1
|
Li Y, Zhao Q, Wang Y, Du W, Yang R, Wu J, Li Y. Lipid droplet accumulation in microglia and their potential roles. Lipids Health Dis 2025; 24:215. [PMID: 40514678 PMCID: PMC12166618 DOI: 10.1186/s12944-025-02633-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 06/02/2025] [Indexed: 06/16/2025] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS), where lipid metabolism is critical for maintaining homeostasis. In response to various external stimuli, they demonstrate a range of phenotypic expressions and lipid metabolic reprogramming. Lipid droplets (LDs) are dynamic organelles that function beyond energy storage, actively participating in neuropathological progress. Recent investigations have identified a subset of microglia characterized by the accumulation of LDs, referred to as "lipid-droplet-accumulating microglia" (LDAM). This review aims to investigate the processes involved in LD formation and degradation, the factors that modulate them, focusing particularly on the function of LDAM and their implications for CNS disorders. By synthesizing current evidence, we clarify the biological significance of LDs in these cells and their therapeutic targeting potential, providing new directions for future research.
Collapse
Affiliation(s)
- Yunxia Li
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Qi Zhao
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Yan Wang
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China
- School of Health Medicine, Nantong Institute of Technology, Nantong, Jiangsu, China
| | - Wenyi Du
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Riyun Yang
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Jian Wu
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China.
| | - Yi Li
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
2
|
Zhao XR, Gu YY, Wang JY, Yi Y, Zhang YQ, Shao QH, Liu MX, Zhang XL. The interplay between lipid droplets and Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2025:167953. [PMID: 40516715 DOI: 10.1016/j.bbadis.2025.167953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 05/15/2025] [Accepted: 06/11/2025] [Indexed: 06/16/2025]
Abstract
Lipid droplets (LDs), also known as lipid bodies, are dynamic intracellular organelles that are rich in lipids. They serve critical functions in metabolic regulation, membrane dynamics, and cellular signaling pathways. LD homeostasis plays a key role in neurotransmission, receptor activation, and neural development. Intracellular LD accumulation contributes to lipotoxicity and precedes neurodegeneration such as Parkinson's disease (PD). While recent studies have advanced our knowledge regarding how LD accumulation influences PD progression, several fundamental aspects of LD biology remain unclear. This review explores key mechanisms of LD buildup in PD pathogenesis. First, we discuss the formation and physiological roles of LD, followed by an analysis of how impaired LD generation contributes to PD development. Second, we analyze the causal relationship between LD formation and degradation. Lastly, we evaluate the therapeutic potential of LDs as diagnostic biomarkers and molecular targets for innovative neuroprotective and anti-inflammatory strategies. Thus, advancing the mechanistic understanding of LD biology can provide key insights into PD pathogenesis, facilitating the design of targeted therapies.
Collapse
Affiliation(s)
- Xin-Ru Zhao
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Ying-Ying Gu
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Jia-Yi Wang
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Ying Yi
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yan-Qiu Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Qian-Hang Shao
- Department of Pharmacy, Peking University People's Hospital, Beijing 100871, PR China
| | - Ming-Xuan Liu
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Xiao-Ling Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China.
| |
Collapse
|
3
|
Nwabufo CK. COVID-19 Alters Inflammatory, Mitochondrial, and Protein Clearance Pathway Genes: Potential Implications for New-onset Parkinsonism in Patients. J Neuroimmune Pharmacol 2025; 20:58. [PMID: 40404934 PMCID: PMC12098209 DOI: 10.1007/s11481-025-10215-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/30/2025] [Indexed: 05/24/2025]
Abstract
Several preclinical and clinical studies have shown that SARS-CoV-2 infection is associated with new-onset Parkinson's disease (PD). The overall goal of this study is to uncover how the COVID-19 severity gradient impacts the conventional pathological pathway of PD to inform the identification of at-risk patients and the development of personalized treatment strategies. Transcriptomics analysis of 43 PD pathogenic genes was conducted on nasopharyngeal swabs from 50 COVID-19 patients with varying severity including 17 outpatients, 16 non-ICU, and 17 ICU patients, compared to 13 SARS-CoV-2 negative individuals. The study shows that COVID-19 severity gradient differentially dysregulates PD pathological genes. Dysfunctional lysosomal and mitochondrial processes in outpatients and non-ICU COVID-19 patients was identified as the convergent network of COVID-19-PD interactions. These dysfunctions were later abrogated by the upregulation of the ubiquitin-proteasome system and autophagy-lysosome system in ICU COVID-19 patients. A potential synergistic co-expression and clustering of protein clearance pathway genes with other pathological genes was observed in ICU patients, indicating a possible overlap in biological pathways. Dysregulation of the PD pathopharmacogene, SLC6A3 was observed in ICU patients, suggesting potential COVID-19-gene-drug interactions. Nasopharyngeal swabs express major PD pathological genes as well as clinically relevant drug processing genes, which could advance studies on PD, including diagnosis, pathogenesis, and the development of disease-modifying treatments. Outpatients and non-ICU COVID-19 patients may face a higher risk of developing new-onset PD, whereas ICU COVID-19 patients may be more susceptible to COVID-19-gene-drug interactions.
Collapse
Affiliation(s)
- Chukwunonso K Nwabufo
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.
- OneDrug Inc, Toronto, ON, Canada.
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
4
|
Ali TT, Merghani M, Al-Azzani M, Gatzemeier LM, Hoppert M, Kaloyanova D, Outeiro TF, Neumann P, Popova B, Braus GH. Rationally designed peptides inhibit the formation of α-synuclein fibrils and oligomers. Eur J Med Chem 2025; 289:117452. [PMID: 40022877 DOI: 10.1016/j.ejmech.2025.117452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Parkinson's Disease (PD) is characterized by the pathological aggregation of α-synuclein (αSyn) into oligomers and amyloid fibrils, making αSyn aggregation a key target for drug development. Peptides have gained recent attention as potential agents to inhibit aggregation. Two previously identified peptide inhibitors, discovered through large-scale yeast screening, were used as templates for in silico mutagenesis aimed at designing novel peptides with improved efficacy in inhibiting αSyn aggregation and cytotoxicity. The newly designed peptides underwent in silico docking analysis, and the most promising candidates were tested in vitro and in cellular models. Peptides T02 and T05 emerged as the most effective inhibitors, with T02 binding αSyn monomers and T05 targeting lower-order oligomers. Both peptides reduce αSyn fibril and oligomer formation in vitro and significantly suppress αSyn aggregation and cytotoxicity in yeast and human H4 cells. These novel peptides represent antagonists of αSyn aggregation with promising potential for therapeutic intervention for PD.
Collapse
Affiliation(s)
- Tariq T Ali
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Madiha Merghani
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Waldweg 33, 37073, Göttingen, Germany
| | - Mohammed Al-Azzani
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Waldweg 33, 37073, Göttingen, Germany
| | - Luisa Maria Gatzemeier
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Waldweg 33, 37073, Göttingen, Germany
| | - Michael Hoppert
- Department of General Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Dora Kaloyanova
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands
| | - Tiago F Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Waldweg 33, 37073, Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK; Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute of Microbiology & Genetics, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Blagovesta Popova
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany.
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany.
| |
Collapse
|
5
|
Choi SG, Tittle TR, Barot RR, Betts DJ, Gallagher JJ, Kordower JH, Chu Y, Killinger BA. Proximity proteomics reveals unique and shared pathological features between multiple system atrophy and Parkinson's disease. Acta Neuropathol Commun 2025; 13:65. [PMID: 40122840 PMCID: PMC11931798 DOI: 10.1186/s40478-025-01958-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/14/2025] [Indexed: 03/25/2025] Open
Abstract
Synucleinopathies such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA) are neurodegenerative diseases with shared clinical and pathological features. Aggregates of alpha-synuclein (αsyn) phosphorylated at serine 129 (PSER129) are hallmarks of synucleinopathies, which, for PD/DLB, are found predominantly in neurons, whereas in MSA, aggregates are primarily found in oligodendroglia. It remains unclear whether the distinct pathological presentations of PD/DLB and MSA are manifestations of unique or shared pathological processes. Using the in-situ proximity labeling technique of biotinylation by antibody recognition (BAR), we compared aggregated αsyn-interactomes (BAR-PSER129) and total αsyn-interactomes (BAR-MJFR1) between MSA (n = 5) and PD/DLB (n = 10) in forebrain and midbrain structures. Comparison between MSA and PD/DLB-enriched proteins revealed 79 PD/DLB-differentially abundant proteins and only three MSA-differentially abundant proteins (CBR1, CRYAB, and GFAP). Pathway enrichment analysis revealed that vesicle/SNARE-associated pathways dominated PD/DLB interactions, whereas MSA was strongly enriched for metabolic/catabolic, iron, and cellular oxidant detoxification pathways. A subnetwork of cytosolic antioxidant enzymes called peroxiredoxins drove cellular detoxification pathway enrichment in MSA. A network of 26 proteins, including neuronal-specific proteins (e.g., SYNGR3) with HSPA8 at the core, was shared between MSA and DLB/PD. Extracellular exosome pathways were universally enriched regardless of the disease or BAR target protein. In conclusion, synucleinopathies have divergent and convergent αsyn-aggregate interactions, indicating unique and shared pathogenic mechanisms. MSA uniquely involves oxidant detoxification processes in glial cells, while vesicular processes in neurons dominate PD/DLB. Shared interactions, specifically SYNGR3, between MSA and PD/DLB suggest that neuronal axons are the origin of both diseases. In conclusion, we provide αsyn protein interaction maps for two distinct synucleinopathies.
Collapse
Affiliation(s)
- Solji G Choi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Tyler R Tittle
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Raj R Barot
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Dakota J Betts
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- University of Michigan, Ann Arbor, MI, USA
| | | | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Yaping Chu
- ASU-Banner Neurodegenerative Disease Research Center and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Bryan A Killinger
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
6
|
Fantini J, Azzaz F, Aulas A, Chahinian H, Yahi N. Preclinical assessment of a ganglioside-targeted therapy for Parkinson's disease with the first-in-class adaptive peptide AmyP53. Sci Rep 2025; 15:9144. [PMID: 40097723 PMCID: PMC11914484 DOI: 10.1038/s41598-025-94148-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/12/2025] [Indexed: 03/19/2025] Open
Abstract
We propose a new concept for the treatment of Parkinson's disease (PD), which considers that its root cause, α-synuclein, is an intrinsically disordered protein (IDP) difficult to target by classic approaches. Upon binding to lipid raft gangliosides, α-synuclein shifts from random coil to α-helix, forming Ca2+-permeable oligomeric pores triggering a neurotoxicity cascade. We used the α-synuclein-ganglioside interaction as guideline to design a therapeutic peptide (AmyP53) that combines the respective flexible ganglioside-binding domains of α-synuclein and Alzheimer's β-amyloid protein. AmyP53 is an adaptive peptide, the first representant of a new therapeutic class. It acts as a competitive inhibitor of α-synuclein oligomer formation in brain cell membranes and prevents subsequent downstream synaptotoxicity, including the loss of dopaminergic neurons in an animal α-synuclein injection model of PD. It is active against both wild-type and mutant forms of α-synuclein. AmyP53 is administered intranasally without side effects. This new concept "target the target (gangliosides), not the arrow (IDP)" is distinct from classic α-synuclein centric approaches that did not cure PD so far.
Collapse
Affiliation(s)
| | - Fodil Azzaz
- Aix Marseille Univ, INSERM UA16, Marseille, France
| | | | | | - Nouara Yahi
- Aix Marseille Univ, INSERM UA16, Marseille, France
| |
Collapse
|
7
|
Wang Y, Chen S, Lv X, He J, Liang X, Song Y. Bibliometric analysis and visualization of lipid droplets in the central nervous system: research hotspots and Frontiers (2000-2024). Front Aging Neurosci 2025; 17:1534368. [PMID: 40182755 PMCID: PMC11966413 DOI: 10.3389/fnagi.2025.1534368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Objective The aim of this study is to conduct bibliometric analysis and visualization of the research progress of lipid droplets in the central nervous system in detail using CiteSpace, VOSviewer, and to explore the current research status, hotspots, and research trends, with a view to providing a basis for future research. Methods This study utilized the Web of Science database to search for 1,066 relevant publications on lipid droplets in the central nervous system from 2000 to 2024. Bibliometric analysis was conducted using CiteSpace and VOSviewer software, producing metrics such as annual publication trends, contributions by countries, institutions, and authors, keyword co-occurrences, and reference co-citation networks. The literature of 25 years or so was explored visually to identify the important areas of lipid droplets in neurological research. Results Miguel Lopez is the largest contributor to the relevant literature with 10 publications. The United States, China, Johns Hopkins University, the University of Cambridge, and Zhejiang University are the top contributors in terms of publication volume in this research area. Current research emphasizes the mechanisms of lipid droplets in oxidative stress, neuroinflammation, and related degenerative diseases, with a particular focus on Alzheimer's Disease. Conclusion Our analysis suggests enhancing collaboration among countries, institutions, and authors in clinical and basic research on brain lipid droplets.
Collapse
Affiliation(s)
- Yanan Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Simin Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Lv
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiahui He
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Liang
- Department of Stomatology, Qianfoshan Hospital in Shandong Province, Jinan, China
| | - Yuehan Song
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Al-Azzani M, Weber S, Ramalingam N, Ramón M, Shvachiy L, Mestre G, Zech M, Sicking K, de Opakua AI, Jayanthi V, Amaral L, Agarwal A, Chandran A, Chaves SR, Winkelmann J, Trenkwalder C, Schwager M, Pauli S, Dettmer U, Fernández CO, Lautenschläger J, Zweckstetter M, Busnadiego RF, Mollenhauer B, Outeiro TF. A novel alpha-synuclein K58N missense variant in a patient with Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.07.25321793. [PMID: 39990587 PMCID: PMC11844588 DOI: 10.1101/2025.02.07.25321793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Mutations and multiplications in the SNCA gene, encoding alpha-synuclein (aSyn), are associated with familial forms of Parkinson's disease (PD). We report the identification of a novel SNCA missense mutation (NM_000345.4, cDNA 174G>C; protein K58N) in a PD patient using whole exome sequencing, and describe comprehensive molecular and cellular analysss of the effects of this novel mutation. The patient exhibited typical sporadic PD with early onset and a benign disease course. Biophysical studies revealed that the K58N substitution causes local structural effects, disrupts binding to membranes, and enhances aSyn in vitro aggregation. K58N aSyn produces fewer inclusions per cell, and fails to undergo condensate formation. The mutation increases the cytoplasmic distribution of the protein, and has minimal effect on the dynamic reversibility of serine-129 phosphorylation. In total, the identification of this novel mutation advances our understanding of aSyn biology and pathobiology.
Collapse
Affiliation(s)
- Mohammed Al-Azzani
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Sandrina Weber
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United State
| | - Maria Ramón
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Liana Shvachiy
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Gonçalo Mestre
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Kevin Sicking
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, 37077 Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Alain Ibáñez de Opakua
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
| | - Vidyashree Jayanthi
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United State
| | - Leslie Amaral
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- CBMA – Centre of Molecular and Environmental Biology, School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | - Aishwarya Agarwal
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Aswathy Chandran
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Susana R. Chaves
- CBMA – Centre of Molecular and Environmental Biology, School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Mental Health (DZPG), partner site Munich-Augsburg, Munich-Augsburg, Germany
| | - Claudia Trenkwalder
- Department of Neurosurgery, University Medical Centre Goettingen, Goettingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | - Maike Schwager
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United State
| | - Claudio O. Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPINAT), Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG). Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Argentina
| | - Janin Lautenschläger
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
| | - Ruben Fernandez Busnadiego
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, 37077 Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, 37077, Germany
- Faculty of Physics, University of Göttingen, Göttingen, 37077, Germany
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | - Tiago Fleming Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
9
|
Brücke C, Al-Azzani M, Ramalingam N, Ramón M, Sousa RL, Buratti F, Zech M, Sicking K, Amaral L, Gelpi E, Chandran A, Agarwal A, Chaves SR, Fernández CO, Dettmer U, Lautenschläger J, Zweckstetter M, Busnadiego RF, Zimprich A, Outeiro TF. A novel alpha-synuclein G14R missense variant is associated with atypical neuropathological features. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.09.23.24313864. [PMID: 39399048 PMCID: PMC11469355 DOI: 10.1101/2024.09.23.24313864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Background Parkinson's disease (PD) affects millions of people worldwide, but only 5-10% of patients suffer from a monogenic form of the disease with Mendelian inheritance. SNCA, the gene encoding for the protein alpha-synuclein (aSyn), was the first to be associated with familial forms of PD and, since then, several missense variants and multiplications of the SNCA gene have been established as rare causes of autosomal dominant forms of PD. Aim and methods A patient carrying aSyn missense mutation and his family members were studied. We present the clinical features, genetic testing - whole exome sequencing (WES), and neuropathological findings. The functional consequences of this aSyn variant were extensively investigated using biochemical, biophysical, and cellular assays. Results The patient exhibited a complex neurodegenerative disease that included generalized myocloni, bradykinesia, dystonia of the left arm and apraxia. WES identified a novel heterozygous SNCA variant (cDNA 40G>A; protein G14R). Neuropathological examination showed extensive atypical aSyn pathology with frontotemporal lobar degeneration (FTLD) and nigral degeneration pattern with abundant ring-like neuronal inclusions, and few oligodendroglial inclusions. Sanger sequencing confirmed the SNCA variant in the healthy, elderly parent of the patient patient suggesting incomplete penetrance. NMR studies suggest that the G14R mutation induces a local structural alteration in aSyn, and lower thioflavin T binding in in vitro fibrillization assays. Interestingly, the G14R aSyn fibers display different fibrillar morphologies as revealed by cryo-electron microscopy. Cellular studies of the G14R variant revealed increased inclusion formation, enhanced membrane association, and impaired dynamic reversibility of serine-129 phosphorylation. Summary The atypical neuropathological features observed, which are reminiscent of those observed for the G51D aSyn variant, suggest a causal role of the SNCA variant with a distinct clinical and pathological phenotype, which is further supported by the properties of the mutant aSyn, compatible with the strain hypothesis of proteinopathies.
Collapse
Affiliation(s)
- Christof Brücke
- Department of Neurology, Medical University Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Mohammed Al-Azzani
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United State
| | - Maria Ramón
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Rita L. Sousa
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Fiamma Buratti
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPINAT), Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG). Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Argentina
| | - Michael Zech
- Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany
- Institute of Neurogenomics, Helmholtz Munich, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Kevin Sicking
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, 37077 Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Leslie Amaral
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- CBMA – Centre of Molecular and Environmental Biology, School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | - Ellen Gelpi
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University Vienna, Austria
| | - Aswathy Chandran
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Aishwarya Agarwal
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Susana R. Chaves
- CBMA – Centre of Molecular and Environmental Biology, School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | - Claudio O. Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPINAT), Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG). Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United State
| | - Janin Lautenschläger
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Markus Zweckstetter
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
| | - Ruben Fernandez Busnadiego
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, 37077 Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, 37077, Germany
- Faculty of Physics, University of Göttingen, Göttingen, 37077, Germany
| | - Alexander Zimprich
- Department of Neurology, Medical University Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Tiago Fleming Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
10
|
Horvath I, Aning OA, KK S, Rehnberg N, Chawla S, Molin M, Westerlund F, Wittung-Stafshede P. Biological Amyloids Chemically Damage DNA. ACS Chem Neurosci 2025; 16:355-364. [PMID: 39782739 PMCID: PMC11803820 DOI: 10.1021/acschemneuro.4c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
Amyloid fibrils are protein polymers noncovalently assembled through β-strands arranged in a cross-β structure. Biological amyloids were considered chemically inert until we and others recently demonstrated their ability to catalyze chemical reactions in vitro. To further explore the functional repertoire of amyloids, we here probe if fibrils of α-synuclein (αS) display chemical reactivity toward DNA. We demonstrate that αS amyloids bind DNA at micromolar concentrations in vitro. Using the activity of DNA repair enzymes as proxy for damage, we unravel that DNA-amyloid interactions promote chemical modifications, such as single-strand nicks, to the DNA. Double-strand breaks are also evident based on nanochannel analysis of individual long DNA molecules. The amyloid fold is essential for the activity as no DNA chemical modification is detected with αS monomers. In a yeast cell model, there is increased DNA damage when αS is overexpressed. Chemical perturbation of DNA adds another chemical reaction to the set of activities emerging for biological amyloids. Since αS amyloids are also found in the nuclei of neuronal cells of Parkinson's disease (PD) patients, and increased DNA damage is a hallmark of PD, we propose that αS amyloids contribute to PD by direct chemical perturbation of DNA.
Collapse
Affiliation(s)
| | | | - Sriram KK
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Nikita Rehnberg
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Srishti Chawla
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Mikael Molin
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Fredrik Westerlund
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | | |
Collapse
|
11
|
Bolsinger MM, Moors TE, Brontesi L, Nuber S, Dettmer U, Ramalingam N. Acute lipid droplet accumulation induced by the inhibition of the phospholipase DDHD2 does not affect the level, solubility, or phosphoserine-129 status of α-synuclein. Metab Brain Dis 2025; 40:111. [PMID: 39853540 PMCID: PMC12036649 DOI: 10.1007/s11011-025-01534-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025]
Abstract
α-Synuclein (αS) is a 140 amino-acid neuronal protein highly enriched in presynaptic nerve terminals. Its progressive accumulation in Lewy bodies and neurites is the hallmark of Parkinson's disease (PD). A growing number of studies highlights a critical interplay between lipid metabolism and αS biology. Some of these works postulate a physical interaction between αS and lipid droplets (LDs), but further clarity is needed, not least because typically exogenous αS and/or heterologous systems have been studied. Here, we investigated the effects of acute LD accumulation on endogenous wild-type αS in primary rat cortical neurons. To induce robust LD accumulation within hours, we inhibited the neuronal triacylglycerol hydrolase DDHD2, a phospholipase, using the compound KLH45. KLH45-induced LD accumulation did not affect total levels, phosphoserine-129 status, or solubility of αS, and no co-localization between LDs and αS was observed under these conditions. These findings suggest that a "second hit" and/or a specific LD lipid composition may be necessary for lipid excess to affect αS homeostasis. Our work thus contributes to the debate on αS structure and lipid interaction.
Collapse
Affiliation(s)
- Magdalena M Bolsinger
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, Room 10006, 60 Fenwood Road, Boston, MA, 02115, USA
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tim E Moors
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, Room 10006, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Lisa Brontesi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, Room 10006, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Silke Nuber
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, Room 10006, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, Room 10006, 60 Fenwood Road, Boston, MA, 02115, USA.
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, Room 10006, 60 Fenwood Road, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Sugimoto Y, Takasaki T, Yamada R, Kurosaki R, Yamane T, Sugiura R. Rapamycin Abrogates Aggregation of Human α-Synuclein Expressed in Fission Yeast via an Autophagy-Independent Mechanism. Genes Cells 2025; 30:e13185. [PMID: 39695344 DOI: 10.1111/gtc.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Aggregation of alpha-synuclein (α-Syn) is implicated in the pathogenesis of several neurodegenerative disorders, such as Parkinson's disease and Dementia with Lewy bodies, collectively termed synucleinopathies. Thus, tremendous efforts are being made to develop strategies to prevent or inhibit α-Syn aggregation. Here, we genetically engineered fission yeast to express human α-Syn C-terminally fused to green fluorescent protein (GFP) at low and high levels. α-Syn was localized at the cell tips and septa at low-level expression. At high-level expression, α-Syn was observed to form cytoplasmic aggregates. Notably, rapamycin, a natural product that allosterically inhibits the mammalian target of rapamycin (mTOR) by forming a complex with FKBP12, and Torin1, a synthetic mTOR inhibitor that blocks ATP binding to mTOR, markedly reduced the number of cells harboring α-Syn aggregates. These mTOR inhibitors abrogate α-Syn aggregation without affecting α-Syn expression levels. Rapamycin, but not Torin1, failed to reduce α-Syn aggregation in the deletion cells of fkh1+, encoding FKBP12, indicating the requirement of FKBP12 for rapamycin-mediated inhibition of α-Syn aggregation. Importantly, the effect of rapamycin was also observed in the cells lacking atg1+, a key regulator of autophagy. Collectively, rapamycin abrogates human α-Syn aggregation expressed in fission yeast via an autophagy-independent mechanism mediated by FKBP12.
Collapse
Affiliation(s)
- Yoshitaka Sugimoto
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka, Japan
| | - Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka, Japan
| | - Ryuga Yamada
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka, Japan
| | - Ryo Kurosaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka, Japan
| | - Tomonari Yamane
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka, Japan
| |
Collapse
|
13
|
Vekrellis K, Emmanouilidou E, Xilouri M, Stefanis L. α-Synuclein in Parkinson's Disease: 12 Years Later. Cold Spring Harb Perspect Med 2024; 14:a041645. [PMID: 39349314 PMCID: PMC11529858 DOI: 10.1101/cshperspect.a041645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
α-Synuclein (AS) is a small presynaptic protein that is genetically, biochemically, and neuropathologically linked to Parkinson's disease (PD) and related synucleinopathies. We present here a review of the topic of this relationship, focusing on more recent knowledge. In particular, we review the genetic evidence linking AS to familial and sporadic PD, including a number of recently identified point mutations in the SNCA gene. We briefly go over the relevant neuropathological findings, stressing the evidence indicating a correlation between aberrant AS deposition and nervous system dysfunction. We analyze the structural characteristics of the protein, in relation to both its physiologic and pathological conformations, with particular emphasis on posttranslational modifications, aggregation properties, and secreted forms. We review the interrelationship of AS with various cellular compartments and functions, with particular focus on the synapse and protein degradation systems. We finally go over the recent exciting data indicating that AS can provide the basis for novel robust biomarkers in the field of synucleinopathies, while at the same time results from the first clinical trials specifically targeting AS are being reported.
Collapse
Affiliation(s)
- Kostas Vekrellis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Evangelia Emmanouilidou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Maria Xilouri
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Leonidas Stefanis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens 11528, Greece; and Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| |
Collapse
|
14
|
Liekniņa I, Reimer L, Panteļejevs T, Lends A, Jaudzems K, El-Turabi A, Gram H, Hammi A, Jensen PH, Tārs K. Structural basis of epitope recognition by anti-alpha-synuclein antibodies MJFR14-6-4-2. NPJ Parkinsons Dis 2024; 10:206. [PMID: 39463404 PMCID: PMC11514253 DOI: 10.1038/s41531-024-00822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/19/2024] [Indexed: 10/29/2024] Open
Abstract
Alpha-synuclein (α-syn) inclusions in the brain are hallmarks of so-called Lewy body diseases. Lewy bodies contain mainly aggregated α-syn together with some other proteins. Monomeric α-syn lacks a well-defined three-dimensional structure, but it can aggregate into oligomeric and fibrillar amyloid species, which can be detected using specific antibodies. Here we investigate the aggregate specificity of monoclonal MJFR14-6-4-2 antibodies. We conclude that partial masking of epitope in unstructured monomer in combination with a high local concentration of epitopes is the main reason for MJFR14-6-4-2 selectivity towards aggregates. Based on the structural insight, we produced mutant α-syn that when fibrillated is unable to bind MJFR14-6-4-2. Using these fibrils as a tool for seeding cellular α-syn aggregation, provides superior signal/noise ratio for detection of cellular α-syn aggregates by MJFR14-6-4-2. Our data provide a molecular level understanding of specific recognition of toxic amyloid oligomers, which is critical for the development of inhibitors against synucleinopathies.
Collapse
Affiliation(s)
- Ilva Liekniņa
- Latvian Biomedical Research and Study Centre, Ratsupites 1, k-1, LV-1067, Riga, Latvia
| | - Lasse Reimer
- University of Aarhus, Danish Research Institute of Translational Neuroscience DANDRITE and Department of Biomedicine, Aarhus, Denmark
| | - Teodors Panteļejevs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Alons Lends
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
- University of Latvia, Jelgavas 1, LV-1004, Riga, Latvia
| | - Aadil El-Turabi
- University of Oxford, Jenner Institute, Nuffield Department of Medicine, OX3 7DQ, Oxford, UK
| | - Hjalte Gram
- University of Aarhus, Danish Research Institute of Translational Neuroscience DANDRITE and Department of Biomedicine, Aarhus, Denmark
| | - Anissa Hammi
- University of Aarhus, Danish Research Institute of Translational Neuroscience DANDRITE and Department of Biomedicine, Aarhus, Denmark
| | - Poul Henning Jensen
- University of Aarhus, Danish Research Institute of Translational Neuroscience DANDRITE and Department of Biomedicine, Aarhus, Denmark.
| | - Kaspars Tārs
- Latvian Biomedical Research and Study Centre, Ratsupites 1, k-1, LV-1067, Riga, Latvia.
- University of Latvia, Jelgavas 1, LV-1004, Riga, Latvia.
| |
Collapse
|
15
|
Tripodi F, Lambiase A, Moukham H, Spandri G, Brioschi M, Falletta E, D'Urzo A, Vai M, Abbiati F, Pagliari S, Salvo A, Spano M, Campone L, Labra M, Coccetti P. Targeting protein aggregation using a cocoa-bean shell extract to reduce α-synuclein toxicity in models of Parkinson's disease. Curr Res Food Sci 2024; 9:100888. [PMID: 39525389 PMCID: PMC11550773 DOI: 10.1016/j.crfs.2024.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Neurodegenerative diseases are among the major challenges in modern medicine, due to the progressive aging of the world population. Among these, Parkinson's disease (PD) affects 10 million people worldwide and is associated with the aggregation of the presynaptic protein α-synuclein (α-syn). Here we use two different PD models, yeast cells and neuroblastoma cells overexpressing α-syn, to investigate the protective effect of an extract from the cocoa shell, which is a by-product of the roasting process of cocoa beans. The LC-ESI-qTOF-MS and NMR analyses allow the identification of amino acids (including the essential ones), organic acids, lactate and glycerol, confirming also the presence of the two methylxanthines, namely caffeine and theobromine. The present study demonstrates that the supplementation with the cocoa bean shell extract (CBSE) strongly improves the longevity of yeast cells expressing α-syn, reducing the level of reactive oxygen species, activating autophagy and reducing the intracellular protein aggresomes. These anti-aggregation properties are confirmed also in neuroblastoma cells, where CBSE treatment leads to activation of AMPK kinase and to a significant reduction of toxic α-syn oligomers. Results obtained by surface plasmon resonance (SPR) assay highlights that CBSE binds α-syn protein in a concentration-dependent manner, supporting its inhibitory role on the amyloid aggregation of α-syn. These findings suggest that the supplementation with CBSE in the form of nutraceuticals may represent a promising way to prevent neurodegenerative diseases associated with α-syn aggregation.
Collapse
Affiliation(s)
- Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Alessia Lambiase
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Hind Moukham
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Giorgia Spandri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Maura Brioschi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | - Annalisa D'Urzo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Marina Vai
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Francesco Abbiati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Stefania Pagliari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Andrea Salvo
- Department of Chemistry and Drug Technology, University of Roma La Sapienza, Roma, Italy
| | - Mattia Spano
- Department of Chemistry and Drug Technology, University of Roma La Sapienza, Roma, Italy
| | - Luca Campone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
16
|
Burré J, Edwards RH, Halliday G, Lang AE, Lashuel HA, Melki R, Murayama S, Outeiro TF, Papa SM, Stefanis L, Woerman AL, Surmeier DJ, Kalia LV, Takahashi R. Research Priorities on the Role of α-Synuclein in Parkinson's Disease Pathogenesis. Mov Disord 2024; 39:1663-1678. [PMID: 38946200 PMCID: PMC11808831 DOI: 10.1002/mds.29897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Various forms of Parkinson's disease, including its common sporadic form, are characterized by prominent α-synuclein (αSyn) aggregation in affected brain regions. However, the role of αSyn in the pathogenesis and evolution of the disease remains unclear, despite vast research efforts of more than a quarter century. A better understanding of the role of αSyn, either primary or secondary, is critical for developing disease-modifying therapies. Previous attempts to hone this research have been challenged by experimental limitations, but recent technological advances may facilitate progress. The Scientific Issues Committee of the International Parkinson and Movement Disorder Society (MDS) charged a panel of experts in the field to discuss current scientific priorities and identify research strategies with potential for a breakthrough. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research and Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Robert H. Edwards
- Department of Physiology and NeurologyUniversity of California, San Francisco School of MedicineSan FranciscoCaliforniaUSA
| | - Glenda Halliday
- Brain and Mind Centre, School of Medical Sciences, The University of SydneyCamperdownNew South WalesAustralia
| | - Anthony E. Lang
- Edmond J. Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health NetworkTorontoOntarioCanada
- Division of Neurology, Department of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Hilal A. Lashuel
- Laboratory of Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Ronald Melki
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRSFontenay‐Aux‐RosesFrance
| | - Shigeo Murayama
- Department of NeuropathologyTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
- The Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child DevelopmentOsaka UniversityOsakaJapan
| | - Tiago F. Outeiro
- Department of Experimental NeurodegenerationUniversity Medical CenterGöttingenGermany
- Faculty of Medical Sciences, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Stella M. Papa
- Department of NeurologySchool of Medicine, and Emory National Primate Research Center, Emory UniversityAtlantaGeorgiaUSA
| | - Leonidas Stefanis
- First Department of NeurologyEginitio Hospital, School of Medicine, National and Kapodistrian University of AthensAthensGreece
- Biomedical Research Foundation of the Academy of AthensAthensGreece
| | - Amanda L. Woerman
- Department of BiologyInstitute for Applied Life Sciences, University of Massachusetts AmherstAmherstMassachusettsUSA
- Department of Microbiology, Immunology, and PathologyPrion Research Center, Colorado State UniversityFort CollinsColoradoUSA
| | - Dalton James Surmeier
- Department of Neuroscience, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMarylandUSA
| | - Lorraine V. Kalia
- Edmond J. Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health NetworkTorontoOntarioCanada
- Division of Neurology, Department of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Ryosuke Takahashi
- Department of NeurologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
| |
Collapse
|
17
|
Choi SG, Tittle T, Barot R, Betts D, Gallagher J, Kordower JH, Chu Y, Killinger BA. Comparing alpha-synuclein-interactomes between multiple systems atrophy and Parkinson's disease reveals unique and shared pathological features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.613717. [PMID: 39345456 PMCID: PMC11429994 DOI: 10.1101/2024.09.20.613717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Introduction Primary synucleinopathies, such as Parkinson's disease (PD), Dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), are neurodegenerative disorders with some shared clinical and pathological features. Aggregates of alpha-synuclein (αsyn) phosphorylated at serine 129 (PSER129) are the hallmark of synucleinopathies, which for PD/DLB are found predominantly in neurons (Neuronal cytoplasmic inclusions "NCIs"), but for MSA, aggregates are primarily found in oligodendroglia (Glial cytoplasmic inclusions "GCIs"). It remains unclear if the distinct pathological presentation of PD/DLB and MSA are manifestations of distinct or shared pathological processes. We hypothesize that the distinct synucleinopathies MSA and PD/DLB share common molecular features. Methods Using the in-situ proximity labeling technique biotinylation by antibody recognition (BAR), we compare aggregated αsyn-interactomes (BAR-PSER129) and total αsyn-interactomes (BAR-MJFR1) between MSA (n=5) and PD/DLB (n=10) in forebrain and midbrain structures. Results For BAR-PSER129 and BAR-MJFR1 captures, αsyn was the most significantly enriched protein in PD/DLB and MSA. In PD/DLB, BAR-PSER129 identified 194 αsyn-aggregate-interacting proteins, while BAR-MJFR1 identified 245 αsyn interacting proteins. In contrast, in the MSA brain, only 38 and 175 proteins were identified for each capture, respectively. When comparing MSA and PD/DLB, a high overlap (59.5%) was observed between BAR-MJFR1 captured proteins, whereas less overlap (14.4%) was observed for BAR-PSER129. Direct comparison between MSA and PD/DLB revealed 79 PD/DLB-associated proteins and only three MSA-associated proteins (CBR1, CRYAB, and GFAP). Pathway enrichment analysis revealed PD/DLB interactions were dominated by vesicle/SNARE-associated pathways, in contrast to MSA, which strongly enriched for metabolic/catabolic, iron, and cellular oxidant detoxification pathways. A subnetwork of cytosolic antioxidant enzymes called peroxiredoxins drove cellular detoxification pathways in MSA. A common network of 26 proteins, including neuronal-specific proteins (e.g., SNYGR3) with HSPA8 at the core, was shared between MSA and DLB/PD. Extracellular exosome pathways were universally enriched regardless of disease or BAR target protein. Conclusion Synucleinopathies have divergent and convergent αsyn-aggregate interactions, indicating unique and shared pathogenic mechanisms. MSA uniquely involves oxidant detoxification processes in glial cells, while vesicular processes in neurons dominate PD/DLB. Shared interactions, specifically SNYGR3 (i.e., a neuronal protein), between MSA and PD/DLB suggest neuronal axons origin for both diseases. In conclusion, we provide αsyn aggregates protein interaction maps for two distinct synucleinopathies.
Collapse
Affiliation(s)
- S G Choi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - T Tittle
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - R Barot
- University of Illinois at Chicago. Chicago IL, USA
| | - D Betts
- University of Michigan, Ann Arbor, MI, USA
| | - J Gallagher
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - J H Kordower
- ASU-Banner Neurodegenerative Disease Research Center and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Y Chu
- ASU-Banner Neurodegenerative Disease Research Center and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - B A Killinger
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
18
|
Maruszczak KK, Chacinska A. Monitoring and analysis of mitochondrial precursor protein aggregates in the cytosol. Methods Enzymol 2024; 706:287-311. [PMID: 39455220 DOI: 10.1016/bs.mie.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
The vast majority of mitochondrial precursor proteins is synthesized in the cytosol and subsequently imported into the organelle with the help of targeting signals that are present within these proteins. Disruptions in mitochondrial import will result in the accumulation of the organellar precursors in the cytosol of the cell. If mislocalized proteins exceed their critical concentrations, they become prone to aggregation. Under certain circumstances, protein aggregation becomes an irreversible process, which eventually endangers cellular health. Impairment in mitochondrial biogenesis and its effect on cellular protein homeostasis were recently linked to neurodegeneration, therefore placing this process in the center of attention. In this chapter, we are presenting a set of techniques that allows to monitor and study mitochondrial precursor protein aggregates upon mitochondrial dysfunction in the cytosol of both yeast and human cells.
Collapse
|
19
|
Amaral L, Mendes F, Côrte-Real M, Rego A, Outeiro TF, Chaves SR. A versatile yeast model identifies the pesticides cymoxanil and metalaxyl as risk factors for synucleinopathies. CHEMOSPHERE 2024; 364:143039. [PMID: 39117080 DOI: 10.1016/j.chemosphere.2024.143039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons and the presence of Lewy bodies, which predominantly consist of aggregated forms of the protein alpha-synuclein (aSyn). While these aggregates are a pathological hallmark of PD, the etiology of most cases remains elusive. Although environmental risk factors have been identified, such as the pesticides dieldrin and MTPT, many others remain to be assessed and their molecular impacts are underexplored. This study aimed to identify pesticides that could enhance aSyn aggregation using a humanized yeast model expressing aSyn fused to GFP as a primary screening platform, which we validated using dieldrin. We found that the pesticides cymoxanil and metalaxyl induce aggregation of aSyn in yeast, which we confirmed also occurs in a model of aSyn inclusion formation using human H4 cells. In conclusion, our approach generated invaluable molecular data on the effect of pesticides, therefore providing insights into mechanisms associated with the onset and progression of PD and other synucleinopathies.
Collapse
Affiliation(s)
- Leslie Amaral
- CBMA - Centre of Molecular and Environmental Biology, ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal; University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Filipa Mendes
- CBMA - Centre of Molecular and Environmental Biology, ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
| | - Manuela Côrte-Real
- CBMA - Centre of Molecular and Environmental Biology, ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
| | - António Rego
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Tiago F Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK; Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany; Scientific Employee With an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.
| | - Susana R Chaves
- CBMA - Centre of Molecular and Environmental Biology, ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
20
|
Tripathi A, Alnakhala H, Brontesi L, Selkoe D, Dettmer U. RXR nuclear receptor signaling modulates lipid metabolism and triggers lysosomal clearance of alpha-synuclein in neuronal models of synucleinopathy. Cell Mol Life Sci 2024; 81:362. [PMID: 39162859 PMCID: PMC11336128 DOI: 10.1007/s00018-024-05373-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Disease-modifying strategies for Parkinson disease (PD), the most common synucleinopathy, represent a critical unmet medical need. Accumulation of the neuronal protein alpha-synuclein (αS) and abnormal lipid metabolism have each been implicated in PD pathogenesis. Here, we elucidate how retinoid-X-receptor (RXR) nuclear receptor signaling impacts these two aspects of PD pathogenesis. We find that activated RXR differentially regulates fatty acid desaturases, significantly reducing the transcript levels of the largely brain-specific desaturase SCD5 in human cultured neural cells and PD patient-derived neurons. This was associated with reduced perilipin-2 protein levels in patient neurons, reversal of αS-induced increases in lipid droplet (LD) size, and a reduction of triglyceride levels in human cultured cells. With regard to αS proteostasis, our study reveals that RXR agonism stimulates lysosomal clearance of αS. Our data support the involvement of Polo-like kinase 2 activity and αS S129 phosphorylation in mediating this benefit. The lowering of cellular αS levels was associated with reduced cytotoxicity. Compared to RXR activation, the RXR antagonist HX531 had the opposite effects on LD size, SCD, αS turnover, and cytotoxicity, all supporting pathway specificity. Together, our findings show that RXR-activating ligands can modulate fatty acid metabolism and αS turnover to confer benefit in cellular models of PD, including patient neurons. We offer a new paradigm to investigate nuclear receptor ligands as a promising strategy for PD and related synucleinopathies.
Collapse
Affiliation(s)
- Arati Tripathi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA, 02115, USA.
| | - Heba Alnakhala
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA, 02115, USA
| | - Lisa Brontesi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA, 02115, USA
| | - Dennis Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA, 02115, USA.
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA, 02115, USA.
| |
Collapse
|
21
|
Agarwal A, Chandran A, Raza F, Ungureanu IM, Hilcenko C, Stott K, Bright NA, Morone N, Warren AJ, Lautenschläger J. VAMP2 regulates phase separation of α-synuclein. Nat Cell Biol 2024; 26:1296-1308. [PMID: 38951707 PMCID: PMC11322000 DOI: 10.1038/s41556-024-01451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/30/2024] [Indexed: 07/03/2024]
Abstract
α-Synuclein (αSYN), a pivotal synaptic protein implicated in synucleinopathies such as Parkinson's disease and Lewy body dementia, undergoes protein phase separation. We reveal that vesicle-associated membrane protein 2 (VAMP2) orchestrates αSYN phase separation both in vitro and in cells. Electrostatic interactions, specifically mediated by VAMP2 via its juxtamembrane domain and the αSYN C-terminal region, drive phase separation. Condensate formation is specific for R-SNARE VAMP2 and dependent on αSYN lipid membrane binding. Our results delineate a regulatory mechanism for αSYN phase separation in cells. Furthermore, we show that αSYN condensates sequester vesicles and attract complexin-1 and -2, thus supporting a role in synaptic physiology and pathophysiology.
Collapse
Affiliation(s)
- Aishwarya Agarwal
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Aswathy Chandran
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Farheen Raza
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Protein and Cellular Sciences, GSK, Stevenage, UK
| | - Irina-Maria Ungureanu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Christine Hilcenko
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Nicholas A Bright
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Alan J Warren
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Janin Lautenschläger
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
22
|
Welles RM, Sojitra KA, Garabedian MV, Xia B, Wang W, Guan M, Regy RM, Gallagher ER, Hammer DA, Mittal J, Good MC. Determinants that enable disordered protein assembly into discrete condensed phases. Nat Chem 2024; 16:1062-1072. [PMID: 38316988 PMCID: PMC11929961 DOI: 10.1038/s41557-023-01423-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 12/13/2023] [Indexed: 02/07/2024]
Abstract
Cells harbour numerous mesoscale membraneless compartments that house specific biochemical processes and perform distinct cellular functions. These protein- and RNA-rich bodies are thought to form through multivalent interactions among proteins and nucleic acids, resulting in demixing via liquid-liquid phase separation. Proteins harbouring intrinsically disordered regions (IDRs) predominate in membraneless organelles. However, it is not known whether IDR sequence alone can dictate the formation of distinct condensed phases. We identified a pair of IDRs capable of forming spatially distinct condensates when expressed in cells. When reconstituted in vitro, these model proteins do not co-partition, suggesting condensation specificity is encoded directly in the polypeptide sequences. Through computational modelling and mutagenesis, we identified the amino acids and chain properties governing homotypic and heterotypic interactions that direct selective condensation. These results form the basis of physicochemical principles that may direct subcellular organization of IDRs into specific condensates and reveal an IDR code that can guide construction of orthogonal membraneless compartments.
Collapse
Affiliation(s)
- Rachel M Welles
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kandarp A Sojitra
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Mikael V Garabedian
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boao Xia
- Bioengineering Graduate Program, Rice University, Houston, TX, USA
| | - Wentao Wang
- Bioengineering Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Muyang Guan
- Chemical and Biomolecular Engineering Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Roshan M Regy
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Elizabeth R Gallagher
- Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel A Hammer
- Bioengineering Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
- Chemical and Biomolecular Engineering Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
- Chemical and Biomolecular Engineering Department, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Chemistry, Texas A&M University, College Station, TX, USA.
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA.
| | - Matthew C Good
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Bioengineering Graduate Program, University of Pennsylvania, Philadelphia, PA, USA.
- Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Zhang X, Ruan L, Wang H, Zhu J, Li T, Sun G, Dong Y, Wang Y, Berreby G, Shay A, Chen R, Ramachandran S, Dawson VL, Dawson TM, Li R. Enhancing mitochondrial proteolysis alleviates alpha-synuclein-mediated cellular toxicity. NPJ Parkinsons Dis 2024; 10:120. [PMID: 38906862 PMCID: PMC11192938 DOI: 10.1038/s41531-024-00733-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/07/2024] [Indexed: 06/23/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by mitochondrial dysfunction and accumulation of alpha-synuclein (α-Syn)-containing protein aggregates known as Lewy bodies (LB). Here, we investigated the entry of α-Syn into mitochondria to cause mitochondrial dysfunction and loss of cellular fitness in vivo. We show that α-Syn expressed in yeast and human cells is constitutively imported into mitochondria. In a transgenic mouse model, the level of endogenous α-Syn accumulation in mitochondria of dopaminergic neurons and microglia increases with age. The imported α-Syn is degraded by conserved mitochondrial proteases, most notably NLN and PITRM1 (Prd1 and Cym1 in yeast, respectively). α-Syn in the mitochondrial matrix that is not degraded interacts with respiratory chain complexes, leading to loss of mitochondrial DNA (mtDNA), mitochondrial membrane potential and cellular fitness decline. Importantly, enhancing mitochondrial proteolysis by increasing levels of specific proteases alleviated these defects in yeast, human cells, and a PD model of mouse primary neurons. Together, our results provide a direct link between α-synuclein-mediated cellular toxicity and its import into mitochondria and reveal potential therapeutic targets for the treatment of α-synucleinopathies.
Collapse
Affiliation(s)
- Xi Zhang
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, 70130-2685, USA
| | - Linhao Ruan
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hu Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jin Zhu
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Taibo Li
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Gordon Sun
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yi Dong
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yuhao Wang
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Gil Berreby
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ashley Shay
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rong Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sreekumar Ramachandran
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Valina L Dawson
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, 70130-2685, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ted M Dawson
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, 70130-2685, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rong Li
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore.
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Biological Sciences, National University of Singapore, Singapore, 117411, Singapore.
| |
Collapse
|
24
|
Coukos R, Krainc D. Key genes and convergent pathogenic mechanisms in Parkinson disease. Nat Rev Neurosci 2024; 25:393-413. [PMID: 38600347 DOI: 10.1038/s41583-024-00812-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder marked by the preferential dysfunction and death of dopaminergic neurons in the substantia nigra. The onset and progression of PD is influenced by a diversity of genetic variants, many of which lack functional characterization. To identify the most high-yield targets for therapeutic intervention, it is important to consider the core cellular compartments and functional pathways upon which the varied forms of pathogenic dysfunction may converge. Here, we review several key PD-linked proteins and pathways, focusing on the mechanisms of their potential convergence in disease pathogenesis. These dysfunctions primarily localize to a subset of subcellular compartments, including mitochondria, lysosomes and synapses. We discuss how these pathogenic mechanisms that originate in different cellular compartments may coordinately lead to cellular dysfunction and neurodegeneration in PD.
Collapse
Affiliation(s)
- Robert Coukos
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
25
|
Zubčić K, Franić D, Pravica M, Hof PR, Šimić G, Boban M. Effects of heterologous human tau protein expression in yeast models of proteotoxic stress response. CNS Neurosci Ther 2024; 30:e14304. [PMID: 37341072 PMCID: PMC11163194 DOI: 10.1111/cns.14304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND The primary histological characteristic of Alzheimer's disease is the presence of neurofibrillary tangles, which are large aggregates of tau protein. Aging is the primary risk factor for the development of Alzheimer's disease, however, the underlying causes of tau protein aggregation and toxicity are unclear. AIMS Here we investigated tau aggregation and toxicity under the conditions of compromised protein homeostasis. METHODS We used heterologous expression of human tau protein in the unicellular eukaryote yeast Saccharomyces cerevisiae with evolutionarily conserved protein quality control pathways and examined tau-dependent toxicity and aggregation using growth assays, fluorescence microscopy, and a split luciferase-based reporter NanoBiT. RESULTS Tau protein expressed in yeast under mild proteotoxic stress, or in mutants with impaired pathways for proteotoxic stress response, did not lead to synthetic toxicity or the formation of obvious aggregates. Chronologically old cells also did not develop observable tau aggregates. Our examination of tau oligomerization in living cells using NanoBiT reporter suggests that tau does not form significant levels of oligomers under basal conditions or under mild proteotoxic stress. CONCLUSION Together our data suggest that human tau protein does not represent a major burden to the protein quality control system in yeast cells.
Collapse
Affiliation(s)
- Klara Zubčić
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| | - Dina Franić
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| | - Mihaela Pravica
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's DiseaseFriedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Goran Šimić
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| | - Mirta Boban
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| |
Collapse
|
26
|
Galka D, Ali TT, Bast A, Niederleithinger M, Gerhardt E, Motosugi R, Sakata E, Knop M, Outeiro TF, Popova B, Braus GH. Inhibition of 26S proteasome activity by α-synuclein is mediated by the proteasomal chaperone Rpn14/PAAF1. Aging Cell 2024; 23:e14128. [PMID: 38415292 PMCID: PMC11113265 DOI: 10.1111/acel.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/29/2024] Open
Abstract
Parkinson's disease (PD) is characterized by aggregation of α-synuclein (α-syn) into protein inclusions in degenerating brains. Increasing amounts of aggregated α-syn species indicate significant perturbation of cellular proteostasis. Altered proteostasis depends on α-syn protein levels and the impact of α-syn on other components of the proteostasis network. Budding yeast Saccharomyces cerevisiae was used as eukaryotic reference organism to study the consequences of α-syn expression on protein dynamics. To address this, we investigated the impact of overexpression of α-syn and S129A variant on the abundance and stability of most yeast proteins using a genome-wide yeast library and a tandem fluorescent protein timer (tFT) reporter as a measure for protein stability. This revealed that the stability of in total 377 cellular proteins was altered by α-syn expression, and that the impact on protein stability was significantly enhanced by phosphorylation at Ser129 (pS129). The proteasome assembly chaperone Rpn14 was identified as one of the top candidates for increased protein stability by expression of pS129 α-syn. Elevated levels of Rpn14 enhanced the growth inhibition by α-syn and the accumulation of ubiquitin conjugates in the cell. We found that Rpn14 interacts physically with α-syn and stabilizes pS129 α-syn. The expression of α-syn along with elevated levels of Rpn14 or its human counterpart PAAF1 reduced the proteasome activity in yeast and in human cells, supporting that pS129 α-syn negatively affects the 26S proteasome through Rpn14. This comprehensive study into the alternations of protein homeostasis highlights the critical role of the Rpn14/PAAF1 in α-syn-mediated proteasome dysfunction.
Collapse
Affiliation(s)
- Dajana Galka
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and GeneticsUniversity of GöttingenGöttingenGermany
| | - Tariq T. Ali
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and GeneticsUniversity of GöttingenGöttingenGermany
| | - Alexander Bast
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and GeneticsUniversity of GöttingenGöttingenGermany
| | - Marie Niederleithinger
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and GeneticsUniversity of GöttingenGöttingenGermany
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center GöttingenGöttingenGermany
| | - Ryo Motosugi
- Institute for Auditory NeuroscienceUniversity Medical Center GöttingenGöttingenGermany
- Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC)University of GöttingenGöttingenGermany
| | - Eri Sakata
- Institute for Auditory NeuroscienceUniversity Medical Center GöttingenGöttingenGermany
- Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC)University of GöttingenGöttingenGermany
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ‐ZMBH AllianceHeidelberg UniversityHeidelbergGermany
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center GöttingenGöttingenGermany
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)GöttingenGermany
| | - Blagovesta Popova
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and GeneticsUniversity of GöttingenGöttingenGermany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and GeneticsUniversity of GöttingenGöttingenGermany
| |
Collapse
|
27
|
Wang W, Pan D, Liu Q, Chen X, Wang S. L-Carnitine in the Treatment of Psychiatric and Neurological Manifestations: A Systematic Review. Nutrients 2024; 16:1232. [PMID: 38674921 PMCID: PMC11055039 DOI: 10.3390/nu16081232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE L-carnitine (LC), a vital nutritional supplement, plays a crucial role in myocardial health and exhibits significant cardioprotective effects. LC, being the principal constituent of clinical-grade supplements, finds extensive application in the recovery and treatment of diverse cardiovascular and cerebrovascular disorders. However, controversies persist regarding the utilization of LC in nervous system diseases, with varying effects observed across numerous mental and neurological disorders. This article primarily aims to gather and analyze database information to comprehensively summarize the therapeutic potential of LC in patients suffering from nervous system diseases while providing valuable references for further research. METHODS A comprehensive search was conducted in PubMed, Web Of Science, Embase, Ovid Medline, Cochrane Library and Clinicaltrials.gov databases. The literature pertaining to the impact of LC supplementation on neurological or psychiatric disorders in patients was reviewed up until November 2023. No language or temporal restrictions were imposed on the search. RESULTS A total of 1479 articles were retrieved, and after the removal of duplicates through both automated and manual exclusion processes, 962 articles remained. Subsequently, a meticulous re-screening led to the identification of 60 relevant articles. Among these, there were 12 publications focusing on hepatic encephalopathy (HE), while neurodegenerative diseases (NDs) and peripheral nervous system diseases (PNSDs) were represented by 9 and 6 articles, respectively. Additionally, stroke was addressed in five publications, whereas Raynaud's syndrome (RS) and cognitive disorder (CD) each had three dedicated studies. Furthermore, migraine, depression, and amyotrophic lateral sclerosis (ALS) each accounted for two publications. Lastly, one article was found for other symptoms under investigation. CONCLUSION In summary, LC has demonstrated favorable therapeutic effects in the management of HE, Alzheimer's disease (AD), carpal tunnel syndrome (CTS), CD, migraine, neurofibromatosis (NF), PNSDs, RS, and stroke. However, its efficacy appears to be relatively limited in conditions such as ALS, ataxia, attention deficit hyperactivity disorder (ADHD), depression, chronic fatigue syndrome (CFS), Down syndrome (DS), and sciatica.
Collapse
Affiliation(s)
- Wenbo Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (W.W.); (D.P.); (X.C.)
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (W.W.); (D.P.); (X.C.)
| | - Qi Liu
- Department of Public Health, School of Medicine, Xizang Minzu University, Xianyang 712082, China;
| | - Xiangjun Chen
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (W.W.); (D.P.); (X.C.)
- Department of Public Health, School of Medicine, Xizang Minzu University, Xianyang 712082, China;
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (W.W.); (D.P.); (X.C.)
- Department of Public Health, School of Medicine, Xizang Minzu University, Xianyang 712082, China;
| |
Collapse
|
28
|
Xiong Q, Sun H, Wang Y, Xu Q, Zhang Y, Xu M, Zhao Z, Li P, Wu C. Lipid droplet accumulation in Wdr45-deficient cells caused by impairment of chaperone-mediated autophagic degradation of Fasn. Lipids Health Dis 2024; 23:91. [PMID: 38539242 PMCID: PMC10976834 DOI: 10.1186/s12944-024-02088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/22/2024] [Indexed: 11/12/2024] Open
Abstract
BACKGROUND β-Propeller protein-associated neurodegeneration (BPAN) is a genetic neurodegenerative disease caused by mutations in WDR45. The impairment of autophagy caused by WDR45 deficiency contributes to the pathogenesis of BPAN; however, the pathomechanism of this disease is largely unknown. Lipid dyshomeostasis is involved in neurogenerative diseases, but whether lipid metabolism is affected by Wdr45 deficiency and whether lipid dyshomeostasis contributes to the progression of BPAN are unclear. METHODS We generated Wdr45 knockout SN4741 cell lines using CRISPR‒Cas9-mediated genome editing, then lipid droplets (LDs) were stained using BODIPY 493/503. Chaperone-mediated autophagy was determined by RT-qPCR and western blotting. The expression of fatty acid synthase (Fasn) was detected by western blot in the presence or absence of the lysosomal inhibitor NH4Cl and the CMA activator AR7. The interaction between Fasn and HSC70 was analyzed using coimmunoprecipitation (Co-IP) assay. Cell viability was measured by a CCK-8 kit after treatment with the Fasn inhibitor C75 or the CMA activator AR7. RESULTS Deletion of Wdr45 impaired chaperone-mediated autophagy (CMA), thus leading to lipid droplet (LD) accumulation. Moreover, Fasn can be degraded via CMA, and that defective CMA leads to elevated Fasn, which promotes LD formation. LD accumulation is toxic to cells; however, cell viability was not rescued by Fasn inhibition or CMA activation. Inhibition of Fasn with a low concentration of C75 did not affect cell viability but decreases LD density. CONCLUSIONS These results suggested that Fasn is essential for cell survival but that excessive Fasn leads to LD accumulation in Wdr45 knockout cells.
Collapse
Affiliation(s)
- Qiuhong Xiong
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
| | - Huimin Sun
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Yanlin Wang
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Qian Xu
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Yu Zhang
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Mei Xu
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Zhonghua Zhao
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Ping Li
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
29
|
Nezhad Salari AM, Rasoulizadeh Z, Shabgah AG, Vakili-Ghartavol R, Sargazi G, Gholizadeh Navashenaq J. Exploring the mechanisms of kaempferol in neuroprotection: Implications for neurological disorders. Cell Biochem Funct 2024; 42:e3964. [PMID: 38439154 DOI: 10.1002/cbf.3964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
Kaempferol, a flavonoid compound found in various fruits, vegetables, and medicinal plants, has garnered increasing attention due to its potential neuroprotective effects in neurological diseases. This research examines the existing literature concerning the involvement of kaempferol in neurological diseases, including stroke, Parkinson's disease, Alzheimer's disease, neuroblastoma/glioblastoma, spinal cord injury, neuropathic pain, and epilepsy. Numerous in vitro and in vivo investigations have illustrated that kaempferol possesses antioxidant, anti-inflammatory, and antiapoptotic properties, contributing to its neuroprotective effects. Kaempferol has been shown to modulate key signaling pathways involved in neurodegeneration and neuroinflammation, such as the PI3K/Akt, MAPK/ERK, and NF-κB pathways. Moreover, kaempferol exhibits potential therapeutic benefits by enhancing neuronal survival, attenuating oxidative stress, enhancing mitochondrial calcium channel activity, reducing neuroinflammation, promoting neurogenesis, and improving cognitive function. The evidence suggests that kaempferol holds promise as a natural compound for the prevention and treatment of neurological diseases. Further research is warranted to elucidate the underlying mechanisms of action, optimize dosage regimens, and evaluate the safety and efficacy of this intervention in human clinical trials, thereby contributing to the advancement of scientific knowledge in this field.
Collapse
Affiliation(s)
| | - Zahra Rasoulizadeh
- Student Research Committee, Bam University of Medical Sciences, Bam, Iran
| | | | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | | |
Collapse
|
30
|
Li H, Zeng F, Huang C, Pu Q, Thomas ER, Chen Y, Li X. The potential role of glucose metabolism, lipid metabolism, and amino acid metabolism in the treatment of Parkinson's disease. CNS Neurosci Ther 2024; 30:e14411. [PMID: 37577934 PMCID: PMC10848100 DOI: 10.1111/cns.14411] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
PURPOSE OF REVIEW Parkinson's disease (PD) is a common neurodegenerative disease, which can cause progressive deterioration of motor function causing muscle stiffness, tremor, and bradykinesia. In this review, we hope to describe approaches that can improve the life of PD patients through modifications of energy metabolism. RECENT FINDINGS The main pathological features of PD are the progressive loss of nigrostriatal dopaminergic neurons and the production of Lewy bodies. Abnormal aggregation of α-synuclein (α-Syn) leading to the formation of Lewy bodies is closely associated with neuronal dysfunction and degeneration. The main causes of PD are said to be mitochondrial damage, oxidative stress, inflammation, and abnormal protein aggregation. Presence of abnormal energy metabolism is another cause of PD. Many studies have found significant differences between neurodegenerative diseases and metabolic decompensation, which has become a biological hallmark of neurodegenerative diseases. SUMMARY In this review, we highlight the relationship between abnormal energy metabolism (Glucose metabolism, lipid metabolism, and amino acid metabolism) and PD. Improvement of key molecules in glucose metabolism, fat metabolism, and amino acid metabolism (e.g., glucose-6-phosphate dehydrogenase, triglycerides, and levodopa) might be potentially beneficial in PD. Some of these metabolic indicators may serve well during the diagnosis of PD. In addition, modulation of these metabolic pathways may be a potential target for the treatment and prevention of PD.
Collapse
Affiliation(s)
- Hangzhen Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Cancan Huang
- Department of DermatologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Qiqi Pu
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | | | - Yan Chen
- Department of DermatologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| |
Collapse
|
31
|
Moors TE, Milovanovic D. Defining a Lewy Body: Running Up the Hill of Shifting Definitions and Evolving Concepts. JOURNAL OF PARKINSON'S DISEASE 2024; 14:17-33. [PMID: 38189713 PMCID: PMC10836569 DOI: 10.3233/jpd-230183] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 01/09/2024]
Abstract
Lewy bodies (LBs) are pathological hallmarks of Parkinson's disease and dementia with Lewy bodies, characterized by the accumulation of α-synuclein (αSyn) protein in the brain. While LBs were first described a century ago, their formation and morphogenesis mechanisms remain incompletely understood. Here, we present a historical overview of LB definitions and highlight the importance of semantic clarity and precise definitions when describing brain inclusions. Recent breakthroughs in imaging revealed shared features within LB subsets and the enrichment of membrane-bound organelles in these structures, challenging the conventional LB formation model. We discuss the involvement of emerging concepts of liquid-liquid phase separation, where biomolecules demix from a solution to form dense condensates, as a potential LB formation mechanism. Finally, we emphasize the need for the operational definitions of LBs based on morphological characteristics and detection protocols, particularly in studies investigating LB formation mechanisms. A better understanding of LB organization and ultrastructure can contribute to the development of targeted therapeutic strategies for synucleinopathies.
Collapse
Affiliation(s)
- Tim E. Moors
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
32
|
Na D, Lim DH, Hong JS, Lee HM, Cho D, Yu MS, Shaker B, Ren J, Lee B, Song JG, Oh Y, Lee K, Oh KS, Lee MY, Choi MS, Choi HS, Kim YH, Bui JM, Lee K, Kim HW, Lee YS, Gsponer J. A multi-layered network model identifies Akt1 as a common modulator of neurodegeneration. Mol Syst Biol 2023; 19:e11801. [PMID: 37984409 DOI: 10.15252/msb.202311801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023] Open
Abstract
The accumulation of misfolded and aggregated proteins is a hallmark of neurodegenerative proteinopathies. Although multiple genetic loci have been associated with specific neurodegenerative diseases (NDs), molecular mechanisms that may have a broader relevance for most or all proteinopathies remain poorly resolved. In this study, we developed a multi-layered network expansion (MLnet) model to predict protein modifiers that are common to a group of diseases and, therefore, may have broader pathophysiological relevance for that group. When applied to the four NDs Alzheimer's disease (AD), Huntington's disease, and spinocerebellar ataxia types 1 and 3, we predicted multiple members of the insulin pathway, including PDK1, Akt1, InR, and sgg (GSK-3β), as common modifiers. We validated these modifiers with the help of four Drosophila ND models. Further evaluation of Akt1 in human cell-based ND models revealed that activation of Akt1 signaling by the small molecule SC79 increased cell viability in all models. Moreover, treatment of AD model mice with SC79 enhanced their long-term memory and ameliorated dysregulated anxiety levels, which are commonly affected in AD patients. These findings validate MLnet as a valuable tool to uncover molecular pathways and proteins involved in the pathophysiology of entire disease groups and identify potential therapeutic targets that have relevance across disease boundaries. MLnet can be used for any group of diseases and is available as a web tool at http://ssbio.cau.ac.kr/software/mlnet.
Collapse
Affiliation(s)
- Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Do-Hwan Lim
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Jae-Sang Hong
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Hyang-Mi Lee
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Daeahn Cho
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Myeong-Sang Yu
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Bilal Shaker
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jun Ren
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Bomi Lee
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Jae Gwang Song
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Yuna Oh
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Kyungeun Lee
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Kwang-Seok Oh
- Information-based Drug Research Center, Korea Research Institute of Chemical Technology, Deajeon, Republic of Korea
| | - Mi Young Lee
- Information-based Drug Research Center, Korea Research Institute of Chemical Technology, Deajeon, Republic of Korea
| | - Min-Seok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Han Saem Choi
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Yang-Hee Kim
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Jennifer M Bui
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hyung Wook Kim
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Young Sik Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jörg Gsponer
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
33
|
Zaichick S, Caraveo G. Harnessing IGF-1 and IL-2 as biomarkers for calcineurin activity to tailor optimal FK506 dosage in α-synucleinopathies. Front Mol Biosci 2023; 10:1292555. [PMID: 38094080 PMCID: PMC10716490 DOI: 10.3389/fmolb.2023.1292555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/16/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction: Rise in Calcium (Ca2+) and hyperactive Ca2+-dependent phosphatase calcineurin represent two key determinants of a-synuclein (a-syn) pathobiology implicated in Parkinson's Disease (PD) and other neurodegenerative diseases. Calcineurin activity can be inhibited with FK506, a Food and Drug Administration (FDA)-approved compound. Our previous work demonstrated a protective effect of low doses of FK506 against a-syn pathology in various models of a-syn related pathobiology. Methods: Control and a-syn-expressing mice (12-18 months old) were injected with vehicle or two single doses of FK506 administered 4 days apart. Cerebral cortex and serum from these mice were collected and assayed using a meso scale discovery quickplex SQ 120 for cytokines and Enzyme-linked immunosorbent assay for IGF-1. Results: In this study we present evidence that reducing calcineurin activity with FK506 in a-syn transgenic mice increased insulin growth factor (IGF-1), while simultaneously decreasing IL-2 levels in both cerebral cortex and serum. Discussion: The highly conserved Ca2+/calcineurin signaling pathway is known to be affected in a-syn-dependent human disease. FK506, an already approved drug for other uses, exhibits high brain penetrance and a proven safety profile. IL-2 and IGF-1 are produced throughout life and can be measured using standard clinical methods. Our findings provide two potential biomarkers that could guide a clinical trial of FK506 in PD patients, without posing significant logistical or regulatory challenges.
Collapse
Affiliation(s)
| | - Gabriela Caraveo
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
34
|
Lurette O, Martín-Jiménez R, Khan M, Sheta R, Jean S, Schofield M, Teixeira M, Rodriguez-Aller R, Perron I, Oueslati A, Hebert-Chatelain E. Aggregation of alpha-synuclein disrupts mitochondrial metabolism and induce mitophagy via cardiolipin externalization. Cell Death Dis 2023; 14:729. [PMID: 37949858 PMCID: PMC10638290 DOI: 10.1038/s41419-023-06251-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Accumulation of α-synuclein aggregates in the substantia nigra pars compacta is central in the pathophysiology of Parkinson's disease, leading to the degeneration of dopaminergic neurons and the manifestation of motor symptoms. Although several PD models mimic the pathological accumulation of α-synuclein after overexpression, they do not allow for controlling and monitoring its aggregation. We recently generated a new optogenetic tool by which we can spatiotemporally control the aggregation of α-synuclein using a light-induced protein aggregation system. Using this innovative tool, we aimed to characterize the impact of α-synuclein clustering on mitochondria, whose activity is crucial to maintain neuronal survival. We observed that aggregates of α-synuclein transiently and dynamically interact with mitochondria, leading to mitochondrial depolarization, lower ATP production, mitochondrial fragmentation and degradation via cardiolipin externalization-dependent mitophagy. Aggregation of α-synuclein also leads to lower mitochondrial content in human dopaminergic neurons and in mouse midbrain. Interestingly, overexpression of α-synuclein alone did not induce mitochondrial degradation. This work is among the first to clearly discriminate between the impact of α-synuclein overexpression and aggregation on mitochondria. This study thus represents a new framework to characterize the role of mitochondria in PD.
Collapse
Affiliation(s)
- Olivier Lurette
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB, Canada
- Department of Biology, University of Moncton, Moncton, NB, Canada
| | - Rebeca Martín-Jiménez
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB, Canada
- Department of Biology, University of Moncton, Moncton, NB, Canada
| | - Mehtab Khan
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB, Canada
- Department of Biology, University of Moncton, Moncton, NB, Canada
| | - Razan Sheta
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC, Canada
- Department of Molecular Medecine, Université Laval, Quebec City, QC, Canada
| | - Stéphanie Jean
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB, Canada
- Department of Biology, University of Moncton, Moncton, NB, Canada
| | - Mia Schofield
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB, Canada
- Department of Biology, University of Moncton, Moncton, NB, Canada
| | - Maxime Teixeira
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC, Canada
- Department of Molecular Medecine, Université Laval, Quebec City, QC, Canada
| | - Raquel Rodriguez-Aller
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC, Canada
- Department of Molecular Medecine, Université Laval, Quebec City, QC, Canada
| | - Isabelle Perron
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB, Canada
- Department of Biology, University of Moncton, Moncton, NB, Canada
| | - Abid Oueslati
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC, Canada
- Department of Molecular Medecine, Université Laval, Quebec City, QC, Canada
| | - Etienne Hebert-Chatelain
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB, Canada.
- Department of Biology, University of Moncton, Moncton, NB, Canada.
| |
Collapse
|
35
|
Hu J, Guan X, Zhao M, Xie P, Guo J, Tan J. Genome-wide CRISPR-Cas9 Knockout Screening Reveals a TSPAN3-mediated Endo-lysosome Pathway Regulating the Degradation of α-Synuclein Oligomers. Mol Neurobiol 2023; 60:6731-6747. [PMID: 37477766 DOI: 10.1007/s12035-023-03495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
Misfolding and aggregation of α-Synuclein (α-Syn), which are hallmark pathological features of neurodegenerative diseases such as Parkinson's disease (PD) and dementia with Lewy Bodies, continue to be significant areas of research. Among the diverse forms of α-Syn - monomer, oligomer, and fibril, the oligomer is considered the most toxic. However, the mechanisms governing α-Syn oligomerization are not yet fully understood. In this study, we utilized genome-wide CRISPR/Cas9 loss-of-function screening in human HEK293 cells to identify negative regulators of α-Syn oligomerization. We found that tetraspanin 3 (TSPAN3), a presumptive four-pass transmembrane protein, but not its homolog TSPAN7, significantly modulates α-Syn oligomer levels. TSPAN3 was observed to interact with α-Syn oligomers, regulate the amount of α-Syn oligomers on the cell membrane, and promote their degradation via the clathrin-AP2 mediated endo-lysosome pathway. Our findings highlight TSPAN3 as a potential regulator of α-Syn oligomers, presenting a promising target for future PD prevention and treatment strategies.
Collapse
Affiliation(s)
- JunJian Hu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China
- Department of Central Laboratory, SSL Central Hospital of Dongguan City, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, China
| | - Xinjie Guan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Miao Zhao
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China
| | - Pengqing Xie
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jieqiong Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
36
|
Kaushal V, Klim J, Skoneczna A, Kurlandzka A, Enkhbaatar T, Kaczanowski S, Zielenkiewicz U. Apoptotic Factors Are Evolutionarily Conserved Since Mitochondrial Domestication. Genome Biol Evol 2023; 15:evad154. [PMID: 37616576 PMCID: PMC10565124 DOI: 10.1093/gbe/evad154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
The mechanisms initiating apoptotic programmed cell death in diverse eukaryotes are very similar. Basically, the mitochondrial permeability transition activates apoptotic proteases, DNases, and flavoproteins such as apoptosis-inducing factors (AIFs). According to the hypothesis of the endosymbiotic origin of apoptosis, these mechanisms evolved during mitochondrial domestication. Various phylogenetic analyses, including ours, have suggested that apoptotic factors were eubacterial protomitochondrial toxins used for killing protoeukaryotic hosts. Here, we tested whether the function of yeast Saccharomyces cerevisiae apoptotic proteases (metacaspases Mca1 and Nma111), DNase Nuc1, and flavoprotein Ndi1 can be substituted with orthologs from remotely related eukaryotes such as plants, protists, and eubacteria. We found that orthologs of remotely related eukaryotic and even eubacterial proteins can initiate apoptosis in yeast when triggered by chemical stresses. This observation suggests that apoptotic mechanisms have been maintained since mitochondrial domestication, which occurred approximately 1,800 Mya. Additionally, it supports the hypothesis that some of these apoptotic factors could be modified eubacterial toxins.
Collapse
Affiliation(s)
- Vandana Kaushal
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Joanna Klim
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Anna Kurlandzka
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Tuguldur Enkhbaatar
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Szymon Kaczanowski
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Urszula Zielenkiewicz
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warszawa, Poland
| |
Collapse
|
37
|
Welles RM, Sojitra KA, Garabedian MV, Xia B, Wang W, Guan M, Regy RM, Gallagher ER, Hammer DA, Mittal J, Good MC. Determinants of Disordered Protein Co-Assembly Into Discrete Condensed Phases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532134. [PMID: 36945618 PMCID: PMC10028963 DOI: 10.1101/2023.03.10.532134] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Cells harbor numerous mesoscale membraneless compartments that house specific biochemical processes and perform distinct cellular functions. These protein and RNA-rich bodies are thought to form through multivalent interactions among proteins and nucleic acids resulting in demixing via liquid-liquid phase separation (LLPS). Proteins harboring intrinsically disordered regions (IDRs) predominate in membraneless organelles. However, it is not known whether IDR sequence alone can dictate the formation of distinct condensed phases. We identified a pair of IDRs capable of forming spatially distinct condensates when expressed in cells. When reconstituted in vitro, these model proteins do not co-partition, suggesting condensation specificity is encoded directly in the polypeptide sequences. Through computational modeling and mutagenesis, we identified the amino acids and chain properties governing homotypic and heterotypic interactions that direct selective condensation. These results form the basis of physicochemical principles that may direct subcellular organization of IDRs into specific condensates and reveal an IDR code that can guide construction of orthogonal membraneless compartments.
Collapse
|
38
|
Yin HH, Han YL, Yan X, Guan YX. Hematoxylin modulates tau-RD protein fibrillization and ameliorates Alzheimer's disease-like symptoms in a yeast model. Int J Biol Macromol 2023; 250:126140. [PMID: 37543268 DOI: 10.1016/j.ijbiomac.2023.126140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Alzheimer's disease (AD) is one of the most serious neurodegenerative diseases with no effective treatment options available. The formation of insoluble amyloid fibrils of the hyperphosphorylated tau protein is intimately associated with AD, hence the tau protein has been a key target for AD drug development. In this work, hematoxylin was discovered as a dual functional compound, that is, acting in the inhibition of repeat domain of tau (tau-RD) protein fibrillogenesis and remodeling of pre-formed tau-RD fibrils in vitro. Meanwhile, hematoxylin was able to reduce the accumulation of tau-RD aggregates in Saccharomyces cerevisiae. Experimental and computational studies indicated that hematoxylin directly interacts with tau-RD protein through hydrophobic forces, hydrogen bonds, π-cation interactions, and π-π stackings. In addition, cellular viability assays showed that hematoxylin greatly reduced cytotoxicity induced by tau-RD aggregates. In summary, hematoxylin might be a promising candidate for further development as a potential therapeutic drug for AD patients.
Collapse
Affiliation(s)
- Huan-Huan Yin
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yin-Lei Han
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiao Yan
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | - Yi-Xin Guan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
39
|
Shrimali PC, Chen S, Das A, Dreher R, Howard MK, Ryan JJ, Buck J, Kim D, Sprunger ML, Rudra JS, Jackrel ME. Amyloidogenic propensity of self-assembling peptides and their adjuvant potential for use as DNA vaccines. Acta Biomater 2023; 169:464-476. [PMID: 37586449 DOI: 10.1016/j.actbio.2023.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
De novo designed peptides that self-assemble into cross-β rich fibrillar biomaterials have been pursued as an innovative platform for the development of adjuvant- and inflammation-free vaccines. However, they share structural and morphological properties similar to amyloid species implicated in neurodegenerative diseases, which has been a long-standing concern for their successful translation. Here, we comprehensively characterize the amyloidogenic character of the amphipathic self-assembling cross-β peptide KFE8, compared to pathological amyloid and amyloid-like proteins α-synuclein (α-syn) and TDP-43. Further, we developed plasmid-based DNA vaccines with the KFE8 backbone serving as a scaffold for delivery of a GFP model antigen. We find that expression of tandem repeats of KFE8 is non-toxic and efficiently cleared by autophagy. We also demonstrate that preformed KFE8 fibrils do not cross-seed amyloid formation of α-syn in mammalian cells compared to α-syn preformed fibrils. In mice, vaccination with plasmids encoding the KFE32-GFP fusion protein elicited robust immune responses, inducing production of significantly higher levels of anti-GFP antibodies compared to soluble GFP. Antigen-specific CD8+T cells were also detected in the spleens of vaccinated mice and cytokine profiles from antigen recall assays indicate a balanced Th1/Th2 response. These findings illustrate that cross-β-rich peptide nanofibers have distinct physicochemical properties from those of pathological amyloidogenic proteins, and are an attractive platform for the development of DNA vaccines with self-adjuvanting properties and improved safety profiles. STATEMENT OF SIGNIFICANCE: Biomaterials comprised of self-assembling peptides hold great promise for the development of new vaccines that do not require use of adjuvants. However, these materials have safety concerns, as they self-assemble into cross-β rich fibrils that are structurally similar to amyloid species implicated in disease. Here, we comprehensively study the properties of these biomaterials. We demonstrate that they have distinct properties from pathological proteins. They are non-toxic and do not trigger amyloidogenesis. Vaccination of these materials in mice elicited a robust immune response. Most excitingly, our work suggests that this platform could be used to develop DNA-based vaccines, which have few storage requirements. Further, due to their genetic encoding, longer sequences can be generated and the vaccines will be amenable to modification.
Collapse
Affiliation(s)
- Paresh C Shrimali
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Sheng Chen
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Anirban Das
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA; Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Rachel Dreher
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Matthew K Howard
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Jeremy J Ryan
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Jeremy Buck
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Darren Kim
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Macy L Sprunger
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Jai S Rudra
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA.
| | - Meredith E Jackrel
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
40
|
Mack KL, Kim H, Barbieri EM, Lin J, Braganza S, Jackrel ME, DeNizio JE, Yan X, Chuang E, Tariq A, Cupo RR, Castellano LM, Caldwell KA, Caldwell GA, Shorter J. Tuning Hsp104 specificity to selectively detoxify α-synuclein. Mol Cell 2023; 83:3314-3332.e9. [PMID: 37625404 PMCID: PMC10530207 DOI: 10.1016/j.molcel.2023.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
Hsp104 is an AAA+ protein disaggregase that solubilizes and reactivates proteins trapped in aggregated states. We have engineered potentiated Hsp104 variants to mitigate toxic misfolding of α-synuclein, TDP-43, and FUS implicated in fatal neurodegenerative disorders. Though potent disaggregases, these enhanced Hsp104 variants lack substrate specificity and can have unfavorable off-target effects. Here, to lessen off-target effects, we engineer substrate-specific Hsp104 variants. By altering Hsp104 pore loops that engage substrate, we disambiguate Hsp104 variants that selectively suppress α-synuclein toxicity but not TDP-43 or FUS toxicity. Remarkably, α-synuclein-specific Hsp104 variants emerge that mitigate α-synuclein toxicity via distinct ATPase-dependent mechanisms involving α-synuclein disaggregation or detoxification of soluble α-synuclein conformers. Importantly, both types of α-synuclein-specific Hsp104 variant reduce dopaminergic neurodegeneration in a C. elegans model of Parkinson's disease more effectively than non-specific variants. We suggest that increasing the substrate specificity of enhanced disaggregases could be applied broadly to tailor therapeutics for neurodegenerative disease.
Collapse
Affiliation(s)
- Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hanna Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Edward M Barbieri
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvanne Braganza
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meredith E Jackrel
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie E DeNizio
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaohui Yan
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Edward Chuang
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amber Tariq
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan R Cupo
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura M Castellano
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Gastelum S, Michael AF, Bolger TA. Saccharomyces cerevisiae as a research tool for RNA-mediated human disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1814. [PMID: 37671427 DOI: 10.1002/wrna.1814] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 09/07/2023]
Abstract
The budding yeast, Saccharomyces cerevisiae, has been used for decades as a powerful genetic tool to study a broad spectrum of biological topics. With its ease of use, economic utility, well-studied genome, and a highly conserved proteome across eukaryotes, it has become one of the most used model organisms. Due to these advantages, it has been used to study an array of complex human diseases. From broad, complex pathological conditions such as aging and neurodegenerative disease to newer uses such as SARS-CoV-2, yeast continues to offer new insights into how cellular processes are affected by disease and how affected pathways might be targeted in therapeutic settings. At the same time, the roles of RNA and RNA-based processes have become increasingly prominent in the pathology of many of these same human diseases, and yeast has been utilized to investigate these mechanisms, from aberrant RNA-binding proteins in amyotrophic lateral sclerosis to translation regulation in cancer. Here we review some of the important insights that yeast models have yielded into the molecular pathology of complex, RNA-based human diseases. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Stephanie Gastelum
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Allison F Michael
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Timothy A Bolger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
42
|
Flores-Leon M, Outeiro TF. More than meets the eye in Parkinson's disease and other synucleinopathies: from proteinopathy to lipidopathy. Acta Neuropathol 2023; 146:369-385. [PMID: 37421475 PMCID: PMC10412683 DOI: 10.1007/s00401-023-02601-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
The accumulation of proteinaceous inclusions in the brain is a common feature among neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease (PD), and dementia with Lewy bodies (DLB). The main neuropathological hallmark of PD and DLB are inclusions, known as Lewy bodies (LBs), enriched not only in α-synuclein (aSyn), but also in lipid species, organelles, membranes, and even nucleic acids. Furthermore, several genetic risk factors for PD are mutations in genes involved in lipid metabolism, such as GBA1, VSP35, or PINK1. Thus, it is not surprising that mechanisms that have been implicated in PD, such as inflammation, altered intracellular and vesicular trafficking, mitochondrial dysfunction, and alterations in the protein degradation systems, may be also directly or indirectly connected through lipid homeostasis. In this review, we highlight and discuss the recent evidence that suggests lipid biology as important drivers of PD, and which require renovated attention by neuropathologists. Particularly, we address the implication of lipids in aSyn accumulation and in the spreading of aSyn pathology, in mitochondrial dysfunction, and in ER stress. Together, this suggests we should broaden the view of PD not only as a proteinopathy but also as a lipidopathy.
Collapse
Affiliation(s)
- Manuel Flores-Leon
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Science, Göttingen, Germany.
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.
| |
Collapse
|
43
|
Howard MK, Miller KR, Sohn BS, Ryan JJ, Xu A, Jackrel ME. Probing the drivers of Staphylococcus aureus biofilm protein amyloidogenesis and disrupting biofilms with engineered protein disaggregases. mBio 2023; 14:e0058723. [PMID: 37195208 PMCID: PMC10470818 DOI: 10.1128/mbio.00587-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 05/18/2023] Open
Abstract
Phenol-soluble modulins (PSMs) are the primary proteinaceous component of Staphylococcus aureus biofilms. Residence in the protective environment of biofilms allows bacteria to rapidly evolve and acquire antimicrobial resistance, which can lead to persistent infections such as those caused by methicillin-resistant S. aureus (MRSA). In their soluble form, PSMs hinder the immune response of the host and can increase the virulence potential of MRSA. PSMs also self-assemble into insoluble functional amyloids that contribute to the structural scaffold of biofilms. The specific roles of PSM peptides in biofilms remain poorly understood. Here, we report the development of a genetically tractable yeast model system for studying the properties of PSMα peptides. Expression of PSMα peptides in yeast drives the formation of toxic insoluble aggregates that adopt vesicle-like structures. Using this system, we probed the molecular drivers of PSMα aggregation to delineate key similarities and differences among the PSMs and identified a crucial residue that drives PSM features. Biofilms are a major public health threat; thus, biofilm disruption is a key goal. To solubilize aggregates comprised of a diverse range of amyloid and amyloid-like species, we have developed engineered variants of Hsp104, a hexameric AAA+ protein disaggregase from yeast. Here, we demonstrate that potentiated Hsp104 variants counter the toxicity and aggregation of PSMα peptides. Further, we demonstrate that a potentiated Hsp104 variant can drive the disassembly of preformed S. aureus biofilms. We suggest that this new yeast model can be a powerful platform for screening for agents that disrupt PSM aggregation and that Hsp104 disaggregases could be a promising tool for the safe enzymatic disruption of biofilms. IMPORTANCE Biofilms are complex mixtures secreted by bacteria that form a material in which the bacteria can become embedded. This process transforms the properties of the bacteria, and they become more resistant to removal, which can give rise to multidrug-resistant strains, such as methicillin-resistant Staphylococcus aureus (MRSA). Here, we study phenol-soluble modulins (PSMs), which are amyloidogenic proteins secreted by S. aureus, that become incorporated into biofilms. Biofilms are challenging to study, so we have developed a new genetically tractable yeast model to study the PSMs. We used our system to learn about several key features of the PSMs. We also demonstrate that variants of an amyloid disaggregase, Hsp104, can disrupt the PSMs and, more importantly, dissolve preformed S. aureus biofilms. We propose that our system can be a powerful screening tool and that Hsp104 disaggregases may be a new avenue to explore for biofilm disruption agents.
Collapse
Affiliation(s)
- Matthew K. Howard
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Karlie R. Miller
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Brian S. Sohn
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Jeremy J. Ryan
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Andy Xu
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | | |
Collapse
|
44
|
Babazadeh R, Schneider KL, Fischbach A, Hao X, Liu B, Nystrom T. The yeast guanine nucleotide exchange factor Sec7 is a bottleneck in spatial protein quality control and detoxifies neurological disease proteins. Sci Rep 2023; 13:14068. [PMID: 37640758 PMCID: PMC10462735 DOI: 10.1038/s41598-023-41188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
ER-to-Golgi trafficking partakes in the sorting of misfolded cytoplasmic proteins to reduce their cytological toxicity. We show here that yeast Sec7, a protein involved in proliferation of the Golgi, is part of this pathway and participates in an Hsp70-dependent formation of insoluble protein deposits (IPOD). Sec7 associates with the disaggregase Hsp104 during a mild heat shock and increases the rate of Hsp104 diffusion in an Hsp70-dependent manner when overproduced. Sec7 overproduction increased formation of IPODs from smaller aggregates and mitigated the toxicity of Huntingtin exon-1 upon heat stress while Sec7 depletion increased sensitivity to aẞ42 of the Alzheimer's disease and α-synuclein of the Parkinson's disease, suggesting a role of Sec7 in mitigating proteotoxicity.
Collapse
Affiliation(s)
- Roja Babazadeh
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Kara L Schneider
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Arthur Fischbach
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Xinxin Hao
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9 C, 413 90, Gothenburg, Sweden
| | - Thomas Nystrom
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, 405 30, Gothenburg, Sweden.
| |
Collapse
|
45
|
Chawla S, Ahmadpour D, Schneider KL, Kumar N, Fischbach A, Molin M, Nystrom T. Calcineurin stimulation by Cnb1p overproduction mitigates protein aggregation and α-synuclein toxicity in a yeast model of synucleinopathy. Cell Commun Signal 2023; 21:220. [PMID: 37620860 PMCID: PMC10464345 DOI: 10.1186/s12964-023-01242-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
The calcium-responsive phosphatase, calcineurin, senses changes in Ca2+ concentrations in a calmodulin-dependent manner. Here we report that under non-stress conditions, inactivation of calcineurin signaling or deleting the calcineurin-dependent transcription factor CRZ1 triggered the formation of chaperone Hsp100p (Hsp104p)-associated protein aggregates in Saccharomyces cerevisiae. Furthermore, calcineurin inactivation aggravated α-Synuclein-related cytotoxicity. Conversely, elevated production of the calcineurin activator, Cnb1p, suppressed protein aggregation and cytotoxicity associated with the familial Parkinson's disease-related mutant α-Synuclein A53T in a partly CRZ1-dependent manner. Activation of calcineurin boosted normal localization of both wild type and mutant α-synuclein to the plasma membrane, an intervention previously shown to mitigate α-synuclein toxicity in Parkinson's disease models. The findings demonstrate that calcineurin signaling, and Ca2+ influx to the vacuole, limit protein quality control in non-stressed cells and may have implications for elucidating to which extent aberrant calcineurin signaling contributes to the progression of Parkinson's disease(s) and other synucleinopathies. Video Abstract.
Collapse
Affiliation(s)
- Srishti Chawla
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, 405 30, Sweden.
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
| | - Doryaneh Ahmadpour
- Center for Bionics and Pain Research, Sahlgrenska University Hospital, Mölndal, 431 30, Sweden
| | - Kara L Schneider
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, 405 30, Sweden
| | - Navinder Kumar
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, 405 30, Sweden
| | - Arthur Fischbach
- Max Planck Institute for Biology of Ageing, Cologne, 50931, Germany
| | - Mikael Molin
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Thomas Nystrom
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, 405 30, Sweden.
| |
Collapse
|
46
|
Del Vecchio M, Amado L, Cogan AP, Meert E, Rosseels J, Franssens V, Govers SK, Winderickx J, Montoro AG. Multiple tethers of organelle contact sites are involved in α-synuclein toxicity in yeast. Mol Biol Cell 2023; 34:ar84. [PMID: 37074954 PMCID: PMC10398879 DOI: 10.1091/mbc.e23-01-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023] Open
Abstract
The protein α-synuclein (α-syn) is one of the major factors linked to Parkinson's disease, yet how its misfolding and deposition contribute to the pathology remains largely elusive. Recently, contact sites among organelles were implicated in the development of this disease. Here, we used the budding yeast Saccharomyces cerevisiae, in which organelle contact sites have been characterized extensively, as a model to investigate their role in α-syn cytotoxicity. We observed that lack of specific tethers that anchor the endoplasmic reticulum to the plasma membrane resulted in cells with increased resistance to α-syn expression. Additionally, we found that strains lacking two dual-function proteins involved in contact sites, Mdm10 and Vps39, were resistant to the expression of α-syn. In the case of Mdm10, we found that this is related to its function in mitochondrial protein biogenesis and not to its role as a contact site tether. In contrast, both functions of Vps39, in vesicular transport and as a tether of the vacuole-mitochondria contact site, were required to support α-syn toxicity. Overall, our findings support that interorganelle communication through membrane contact sites is highly relevant for α-syn-mediated toxicity.
Collapse
Affiliation(s)
- Mara Del Vecchio
- Department of Biology, Functional Biology Laboratory, KU Leuven, 3001 Heverlee, Belgium
- Department of Biology, Microbial Systems Cell Biology Laboratory, KU Leuven, 3001 Heverlee, Belgium
| | - Lucia Amado
- Department of Biology/Chemistry, Cellular Communication Laboratory, Osnabrück University, 49076 Osnabrück, Germany
| | - Alexandra P. Cogan
- Department of Biology/Chemistry, Cellular Communication Laboratory, Osnabrück University, 49076 Osnabrück, Germany
| | - Els Meert
- Department of Biology, Functional Biology Laboratory, KU Leuven, 3001 Heverlee, Belgium
| | - Joelle Rosseels
- Department of Biology, Functional Biology Laboratory, KU Leuven, 3001 Heverlee, Belgium
| | - Vanessa Franssens
- Department of Biology, Functional Biology Laboratory, KU Leuven, 3001 Heverlee, Belgium
| | - Sander K. Govers
- Department of Biology, Microbial Systems Cell Biology Laboratory, KU Leuven, 3001 Heverlee, Belgium
| | - Joris Winderickx
- Department of Biology, Functional Biology Laboratory, KU Leuven, 3001 Heverlee, Belgium
| | - Ayelén González Montoro
- Department of Biology/Chemistry, Cellular Communication Laboratory, Osnabrück University, 49076 Osnabrück, Germany
- Center of Cellular Nanoanalytics Osnabrück, 49076 Osnabrück, Germany
| |
Collapse
|
47
|
Amm I, Weberruss M, Hellwig A, Schwarz J, Tatarek-Nossol M, Lüchtenborg C, Kallas M, Brügger B, Hurt E, Antonin W. Distinct domains in Ndc1 mediate its interaction with the Nup84 complex and the nuclear membrane. J Cell Biol 2023; 222:e202210059. [PMID: 37154843 PMCID: PMC10165475 DOI: 10.1083/jcb.202210059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/31/2023] [Accepted: 03/17/2023] [Indexed: 05/10/2023] Open
Abstract
Nuclear pore complexes (NPCs) are embedded in the nuclear envelope and built from ∼30 different nucleoporins (Nups) in multiple copies, few are integral membrane proteins. One of these transmembrane nucleoporins, Ndc1, is thought to function in NPC assembly at the fused inner and outer nuclear membranes. Here, we show a direct interaction of Ndc1's transmembrane domain with Nup120 and Nup133, members of the pore membrane coating Y-complex. We identify an amphipathic helix in Ndc1's C-terminal domain binding highly curved liposomes. Upon overexpression, this amphipathic motif is toxic and dramatically alters the intracellular membrane organization in yeast. Ndc1's amphipathic motif functionally interacts with related motifs in the C-terminus of the nucleoporins Nup53 and Nup59, important for pore membrane binding and interconnecting NPC modules. The essential function of Ndc1 can be suppressed by deleting the amphipathic helix from Nup53. Our data indicate that nuclear membrane and presumably NPC biogenesis depends on a balanced ratio between amphipathic motifs in diverse nucleoporins.
Collapse
Affiliation(s)
- Ingo Amm
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Marion Weberruss
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Andrea Hellwig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Johannes Schwarz
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Marianna Tatarek-Nossol
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Christian Lüchtenborg
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Martina Kallas
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
48
|
Goldstein O, Gana-Weisz M, Banfi S, Nigro V, Bar-Shira A, Thaler A, Gurevich T, Mirelman A, Giladi N, Alcalay RN, Orr-Urtreger A. Novel variants in genes related to vesicle-mediated-transport modify Parkinson's disease risk. Mol Genet Metab 2023; 139:107608. [PMID: 37201419 DOI: 10.1016/j.ymgme.2023.107608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVES VPS35 and VPS13 have been associated with Parkinson's disease (PD), and their shared phenotype in yeast when reduced in function is abnormal vacuolar transport. We aim to test if additional potentially deleterious variants in other genes that share this phenotype can modify the risk for PD. METHODS 77 VPS and VPS-related genes were analyzed using whole-genome-sequencing data from 202 PD patients of Ashkenazi Jewish (AJ) ancestry. Filtering was done based on quality and functionality scores. Ten variants in nine genes were further genotyped in 1200 consecutively recruited unrelated AJ-PD patients, and allele frequencies and odds ratio calculated compared to gnomAD-AJ-non-neuro database, in un-stratified (n = 1200) and stratified manner (LRRK2-G2019S-PD patients (n = 145), GBA-PD patients (n = 235), and non-carriers of these mutations (NC, n = 787)). RESULTS Five variants in PIK3C3, VPS11, AP1G2, HGS and VPS13D were significantly associated with PD-risk. PIK3C3-R768W showed a significant association in an un-stratified (all PDs) analysis, as well as in stratified (LRRK2, GBA, and NC) analyses (Odds ratios = 2.71, 5.32, 3.26. and 2.19 with p = 0.0015, 0.002, 0.0287, and 0.0447, respectively). AP1G2-R563W was significantly associated in LRRK2-carriers (OR = 3.69, p = 0.006) while VPS13D-D2932N was significantly associated in GBA-carriers (OR = 5.45, p = 0.0027). VPS11-C846G and HGS-S243Y were significantly associated in NC (OR = 2.48 and 2.06, with p = 0.022 and 0.0163, respectively). CONCLUSIONS Variants in genes involved in vesicle-mediated protein transport and recycling pathways, including autophagy and mitophagy, may differentially modify PD-risk in LRRK2-carriers, GBA carriers, or NC. Specifically, PIK3C3-R768W is a PD-risk allele, with the highest effect size in LRRK2-G2019S carriers. These results suggest oligogenic effect that may depends on the genetic background of the patient. An unbiased burden of mutations approach in these genes should be evaluated in additional PD and control groups. The mechanisms by which these novel variants interact and increase PD-risk should be researched in depth for better tailoring therapeutic intervention for PD prevention or slowing disease progression.
Collapse
Affiliation(s)
- Orly Goldstein
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mali Gana-Weisz
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, NA, Italy; Medical Genetics, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, NA, Italy; Medical Genetics, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anat Bar-Shira
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Avner Thaler
- Movement disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tanya Gurevich
- Movement disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- Movement disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nir Giladi
- Movement disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Roy N Alcalay
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Movement disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Avi Orr-Urtreger
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
49
|
Zadoorian A, Du X, Yang H. Lipid droplet biogenesis and functions in health and disease. Nat Rev Endocrinol 2023:10.1038/s41574-023-00845-0. [PMID: 37221402 DOI: 10.1038/s41574-023-00845-0] [Citation(s) in RCA: 221] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
Ubiquitous yet unique, lipid droplets are intracellular organelles that are increasingly being recognized for their versatility beyond energy storage. Advances uncovering the intricacies of their biogenesis and the diversity of their physiological and pathological roles have yielded new insights into lipid droplet biology. Despite these insights, the mechanisms governing the biogenesis and functions of lipid droplets remain incompletely understood. Moreover, the causal relationship between the biogenesis and function of lipid droplets and human diseases is poorly resolved. Here, we provide an update on the current understanding of the biogenesis and functions of lipid droplets in health and disease, highlighting a key role for lipid droplet biogenesis in alleviating cellular stresses. We also discuss therapeutic strategies of targeting lipid droplet biogenesis, growth or degradation that could be applied in the future to common diseases, such as cancer, hepatic steatosis and viral infection.
Collapse
Affiliation(s)
- Armella Zadoorian
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
50
|
Joshi N, Sarhadi TR, Raveendran A, Nagotu S. Sporadic SNCA mutations A18T and A29S exhibit variable effects on protein aggregation, cell viability and oxidative stress. Mol Biol Rep 2023:10.1007/s11033-023-08457-7. [PMID: 37155014 DOI: 10.1007/s11033-023-08457-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND α-synuclein aggregation is the hallmark feature of Parkinson's disease. Both familial and sporadic forms of the disease exhibit this feature. Several mutations have been identified in patients and are associated with the disease pathology. METHODS AND RESULTS We have used site-directed mutagenesis to generate α-synuclein mutant variants tagged with GFP. Fluorescence microscopy, flow cytometry, western blotting, cell viability and oxidative stress analysis were performed to investigate the effect of two less studied α-synuclein variants. In this study we characterized two less studied α-synuclein mutations, A18T and A29S, in the well-established yeast model. Our data shows variable expression, distribution and toxicity of the protein in the mutant variants A18T, A29S, A53T and WT. The cells expressing the double mutant variant A18T/A53T showed the most increase in the aggregation phenotype and also depicted reduced viability suggesting a more substantial effect of this variant. CONCLUSION The outcome of our study highlights the variable localization, aggregation phenotype and toxicity of the studied α-synuclein variants. This underscores the importance of in-depth analysis of every disease-associated mutation which may result in variable cellular phenotype.
Collapse
Affiliation(s)
- Neha Joshi
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Tanveera Rounaque Sarhadi
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Atchaya Raveendran
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|