D, Coban N, Aktan G, Kadioglu A. Sperm RNA quantity and PRM1, PRM2 , and TH2B transcript levels reflect sperm characteristics and early embryonic development. Asian J Androl 2025; 27:76-83. [PMID: 39187928 PMCID: PMC11784947 DOI: 10.4103/aja202452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/06/2024] [Indexed: 08/28/2024] Open
Abstract
ABSTRACT Spermatozoa have a highly complex RNA profile. Several of these transcripts are suggested as biomarkers for male infertility and contribute to early development. To analyze the differences between sperm RNA quantity and expression of protamine ( PRM1 and PRM2 ) and testis-specific histone 2B ( TH2B ) genes, spermatozoa from 33 patients who enrolled in assisted reproduction treatment (ART) program were analyzed. Sperm RNA of teratozoospermic (T), oligoteratozoospermic (OT), and normozoospermic (N) samples was extracted, and the differences in transcript levels among the study groups were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). The correlations of total RNA per spermatozoon and the expression of the transcripts were evaluated in relation to sperm characteristics and preimplantation embryo development. The mean (±standard deviation) RNA amount per spermatozoon was 28.48 (±23.03) femtogram in the overall group and was significantly higher in the OT group than that in N and T groups. Total sperm RNA and gene expression of PRM1 and PRM2 genes were related to preimplantation embryo development and developmental arrest. Specific sperm characteristics were correlated with the expressions of PRM1 , PRM2 , or TH2B genes. We conclude that the sperm RNA amount and composition are important factors and might influence early embryonic development and also differ in different cases of male infertility.
Collapse
Affiliation(s)
- Bilge Ozsait-Selcuk
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34093, Türkiye
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye
| | - Sibel Bulgurcuoglu-Kuran
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye
| | - Dilek Sever-Kaya
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34093, Türkiye
- Clinical Nutrition and Microbiota Research Laboratory, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye
| | - Neslihan Coban
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34093, Türkiye
| | - Gulsen Aktan
- Division of Andrology, Department of Urology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye
| | - Ates Kadioglu
- Division of Andrology, Department of Urology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye
| |
Collapse
|
9
|
Li Y, Wang Y, Tan YQ, Yue Q, Guo Y, Yan R, Meng L, Zhai H, Tong L, Yuan Z, Li W, Wang C, Han S, Ren S, Yan Y, Wang W, Gao L, Tan C, Hu T, Zhang H, Liu L, Yang P, Jiang W, Ye Y, Tan H, Wang Y, Lu C, Li X, Xie J, Yuan G, Cui Y, Shen B, Wang C, Guan Y, Li W, Shi Q, Lin G, Ni T, Sun Z, Ye L, Vourekas A, Guo X, Lin M, Zheng K. The landscape of RNA binding proteins in mammalian spermatogenesis. Science 2024; 386:eadj8172. [PMID: 39208083 DOI: 10.1126/science.adj8172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Despite continuous expansion of the RNA binding protein (RBP) world, there is a lack of systematic understanding of RBPs in the mammalian testis, which harbors one of the most complex tissue transcriptomes. We adapted RNA interactome capture to mouse male germ cells, building an RBP atlas characterized by multiple layers of dynamics along spermatogenesis. Trapping of RNA-cross-linked peptides showed that the glutamic acid-arginine (ER) patch, a residue-coevolved polyampholytic element present in coiled coils, enhances RNA binding of its host RBPs. Deletion of this element in NONO (non-POU domain-containing octamer-binding protein) led to a defective mitosis-to-meiosis transition due to compromised NONO-RNA interactions. Whole-exome sequencing of over 1000 infertile men revealed a prominent role of RBPs in the human genetic architecture of male infertility and identified risk ER patch variants.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuanyuan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Andrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University, Nanjing 210008, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ruoyu Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Huicong Zhai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lingxiu Tong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zihan Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wu Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cuicui Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shenglin Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Sen Ren
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yitong Yan
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Weixu Wang
- Institute of Computational Biology, Helmholtz Center Munich, Munich 85764, Germany
| | - Lei Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chen Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Tongyao Hu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Liya Liu
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Pinglan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wanyin Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yiting Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chenyu Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xin Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Gege Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Yichun Guan
- Center for Reproductive Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Anastasios Vourekas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
- Changzhou Medical Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213000, China
- Division of Birth Cohort Study, Fujian Maternity and Child Health Hospital, Fuzhou 350014, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
10
|
Conti Nibali S, Battiato G, Pappalardo XG, De Pinto V. Voltage-Dependent Anion Channels in Male Reproductive Cells: Players in Healthy Fertility? Biomolecules 2024; 14:1290. [PMID: 39456223 PMCID: PMC11506323 DOI: 10.3390/biom14101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Male infertility affects nearly 50% of infertile couples, with various underlying causes, including endocrine disorders, testicular defects, and environmental factors. Spermatozoa rely on mitochondrial oxidative metabolism for motility and fertilization, with mitochondria playing a crucial role in sperm energy production, calcium regulation, and redox balance. Voltage-dependent anion channels (VDACs), located on the outer mitochondrial membrane, regulate energy and metabolite exchange, which are essential for sperm function. This review offers an updated analysis of VDACs in the male reproductive system, summarizing recent advances in understanding their expression patterns, molecular functions, and regulatory mechanisms. Although VDACs have been widely studied in other tissues, their specific roles in male reproductive physiology still remain underexplored. Special attention is given to the involvement of VDAC2/3 isoforms, which may influence mitochondrial function in sperm cells and could be implicated in male fertility disorders. This update provides a comprehensive framework for future research in reproductive biology, underscoring the significance of VDACs as a molecular link between mitochondrial function and male fertility.
Collapse
Affiliation(s)
| | | | | | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (S.C.N.); (G.B.); (X.G.P.)
| |
Collapse
|
11
|
Bi X, Jin H, Wan F, Xia Y, Guo H, Chen S, Wang B. Loss-of-function variant in TDRD6 cause male infertility with severe oligo-astheno-teratozoospermia in human and mice. J Cell Mol Med 2024; 28:e18580. [PMID: 39331689 PMCID: PMC11431060 DOI: 10.1111/jcmm.18580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 09/29/2024] Open
Abstract
Oligo-astheno-teratozoospermia (OAT) is a common cause of male infertility, but the genetic basis of most OAT cases is still unknown. Here, one homozygous loss-of-function (LOF) variant in TDRD6, c.G1825T/p.Gly609X, was identified in an infertile patient with severe OAT by whole-exome sequencing (WES) and Sanger confirmation. Furthermore, Tdrd6-mutant mice (p.Gly615X; equivalent to p.Gly609X in human TDRD6) were generated. Remarkably, the Tdrd6-mutated mice mimicked the severe OAT symptoms of the patient. In addition, the architecture of chromatoid bodies (CBs) were disrupted in round spermatids from Tdrd6-mutant mice, leading to blocked spermatogenesis in the round spermatids. The assembly of PIWIL1, TDRD1, TDRD7 and DDX25 in CBs was disturbed in the Tdrd6-mutant mice. Applying immunoprecipitation-mass spectrometry (IP-MS), we identified some TDRD6-interacting partners, including CB proteins TDRD7, MAEL and PCBP1. Moreover, we described the assisted reproductive technology (ART) outcomes of the infertile patient and his partner. Altogether, our findings provide necessary evidences to support the idea that the homozygous LOF variant in TDRD6 induces male infertility with severe OAT, suggesting that TDRD6 could be a useful genetic diagnostic target for male infertility.
Collapse
Affiliation(s)
- Xinying Bi
- Center for GeneticsNational Research Institute for Family PlanningBeijingChina
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Huijuan Jin
- Key Laboratory of Cell Proliferation and Regulation Biology, Department of Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Feng Wan
- The Reproductive Medicine Center, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yanqing Xia
- The Reproductive Medicine Center, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Haibin Guo
- The Reproductive Medicine Center, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Suren Chen
- Key Laboratory of Cell Proliferation and Regulation Biology, Department of Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Binbin Wang
- Center for GeneticsNational Research Institute for Family PlanningBeijingChina
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
12
|
Wang Y, Xiang M, Zhou Y, Zheng N, Zhang J, Zha X, Duan Z, Wang F, Zhang Y, Wang Z, Cao Y, Zhu F. Novel and recurrent hemizygous variants in BCORL1 cause oligoasthenoteratozoospermia by interfering transcription. Andrology 2024. [PMID: 39189935 DOI: 10.1111/andr.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/09/2024] [Accepted: 08/10/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Oligoasthenoteratozoospermia (OAT) is a common cause of male infertility, of which the causes remain largely unknown. Recently, BCORL1 was identified as a contributor to male infertility from non-obstructive azoospermia (NOA) to OAT. OBJECTIVES To identify novel and hotspot variants in BCORL1 from infertile men with OAT and reveal their outcomes of assisted reproductive treatments (ARTs). MATERIALS AND METHODS Forty-six infertile men characterized by OAT were recruited from 2017 to 2022. Variants in OAT patients were identified by whole-exome sequencing (WES) and verified by Sanger sequencing. Papanicolaou staining was used for sperm morphology analysis. Pathogenicity of BCORL1 variants were analyzed by bioinformatics analysis, and further confirmed in vitro by using recombinant plasmids and cells. Meanwhile, ARTs were performed on these patients to investigate the appropriate clinical treatment strategy. RESULTS We identified a novel hemizygous missense variant (NM_021946: c.G4171A; p.G1391R) and a recurrent variant (NM_021946: c.T2615G; p.V872G) in BCORL1 from four OAT patients. Notably, routine semen assessment and Papanicolaou staining revealed a special OAT phenotype of patients with BCORL1 variants, whose rare mature sperm characterized by acephalic and abnormal acrosome. Pathogenicity analysis showed the interaction between BCORL1 with histone deacetylases (HDACs) were disrupted after variance, accompanied with epigenetic alterations and finally the orderly transcriptions of spermatogenetic genes were interfering. Besides, clinical record presented the poor outcomes of ARTs in these patients with BCORL1 variants. DISCUSSION AND CONCLUSIONS Our findings further expand the variant spectrum of BCORL1 related to OAT, and provide new evidences that BCORL1 acts as an important transcriptional regulator, participating in epigenetic regulation and directing the expression of key genes throughout spermatogenesis. The outcomes of ARTs will facilitate the genetic counseling and clinical treatment of infertile men with BCORL1 variants in the future.
Collapse
Affiliation(s)
- Yu Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of clinical laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Mingfei Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of clinical laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yiru Zhou
- Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, China
| | - Na Zheng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of clinical laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Jingjing Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of clinical laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Xiaomin Zha
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of clinical laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Zongliu Duan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of clinical laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Fengsong Wang
- School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhongxin Wang
- Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of clinical laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Fuxi Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of clinical laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| |
Collapse
|
13
|
Han C. Gene expression programs in mammalian spermatogenesis. Development 2024; 151:dev202033. [PMID: 38691389 DOI: 10.1242/dev.202033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Mammalian spermatogenesis, probably the most complex of all cellular developmental processes, is an ideal model both for studying the specific mechanism of gametogenesis and for understanding the basic rules governing all developmental processes, as it entails both cell type-specific and housekeeping molecular processes. Spermatogenesis can be viewed as a mission with many tasks to accomplish, and its success is genetically programmed and ensured by the collaboration of a large number of genes. Here, I present an overview of mammalian spermatogenesis and the mechanisms underlying each step in the process, covering the cellular and molecular activities that occur at each developmental stage and emphasizing their gene regulation in light of recent studies.
Collapse
Affiliation(s)
- Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101 Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
14
|
Meyers WM. Transcriptional regulation of the alternative sex hormone-binding globulin promoter by KLF4. Gene Expr Patterns 2024:119357. [PMID: 38460578 DOI: 10.1016/j.gep.2024.119357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/21/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
In most mammals the major site of sex hormone-binding globulin (SHBG) synthesis is the liver wherefrom it is secreted into the bloodstream and is the primary determinant of sex steroid access to target tissues. The minor site of SHBG synthesis is the testis and in lower mammals testicular SHBG has long been known to be synthesized and secreted by Sertoli cells. However, human testicular SHBG is expressed in developing germ cells from an upstream alternative promoter (altP-SHBG). Transcripts arising from this region comprise an alternative first exon (1A) with the resultant protein confined to the acrosomal compartment of the mature spermatozoa. I have dissected the regulatory components of the alternative SHBG promoter and identified motifs that are required for optimal transcriptional activity from this region. Transcriptional activity is driven by two CACCC elements that appear to be functionally redundant. The transcription factor KLF4 interacts with promoter the region spanning these elements in vivo. Knockdown of Klf4 results in decreased altP-SHBG activity, while Klf4 overexpression relieves the effects of knockdown. Based on their shared patterns of expression in vivo, I conclude that KLF4 is a transcriptional regulator of SHBG in male germ cells.
Collapse
Affiliation(s)
- Warren M Meyers
- Department of Cellular & Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
15
|
Endo T, Kobayashi K, Matsumura T, Emori C, Ozawa M, Kawamoto S, Okuzaki D, Shimada K, Miyata H, Shimada K, Kodani M, Ishikawa-Yamauchi Y, Motooka D, Hara E, Ikawa M. Multiple ageing effects on testicular/epididymal germ cells lead to decreased male fertility in mice. Commun Biol 2024; 7:16. [PMID: 38177279 PMCID: PMC10766604 DOI: 10.1038/s42003-023-05685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
In mammals, females undergo reproductive cessation with age, whereas male fertility gradually declines but persists almost throughout life. However, the detailed effects of ageing on germ cells during and after spermatogenesis, in the testis and epididymis, respectively, remain unclear. Here we comprehensively examined the in vivo male fertility and the overall organization of the testis and epididymis with age, focusing on spermatogenesis, and sperm function and fertility, in mice. We first found that in vivo male fertility decreased with age, which is independent of mating behaviors and testosterone levels. Second, overall sperm production in aged testes was decreased; about 20% of seminiferous tubules showed abnormalities such as germ cell depletion, sperm release failure, and perturbed germ cell associations, and the remaining 80% of tubules contained lower number of germ cells because of decreased proliferation of spermatogonia. Further, the spermatozoa in aged epididymides exhibited decreased total cell numbers, abnormal morphology/structure, decreased motility, and DNA damage, resulting in low fertilizing and developmental rates. We conclude that these multiple ageing effects on germ cells lead to decreased in vivo male fertility. Our present findings are useful to better understand the basic mechanism behind the ageing effect on male fertility in mammals including humans.
Collapse
Affiliation(s)
- Tsutomu Endo
- Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
- Department of Experimental Animal Model for Human Disease, Center for Experimental Animals, Tokyo Medical and Dental University, Tokyo, Japan.
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Kiyonori Kobayashi
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Takafumi Matsumura
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Chihiro Emori
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Manabu Ozawa
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shimpei Kawamoto
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kentaro Shimada
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Mayo Kodani
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yu Ishikawa-Yamauchi
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Daisuke Motooka
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Eiji Hara
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masahito Ikawa
- Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
16
|
Page N, Taxiarchi C, Tonge D, Kuburic J, Chesters E, Kriezis A, Kyrou K, Game L, Nolan T, Galizi R. Single-cell profiling of Anopheles gambiae spermatogenesis defines the onset of meiotic silencing and premeiotic overexpression of the X chromosome. Commun Biol 2023; 6:850. [PMID: 37582841 PMCID: PMC10427639 DOI: 10.1038/s42003-023-05224-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023] Open
Abstract
Understanding development and genetic regulation in the Anopheles gambiae germline is essential to engineer effective genetic control strategies targeting this malaria mosquito vector. These include targeting the germline to induce sterility or using regulatory sequences to drive transgene expression for applications such as gene drive. However, only very few germline-specific regulatory elements have been characterised with the majority showing leaky expression. This has been shown to considerably reduce the efficiency of current genetic control strategies, which rely on regulatory elements with more tightly restricted spatial and/or temporal expression. Meiotic silencing of the sex chromosomes limits the flexibility of transgene expression to develop effective sex-linked genetic control strategies. Here, we build on our previous study, dissecting gametogenesis into four distinct cell populations, using single-cell RNA sequencing to define eight distinct cell clusters and associated germline cell-types using available marker genes. We reveal overexpression of X-linked genes in a distinct cluster of pre-meiotic cells and document the onset of meiotic silencing of the X chromosome in a subcluster of cells in the latter stages of spermatogenesis. This study provides a comprehensive dataset, characterising the expression of distinct cell types through spermatogenesis and widening the toolkit for genetic control of malaria mosquitoes.
Collapse
Affiliation(s)
- Nicole Page
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Daniel Tonge
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK
| | - Jasmina Kuburic
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK
| | - Emily Chesters
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK
| | - Antonios Kriezis
- Department of Life Sciences, Imperial College London, London, UK
| | - Kyros Kyrou
- Department of Life Sciences, Imperial College London, London, UK
| | - Laurence Game
- Genomics Facility, MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - Tony Nolan
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Roberto Galizi
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK.
| |
Collapse
|
17
|
Li P, Messina G, Lehner CF. Nuclear elongation during spermiogenesis depends on physical linkage of nuclear pore complexes to bundled microtubules by Drosophila Mst27D. PLoS Genet 2023; 19:e1010837. [PMID: 37428798 PMCID: PMC10359004 DOI: 10.1371/journal.pgen.1010837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023] Open
Abstract
Spermatozoa in animal species are usually highly elongated cells with a long motile tail attached to a head that contains the haploid genome in a compact and often elongated nucleus. In Drosophila melanogaster, the nucleus is compacted two hundred-fold in volume during spermiogenesis and re-modeled into a needle that is thirty-fold longer than its diameter. Nuclear elongation is preceded by a striking relocalization of nuclear pore complexes (NPCs). While NPCs are initially located throughout the nuclear envelope (NE) around the spherical nucleus of early round spermatids, they are later confined to one hemisphere. In the cytoplasm adjacent to this NPC-containing NE, the so-called dense complex with a strong bundle of microtubules is assembled. While this conspicuous proximity argued for functional significance of NPC-NE and microtubule bundle, experimental confirmation of their contributions to nuclear elongation has not yet been reported. Our functional characterization of the spermatid specific Mst27D protein now resolves this deficit. We demonstrate that Mst27D establishes physical linkage between NPC-NE and dense complex. The C-terminal region of Mst27D binds to the nuclear pore protein Nup358. The N-terminal CH domain of Mst27D, which is similar to that of EB1 family proteins, binds to microtubules. At high expression levels, Mst27D promotes bundling of microtubules in cultured cells. Microscopic analyses indicated co-localization of Mst27D with Nup358 and with the microtubule bundles of the dense complex. Time-lapse imaging revealed that nuclear elongation is accompanied by a progressive bundling of microtubules into a single elongated bundle. In Mst27D null mutants, this bundling process does not occur and nuclear elongation is abnormal. Thus, we propose that Mst27D permits normal nuclear elongation by promoting the attachment of the NPC-NE to the microtubules of the dense complex, as well as the progressive bundling of these microtubules.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Giovanni Messina
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Christian F Lehner
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Adashev VE, Kotov AA, Olenina LV. RNA Helicase Vasa as a Multifunctional Conservative Regulator of Gametogenesis in Eukaryotes. Curr Issues Mol Biol 2023; 45:5677-5705. [PMID: 37504274 PMCID: PMC10378496 DOI: 10.3390/cimb45070358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
Being a conservative marker of germ cells across metazoan species, DEAD box RNA helicase Vasa (DDX4) remains the subject of worldwide investigations thanks to its multiple functional manifestations. Vasa takes part in the preformation of primordial germ cells in a group of organisms and contributes to the maintenance of germline stem cells. Vasa is an essential player in the piRNA-mediated silencing of harmful genomic elements and in the translational regulation of selected mRNAs. Vasa is the top hierarchical protein of germ granules, liquid droplet organelles that compartmentalize RNA processing factors. Here, we survey current advances and problems in the understanding of the multifaceted functions of Vasa proteins in the gametogenesis of different eukaryotic organisms, from nematodes to humans.
Collapse
Affiliation(s)
- Vladimir E Adashev
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Alexei A Kotov
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Ludmila V Olenina
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| |
Collapse
|
19
|
Li Y, Zhai H, Tong L, Wang C, Xie Z, Zheng K. LncRNA Functional Screening in Organismal Development. Noncoding RNA 2023; 9:36. [PMID: 37489456 PMCID: PMC10366883 DOI: 10.3390/ncrna9040036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/26/2023] Open
Abstract
Controversy continues over the functional prevalence of long non-coding RNAs (lncRNAs) despite their being widely investigated in all kinds of cells and organisms. In animals, lncRNAs have aroused general interest from exponentially increasing transcriptomic repertoires reporting their highly tissue-specific and developmentally dynamic expression, and more importantly, from growing experimental evidence supporting their functionality in facilitating organogenesis and individual fitness. In mammalian testes, while a great multitude of lncRNA species are identified, only a minority of them have been shown to be useful, and even fewer have been demonstrated as true requirements for male fertility using knockout models to date. This noticeable gap is attributed to the virtual existence of a large number of junk lncRNAs, the lack of an ideal germline culture system, difficulty in loss-of-function interrogation, and limited screening strategies. Facing these challenges, in this review, we discuss lncRNA functionality in organismal development and especially in mouse testis, with a focus on lncRNAs with functional screening.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Huicong Zhai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Lingxiu Tong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Cuicui Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhiming Xie
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
20
|
Travicic DZ, Pavlovic MV, Medar MLJ, Becin A, Cetnik M, Lalosevic D, Andric SA, Kostic TS. Circadian desynchrony disturbs the function of rat spermatozoa. Eur J Cell Biol 2023; 102:151323. [PMID: 37201364 DOI: 10.1016/j.ejcb.2023.151323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/20/2023] Open
Abstract
Decreased male fertility is a growing health problem that requires a better understanding of molecular events regulating reproductive competence. Here the effects of circadian desynchrony on the rat spermatozoa functionality were studied. Circadian desynchrony was induced in rats that lived for 2 months under disturbed light conditions designed to mimic shiftwork in humans (two days of constant light, two days of continual dark, and three days of 14:10 h light:dark schedule). Such a condition abolished circadian oscillations in the rats' voluntary activity, followed by a flattened transcriptional pattern of the pituitary gene encoding follicle stimulating hormone subunit (Fshb), and genes important for germ cell maturation (Tnp1 and Prm2) as well as the clock in seminiferous tubules. However, the number of spermatozoa isolated from the epididymis of the rats suffering from circadian desynchrony did not deviate from the controls. Nevertheless, spermatozoa functionality, estimated by motility and progesterone-induced acrosome reaction, was reduced compared to the control. These changes were associated with the altered level of main markers of mitochondrial biogenesis (Pprgc1a/PGC1A, Nrf1/NRF1, Tfam, Cytc), decreased mitochondrial DNA copy number, ATP content, and clock genes (Bmal1/BMAL1, Clock, Cry1/2, and Reverba). The principal-component-analysis (PCA) points to a positive association of the clock and mitochondrial biogenesis-related genes in spermatozoa from rats suffering circadian desynchrony. Altogether, the results show the harmful effect of circadian desynchrony on spermatozoa functionality, targeting energetic homeostasis.
Collapse
Affiliation(s)
- Dijana Z Travicic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, 21000 Novi Sad, Serbia
| | - Maja V Pavlovic
- University of Pristina in Kosovska Mitrovica, Faculty of Sciences and Mathematics, 38220 Kosovska Mitrovica, Serbia
| | - Marija L J Medar
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, 21000 Novi Sad, Serbia
| | - Alisa Becin
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, 21000 Novi Sad, Serbia
| | - Mia Cetnik
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, 21000 Novi Sad, Serbia
| | - Dusan Lalosevic
- University of Novi Sad, Faculty of Medicine, 21000 Novi Sad, Serbia
| | - Silvana A Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, 21000 Novi Sad, Serbia
| | - Tatjana S Kostic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, 21000 Novi Sad, Serbia.
| |
Collapse
|
21
|
Tan H, Wang W, Zhou C, Wang Y, Zhang S, Yang P, Guo R, Chen W, Zhang J, Ye L, Cui Y, Ni T, Zheng K. Single-cell RNA-seq uncovers dynamic processes orchestrated by RNA-binding protein DDX43 in chromatin remodeling during spermiogenesis. Nat Commun 2023; 14:2499. [PMID: 37120627 DOI: 10.1038/s41467-023-38199-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
Mammalian spermatogenesis shows prominent chromatin and transcriptomic switches in germ cells, but it is unclear how such dynamics are controlled. Here we identify RNA helicase DDX43 as an essential regulator of the chromatin remodeling process during spermiogenesis. Testis-specific Ddx43 knockout mice show male infertility with defective histone-to-protamine replacement and post-meiotic chromatin condensation defects. The loss of its ATP hydrolysis activity by a missense mutation replicates the infertility phenotype in global Ddx43 knockout mice. Single-cell RNA sequencing analyses of germ cells depleted of Ddx43 or expressing the Ddx43 ATPase-dead mutant reveals that DDX43 regulates dynamic RNA regulatory processes that underlie spermatid chromatin remodeling and differentiation. Transcriptomic profiling focusing on early-stage spermatids combined with enhanced crosslinking immunoprecipitation and sequencing further identifies Elfn2 as DDX43-targeted hub gene. These findings illustrate an essential role for DDX43 in spermiogenesis and highlight the single-cell-based strategy to dissect cell-state-specific regulation of male germline development.
Collapse
Affiliation(s)
- Huanhuan Tan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, 400016, Chongqing, Yuzhong District, China
| | - Weixu Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, 200438, Shanghai, China
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Congjin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Shu Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Pinglan Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Rui Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Wei Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, 200438, Shanghai, China
| | - Jinwen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China.
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, 200438, Shanghai, China.
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
22
|
Chang CH, Mejia Natividad I, Malik HS. Expansion and loss of sperm nuclear basic protein genes in Drosophila correspond with genetic conflicts between sex chromosomes. eLife 2023; 12:85249. [PMID: 36763410 PMCID: PMC9917458 DOI: 10.7554/elife.85249] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
Many animal species employ sperm nuclear basic proteins (SNBPs) or protamines to package sperm genomes tightly. SNBPs vary across animal lineages and evolve rapidly in mammals. We used a phylogenomic approach to investigate SNBP diversification in Drosophila species. We found that most SNBP genes in Drosophila melanogaster evolve under positive selection except for genes essential for male fertility. Unexpectedly, evolutionarily young SNBP genes are more likely to be critical for fertility than ancient, conserved SNBP genes. For example, CG30056 is dispensable for male fertility despite being one of three SNBP genes universally retained in Drosophila species. We found 19 independent SNBP gene amplification events that occurred preferentially on sex chromosomes. Conversely, the montium group of Drosophila species lost otherwise-conserved SNBP genes, coincident with an X-Y chromosomal fusion. Furthermore, SNBP genes that became linked to sex chromosomes via chromosomal fusions were more likely to degenerate or relocate back to autosomes. We hypothesize that autosomal SNBP genes suppress meiotic drive, whereas sex-chromosomal SNBP expansions lead to meiotic drive. X-Y fusions in the montium group render autosomal SNBPs dispensable by making X-versus-Y meiotic drive obsolete or costly. Thus, genetic conflicts between sex chromosomes may drive SNBP rapid evolution during spermatogenesis in Drosophila species.
Collapse
Affiliation(s)
- Ching-Ho Chang
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, United States
| | - Isabel Mejia Natividad
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, United States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, United States
| |
Collapse
|
23
|
Activating translation by phase separation: a novel mechanism for driving spermiogenesis. SCIENCE CHINA. LIFE SCIENCES 2023; 66:418-420. [PMID: 36173540 DOI: 10.1007/s11427-022-2205-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 10/14/2022]
|
24
|
Siebert-Kuss LM, Krenz H, Tekath T, Wöste M, Di Persio S, Terwort N, Wyrwoll MJ, Cremers JF, Wistuba J, Dugas M, Kliesch S, Schlatt S, Tüttelmann F, Gromoll J, Neuhaus N, Laurentino S. Transcriptome analyses in infertile men reveal germ cell-specific expression and splicing patterns. Life Sci Alliance 2023; 6:6/2/e202201633. [PMID: 36446526 PMCID: PMC9713473 DOI: 10.26508/lsa.202201633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022] Open
Abstract
The process of spermatogenesis-when germ cells differentiate into sperm-is tightly regulated, and misregulation in gene expression is likely to be involved in the physiopathology of male infertility. The testis is one of the most transcriptionally rich tissues; nevertheless, the specific gene expression changes occurring during spermatogenesis are not fully understood. To better understand gene expression during spermatogenesis, we generated germ cell-specific whole transcriptome profiles by systematically comparing testicular transcriptomes from tissues in which spermatogenesis is arrested at successive steps of germ cell differentiation. In these comparisons, we found thousands of differentially expressed genes between successive germ cell types of infertility patients. We demonstrate our analyses' potential to identify novel highly germ cell-specific markers (TSPY4 and LUZP4 for spermatogonia; HMGB4 for round spermatids) and identified putatively misregulated genes in male infertility (RWDD2A, CCDC183, CNNM1, SERF1B). Apart from these, we found thousands of genes showing germ cell-specific isoforms (including SOX15, SPATA4, SYCP3, MKI67). Our approach and dataset can help elucidate genetic and transcriptional causes for male infertility.
Collapse
Affiliation(s)
- Lara M Siebert-Kuss
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Henrike Krenz
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Tobias Tekath
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Marius Wöste
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Nicole Terwort
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Margot J Wyrwoll
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Jann-Frederik Cremers
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Münster, Germany
| | - Joachim Wistuba
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, Münster, Germany.,Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Kliesch
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Münster, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Jörg Gromoll
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Sandra Laurentino
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| |
Collapse
|
25
|
Dou W, Sun B, Miao Y, Huang D, Xiao J. Single-cell transcriptome sequencing reveals Wolbachia-mediated modification in early stages of Drosophila spermatogenesis. Proc Biol Sci 2023; 290:20221963. [PMID: 36629101 PMCID: PMC9832550 DOI: 10.1098/rspb.2022.1963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Wolbachia are the most widely distributed intracellular bacteria, and their most common effect on host phenotype is cytoplasmic incompatibility (CI). A variety of models have been proposed to decipher the molecular mechanism of CI, among which the host modification (HM) model predicts that Wolbachia effectors play an important role in sperm modification. However, owing to the complexity of spermatogenesis and testicular cell-type heterogeneity, whether Wolbachia have different effects on cells at different stages of spermatogenesis or whether these effects are linked with CI remains unknown. Therefore, we used single-cell RNA sequencing to analyse gene expression profiles in adult male Drosophila testes that were infected or uninfected by Wolbachia. We found that Wolbachia significantly affected the proportion of different types of germ cells and affected multiple metabolic pathways in germ cells. Most importantly, Wolbachia had the greatest impact on germline stem cells, resulting in dysregulated expression of genes related to DNA compaction, and Wolbachia infection also influenced the histone-to-protamine transition in the late stage of sperm development. These results support the HM model and suggest that future studies on Wolbachia-induced CI should focus on cells in the early stages of spermatogenesis.
Collapse
Affiliation(s)
- Weihao Dou
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Baofa Sun
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Yunheng Miao
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Dawei Huang
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Jinhua Xiao
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
26
|
Zhang Y, Kang JY, Liu M, Huang Y. Diverse roles of biomolecular condensation in eukaryotic translational regulation. RNA Biol 2023; 20:893-907. [PMID: 37906632 PMCID: PMC10730148 DOI: 10.1080/15476286.2023.2275108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
Biomolecular condensates, forming membrane-less organelles, orchestrate the sub-cellular compartment to execute designated biological processes. An increasing body of evidence demonstrates the involvement of these biomolecular condensates in translational regulation. This review summarizes recent discoveries concerning biomolecular condensates associated with translational regulation, including their composition, assembly, and functions. Furthermore, we discussed the common features among these biomolecular condensates and the critical questions in the translational regulation areas. These emerging discoveries shed light on the enigmatic translational machinery, refine our understanding of translational regulation, and put forth potential therapeutic targets for diseases born out of translation dysregulation.
Collapse
Grants
- 32171186 AND 91940302 National Natural Science Foundation of China
- 91940305, 31830109, 31821004, 31961133022, 91640201, 32170815, AND 32101037 TO M.L., AND 32201058 National Natural Science Foundation of China
- 2022YFC2702600 National Key R&D Program of China
- 17JC1420100, 2017SHZDZX01, 19JC1410200, 21ZR1470200, 21PJ1413800, 21YF1452700, AND 21ZR1470500 Science and Technology Commission of Shanghai Municipality
- 2022YFC2702600 National Key R&D Program of China
- 2022T150425 China Postdoctoral Science Foundation
Collapse
Affiliation(s)
- Yuhan Zhang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun-Yan Kang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mofang Liu
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ying Huang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Chan SY, Wan CWT, Law TYS, Chan DYL, Fok EKL. The Sperm Small RNA Transcriptome: Implications beyond Reproductive Disorder. Int J Mol Sci 2022; 23:15716. [PMID: 36555356 PMCID: PMC9779749 DOI: 10.3390/ijms232415716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Apart from the paternal half of the genetic material, the male gamete carries assorted epigenetic marks for optimal fertilization and the developmental trajectory for the early embryo. Recent works showed dynamic changes in small noncoding RNA (sncRNA) in spermatozoa as they transit through the testicular environment to the epididymal segments. Studies demonstrated the changes to be mediated by epididymosomes during the transit through the adluminal duct in the epididymis, and the changes in sperm sncRNA content stemmed from environmental insults significantly altering the early embryo development and predisposing the offspring to metabolic disorders. Here, we review the current knowledge on the establishment of the sperm sncRNA transcriptome and their role in male-factor infertility, evidence of altered offspring health in response to the paternal life experiences through sperm sncRNA species and, finally, their implications in assisted reproductive technology in terms of epigenetic inheritance.
Collapse
Affiliation(s)
- Sze Yan Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Crystal Wing Tung Wan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tin Yu Samuel Law
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - David Yiu Leung Chan
- Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ellis Kin Lam Fok
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu 610017, China
| |
Collapse
|
28
|
Kang JY, Wen Z, Pan D, Zhang Y, Li Q, Zhong A, Yu X, Wu YC, Chen Y, Zhang X, Kou PC, Geng J, Wang YY, Hua MM, Zong R, Li B, Shi HJ, Li D, Fu XD, Li J, Nelson DL, Guo X, Zhou Y, Gou LT, Huang Y, Liu MF. LLPS of FXR1 drives spermiogenesis by activating translation of stored mRNAs. Science 2022; 377:eabj6647. [PMID: 35951695 DOI: 10.1126/science.abj6647] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Postmeiotic spermatids use a unique strategy to coordinate gene expression with morphological transformation, in which transcription and translation take place at separate developmental stages, but how mRNAs stored as translationally inert messenger ribonucleoproteins in developing spermatids become activated remains largely unknown. Here, we report that the RNA binding protein FXR1, a member of the fragile X-related (FXR) family, is highly expressed in late spermatids and undergoes liquid-liquid phase separation (LLPS) to merge messenger ribonucleoprotein granules with the translation machinery to convert stored mRNAs into a translationally activated state. Germline-specific Fxr1 ablation in mice impaired the translation of target mRNAs and caused defective spermatid development and male infertility, and a phase separation-deficient FXR1L351P mutation in Fxr1 knock-in mice produced the same developmental defect. These findings uncover a mechanism for translational reprogramming with LLPS as a key driver in spermiogenesis.
Collapse
Affiliation(s)
- Jun-Yan Kang
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ze Wen
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Duo Pan
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuhan Zhang
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Research Center of Biliary Tract Disease, Department of General Surgery, Xinhua Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Li
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ai Zhong
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xinghai Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yi-Chen Wu
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yu Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peng-Cheng Kou
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Junlan Geng
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ying-Yi Wang
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Min-Min Hua
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Ruiting Zong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Biao Li
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hui-Juan Shi
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Dangsheng Li
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Jinsong Li
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - David L Nelson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Lan-Tao Gou
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ying Huang
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Research Center of Biliary Tract Disease, Department of General Surgery, Xinhua Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| |
Collapse
|
29
|
Pathway Analysis of Genome Wide Association Studies (GWAS) Data Associated with Male Infertility. REPRODUCTIVE MEDICINE 2022. [DOI: 10.3390/reprodmed3030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Infertility is a common condition affecting approximately 10–20% of the reproductive age population. Idiopathic infertility cases are thought to have a genetic basis, but the underlying causes are largely unknown. However, the genetic basis underlying male infertility in humans is only partially understood. The Purpose of the study is to understand the current state of research on the genetics of male infertility and its association with significant biological mechanisms. Results: We performed an Identify Candidate Causal SNPs and Pathway (ICSN Pathway) analysis using a genome-wide association study (GWAS) dataset, and NCBI-PubMed search which included 632 SNPs in GWAS and 451 SNPs from the PubMed server, respectively. The ICSN Pathway analysis produced three hypothetical biological mechanisms associated with male infertility: (1) rs8084 and rs7192→HLA-DRA→inflammatory pathways and cell adhesion; rs7550231 and rs2234167→TNFRSF14→TNF Receptor Superfamily Member 14→T lymphocyte proliferation and activation; rs1105879 and rs2070959→UGT1A6→UDP glucuronosyltransferase family 1 member A6→Metabolism of Xenobiotics, androgen, estrogen, retinol, and carbohydrates. Conclusions: We believe that our results may be helpful to study the genetic mechanisms of male infertility. Pathway-based methods have been applied to male infertility GWAS datasets to investigate the biological mechanisms and reported some novel male infertility risk pathways. This pathway analysis using GWAS dataset suggests that the biological process related to inflammation and metabolism might contribute to male infertility susceptibility. Our analysis suggests that genetic contribution to male infertility operates through multiple genes affecting common inflammatory diseases interacting in functional pathways.
Collapse
|
30
|
Minamino N, Norizuki T, Mano S, Ebine K, Ueda T. Remodeling of organelles and microtubules during spermiogenesis in the liverwort Marchantia polymorpha. Development 2022; 149:276198. [DOI: 10.1242/dev.200951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/23/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Gametogenesis is an essential event for sexual reproduction in various organisms. Bryophytes employ motile sperm (spermatozoids) as male gametes, which locomote to the egg cells to accomplish fertilization. The spermatozoids of bryophytes harbor distinctive morphological characteristics, including a cell body with a helical shape and two flagella. During spermiogenesis, the shape and cellular contents of the spermatids are dynamically reorganized. However, the reorganization patterns of each organelle remain obscure. In this study, we classified the developmental processes during spermiogenesis in the liverwort Marchantia polymorpha according to changes in cellular and nuclear shapes and flagellar development. We then examined the remodeling of microtubules and the reorganization of endomembrane organelles. The results indicated that the state of glutamylation of tubulin changes during formation of the flagella and spline. We also found that the plasma membrane and endomembrane organelles are drastically reorganized in a precisely regulated manner, which involves the functions of endosomal sorting complexes required for transport (ESCRT) machineries in endocytic and vacuolar transport. These findings are expected to provide useful indices to classify developmental and subcellular processes of spermiogenesis in bryophytes.
Collapse
Affiliation(s)
- Naoki Minamino
- National Institute for Basic Biology 1 Division of Cellular Dynamics , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| | - Takuya Norizuki
- National Institute for Basic Biology 1 Division of Cellular Dynamics , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| | - Shoji Mano
- National Institute for Basic Biology 2 Laboratory of Organelle Regulation , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
- SOKENDAI (The Graduate University for Advanced Studies) 3 Department of Basic Biology , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| | - Kazuo Ebine
- National Institute for Basic Biology 1 Division of Cellular Dynamics , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
- SOKENDAI (The Graduate University for Advanced Studies) 3 Department of Basic Biology , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| | - Takashi Ueda
- National Institute for Basic Biology 1 Division of Cellular Dynamics , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
- SOKENDAI (The Graduate University for Advanced Studies) 3 Department of Basic Biology , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| |
Collapse
|
31
|
Huang X, Sun MX. H3K27 methylation regulates the fate of two cell lineages in male gametophytes. THE PLANT CELL 2022; 34:2989-3005. [PMID: 35543471 PMCID: PMC9338816 DOI: 10.1093/plcell/koac136] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/03/2022] [Indexed: 05/14/2023]
Abstract
During angiosperm male gametogenesis, microspores divide to produce a vegetative cell (VC) and a male germline (MG), each with distinct cell fates. The mechanism underlying determination of the MG cell/VC fate remains an important area of research, with many unanswered questions. Here, we report that H3K27me3 is essential for VC fate commitment in male Arabidopsis thaliana gametophytes; H3K27me3 erasure contributes to MG cell fate initiation. VC-targeted H3K27me3 erasure disturbed VC development and shifted the VC fate toward a gamete destination, which suggests that MG cells require H3K27me3 erasure to trigger gamete cell fate. Multi-omics and cytological analyses confirmed the occurrence of extensive cell identity transition due to H3K27me3 erasure. Therefore, we experimentally confirmed that MG cell/VC fate is epigenetically regulated. H3K27 methylation plays a critical role in guiding MG cell/VC fate determination for pollen fertility in Arabidopsis. Our work also provides evidence for two previous hypotheses: the germline cell fate is specified by the differential distribution of unknown determinants and VC maintains the default microspore program (i.e. the H3K27me3 setting) while MG requires reprogramming.
Collapse
Affiliation(s)
- Xiaorong Huang
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan 430072, China
| | | |
Collapse
|
32
|
Moritz L, Hammoud SS. The Art of Packaging the Sperm Genome: Molecular and Structural Basis of the Histone-To-Protamine Exchange. Front Endocrinol (Lausanne) 2022; 13:895502. [PMID: 35813619 PMCID: PMC9258737 DOI: 10.3389/fendo.2022.895502] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/02/2022] [Indexed: 01/18/2023] Open
Abstract
Male fertility throughout life hinges on the successful production of motile sperm, a developmental process that involves three coordinated transitions: mitosis, meiosis, and spermiogenesis. Germ cells undergo both mitosis and meiosis to generate haploid round spermatids, in which histones bound to the male genome are replaced with small nuclear proteins known as protamines. During this transformation, the chromatin undergoes extensive remodeling to become highly compacted in the sperm head. Despite its central role in spermiogenesis and fertility, we lack a comprehensive understanding of the molecular mechanisms underlying the remodeling process, including which remodelers/chaperones are involved, and whether intermediate chromatin proteins function as discrete steps, or unite simultaneously to drive successful exchange. Furthermore, it remains largely unknown whether more nuanced interactions instructed by protamine post-translational modifications affect chromatin dynamics or gene expression in the early embryo. Here, we bring together past and more recent work to explore these topics and suggest future studies that will elevate our understanding of the molecular basis of the histone-to-protamine exchange and the underlying etiology of idiopathic male infertility.
Collapse
Affiliation(s)
- Lindsay Moritz
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
- Department of Urology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
33
|
Zhang H, Situ C, Guo X. Recent progress of proteomic analysis on spermatogenesis. Biol Reprod 2022; 107:109-117. [DOI: 10.1093/biolre/ioac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Testis, the only organ responsible for generating sperm, is by far the organ with the largest variety of proteins and tissue-specific proteins in humans. In testis, spermatogenesis is a multi-step complex process well-accepted that protein and mRNA are decoupled in certain stages of spermatogenesis. With the fast development of mass spectrometry-based proteomics, it is possible to systemically study protein abundances and modifications in testis and sperm to help us understand the molecular mechanisms of spermatogenesis. This review provides an overview of the recent progress of proteomics analysis on spermatogenesis, including protein expression and multiple PTMs, such as phosphorylation, glycosylation, ubiquitylation, and acetylation.
Collapse
Affiliation(s)
- Haotian Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
34
|
Deficiency of X-linked TENT5D causes male infertility by disrupting the mRNA stability during spermatogenesis. Cell Discov 2022; 8:23. [PMID: 35256600 PMCID: PMC8901658 DOI: 10.1038/s41421-021-00369-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
|
35
|
Shafqat A, Kashir J, Alsalameh S, Alkattan K, Yaqinuddin A. Fertilization, Oocyte Activation, Calcium Release and Epigenetic Remodelling: Lessons From Cancer Models. Front Cell Dev Biol 2022; 10:781953. [PMID: 35309905 PMCID: PMC8931327 DOI: 10.3389/fcell.2022.781953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
Oocyte activation deficiency (OAD) is the basis of Total Fertilisation Failure (TFF) and is attributed to mutations in the PLCζ gene—termed male factor infertility. This derives abnormal Ca2+ oscillations and could be the main cause of primary disruptions in the gene expression of Ca2+-related proteins. Epigenetic mechanisms are universally accepted as key regulators of gene expression. However, epigenetic dysregulations have not been considered as potential mechanisms of oocyte-borne OAD. Herein, we discuss changes in the DNA methylome during oogenesis and embryogenesis. We further highlight key pathways comprising the oocyte Ca2+ toolkit, which could be targets of epigenetic alterations, especially aberrations in DNA methylation. Considering that the vast majority of epigenetic modifications examined during fertilization revolve around alterations in DNA methylation, we aim in this article to associate Ca2+-specific mechanisms with these alterations. To strengthen this perspective, we bring evidence from cancer research on the intricate link between DNA methylation and Ca2+ signaling as cancer research has examined such questions in a lot more detail. From a therapeutic standpoint, if our hypothesis is proven to be correct, this will explain the cause of TFF in idiopathic cases and will open doors for novel therapeutic targets.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- *Correspondence: Ahmed Yaqinuddin,
| |
Collapse
|
36
|
Teves ME, Roldan ERS. Sperm bauplan and function and underlying processes of sperm formation and selection. Physiol Rev 2022; 102:7-60. [PMID: 33880962 PMCID: PMC8812575 DOI: 10.1152/physrev.00009.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
The spermatozoon is a highly differentiated and polarized cell, with two main structures: the head, containing a haploid nucleus and the acrosomal exocytotic granule, and the flagellum, which generates energy and propels the cell; both structures are connected by the neck. The sperm's main aim is to participate in fertilization, thus activating development. Despite this common bauplan and function, there is an enormous diversity in structure and performance of sperm cells. For example, mammalian spermatozoa may exhibit several head patterns and overall sperm lengths ranging from ∼30 to 350 µm. Mechanisms of transport in the female tract, preparation for fertilization, and recognition of and interaction with the oocyte also show considerable variation. There has been much interest in understanding the origin of this diversity, both in evolutionary terms and in relation to mechanisms underlying sperm differentiation in the testis. Here, relationships between sperm bauplan and function are examined at two levels: first, by analyzing the selective forces that drive changes in sperm structure and physiology to understand the adaptive values of this variation and impact on male reproductive success and second, by examining cellular and molecular mechanisms of sperm formation in the testis that may explain how differentiation can give rise to such a wide array of sperm forms and functions.
Collapse
Affiliation(s)
- Maria Eugenia Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| |
Collapse
|
37
|
Zhao X, Lin Z, Fan Y, Li W, Zhang Y, Li F, Hong T, Feng H, Tong M, Wang N, Kuang Y, Lyu Q. YTHDF2 is essential for spermatogenesis and fertility by mediating a wave of transcriptional transition in spermatogenic cells. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1702-1712. [PMID: 34664060 DOI: 10.1093/abbs/gmab148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
The dynamic and reversible regulation roles of m6A modification and the characterization of m6A readers have provided new insights into spermatogenesis at the post-transcriptional level. YTHDF2, as an m6A reader, has been reported to mediate the m6A-containing transcript decay during the mouse oocyte maturation, embryonic stem cell differentiation, neural development, and zebrafish maternal-to-zygotic transition. However, the roles of YTHDF2 in mammalian spermatogenesis are uncertain. Here, we generated germ cell-specific Ythdf2 mutants (Ythdf2-vKO) at a C57BL/6J background and demonstrated that YTHDF2 is essential for mouse spermatogenesis and fertility. Ythdf2-vKO provides oligoasthenoteratozoospermia phenotype with increased apoptosis in germ cells. High-throughput RNA-seq analysis showed that a group of mRNAs is upregulated in Ythdf2-vKO mouse testis; further analysis and MeRIP-qPCR data showed that most of the upregulated genes in Ythdf2-vKO mouse testis are modified with m6A and are YTHDF2 candidate binding genes. Interestingly, RNA-seq analysis combined with our previous single-cell transcriptomics data of mouse spermatogenesis pointed out the failure of a wave of transcript transition during the spermatogenesis of Ythdf2-vKO mice, which was confirmed by gene expression analysis using qPCR of diplotene spermatocytes and round spermatids obtained through fluorescence-activated cell sorting. Our study demonstrates the fundamental role of YTHDF2 during mouse spermatogenesis and provides a potential candidate for the diagnosis of male infertility with the oligoasthenoteratozoospermia syndrome.
Collapse
Affiliation(s)
- Xinxi Zhao
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Zhen Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Fan
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Wenzhi Li
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Yujie Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Tong Hong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hua Feng
- Omics Core, Bio-Med Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Minghan Tong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ningling Wang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Qifeng Lyu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
38
|
Zhang L, Li F, Lei P, Guo M, Liu R, Wang L, Yu T, Lv Y, Zhang T, Zeng W, Lu H, Zheng Y. Single-cell RNA-sequencing reveals the dynamic process and novel markers in porcine spermatogenesis. J Anim Sci Biotechnol 2021; 12:122. [PMID: 34872612 PMCID: PMC8650533 DOI: 10.1186/s40104-021-00638-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Background Spermatogenesis is the process by which male gametes are formed from spermatogonial stem cells and it is essential for the reliable transmission of genetic information between generations. To date, the dynamic transcriptional changes of defined populations of male germ cells in pigs have not been reported. Results To characterize the atlas of porcine spermatogenesis, we profiled the transcriptomes of ~ 16,966 testicular cells from a 150-day-old pig testis through single-cell RNA-sequencing (scRNA-seq). The scRNA-seq analysis identified spermatogonia, spermatocytes, spermatids and three somatic cell types in porcine testes. The functional enrichment analysis demonstrated that these cell types played diverse roles in porcine spermatogenesis. The accuracy of the defined porcine germ cell types was further validated by comparing the data from scRNA-seq with those from bulk RNA-seq. Since we delineated four distinct spermatogonial subsets, we further identified CD99 and PODXL2 as novel cell surface markers for undifferentiated and differentiating spermatogonia, respectively. Conclusions The present study has for the first time analyzed the transcriptome of male germ cells and somatic cells in porcine testes through scRNA-seq. Four subsets of spermatogonia were identified and two novel cell surface markers were discovered, which would be helpful for studies on spermatogonial differentiation in pigs. The datasets offer valuable information on porcine spermatogenesis, and pave the way for identification of key molecular markers involved in development of male germ cells. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00638-3.
Collapse
Affiliation(s)
- Lingkai Zhang
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fuyuan Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peipei Lei
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ming Guo
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ruifang Liu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Taiyong Yu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yinghua Lv
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Wenxian Zeng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China.
| | - Yi Zheng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
39
|
Yeast Two-Hybrid Screen Identifies PKA-Riα Interacting Proteins during Mouse Spermiogenesis. Genes (Basel) 2021; 12:genes12121941. [PMID: 34946890 PMCID: PMC8700991 DOI: 10.3390/genes12121941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
cAMP-dependent protein kinase (PKA) signaling plays various roles during mammalian spermatogenesis, ranging from the regulation of gene expression to the modulation of sperm motility. However, the molecular mechanisms that govern the multifaceted functions of PKA during spermatogenesis remain largely unclear. We previously found that PKA regulatory subunit I α (RIα) and catalytic subunit α (Cα) co-sediment with polyribosomal fractions of mouse testis lysate on sucrose gradient and the stimulation of PKA activity facilitates protein synthesis in post-meiotic elongating spermatids, indicating that type I PKA is intricately associated with protein translation machinery and regulates protein synthesis during mouse spermiogenesis. Since PKA activity is often regulated by interacting proteins that form complexes with its regulatory subunits, the identification of PKA-RIα interacting proteins in post-meiotic spermatogenic cells will facilitate our understanding of its regulatory roles in protein synthesis and spermiogenesis. In the present study, we applied a yeast two-hybrid screen to identify PKA-Riα-binding proteins using a cDNA library generated from mouse round and elongating spermatids. Numerous proteins were found to potentially interact with PKA-RIα, including proteostasis modulators, metabolic enzymes, cytoskeletal regulators, and mitochondrial proteins, many of which are specifically expressed in testes. Consistently, the examination of MENA (mouse ENA/VASP homolog) in developing mouse testes suggested that post-meiotic spermatogenic cells express a short isoform of MENA that interacts with PKA-RIα in yeast two-hybrid assay. The identification of PKA-RIα interacting proteins provides us solid basis to further explore how PKA signaling regulates protein synthesis and cellular morphogenesis during mouse spermatogenesis.
Collapse
|
40
|
DNA Repair in Haploid Context. Int J Mol Sci 2021; 22:ijms222212418. [PMID: 34830299 PMCID: PMC8620282 DOI: 10.3390/ijms222212418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 12/15/2022] Open
Abstract
DNA repair is a well-covered topic as alteration of genetic integrity underlies many pathological conditions and important transgenerational consequences. Surprisingly, the ploidy status is rarely considered although the presence of homologous chromosomes dramatically impacts the repair capacities of cells. This is especially important for the haploid gametes as they must transfer genetic information to the offspring. An understanding of the different mechanisms monitoring genetic integrity in this context is, therefore, essential as differences in repair pathways exist that differentiate the gamete’s role in transgenerational inheritance. Hence, the oocyte must have the most reliable repair capacity while sperm, produced in large numbers and from many differentiation steps, are expected to carry de novo variations. This review describes the main DNA repair pathways with a special emphasis on ploidy. Differences between Saccharomyces cerevisiae and Schizosaccharomyces pombe are especially useful to this aim as they can maintain a diploid and haploid life cycle respectively.
Collapse
|
41
|
Zhan J, Li J, Wu Y, Wu P, Yu Z, Cui P, Zhou M, Xu Y, Jin T, Du Z, Luo M, Liu C. Chromatin-Associated Protein Sugp2 Involved in mRNA Alternative Splicing During Mouse Spermatogenesis. Front Vet Sci 2021; 8:754021. [PMID: 34733907 PMCID: PMC8558236 DOI: 10.3389/fvets.2021.754021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian spermatogenesis is a highly ordered process that is determined by chromatin-associated moderators which still remain poorly understood. Through a multi-control group proteomics strategy, we confirmed that Sugp2 was a chromatin-associated candidate protein, and its signal arose along spermatogenesis. The expression results showed that Sugp2, which is mainly expressed in the testis, had two transcripts, encoding one protein. During spermatogenesis, Sugp2 was enriched in the nucleus of male germ cells. With the depletion of Sugp2 by CRISPER-Cas9 technology, we found that Sugp2 controlled a network of genes on metal ion and ATP binding, suggesting that alternative splicing regulation by Sugp2 is involved in cellular ion and energy metabolism during spermatogenesis, while it had a little effect on meiotic progression and male fertility. Collectively, these data demonstrated that, as a chromatin-associated protein, Sugp2 mediated the alternative splicing regulatory network during spermatogenesis.
Collapse
Affiliation(s)
- Junfeng Zhan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Jianbo Li
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Yuerong Wu
- Center for Animal Experiment, Wuhan University, Wuhan, China
| | - Panfeng Wu
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Ziqi Yu
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Peng Cui
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Mofan Zhou
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yumin Xu
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Tingyu Jin
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Ziye Du
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Mengcheng Luo
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Cong Liu
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
42
|
Maehara K, Tomimatsu K, Harada A, Tanaka K, Sato S, Fukuoka M, Okada S, Handa T, Kurumizaka H, Saitoh N, Kimura H, Ohkawa Y. Modeling population size independent tissue epigenomes by ChIL-seq with single thin sections. Mol Syst Biol 2021; 17:e10323. [PMID: 34730297 PMCID: PMC8564819 DOI: 10.15252/msb.202110323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/25/2022] Open
Abstract
Recent advances in genome-wide technologies have enabled analyses using small cell numbers of even single cells. However, obtaining tissue epigenomes with cell-type resolution from large organs and tissues still remains challenging, especially when the available material is limited. Here, we present a ChIL-based approach for analyzing the diverse cellular dynamics at the tissue level using high-depth epigenomic data. "ChIL for tissues" allows the analysis of a single tissue section and can reproducibly generate epigenomic profiles from several tissue types, based on the distribution of target epigenomic states, tissue morphology, and number of cells. The proposed method enabled the independent evaluation of changes in cell populations and gene activation in cells from regenerating skeletal muscle tissues, using a statistical model of RNA polymerase II distribution on gene loci. Thus, the integrative analyses performed using ChIL can elucidate in vivo cell-type dynamics of tissues.
Collapse
Affiliation(s)
- Kazumitsu Maehara
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Kosuke Tomimatsu
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Akihito Harada
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Kaori Tanaka
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Shoko Sato
- Laboratory of Chromatin Structure and FunctionInstitute for Quantitative BiosciencesThe University of TokyoTokyoJapan
| | - Megumi Fukuoka
- Division of Cancer BiologyThe Cancer Institute of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Seiji Okada
- Division of PathophysiologyMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Tetsuya Handa
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and FunctionInstitute for Quantitative BiosciencesThe University of TokyoTokyoJapan
| | - Noriko Saitoh
- Division of Cancer BiologyThe Cancer Institute of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Hiroshi Kimura
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Yasuyuki Ohkawa
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| |
Collapse
|
43
|
Burgos M, Hurtado A, Jiménez R, Barrionuevo FJ. Non-Coding RNAs: lncRNAs, miRNAs, and piRNAs in Sexual Development. Sex Dev 2021; 15:335-350. [PMID: 34614501 DOI: 10.1159/000519237] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/09/2021] [Indexed: 11/19/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are a group of RNAs that do not encode functional proteins, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), and short interfering RNAs (siRNAs). In the last 2 decades an effort has been made to uncover the role of ncRNAs during development and disease, and nowadays it is clear that these molecules have a regulatory function in many of the developmental and physiological processes where they have been studied. In this review, we provide an overview of the role of ncRNAs during gonad determination and development, focusing mainly on mammals, although we also provide information from other species, in particular when there is not much information on the function of particular types of ncRNAs during mammalian sexual development.
Collapse
Affiliation(s)
- Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Alicia Hurtado
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Francisco J Barrionuevo
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| |
Collapse
|
44
|
Liu N, Qadri F, Busch H, Huegel S, Sihn G, Chuykin I, Hartmann E, Bader M, Rother F. Kpna6 deficiency causes infertility in male mice by disrupting spermatogenesis. Development 2021; 148:272018. [PMID: 34473250 PMCID: PMC8513612 DOI: 10.1242/dev.198374] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/18/2021] [Indexed: 11/20/2022]
Abstract
Spermatogenesis is driven by an ordered series of events, which rely on trafficking of specific proteins between nucleus and cytoplasm. The karyopherin α family of proteins mediates movement of specific cargo proteins when bound to karyopherin β. Karyopherin α genes have distinct expression patterns in mouse testis, implying they may have unique roles during mammalian spermatogenesis. Here, we use a loss-of-function approach to determine specifically the role of Kpna6 in spermatogenesis and male fertility. We show that ablation of Kpna6 in male mice leads to infertility and has multiple cumulative effects on both germ cells and Sertoli cells. Kpna6-deficient mice exhibit impaired Sertoli cell function, including loss of Sertoli cells and a compromised nuclear localization of the androgen receptor. Furthermore, our data demonstrate devastating defects on spermiogenesis, including incomplete sperm maturation and a massive reduction in sperm number, accompanied by disturbed histone-protamine exchange, differential localization of the transcriptional regulator BRWD1 and altered expression of RFX2 target genes. Our work uncovers an essential role of Kpna6 in spermatogenesis and, hence, in male fertility. Summary: Two different mouse models delineate the morphological and functional impact of Kpna6 on spermatogenesis and Sertoli cell function and show that this protein is crucial for fertility in male mice.
Collapse
Affiliation(s)
- Na Liu
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | | | - Hauke Busch
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Lübeck 23562, Germany
| | - Stefanie Huegel
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany.,Institute for Biology, Center for Structural and Cellular Biology in Medicine, University of Lübeck, Lübeck 23562, Germany
| | - Gabin Sihn
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Ilya Chuykin
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany.,Department of Cell Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Enno Hartmann
- Institute for Biology, Center for Structural and Cellular Biology in Medicine, University of Lübeck, Lübeck 23562, Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany.,Institute for Biology, Center for Structural and Cellular Biology in Medicine, University of Lübeck, Lübeck 23562, Germany
| | - Franziska Rother
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany.,Institute for Biology, Center for Structural and Cellular Biology in Medicine, University of Lübeck, Lübeck 23562, Germany
| |
Collapse
|
45
|
Hou JY, Zhou L, Li JL, Wang DP, Cao JM. Emerging roles of non-histone protein crotonylation in biomedicine. Cell Biosci 2021; 11:101. [PMID: 34059135 PMCID: PMC8166067 DOI: 10.1186/s13578-021-00616-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 05/22/2021] [Indexed: 12/25/2022] Open
Abstract
Crotonylation of proteins is a newly found type of post-translational modifications (PTMs) which occurs leadingly on the lysine residue, namely, lysine crotonylation (Kcr). Kcr is conserved and is regulated by a series of enzymes and co-enzymes including lysine crotonyltransferase (writer), lysine decrotonylase (eraser), certain YEATS proteins (reader), and crotonyl-coenzyme A (donor). Histone Kcr has been substantially studied since 2011, but the Kcr of non-histone proteins is just an emerging field since its finding in 2017. Recent advances in the identification and quantification of non-histone protein Kcr by mass spectrometry have increased our understanding of Kcr. In this review, we summarized the main proteomic characteristics of non-histone protein Kcr and discussed its biological functions, including gene transcription, DNA damage response, enzymes regulation, metabolic pathways, cell cycle, and localization of heterochromatin in cells. We further proposed the performance of non-histone protein Kcr in diseases and the prospect of Kcr manipulators as potential therapeutic candidates in the diseases.
Collapse
Affiliation(s)
- Jia-Yi Hou
- Key Laboratory of Cellular Physiology At Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China.,Department of Clinical Laboratory, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan, China
| | - Lan Zhou
- Key Laboratory of Cellular Physiology At Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jia-Lei Li
- Key Laboratory of Cellular Physiology At Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - De-Ping Wang
- Key Laboratory of Cellular Physiology At Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology At Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
46
|
Yin H, Kang Z, Zhang Y, Gong Y, Liu M, Xue Y, He W, Wang Y, Zhang S, Xu Q, Fu K, Zheng B, Xie J, Zhang J, Wang Y, Lin M, Zhang Y, Feng H, Xin C, Guan Y, Huang C, Guo X, Wang P, Baur JA, Zheng K, Sun Z, Ye L. HDAC3 controls male fertility through enzyme-independent transcriptional regulation at the meiotic exit of spermatogenesis. Nucleic Acids Res 2021; 49:5106-5123. [PMID: 33939832 PMCID: PMC8136829 DOI: 10.1093/nar/gkab313] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/11/2021] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
The transition from meiotic spermatocytes to postmeiotic haploid germ cells constitutes an essential step in spermatogenesis. The epigenomic regulatory mechanisms underlying this transition remain unclear. Here, we find a prominent transcriptomic switch from the late spermatocytes to the early round spermatids during the meiotic-to-postmeiotic transition, which is associated with robust histone acetylation changes across the genome. Among histone deacetylases (HDACs) and acetyltransferases, we find that HDAC3 is selectively expressed in the late meiotic and early haploid stages. Three independent mouse lines with the testis-specific knockout of HDAC3 show infertility and defects in meiotic exit with an arrest at the late stage of meiosis or early stage of round spermatids. Stage-specific RNA-seq and histone acetylation ChIP-seq analyses reveal that HDAC3 represses meiotic/spermatogonial genes and activates postmeiotic haploid gene programs during meiotic exit, with associated histone acetylation alterations. Unexpectedly, abolishing HDAC3 catalytic activity by missense mutations in the nuclear receptor corepressor (NCOR or SMRT) does not cause infertility, despite causing histone hyperacetylation as HDAC3 knockout, demonstrating that HDAC3 enzyme activity is not required for spermatogenesis. Motif analysis of the HDAC3 cistrome in the testes identified SOX30, which has a similar spatiotemporal expression pattern as HDAC3 during spermatogenesis. Depletion of SOX30 in the testes abolishes the genomic recruitment of the HDAC3 to the binding sites. Collectively, these results establish the SOX30/HDAC3 signaling as a key regulator of the transcriptional program in a deacetylase-independent manner during the meiotic-to-postmeiotic transition in spermatogenesis.
Collapse
Affiliation(s)
- Huiqi Yin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Zhenlong Kang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yingwen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yingyun Gong
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Mengrou Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yanfeng Xue
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wenxiu He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Shuya Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Qiushi Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Kaiqiang Fu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Bangjin Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Jinwen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yuanyuan Wang
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yihan Zhang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences
| | - Hua Feng
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences
| | - Changpeng Xin
- Center for Reproductive Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Peoples' Republic of China
| | - Yichun Guan
- Center for Reproductive Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Peoples' Republic of China
| | - Chaoyang Huang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, People's Republic of China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Joseph A Baur
- Institute for Diabetes, Obesity, and Metabolism and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| |
Collapse
|
47
|
Shmueli MD, Sheban D, Eisenberg-Lerner A, Merbl Y. Histone degradation by the proteasome regulates chromatin and cellular plasticity. FEBS J 2021; 289:3304-3316. [PMID: 33914417 PMCID: PMC9292675 DOI: 10.1111/febs.15903] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 11/27/2022]
Abstract
Histones constitute the primary protein building blocks of the chromatin and play key roles in the dynamic control of chromatin compaction and epigenetic regulation. Histones are regulated by intricate mechanisms that alter their functionality and stability, thereby expanding the regulation of chromatin‐transacting processes. As such, histone degradation is tightly regulated to provide spatiotemporal control of cellular histone abundance. While several mechanisms have been implicated in controlling histone stability, here, we discuss proteasome‐dependent degradation of histones and the protein modifications that are associated with it. We then highlight specific cellular and physiological states that are associated with altered histone degradation by cellular proteasomes.
Collapse
Affiliation(s)
- Merav D Shmueli
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Daoud Sheban
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Yifat Merbl
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
48
|
Wang X, Wen Y, Zhang J, Swanson G, Guo S, Cao C, Krawetz SA, Zhang Z, Yuan S. MFN2 interacts with nuage-associated proteins and is essential for male germ cell development by controlling mRNA fate during spermatogenesis. Development 2021; 148:dev.196295. [PMID: 33674260 DOI: 10.1242/dev.196295] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/26/2021] [Indexed: 01/06/2023]
Abstract
Mitochondria play a crucial role in spermatogenesis and are regulated by several mitochondrial fusion proteins. However, their functional importance associated with their structure formation and mRNA fate regulation during spermatogenesis remains unclear. Here, we show that mitofusin 2 (MFN2), a mitochondrial fusion protein, interacts with nuage-associated proteins (including MIWI, DDX4, TDRKH and GASZ) in mice. Conditional mutation of Mfn2 in postnatal germ cells results in male sterility due to germ cell developmental defects. Moreover, MFN2 interacts with MFN1, another mitochondrial fusion protein with a high-sequence similarity to MFN2, in testes to facilitate spermatogenesis. Simultaneous mutation of Mfn1 and Mfn2 in testes causes very severe infertile phenotypes. Importantly, we show that MFN2 is enriched in polysome fractions of testes and interacts with MSY2, a germ cell-specific DNA/RNA-binding protein, to control gamete-specific mRNA (such as Spata19) translational activity during spermatogenesis. Collectively, our findings demonstrate that MFN2 interacts with nuage-associated proteins and MSY2 to regulate male germ cell development by controlling several gamete-specific mRNA fates.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jin Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Grace Swanson
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Shuangshuang Guo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Congcong Cao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Stephen A Krawetz
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Zhibing Zhang
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA.,Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
49
|
Kobayashi Y, Tomizawa SI, Ono M, Kuroha K, Minamizawa K, Natsume K, Dizdarević S, Dočkal I, Tanaka H, Kawagoe T, Seki M, Suzuki Y, Ogonuki N, Inoue K, Matoba S, Anastassiadis K, Mizuki N, Ogura A, Ohbo K. Tsga8 is required for spermatid morphogenesis and male fertility in mice. Development 2021; 148:dev.196212. [PMID: 33766931 DOI: 10.1242/dev.196212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
During spermatogenesis, intricate gene expression is coordinately regulated by epigenetic modifiers, which are required for differentiation of spermatogonial stem cells (SSCs) contained among undifferentiated spermatogonia. We have previously found that KMT2B conveys H3K4me3 at bivalent and monovalent promoters in undifferentiated spermatogonia. Because these genes are expressed late in spermatogenesis or during embryogenesis, we expect that many of them are potentially programmed by KMT2B for future expression. Here, we show that one of the genes targeted by KMT2B, Tsga8, plays an essential role in spermatid morphogenesis. Loss of Tsga8 in mice leads to male infertility associated with abnormal chromosomal distribution in round spermatids, malformation of elongating spermatid heads and spermiation failure. Tsga8 depletion leads to dysregulation of thousands of genes, including the X-chromosome genes that are reactivated in spermatids, and insufficient nuclear condensation accompanied by reductions of TNP1 and PRM1, key factors for histone-to-protamine transition. Intracytoplasmic sperm injection (ICSI) of spermatids rescued the infertility phenotype, suggesting competency of the spermatid genome for fertilization. Thus, Tsga8 is a KMT2B target that is vitally necessary for spermiogenesis and fertility.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Shin-Ichi Tomizawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Michio Ono
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kazushige Kuroha
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Keisuke Minamizawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Koji Natsume
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Selma Dizdarević
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Ivana Dočkal
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Hiromitsu Tanaka
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Tatsukata Kawagoe
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Narumi Ogonuki
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Kimiko Inoue
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Shogo Matoba
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | | | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Kazuyuki Ohbo
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
50
|
Zhao LW, Fan HY. Revisiting poly(A)-binding proteins: Multifaceted regulators during gametogenesis and early embryogenesis. Bioessays 2021; 43:e2000335. [PMID: 33830517 DOI: 10.1002/bies.202000335] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022]
Abstract
Post-transcriptional regulation faces a distinctive challenge in gametes. Transcription is limited when the germ cells enter the division phase due to condensed chromatin, while gene expression during gamete maturation, fertilization, and early cleavage depends on existing mRNA post-transcriptional coordination. The dynamics of the 3'-poly(A) tail play crucial roles in defining mRNA fate. The 3'-poly(A) tail is covered with poly(A)-binding proteins (PABPs) that help to mediate mRNA metabolism and recent work has shed light on the number and function of germ cell-specific expressed PABPs. There are two structurally different PABP groups distinguished by their cytoplasmic and nuclear localization. Both lack catalytic activity but are coupled with various roles through their interaction with multifunctional partners during mRNA metabolism. Here, we present a synopsis of PABP function during gametogenesis and early embryogenesis and describe both conventional and current models of the functions and regulation of PABPs, with an emphasis on the physiological significance of how germ cell-specific PABPs potentially affect human fertility.
Collapse
Affiliation(s)
- Long-Wen Zhao
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|