1
|
Williams MD, Smith L. Streptococcus salivarius and Ligilactobacillus salivarius: Paragons of Probiotic Potential and Reservoirs of Novel Antimicrobials. Microorganisms 2025; 13:555. [PMID: 40142448 PMCID: PMC11944278 DOI: 10.3390/microorganisms13030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
This review highlights several basic problems associated with bacterial drug resistance, including the decreasing efficacy of commercially available antimicrobials as well as the related problem of microbiome irregularity and dysbiosis. The article explains that this present situation is addressable through LAB species, such as Streptococcus salivarius and Ligilactobacillus salivarius, which are well established synthesizers of both broad- and narrow-spectrum antimicrobials. The sheer number of antimicrobials produced by LAB species and the breadth of their biological effects, both in terms of their bacteriostatic/bactericidal abilities and their immunomodulation, make them prime candidates for new probiotics and antibiotics. Given the ease with which several of the molecules can be biochemically engineered and the fact that many of these compounds target evolutionarily constrained target sites, it seems apparent that these compounds and their producing organisms ought to be looked at as the next generation of robust dual action symbiotic drugs.
Collapse
Affiliation(s)
| | - Leif Smith
- Department of Biology, Texas A&M University, College Station, TX 77843, USA;
- Antimicrobial Division, Sano Chemicals Inc., Bryan, TX 77808, USA
| |
Collapse
|
2
|
Xu Y, Reuvekamp R, Kuipers OP. Biosynthesis of Antimicrobial Ornithine-Containing Lacticin 481 Analogues by Use of a Combinatorial Biosynthetic Pathway in Escherichia coli. ACS Synth Biol 2024; 13:4209-4217. [PMID: 39660664 DOI: 10.1021/acssynbio.4c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Lacticin 481, a ribosomally synthesized and post-translationally modified peptide (RiPP), exhibits antimicrobial activity, for which its characteristic lanthionine and methyllanthionine ring structures are essential. The post-translational introduction of (methyl)lanthionines in lacticin 481 is catalyzed by the enzyme LctM. In addition to macrocycle formation, various other post-translational modifications can enhance and modulate the chemical and functional diversity of antimicrobial peptides. The incorporation of noncanonical amino acids, occurring in many nonribosomal peptides (NRPs), is a valuable strategy to improve the properties of antimicrobial peptides. Ornithine, a noncanonical amino acid, can be integrated into RiPPs through the conversion of arginine residues by the newly characterized peptide arginase OspR. Recently, a flexible expression system was described for engineering lanthipeptides using the post-translational modification enzyme SyncM, which has a relaxed substrate specificity. This study demonstrates that SyncM is able to catalyze the production of active lacticin 481 by recognition of a designed hybrid leader peptide, which enables the incorporation of both ornithine and (methyl)lanthionine. Utilizing this hybrid leader peptide, the functional order was established for the production of active ornithine-containing lacticin 481 analogues at positions 8 and 12 in vivo. Furthermore, this study demonstrates that prior lanthionine (Lan) and methyllanthionine (MeLan) formation may preclude ornithine incorporation at specific sites of lacticin 481. The antibacterial activity of ornithine-containing lacticin 481 analogues was evaluated using Bacillus subtilis as the indicator strain. Overall, the synthetic biology pathway constructed here helped to elucidate aspects of the substrate preferences of OspR and SyncM, offering practical guidance to combine these modifications for further lantibiotic bioengineering.
Collapse
Affiliation(s)
- Yanli Xu
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Roos Reuvekamp
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
3
|
Wang M, Wu M, Han M, Niu X, Fan A, Zhu S, Tong Y. Mining the Biosynthetic Landscape of Lactic Acid Bacteria Unearths a New Family of RiPPs Assembled by a Novel Type of ThiF-like Adenylyltransferases. ACS OMEGA 2024; 9:30891-30903. [PMID: 39035879 PMCID: PMC11256085 DOI: 10.1021/acsomega.4c03760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are chemically diverse natural products of ribosomal origin. These peptides, which frequently act as signals or antimicrobials, are biosynthesized by conserved enzymatic machinery, making genome mining a powerful strategy for unearthing previously uncharacterized members of their class. Herein, we investigate the untapped biosynthetic potential of Lactobacillales (i.e., lactic acid bacteria), an order of Gram-positive bacteria closely associated with human life, including pathogenic species and industrially relevant fermenters of dairy products. Through genome mining methods, we systematically explored the distribution and diversity of ThiF-like adenylyltransferase-utilizing RiPP systems in lactic acid bacteria and identified a number of unprecedented biosynthetic gene clusters. In one of these clusters, we found a previously undescribed group of macrocyclic imide biosynthetic pathways containing multiple transporters that may be involved in a potential quorum sensing (QS) system. Through in vitro assays, we determined that one such adenylyltransferase specifically catalyzes the intracyclization of its precursor peptide through macrocyclic imide formation. Incubating the enzyme with various primary amines revealed that it could effectively amidate the C-terminus of the precursor peptide. This new transformation adds to the growing list of Nature's peptide macrocyclization strategies and expands the impressive catalytic repertoire of the adenylyltransferase family. The diverse RiPP systems identified herein represent a vast, unexploited landscape for the discovery of a novel class of natural products and QS systems.
Collapse
Affiliation(s)
- Mengjiao Wang
- College
of Life Science and Technology, Beijing
University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Mengyue Wu
- State
Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, People’s
Republic of China
| | - Meng Han
- MOE
Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Xiaogang Niu
- Beijing
Nuclear Magnetic Resonance Center, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Aili Fan
- State
Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, People’s
Republic of China
| | - Shaozhou Zhu
- National
Institutes for Food and Drug Control, Beijing 102629, People’s Republic of China
| | - Yigang Tong
- College
of Life Science and Technology, Beijing
University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|
4
|
Larsen CK, Lindquist P, Rosenkilde M, Madsen AR, Haselmann K, Glendorf T, Olesen K, Kodal ALB, Tørring T. Using LanM Enzymes to Modify Glucagon-Like Peptides 1 and 2 in E.coli. Chembiochem 2024; 25:e202400201. [PMID: 38701360 DOI: 10.1002/cbic.202400201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Selective modification of peptides is often exploited to improve pharmaceutically relevant properties of bioactive peptides like stability, circulation time, and potency. In Nature, natural products belonging to the class of ribosomally synthesized and post-translationally modified peptides (RiPPs) are known to install a number of highly attractive modifications with high selectivity. These modifications are installed by enzymes guided to the peptide by corresponding leader peptides that are removed as the last step of biosynthesis. Here, we exploit leader peptides and their matching enzymes to investigate the installation of D-Ala post-translationally in a critical position in the hormones, glucagon-like peptides (GLP) 1 and 2. We also offer insight into how precursor peptide design can modulate the modification pattern achieved.
Collapse
Affiliation(s)
- Camilla K Larsen
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus C, Denmark
- Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Peter Lindquist
- Department of Biomedical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Mette Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | | | | | | | | | | | - Thomas Tørring
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus C, Denmark
| |
Collapse
|
5
|
Le T, Zhang D, Martini RM, Biswas S, van der Donk WA. Use of a head-to-tail peptide cyclase to prepare hybrid RiPPs. Chem Commun (Camb) 2024; 60:6508-6511. [PMID: 38833296 PMCID: PMC11189026 DOI: 10.1039/d3cc04919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/25/2024] [Indexed: 06/06/2024]
Abstract
Cyclotides and lanthipeptides are cyclic peptide natural products with promising bioengineering potential. No peptides have been isolated that contain both structural motifs defining these two families, an N-to-C cyclised backbone and lanthionine linkages. We combined their biosynthetic machineries to produce hybrid structures that possess improved activity or stability, demonstrate how the AEP-1 plant cyclase can be utilised to complete the maturation of the sactipeptide subtilosin A, and present head-to-tail cyclisation of the glycocin sublancin. These studies show the plasticity of AEP-1 and its utilisation alongside other post-translational modifications.
Collapse
Affiliation(s)
- Tung Le
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Dongtianyu Zhang
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Rachel M Martini
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Subhanip Biswas
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Mori T, Sumida S, Sakata K, Shirakawa S. Efficient synthetic methods for α,β-dehydroamino acids as useful and environmentally benign building blocks in biological and materials science. Org Biomol Chem 2024; 22:4625-4636. [PMID: 38804977 DOI: 10.1039/d4ob00507d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Both natural and unnatural amino acids, peptides, and proteins are widely recognized as green and sustainable organic chemicals, not only in the field of biological sciences but also in materials science. It has been discovered that artificially designed unnatural peptides and proteins exhibit advanced properties in medical and materials science. In this context, the development of precise chemical modification methods for amino acids and peptides is acknowledged as an important research project in the field of organic synthesis. While a wide variety of modification methods for amino acid residues have been developed to artificially modify peptides and proteins, the representative methods for modifying amino acid residues have traditionally relied on the nucleophilic properties of the functionalities on the residues. In this context, the development of different modification methods using an umpolung-like approach by utilizing the electrophilic nature of amino acid derivatives appears to be very attractive. One of the promising electrophilic amino acid compounds for realizing important modification methods of amino acid derivatives is α,β-dehydroamino acids, which possess an α,β-unsaturated carbonyl structure. This review article summarizes methods for the preparation of α,β-dehydroamino acids derived from natural and unnatural amino acid derivatives. The utilities of α,β-dehydroamino acid derivatives, including peptides and proteins containing dehydroalanine units, in bioconjugations are also discussed.
Collapse
Affiliation(s)
- Taiki Mori
- Institute of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Sao Sumida
- Institute of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Kazuki Sakata
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Seiji Shirakawa
- Institute of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
7
|
King AM, Zhang Z, Glassey E, Siuti P, Clardy J, Voigt CA. Systematic mining of the human microbiome identifies antimicrobial peptides with diverse activity spectra. Nat Microbiol 2023; 8:2420-2434. [PMID: 37973865 DOI: 10.1038/s41564-023-01524-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/12/2023] [Indexed: 11/19/2023]
Abstract
Human-associated bacteria secrete modified peptides to control host physiology and remodel the microbiota species composition. Here we scanned 2,229 Human Microbiome Project genomes of species colonizing skin, gastrointestinal tract, urogenital tract, mouth and trachea for gene clusters encoding RiPPs (ribosomally synthesized and post-translationally modified peptides). We found 218 lanthipeptides and 25 lasso peptides, 70 of which were synthesized and expressed in E. coli and 23 could be purified and functionally characterized. They were tested for activity against bacteria associated with healthy human flora and pathogens. New antibiotics were identified against strains implicated in skin, nasal and vaginal dysbiosis as well as from oral strains selectively targeting those in the gut. Extended- and narrow-spectrum antibiotics were found against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci. Mining natural products produced by human-associated microbes will enable the elucidation of ecological relationships and may be a rich resource for antimicrobial discovery.
Collapse
Affiliation(s)
- Andrew M King
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhengan Zhang
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emerson Glassey
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Piro Siuti
- Synthetic Biology Group, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
8
|
Hernandez Garcia A, Nair SK. Structure and Function of a Class III Metal-Independent Lanthipeptide Synthetase. ACS CENTRAL SCIENCE 2023; 9:1944-1956. [PMID: 37901177 PMCID: PMC10604976 DOI: 10.1021/acscentsci.3c00484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 10/31/2023]
Abstract
In bacteria, Ser/Thr protein kinase-like sequences are found as part of large multidomain polypeptides that biosynthesize lanthipeptides, a class of natural products distinguished by the presence of thioether cross-links. The kinase domain phosphorylates Ser or Thr residues in the peptide substrates. Subsequent β-elimination by a lyase domain yields electrophilic dehydroamino acids, which can undergo cyclase domain-catalyzed cyclization to yield conformationally restricted, bioactive compounds. Here, we reconstitute the biosynthetic pathway for a class III lanthipeptide from Bacillus thuringiensis NRRL B-23139, including characterization of a two-component protease for leader peptide excision. We also describe the first crystal structures of a class III lanthipeptide synthetase, consisting of the lyase, kinase, and cyclase domains, in various states including complexes with its leader peptide and nucleotide. The structure shows interactions between all three domains that result in an active conformation of the kinase domain. Biochemical analysis demonstrates that the three domains undergo movement upon binding of the leader peptide to establish interdomain allosteric interactions that stabilize this active form. These studies inform on the regulatory mechanism of substrate recognition and provide a framework for engineering of variants of biotechnological interest.
Collapse
Affiliation(s)
- Andrea Hernandez Garcia
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Roger Adams
Laboratory, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Satish K. Nair
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Roger Adams
Laboratory, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
- Center
for Biophysics and Computational Biology, University of Illinois at Urbana−Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Wang X, Chen X, Wang ZJ, Zhuang M, Zhong L, Fu C, Garcia R, Müller R, Zhang Y, Yan J, Wu D, Huo L. Discovery and Characterization of a Myxobacterial Lanthipeptide with Unique Biosynthetic Features and Anti-inflammatory Activity. J Am Chem Soc 2023. [PMID: 37466996 DOI: 10.1021/jacs.3c06014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The genomes of myxobacteria harbor a variety of biosynthetic gene clusters encoding numerous secondary metabolites, including ribosomally synthesized and post-translationally modified peptides (RiPPs) with diverse chemical structures and biological activities. However, the biosynthetic potential of RiPPs from myxobacteria remains barely explored. Herein, we report a novel myxobacteria lanthipeptide myxococin identified from Myxococcus fulvus. Myxococins represent the first example of lanthipeptides, of which the characteristic multiple thioether rings are installed by employing a Class II lanthipeptide synthetase MfuM and a Class I lanthipeptide cyclase MfuC in a cascaded way. Unprecedentedly, we biochemically characterized the first M61 family aminopeptidase MfuP involved in RiPP biosynthesis, demonstrating that MfuP showed the activity of an endopeptidase activity. MfuP is leader-independent but strictly selective for the multibridge structure of myxococin A and responsible for unwrapping two rings via amide bond hydrolysis, yielding myxococin B. Furthermore, the X-ray crystal structure of MfuP and structural analysis, including active-site mutations, are reported. Finally, myxococins are evaluated to exhibit anti-inflammatory activity in lipopolysaccharide-induced macrophages without detectable cytotoxicity.
Collapse
Affiliation(s)
- Xiaotong Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Xiaoyu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Zong-Jie Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Mengwei Zhuang
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lin Zhong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Chin
| | - Chengzhang Fu
- Helmholtz International Laboratory, Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Campus E8 1, 66123 Saarbrücken, Germany
| | - Ronald Garcia
- Helmholtz International Laboratory, Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Campus E8 1, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz International Laboratory, Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Campus E8 1, 66123 Saarbrücken, Germany
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Jie Yan
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dalei Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Liujie Huo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
10
|
Chaudhary S, Kishen S, Singh M, Jassal S, Pathania R, Bisht K, Sareen D. Phylogeny-guided genome mining of roseocin family lantibiotics to generate improved variants of roseocin. AMB Express 2023; 13:34. [PMID: 36940043 PMCID: PMC10027976 DOI: 10.1186/s13568-023-01536-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/21/2023] Open
Abstract
Roseocin, the two-peptide lantibiotic from Streptomyces roseosporus, carries extensive intramolecular (methyl)lanthionine bridging in the peptides and exhibits synergistic antibacterial activity against clinically relevant Gram-positive pathogens. Both peptides have a conserved leader but a diverse core region. The biosynthesis of roseocin involves post-translational modification of the two precursor peptides by a single promiscuous lanthipeptide synthetase, RosM, to install an indispensable disulfide bond in the Rosα core along with four and six thioether rings in Rosα and Rosβ cores, respectively. RosM homologs in the phylum actinobacteria were identified here to reveal twelve other members of the roseocin family which diverged into three types of biosynthetic gene clusters (BGCs). Further, the evolutionary rate among the BGC variants and analysis of variability within the core peptide versus leader peptide revealed a phylum-dependent lanthipeptide evolution. Analysis of horizontal gene transfer revealed its role in the generation of core peptide diversity. The naturally occurring diverse congeners of roseocin peptides identified from the mined novel BGCs were carefully aligned to identify the conserved sites and the substitutions in the core peptide region. These selected sites in the Rosα peptide were mutated for permitted substitutions, expressed heterologously in E. coli, and post-translationally modified by RosM in vivo. Despite a limited number of generated variants, two variants, RosαL8F and RosαL8W exhibited significantly improved inhibitory activity in a species-dependent manner compared to the wild-type roseocin. Our study proves that a natural repository of evolved variants of roseocin is present in nature and the key variations can be used to generate improved variants.
Collapse
Affiliation(s)
- Sandeep Chaudhary
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Shweta Kishen
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Mangal Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Sunanda Jassal
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Reeva Pathania
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Kalpana Bisht
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Dipti Sareen
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
11
|
Huang S, Wang Y, Cai C, Xiao X, Liu S, Ma Y, Xie X, Liang Y, Chen H, Zhu J, Hegemann JD, Yao H, Wei W, Wang H. Discovery of a Unique Structural Motif in Lanthipeptide Synthetases for Substrate Binding and Interdomain Interactions. Angew Chem Int Ed Engl 2022; 61:e202211382. [PMID: 36102578 PMCID: PMC9828337 DOI: 10.1002/anie.202211382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 01/12/2023]
Abstract
Class III lanthipeptide synthetases catalyze the formation of lanthionine/methyllanthionine and labionin crosslinks. We present here the 2.40 Å resolution structure of the kinase domain of a class III lanthipeptide synthetase CurKC from the biosynthesis of curvopeptin. A unique structural subunit for leader binding, named leader recognition domain (LRD), was identified. The LRD of CurKC is responsible for the recognition of the leader peptide and for mediating interactions between the lyase and kinase domains. LRDs are highly conserved among the kinase domains of class III and class IV lanthipeptide synthetases. The discovery of LRDs provides insight into the substrate recognition and domain organization in multidomain lanthipeptide synthetases.
Collapse
Affiliation(s)
- Shanqing Huang
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| | - Ying Wang
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| | - Chuangxu Cai
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| | - Xiuyun Xiao
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| | - Shulei Liu
- Institute of Molecular EnzymologySchool of Biology and Basic Medical SciencesSoochow UniversitySuzhou215123China
| | - Yeying Ma
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| | - Xiangqian Xie
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| | - Yong Liang
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| | - Hao Chen
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| | - Jiapeng Zhu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Saarland University Campus66123SaarbrückenGermany
| | - Julian D. Hegemann
- School of Medicine and Life SciencesState Key Laboratory Cultivation Base for TCM Quality and EfficacyJiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Hongwei Yao
- Institute of Molecular EnzymologySchool of Biology and Basic Medical SciencesSoochow UniversitySuzhou215123China
| | - Wanqing Wei
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxi214122P. R. China
| | - Huan Wang
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| |
Collapse
|
12
|
Elashal HE, Koos JD, Cheung-Lee WL, Choi B, Cao L, Richardson MA, White HL, Link AJ. Biosynthesis and characterization of fuscimiditide, an aspartimidylated graspetide. Nat Chem 2022; 14:1325-1334. [PMID: 35982233 PMCID: PMC10078976 DOI: 10.1038/s41557-022-01022-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
Microviridins and other ω-ester-linked peptides, collectively known as graspetides, are characterized by side-chain-side-chain linkages installed by ATP-grasp enzymes. Here we report the discovery of a family of graspetides, the gene clusters of which also encode an O-methyltransferase with homology to the protein repair catalyst protein L-isoaspartyl methyltransferase. Using heterologous expression, we produced fuscimiditide, a ribosomally synthesized and post-translationally modified peptide (RiPP). NMR analysis of fuscimiditide revealed that the peptide contains two ester cross-links forming a stem-loop macrocycle. Furthermore, an unusually stable aspartimide moiety is found within the loop macrocycle. We fully reconstituted fuscimiditide biosynthesis in vitro including formation of the ester and aspartimide moieties. The aspartimide moiety embedded in fuscimiditide hydrolyses regioselectively to isoaspartate. Surprisingly, this isoaspartate-containing peptide is also a substrate for the L-isoaspartyl methyltransferase homologue, thus driving any hydrolysis products back to the aspartimide form. Whereas an aspartimide is often considered a nuisance product in protein formulations, our data suggest that some RiPPs have aspartimide residues intentionally installed via enzymatic activity.
Collapse
Affiliation(s)
- Hader E Elashal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Joseph D Koos
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Wai Ling Cheung-Lee
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Brian Choi
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Li Cao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Michelle A Richardson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Heather L White
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - A James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
13
|
Uggowitzer KA, Shao ARQ, Habibi Y, Zhang QE, Thibodeaux CJ. Exploring the Heterogeneous Structural Dynamics of Class II Lanthipeptide Synthetases with Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS). Biochemistry 2022; 61:2118-2130. [PMID: 36094889 DOI: 10.1021/acs.biochem.2c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Class II lanthipeptide synthetases (LanM enzymes) catalyze the installation of multiple thioether bridges into genetically encoded peptides to produce macrocyclic lanthipeptides, a class of biologically active natural products. Collectively, LanM enzymes install thioether rings of different sizes, topologies, and stereochemistry into a vast array of different LanA precursor peptide sequences. The factors that govern the outcome of the LanM-catalyzed reaction cascade are not fully characterized but are thought to involve both intermolecular interactions and intramolecular conformational changes in the [LanM:LanA] Michaelis complex. To test this hypothesis, we have combined AlphaFold modeling with hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis of a small collection of divergent LanM/LanA systems to investigate the similarities and differences in their conformational dynamic properties. Our data indicate that LanA precursor peptide binding triggers relatively conserved changes in the structural dynamics of the LanM dehydratase domain, supporting the existence of a similar leader peptide binding mode across the LanM family. In contrast, changes induced in the dynamics of the LanM cyclase domain were more highly variable between enzymes, perhaps reflecting different peptide-cyclase interactions and/or different modes of allosteric activation in class II lanthipeptide biosynthesis. Our analysis highlights the ability of the emerging AlphaFold platform to predict protein-peptide interactions that are supported by other lines of experimental evidence. The combination of AlphaFold modeling with HDX-MS analysis should emerge as a useful approach for investigating other conformationally dynamic enzymes involved in peptide natural product biosynthesis.
Collapse
Affiliation(s)
- Kevin A Uggowitzer
- Department of Chemistry, McGill University, 801 Sherbrooke St., Montreal, Quebec H3A0B8, Canada
| | - Annie R Q Shao
- Department of Chemistry, McGill University, 801 Sherbrooke St., Montreal, Quebec H3A0B8, Canada
| | - Yeganeh Habibi
- Department of Chemistry, McGill University, 801 Sherbrooke St., Montreal, Quebec H3A0B8, Canada
| | - Qianyi E Zhang
- Department of Chemistry, McGill University, 801 Sherbrooke St., Montreal, Quebec H3A0B8, Canada
| | | |
Collapse
|
14
|
In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications. Int J Biol Macromol 2022; 218:135-156. [PMID: 35868409 DOI: 10.1016/j.ijbiomac.2022.07.103] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) attracted attention as potential source of novel antimicrobials. Multi-drug resistant (MDR) infections have emerged as a global threat to public health in recent years. Furthermore, due to rapid emergence of new diseases, there is pressing need for development of efficient antimicrobials. AMPs are essential part of the innate immunity in most living organisms, acting as the primary line of defense against foreign invasions. AMPs kill a wide range of microorganisms by primarily targeting cell membranes or intracellular components through a variety of ways. AMPs can be broadly categorized based on their physico-chemical properties, structure, function, target and source of origin. The synthetic analogues produced either with suitable chemical modifications or with the use of suitable delivery systems are projected to eliminate the constraints of toxicity and poor stability commonly linked with natural AMPs. The concept of peptidomimetics is gaining ground around the world nowadays. Among the delivery systems, nanoparticles are emerging as potential delivery tools for AMPs, amplifying their utility against a variety of pathogens. In the present review, the broad classification of various AMPs, their mechanism of action (MOA), challenges associated with AMPs, current applications, and novel strategies to overcome the limitations have been discussed.
Collapse
|
15
|
Hamry SR, Thibodeaux CJ. Biochemical and biophysical investigation of the HalM2 lanthipeptide synthetase using mass spectrometry. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The rapid emergence of antimicrobial resistance in clinical settings has called for renewed efforts to discover and develop new antimicrobial compounds. Lanthipeptides present a promising, genetically encoded molecular scaffold for the engineering of structurally complex, biologically active peptides. These peptide natural products are constructed by enzymes (lanthipeptide synthetases) with relaxed substrate specificity that iteratively modify the precursor lanthipeptide to generate structures with defined sets of thioether macrocycles. The mechanistic features that guide the maturation of lanthipeptides into their proper, fully modified forms are obscured by the complexity of the multistep maturation and the large size and dynamic structures of the synthetases and precursor peptides. Over the past several years, our lab has been developing a suite of mass spectrometry-based techniques that are ideally suited to untangling the complex reaction sequences and molecular interactions that define lanthipeptide biosynthesis. This review focuses on our development and application of these mass spectrometry-based techniques to investigate the biochemical, kinetic, and biophysical properties of the haloduracin β class II lanthipeptide synthetase, HalM2.
Collapse
Affiliation(s)
- Sally R. Hamry
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - Christopher J. Thibodeaux
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
16
|
Liu D, Rubin GM, Dhakal D, Chen M, Ding Y. Biocatalytic synthesis of peptidic natural products and related analogues. iScience 2021; 24:102512. [PMID: 34041453 PMCID: PMC8141463 DOI: 10.1016/j.isci.2021.102512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peptidic natural products (PNPs) represent a rich source of lead compounds for the discovery and development of therapeutic agents for the treatment of a variety of diseases. However, the chemical synthesis of PNPs with diverse modifications for drug research is often faced with significant challenges, including the unavailability of constituent nonproteinogenic amino acids, inefficient cyclization protocols, and poor compatibility with other functional groups. Advances in the understanding of PNP biosynthesis and biocatalysis provide a promising, sustainable alternative for the synthesis of these compounds and their analogues. Here we discuss current progress in using native and engineered biosynthetic enzymes for the production of both ribosomally and nonribosomally synthesized peptides. In addition, we highlight new in vitro and in vivo approaches for the generation and screening of PNP libraries.
Collapse
Affiliation(s)
- Dake Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Garret M. Rubin
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Dipesh Dhakal
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
17
|
Abstract
Lanthipeptides are a class of ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products characterized by the presence of lanthionine and methyllanthionine. During the maturation of select lanthipeptides, five different alterations have been observed to the chemical structure of the peptide backbone. First, dehydratases generate dehydroalanine and dehydrobutyrine from Ser or Thr residues, respectively. A second example of introduction of unsaturation is the oxidative decarboxylation of C-terminal Cys residues catalyzed by the decarboxylase LanD. Both modifications result in loss of chirality at the α-carbon of the amino acid residues. Attack of a cysteine thiol onto a dehydrated amino acid results in thioether crosslink formation with either inversion or retention of the l-stereochemical configuration at the α-carbon of former Ser and Thr residues. A fourth modification of the protein backbone is the hydrogenation of dehydroamino acids to afford d-amino acids catalyzed by NAD(P)H-dependent reductases. A fifth modification is the conversion of Asp to isoAsp. Herein, the methods used to produce and characterize the lanthipeptide bicereucin will be described in detail along with a brief overview of other lanthipeptides.
Collapse
Affiliation(s)
- Richard S Ayikpoe
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
18
|
Weerasinghe NW, Habibi Y, Uggowitzer KA, Thibodeaux CJ. Exploring the Conformational Landscape of a Lanthipeptide Synthetase Using Native Mass Spectrometry. Biochemistry 2021; 60:1506-1519. [PMID: 33887902 DOI: 10.1021/acs.biochem.1c00085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lanthipeptides are ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. These genetically encoded peptides are biosynthesized by multifunctional enzymes (lanthipeptide synthetases) that possess relaxed substrate specificity and catalyze iterative rounds of post-translational modification. Recent evidence has suggested that some lanthipeptide synthetases are structurally dynamic enzymes that are allosterically activated by precursor peptide binding and that conformational sampling of the enzyme-peptide complex may play an important role in defining the efficiency and sequence of biosynthetic events. These "biophysical" processes, while critical for defining the activity and function of the synthetase, remain very challenging to study with existing methodologies. Herein, we show that native mass spectrometry coupled to ion mobility (native IM-MS) provides a powerful and sensitive means for investigating the conformational landscapes and intermolecular interactions of lanthipeptide synthetases. Namely, we demonstrate that the class II lanthipeptide synthetase (HalM2) and its noncovalent complex with the cognate HalA2 precursor peptide can be delivered into the gas phase in a manner that preserves native structures and intermolecular enzyme-peptide contacts. Moreover, gas phase ion mobility studies of the natively folded ions demonstrate that peptide binding and mutations to dynamic structural elements of HalM2 alter the conformational landscape of the enzyme. Cumulatively, these data support previous claims that lanthipeptide synthetases are structurally dynamic enzymes that undergo functionally relevant conformational changes in response to precursor peptide binding. This work establishes native IM-MS as a versatile approach for characterizing intermolecular interactions and for unraveling the relationships between protein structure and biochemical function in RiPP biosynthetic systems.
Collapse
Affiliation(s)
- Nuwani W Weerasinghe
- Department of Chemistry and Centre de Recherche en Biologie Structurale, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Yeganeh Habibi
- Department of Chemistry and Centre de Recherche en Biologie Structurale, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Kevin A Uggowitzer
- Department of Chemistry and Centre de Recherche en Biologie Structurale, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Christopher J Thibodeaux
- Department of Chemistry and Centre de Recherche en Biologie Structurale, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| |
Collapse
|
19
|
S S, S R. Cyclic peptide production from lactic acid bacteria (LAB) and their diverse applications. Crit Rev Food Sci Nutr 2020; 62:2909-2927. [PMID: 33356473 DOI: 10.1080/10408398.2020.1860900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, cyclic peptides gave gained increasing attention owing to their pH tolerance, heat stability and resistance to enzymatic actions. The increasing outbreaks of antibiotic resistant pathogens and food spoilage have prompted researchers to search for new approaches to combat them. The increasing number of reports on novel cyclic peptides from lactic acid bacteria (LAB) is considered as a breakthrough due to their potential applications. Although an extensive investigation is required to understand the mechanism of action and range of applications, LAB cyclic peptides can be considered as potential substitutes for commercially available antibiotics and bio preservatives. This review summarizes the current updates of LAB cyclic peptides with emphasis on their structure, mode of action and applications. Recent trends in cyclic peptide applications are also discussed.
Collapse
Affiliation(s)
- Silpa S
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankalathur, Tamilnadu, India
| | - Rupachandra S
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankalathur, Tamilnadu, India
| |
Collapse
|
20
|
Bobeica SC, Zhu L, Acedo JZ, Tang W, van der Donk WA. Structural determinants of macrocyclization in substrate-controlled lanthipeptide biosynthetic pathways. Chem Sci 2020; 11:12854-12870. [PMID: 34094481 PMCID: PMC8163290 DOI: 10.1039/d0sc01651a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lanthipeptides are characterized by thioether crosslinks formed by post-translational modifications. The cyclization process that favors a single ring pattern over many other possible ring patterns has been the topic of much speculation. Recent studies suggest that for some systems the cyclization pattern and stereochemistry is determined not by the enzyme, but by the sequence of the precursor peptide. However, the factors that govern the outcome of the cyclization process are not understood. This study presents the three-dimensional structures of seven lanthipeptides determined by nuclear magnetic resonance spectroscopy, including five prochlorosins and the two peptides that make up cytolysin, a virulence factor produced by Enterococcus faecalis that is directly linked to human disease. These peptides were chosen because their substrate sequence determines either the ring pattern (prochlorosins) or the stereochemistry of cyclization (cytolysins). We present the structures of prochlorosins 1.1, 2.1, 2.8, 2.10 and 2.11, the first three-dimensional structures of prochlorosins. Our findings provide insights into the molecular determinants of cyclization as well as why some prochlorosins may be better starting points for library generation than others. The structures of the large and small subunits of the enterococcal cytolysin show that these peptides have long helical stretches, a rare observation for lanthipeptides characterized to date. These helices may explain their pore forming activity and suggest that the small subunit may recognize a molecular target followed by recruitment of the large subunit to span the membrane.
Collapse
Affiliation(s)
- Silvia C Bobeica
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA +1-217-244-8533 +1-217-244-5360
| | - Lingyang Zhu
- School of Chemical Sciences NMR Laboratory, University of Illinois at Urbana-Champaign 505 South Mathews Avenue Urbana Illinois 61801 USA
| | - Jeella Z Acedo
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA +1-217-244-8533 +1-217-244-5360
| | - Weixin Tang
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA +1-217-244-8533 +1-217-244-5360
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA +1-217-244-8533 +1-217-244-5360
| |
Collapse
|
21
|
Rahman IR, Acedo JZ, Liu XR, Zhu L, Arrington J, Gross ML, van der Donk WA. Substrate Recognition by the Class II Lanthipeptide Synthetase HalM2. ACS Chem Biol 2020; 15:1473-1486. [PMID: 32293871 DOI: 10.1021/acschembio.0c00127] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Class II lanthipeptides belong to a diverse group of natural products known as ribosomally synthesized and post-translationally modified peptides (RiPPs). Most RiPP precursor peptides contain an N-terminal recognition sequence known as the leader peptide, which is typically recognized by biosynthetic enzymes that catalyze modifications on the C-terminal core peptide. For class II lanthipeptides, these are carried out by a bifunctional lanthipeptide synthetase (LanM) that catalyzes dehydration and cyclization reactions on peptidic substrates to generate thioether-containing, macrocyclic molecules. Some lanthipeptide synthetases are extraordinarily substrate tolerant, making them promising candidates for biotechnological applications such as combinatorial biosynthesis and cyclic peptide library construction. In this study, we characterized the mode of leader peptide recognition by HalM2, the lanthipeptide synthetase responsible for the production of the antimicrobial peptide haloduracin β. Using NMR spectroscopic techniques, in vitro binding assays, and enzyme activity assays, we identified substrate residues that are important for binding to HalM2 and for post-translational modification of the peptide substrates. Additionally, we provide evidence of the binding site on the enzyme using binding assays with truncated enzyme variants, hydrogen-deuterium exchange mass spectrometry, and photoaffinity labeling. Understanding the mechanism by which lanthipeptide synthetases recognize their substrate will facilitate their use in biotechnology, as well as further our general understanding of how RiPP enzymes recognize their substrates.
Collapse
Affiliation(s)
- Imran R. Rahman
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jeella Z. Acedo
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Xiaoran Roger Liu
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Lingyang Zhu
- School of Chemical Sciences NMR Laboratory, Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Justine Arrington
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
Liu H, Wang Y, Yang Q, Zhao W, Cui L, Wang B, Zhang L, Cheng H, Song S, Zhang L. Genomics and LC-MS Reveal Diverse Active Secondary Metabolites in Bacillus amyloliquefaciens WS-8. J Microbiol Biotechnol 2020; 30:417-426. [PMID: 31601062 PMCID: PMC9728402 DOI: 10.4014/jmb.1906.06055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacillus amyloliquefaciens is an important plant disease-preventing and growth-promoting microorganism. B. amyloliquefaciens WS-8 can stimulate plant growth and has strong antifungal properties. In this study, we sequenced the complete genome of B. amyloliquefaciens WS-8 by Pacific Biosciences RSII (PacBio) Single Molecule Real-Time (SMRT) sequencing. The genome consists of one chromosome (3,929,787 bp) and no additional plasmids. The main bacteriostatic substances were determined by genome, transcriptome, and mass spectrometry data. We thereby laid a theoretical foundation for the utilization of the strain. By genomic analysis, we identified 19 putative biosynthetic gene clusters for secondary metabolites, most of which are potentially involved in the biosynthesis of numerous bioactive metabolites, including difficidin, fengycin, and surfactin. Furthermore, a potential class II lanthipeptide biosynthetic gene cluster and genes that are involved in auxin biosynthesis were found. Through the analysis of transcriptome data, we found that the key bacteriostatic genes, as predicted in the genome, exhibited different levels of mRNA expression. Through metabolite isolation, purification, and exposure experiments, we found that a variety of metabolites of WS-8 exert an inhibitory effect on the necrotrophic fungus Botrytis cinerea, which causes gray mold; by mass spectrometry, we found that the main substances are mainly iturins and fengycins. Therefore, this strain has the potential to be utilized as an antifungal agent in agriculture.
Collapse
Affiliation(s)
- Hongwei Liu
- College of life science, Hebei University, Baoding 07002, P.R. China,Institute of Biology, Hebei Academy of Science, Shijiazhuang 050081, P.R. China,Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang 050081, P.R. China
| | - Yana Wang
- Institute of Biology, Hebei Academy of Science, Shijiazhuang 050081, P.R. China,Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang 050081, P.R. China
| | - Qingxia Yang
- Institute of Biology, Hebei Academy of Science, Shijiazhuang 050081, P.R. China,Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang 050081, P.R. China,Hebei Normal University, Shijiazhuang 05002, P.R. China
| | - Wenya Zhao
- Institute of Biology, Hebei Academy of Science, Shijiazhuang 050081, P.R. China,Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang 050081, P.R. China
| | - Liting Cui
- Institute of Biology, Hebei Academy of Science, Shijiazhuang 050081, P.R. China,Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang 050081, P.R. China
| | - Buqing Wang
- Institute of Biology, Hebei Academy of Science, Shijiazhuang 050081, P.R. China,Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang 050081, P.R. China
| | - Liping Zhang
- Institute of Biology, Hebei Academy of Science, Shijiazhuang 050081, P.R. China,Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang 050081, P.R. China
| | - Huicai Cheng
- Institute of Biology, Hebei Academy of Science, Shijiazhuang 050081, P.R. China,Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang 050081, P.R. China
| | - Shuishan Song
- Institute of Biology, Hebei Academy of Science, Shijiazhuang 050081, P.R. China,Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang 050081, P.R. China,Corresponding authors S.S. Phone: +86-311-83999012 Fax: +86-311-83022636 E-mail:
| | - Liping Zhang
- College of life science, Hebei University, Baoding 07002, P.R. China,L.Z. Phone: +86-312-5079696 Fax: +86-312-5079696 E-mail:
| |
Collapse
|
23
|
Abstract
Protein semisynthesis-defined herein as the assembly of a protein from a combination of synthetic and recombinant fragments-is a burgeoning field of chemical biology that has impacted many areas in the life sciences. In this review, we provide a comprehensive survey of this area. We begin by discussing the various chemical and enzymatic methods now available for the manufacture of custom proteins containing noncoded elements. This section begins with a discussion of methods that are more chemical in origin and ends with those that employ biocatalysts. We also illustrate the commonalities that exist between these seemingly disparate methods and show how this is allowing for the development of integrated chemoenzymatic methods. This methodology discussion provides the technical foundation for the second part of the review where we cover the great many biological problems that have now been addressed using these tools. Finally, we end the piece with a short discussion on the frontiers of the field and the opportunities available for the future.
Collapse
Affiliation(s)
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
24
|
Huo L, Zhao X, Acedo JZ, Estrada P, Nair SK, van der Donk WA. Characterization of a Dehydratase and Methyltransferase in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides in Lachnospiraceae. Chembiochem 2020; 21:190-199. [PMID: 31532570 PMCID: PMC6980331 DOI: 10.1002/cbic.201900483] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 12/15/2022]
Abstract
As a result of the exponential increase in genomic data, discovery of novel ribosomally synthesized and post-translationally modified peptide natural products (RiPPs) has progressed rapidly in the past decade. The lanthipeptides are a major subset of RiPPs. Through genome mining we identified a novel lanthipeptide biosynthetic gene cluster (lah) from Lachnospiraceae bacterium C6A11, an anaerobic bacterium that is a member of the human microbiota and which is implicated in the development of host disease states such as type 2 diabetes and resistance to Clostridium difficile colonization. The lah cluster encodes at least seven putative precursor peptides and multiple post-translational modification (PTM) enzymes. Two unusual class II lanthipeptide synthetases LahM1/M2 and a substrate-tolerant S-adenosyl-l-methionine (SAM)-dependent methyltransferase LahSB are biochemically characterized in this study. We also present the crystal structure of LahSB in complex with product S-adenosylhomocysteine. This study sets the stage for further exploration of the final products of the lah pathway as well as their potential physiological functions in human/animal gut microbiota.
Collapse
Affiliation(s)
- Liujie Huo
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
- State Key Laboratory for Microbial Technology (SKLMT), Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao, 266237, P. R. China
| | - Xiling Zhao
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Jeella Z Acedo
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Paola Estrada
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| |
Collapse
|
25
|
Hjerrild P, Tørring T, Poulsen TB. Dehydration reactions in polyfunctional natural products. Nat Prod Rep 2020; 37:1043-1064. [DOI: 10.1039/d0np00009d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Here, we review methods for chemical dehydration of alcohols to alkenes and discuss the potential of late-stage functionalization by direct, site- and chemo-selective dehydration of complex molecular substrates.
Collapse
Affiliation(s)
- Per Hjerrild
- Department of Chemistry
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| | - Thomas Tørring
- Department of Engineering – Microbial Biosynthesis
- Aarhus University
- Aarhus C
- Denmark
| | | |
Collapse
|
26
|
Singh M, Chaudhary S, Sareen D. Roseocin, a novel two‐component lantibiotic from an actinomycete. Mol Microbiol 2019; 113:326-337. [DOI: 10.1111/mmi.14419] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Mangal Singh
- Department of Biochemistry Basic Medical Sciences Block‐II Panjab University Chandigarh India
| | - Sandeep Chaudhary
- Department of Biochemistry Basic Medical Sciences Block‐II Panjab University Chandigarh India
| | - Dipti Sareen
- Department of Biochemistry Basic Medical Sciences Block‐II Panjab University Chandigarh India
| |
Collapse
|
27
|
Acedo JZ, Bothwell IR, An L, Trouth A, Frazier C, van der Donk WA. O-Methyltransferase-Mediated Incorporation of a β-Amino Acid in Lanthipeptides. J Am Chem Soc 2019; 141:16790-16801. [PMID: 31568727 DOI: 10.1021/jacs.9b07396] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lanthipeptides represent a large class of cyclic natural products defined by the presence of lanthionine (Lan) and methyllanthionine (MeLan) cross-links. With the advances in DNA sequencing technologies and genome mining tools, new biosynthetic enzymes capable of installing unusual structural features are continuously being discovered. In this study, we investigated an O-methyltransferase that is a member of the most prominent auxiliary enzyme family associated with class I lanthipeptide biosynthetic gene clusters. Despite the prevalence of these enzymes, their function has not been established. Herein, we demonstrate that the O-methyltransferase OlvSA encoded in the olv gene cluster from Streptomyces olivaceus NRRL B-3009 catalyzes the rearrangement of a highly conserved aspartate residue to a β-amino acid, isoaspartate, in the lanthipeptide OlvA(BCSA). We elucidated the NMR solution structure of the GluC-digested peptide, OlvA(BCSA)GluC, which revealed a unique ring topology comprising four interlocking rings and positions the isoaspartate residue in a solvent exposed loop that is stabilized by a MeLan ring. Gas chromatography-mass spectrometry analysis further indicated that OlvA(BCSA) contains two dl-MeLan rings and two Lan rings with an unusual ll-stereochemistry. Lastly, in vitro reconstitution of OlvSA activity showed that it is a leader peptide-independent and S-adenosyl methionine-dependent O-methyltransferase that mediates the conversion of a highly conserved aspartate residue in a cyclic substrate into a succinimide, which is hydrolyzed to generate an Asp or isoAsp containing peptide. This overall transformation converts an α-amino acid into a β-amino acid in a ribosomally synthesized peptide, via an electrophilic intermediate that may be the intended product.
Collapse
Affiliation(s)
- Jeella Z Acedo
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Ian R Bothwell
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Linna An
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Abby Trouth
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Clara Frazier
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
28
|
Ongey EL, Santolin L, Waldburger S, Adrian L, Riedel SL, Neubauer P. Bioprocess Development for Lantibiotic Ruminococcin-A Production in Escherichia coli and Kinetic Insights Into LanM Enzymes Catalysis. Front Microbiol 2019; 10:2133. [PMID: 31572338 PMCID: PMC6753504 DOI: 10.3389/fmicb.2019.02133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/30/2019] [Indexed: 11/13/2022] Open
Abstract
Ruminococcin-A (RumA) is a peptide antibiotic with post-translational modifications including thioether cross-links formed from non-canonical amino acids, called lanthionines, synthesized by a dedicated lanthionine-generating enzyme RumM. RumA is naturally produced by Ruminococcus gnavus, which is part of the normal bacterial flora in the human gut. High activity of RumA against pathogenic Clostridia has been reported, thus allowing potential exploitation of RumA for clinical applications. However, purifying RumA from R. gnavus is challenging due to low production yields (<1 μg L-1) and difficulties to cultivate the obligately anaerobic organism. We recently reported the reconstruction of the RumA biosynthesis machinery in Escherichia coli where the fully modified and active peptide was expressed as a fusion protein together with GFP. In the current study we developed a scale-up strategy for the biotechnologically relevant heterologous production of RumA, aimed at overproducing the peptide under conditions comparable with those in industrial production settings. To this end, glucose-limited fed-batch cultivation was used. Firstly, parallel cultivations were performed in 24-microwell plates using the enzyme-based automated glucose-delivery cultivation system EnPresso® B to determine optimal conditions for IPTG induction. We combined the bioprocess development with ESI-MS and tandem ESI-MS to monitor modification of the precursor peptide (preRumA) during bioreactor cultivation. Dehydration of threonine and serine residues in the core peptide, catalyzed by RumM, occurs within 1 h after IPTG induction while formation of thioether cross-bridges occur around 2.5 h after induction. Our data also supplies important information on modification kinetics especially with respect to the fluctuations observed in the various dehydrated precursor peptide versions or intermediates produced at different time points during bioreactor cultivation. Overall, protein yields obtained from the bioreactor cultivations were >120 mg L-1 for the chimeric construct and >150 mg L-1 for RumM. The correlation observed between microscale and lab-scale bioreactor cultivations suggests that the process is robust and realistically applicable to industrial-scale conditions.
Collapse
Affiliation(s)
- Elvis L Ongey
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Lara Santolin
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Saskia Waldburger
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Lorenz Adrian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany.,Chair of Geobiotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Sebastian L Riedel
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Peter Neubauer
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
29
|
Habibi Y, Uggowitzer KA, Issak H, Thibodeaux CJ. Insights into the Dynamic Structural Properties of a Lanthipeptide Synthetase using Hydrogen-Deuterium Exchange Mass Spectrometry. J Am Chem Soc 2019; 141:14661-14672. [PMID: 31449409 DOI: 10.1021/jacs.9b06020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs) proceeds via the multistep maturation of genetically encoded precursor peptides, often catalyzed by enzymes with multiple functions and iterative activities. Recent studies have suggested that, among other factors, conformational sampling of enzyme:peptide complexes likely plays a critical role in defining the kinetics and, ultimately, the set of post-translational modifications in these systems. However, detailed characterizations of these putative conformational sampling mechanisms have not yet been possible on many RiPP biosynthetic systems. In this study, we report the first comprehensive application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) to study the biophysical properties of a RiPP biosynthetic enzyme. Using the well-characterized class II lanthipeptide synthetase HalM2 as a model system, we have employed HDX-MS to demonstrate that HalM2 is indeed a highly structurally dynamic enzyme. Using this HDX-MS approach, we have identified novel precursor peptide binding elements, have uncovered long-range structural communication across the enzyme that is triggered by ligand binding and ATP hydrolysis, and have detected specific interactions between the HalM2 synthetase and the leader- and core-peptide subdomains of the modular HalA2 precursor peptide substrate. The functional relevance of the dynamic HalM2 elements discovered in this study are validated with biochemical assays and kinetic analysis of a panel of HDX-MS guided variant enzymes. Overall, the data have provided a wealth of fundamentally new information on LanM systems that will inform the rational manipulation and engineering of these impressive multifunctional catalysts. Moreover, this work highlights the broad utility of the HDX-MS platform for revealing important biophysical properties and enzyme structural dynamics that likely play a widespread role in RiPP biosynthesis.
Collapse
Affiliation(s)
- Yeganeh Habibi
- McGill University , Department of Chemistry , 801 Sherbrooke Street , West Montréal , Québec , Canada H3A 0B8
| | - Kevin A Uggowitzer
- McGill University , Department of Chemistry , 801 Sherbrooke Street , West Montréal , Québec , Canada H3A 0B8
| | - Hassan Issak
- McGill University , Department of Chemistry , 801 Sherbrooke Street , West Montréal , Québec , Canada H3A 0B8
| | - Christopher J Thibodeaux
- McGill University , Department of Chemistry , 801 Sherbrooke Street , West Montréal , Québec , Canada H3A 0B8
| |
Collapse
|
30
|
Hegemann JD, Shi L, Gross ML, van der Donk WA. Mechanistic Studies of the Kinase Domains of Class IV Lanthipeptide Synthetases. ACS Chem Biol 2019; 14:1583-1592. [PMID: 31243957 DOI: 10.1021/acschembio.9b00323] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lanthipeptides, which belong to the superfamily of ribosomally synthesized and posttranslationally modified peptides (RiPPs), are associated with various interesting biological activities. Lanthipeptides can be subdivided into four classes that are defined by the characteristics of the corresponding posttranslational modification enzymes. Class IV lanthipeptide synthetases consist of an N-terminal lyase, a central kinase, and a C-terminal cyclase domain. Here, we present the first in-depth characterization of such a kinase domain from the globisporin maturation enzyme SgbL that originates from Streptomyces globisporus sp. NRRL B-2293. Catalytic residues were identified by alignments with homologues and structural modeling. Their roles were confirmed by employing proteins with Ala substitutions in in vitro modification and fluorescence polarization binding assays. Furthermore, the protein region that is binding the leader peptide was identified by hydrogen-deuterium exchange-mass spectrometry experiments. By fusion of this protein region to the maltose binding protein, a protein was generated that can specifically bind the SgbA leader peptide, albeit with reduced binding affinity compared to that of full length SgbL. Combined, the results of this study provide a firmer grasp of how lanthipeptide biosynthesis is accomplished by class IV synthetases and suggest by homology analysis that biosynthetic mechanisms are similar in class III lanthipeptide processing enzymes.
Collapse
Affiliation(s)
- Julian D. Hegemann
- Howard Hughes Medical Institute and Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Liuqing Shi
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Wilfred A. van der Donk
- Howard Hughes Medical Institute and Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
31
|
Bosma T, Rink R, Moosmeier MA, Moll GN. Genetically Encoded Libraries of Constrained Peptides. Chembiochem 2019; 20:1754-1758. [PMID: 30794341 DOI: 10.1002/cbic.201900031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Indexed: 02/01/2023]
Abstract
Many therapeutic peptides can still be improved with respect to target specificity, target affinity, resistance to peptidases/proteases, physical stability, and capacity to pass through membranes required for oral delivery. Several modifications can improve the peptides' properties, in particular those that impose (a) conformational constraint(s). Screening of constrained peptides and the identification of hits is greatly facilitated by the generation of genetically encoded libraries. Recent breakthrough bacterial, phage, and yeast display screening systems of ribosomally synthesized post-translationally constrained peptides, particularly those of lanthipeptides, are earning special attention. Here we provide an overview of display systems for constrained, genetically encoded peptides and indicate prospects of constrained peptide-displaying phage and bacterial systems as such in vivo.
Collapse
Affiliation(s)
- Tjibbe Bosma
- Lanthio Pharma, a MorphoSys AG Company, Rozenburglaan 13B, 9727 DL, Groningen, The Netherlands
| | - Rick Rink
- Lanthio Pharma, a MorphoSys AG Company, Rozenburglaan 13B, 9727 DL, Groningen, The Netherlands
| | | | - Gert N Moll
- Lanthio Pharma, a MorphoSys AG Company, Rozenburglaan 13B, 9727 DL, Groningen, The Netherlands.,Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
32
|
Acedo JZ, Chiorean S, Vederas JC, van Belkum MJ. The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiol Rev 2019; 42:805-828. [PMID: 30085042 DOI: 10.1093/femsre/fuy033] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
Bacteria use various strategies to compete in an ecological niche, including the production of bacteriocins. Bacteriocins are ribosomally synthesized antibacterial peptides, and it has been postulated that the majority of Gram-positive bacteria produce one or more of these natural products. Bacteriocins can be used in food preservation and are also considered as potential alternatives to antibiotics. The majority of bacteriocins from Gram-positive bacteria had been traditionally divided into two major classes, namely lantibiotics, which are post-translationally modified bacteriocins, and unmodified bacteriocins. The last decade has seen an expanding number of ribosomally synthesized and post-translationally modified peptides (RiPPs) in Gram-positive bacteria that have antibacterial activity. These include linear azol(in)e-containing peptides, thiopeptides, bottromycins, glycocins, lasso peptides and lipolanthines. In addition, the three-dimensional (3D) structures of a number of modified and unmodified bacteriocins have been elucidated in recent years. This review gives an overview on the structural variety of bacteriocins from Gram-positive bacteria. It will focus on the chemical and 3D structures of these peptides, and their interactions with receptors and membranes, structure-function relationships and possible modes of action.
Collapse
Affiliation(s)
- Jeella Z Acedo
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Sorina Chiorean
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Marco J van Belkum
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
33
|
Zn-dependent bifunctional proteases are responsible for leader peptide processing of class III lanthipeptides. Proc Natl Acad Sci U S A 2019; 116:2533-2538. [PMID: 30679276 DOI: 10.1073/pnas.1815594116] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Lanthipeptides are an important subfamily of ribosomally synthesized and posttranslationally modified peptides, and the removal of their N-terminal leader peptides by a designated protease(s) is a key step during maturation. Whereas proteases for class I and II lanthipeptides are well-characterized, the identity of the protease(s) responsible for class III leader processing remains unclear. Herein, we report that the class III lanthipeptide NAI-112 employs a bifunctional Zn-dependent protease, AplP, with both endo- and aminopeptidase activities to complete leader peptide removal, which is unprecedented in the biosynthesis of lanthipeptides. AplP displays a broad substrate scope in vitro by processing a number of class III leader peptides. Furthermore, our studies reveal that AplP-like proteases exist in the genomes of all class III lanthipeptide-producing strains but are usually located outside the biosynthetic gene clusters. Biochemical studies show that AplP-like proteases are universally responsible for the leader removal of the corresponding lanthipeptides. In addition, AplP-like proteases are phylogenetically correlated with aminopeptidase N from Escherichia coli, and might employ a single active site to catalyze both endo- and aminopeptidyl hydrolysis. These findings solve the long-standing question as to the mechanism of leader peptide processing during class III lanthipeptide biosynthesis, and pave the way for the production and bioengineering of this class of natural products.
Collapse
|
34
|
Sikandar A, Koehnke J. The role of protein–protein interactions in the biosynthesis of ribosomally synthesized and post-translationally modified peptides. Nat Prod Rep 2019; 36:1576-1588. [DOI: 10.1039/c8np00064f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review covers the role of protein–protein complexes in the biosynthesis of selected ribosomally synthesized and post-translationally modified peptide (RiPP) classes.
Collapse
Affiliation(s)
- Asfandyar Sikandar
- Workgroup Structural Biology of Biosynthetic Enzymes
- Helmholtz Institute for Pharmaceutical Research Saarland
- Helmholtz Centre for Infection Research
- Saarland University
- 66123 Saarbrücken
| | - Jesko Koehnke
- Workgroup Structural Biology of Biosynthetic Enzymes
- Helmholtz Institute for Pharmaceutical Research Saarland
- Helmholtz Centre for Infection Research
- Saarland University
- 66123 Saarbrücken
| |
Collapse
|
35
|
Si T, Tian Q, Min Y, Zhang L, Sweedler JV, van der Donk WA, Zhao H. Rapid Screening of Lanthipeptide Analogs via In-Colony Removal of Leader Peptides in Escherichia coli. J Am Chem Soc 2018; 140:11884-11888. [PMID: 30183279 DOI: 10.1021/jacs.8b05544] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Most native producers of ribosomally synthesized and post-translationally modified peptides (RiPPs) utilize N-terminal leader peptides to avoid potential cytotoxicity of mature products to the hosts. Unfortunately, the native machinery of leader peptide removal is often difficult to reconstitute in heterologous hosts. Here we devised a general method to produce bioactive lanthipeptides, a major class of RiPP molecules, in Escherichia coli colonies using synthetic biology principles, where leader peptide removal is programmed temporally by protease compartmentalization and inducible cell autolysis. We demonstrated the method for producing two lantibiotics, haloduracin and lacticin 481, and performed analog screening for haloduracin. This method enables facile, high throughput discovery, characterization, and engineering of RiPPs.
Collapse
Affiliation(s)
- Tong Si
- Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Qiqi Tian
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Yuhao Min
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Linzixuan Zhang
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Jonathan V Sweedler
- Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Wilfred A van der Donk
- Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Huimin Zhao
- Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Chemical and Biomolecular Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
36
|
Hetrick K, Walker MC, van der Donk WA. Development and Application of Yeast and Phage Display of Diverse Lanthipeptides. ACS CENTRAL SCIENCE 2018; 4:458-467. [PMID: 29721528 PMCID: PMC5920614 DOI: 10.1021/acscentsci.7b00581] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Indexed: 05/09/2023]
Abstract
Peptide display has enabled identification and optimization of ligands to many targets. These ligands are usually linear or disulfide-containing peptides that are vulnerable to proteolysis or reduction. We report yeast surface and phage display of lanthipeptides, macrocyclic ribosomally synthesized and post-translationally modified peptides (RiPPs). Lanthipeptides contain multiple thioether cross-links that bestow their biological activities. We developed C-terminal yeast display of the class II lanthipeptides lacticin 481 and haloduracin β, and randomization of the C-ring of the former was used to select tight binders to αvβ3 integrin. This represents the first examples of bacterial RiPP production in Saccharomyces cerevisiae for identification of variants with new biological activities. We also report N-terminal phage display of the class I lanthipeptide nisin and randomization of its A- and B-rings to enrich binders to a small molecule, lipid II. The successful display and randomization of both class I and II lanthipeptides demonstrates the versatility and potential of RiPP display.
Collapse
Affiliation(s)
| | | | - Wilfred A. van der Donk
- 600
S. Mathews Avenue, Urbana,
Illinois 61801, United States. E-mail: . Phone: (217) 244-5360. Fax: (217) 244-8533
| |
Collapse
|
37
|
Kakkar N, Perez JG, Liu WR, Jewett MC, van der Donk WA. Incorporation of Nonproteinogenic Amino Acids in Class I and II Lantibiotics. ACS Chem Biol 2018; 13:951-957. [PMID: 29439566 PMCID: PMC5910287 DOI: 10.1021/acschembio.7b01024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lantibiotics are ribosomally synthesized and post-translationally modified peptide natural products that contain thioether cross-links formed by lanthionine and methyllanthionine residues. They exert potent antimicrobial activity against Gram-positive bacteria. We herein report production of analogues of two lantibiotics, lacticin 481 and nisin, that contain nonproteinogenic amino acids using two different strategies involving amber stop codon suppression technology. These methods complement recent alternative approaches to incorporate nonproteinogenic amino acids into lantibiotics.
Collapse
Affiliation(s)
- Nidhi Kakkar
- Howard Hughes Medical Institute and Roger Adams Laboratory, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jessica G. Perez
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wenshe R. Liu
- Department of Chemistry, Texas A&M University, College Station, TX 77843m United States
| | - Michael C. Jewett
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Howard Hughes Medical Institute and Roger Adams Laboratory, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
38
|
Diversified transporters and pathways for bacteriocin secretion in gram-positive bacteria. Appl Microbiol Biotechnol 2018; 102:4243-4253. [DOI: 10.1007/s00253-018-8917-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 10/17/2022]
|
39
|
Abstract
Lanthipeptides are ribosomally synthesized and posttranslationally modified peptides containing thioether cross-links formed through addition of a cysteine to a dehydroalanine (to form lanthionine) or to a dehydrobutyrine (to form 3-methyllanthionine). Genome sequencing of marine cyanobacteria lead to the discovery of 1.6 million open reading frames encoding lanthipeptides. In many cases, a genome encodes a single lanthipeptide synthetase, but a large number of substrates. The enzymatic modification process in Prochlorococcus MIT9313 has been reconstituted in vitro, and a variety of experimental approaches have been used to try and understand how one enzyme is capable of modifying 30 different substrates. The methods used to characterize this system will be described along with a brief genomic description of the lanthipeptide landscape found in Prochlorococcus and Synechococcus.
Collapse
|
40
|
Ogasawara Y, Dairi T. Peptide Epimerization Machineries Found in Microorganisms. Front Microbiol 2018; 9:156. [PMID: 29467749 PMCID: PMC5808125 DOI: 10.3389/fmicb.2018.00156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/23/2018] [Indexed: 11/13/2022] Open
Abstract
D-Amino acid residues have been identified in peptides from a variety of eukaryotes and prokaryotes. In microorganisms, UDP-N-acetylmuramic acid pentapeptide (UDP-MurNAc-L-Ala-D-Glu-meso-diaminopimelate-D-Ala-D-Ala), a unit of peptidoglycan, is a representative. During its biosynthesis, D-Ala and D-Glu are generally supplied by racemases from the corresponding isomers. However, we recently identified a unique unidirectional L-Glu epimerase catalyzing the epimerization of the terminal L-Glu of UDP-MurNAc-L-Ala-L-Glu. Several such enzymes, introducing D-amino acid resides into peptides via epimerization, have been reported to date. This includes a L-Ala-D/L-Glu epimerase, which is possibly used during peptidoglycan degradation. In bacterial primary metabolisms, to the best of our knowledge, these two machineries are the only examples of peptide epimerization. However, a variety of peptides containing D-amino acid residues have been isolated from microorganisms as secondary metabolites. Their biosynthetic mechanisms have been studied and three different peptide epimerization machineries have been reported. The first is non-ribosomal peptide synthetase (NRPS). Excellent studies with dissected modules of gramicidin synthetase and tyrocidine synthetase revealed the reactions of the epimerization domains embedded in the enzymes. The obtained information is still utilized to predict epimerization domains in uncharacterized NRPSs. The second includes the biosynthetic enzymes of lantibiotics, which are ribosome-dependently supplied peptide antibiotics containing polycyclic thioether amino acids (lanthionines). A mechanism for the formation of the D-Ala moiety in lanthionine by two enzymes, dehydratases catalyzing the conversion of L-Ser into dehydroalanine and enzymes catalyzing nucleophilic attack of the thiol of cysteine into dehydroalanine, was clarified. Similarly, the formation of a D-Ala residue by reduction of the dehydroalanine residue was also reported. The last type of machinery includes radical-S-adenosylmethionine (rSAM)-dependent enzymes, which catalyze a variety of radical-mediated chemical transformations. In the biosynthesis of polytheonamide, a marine sponge-derived and ribosome-dependently supplied peptide composed of 48 amino acids, a rSAM enzyme (PoyD) is responsible for unidirectional epimerizations of multiple different amino acids in the precursor peptide. In this review, we briefly summarize the discovery and current mechanistic understanding of these peptide epimerization enzymes.
Collapse
Affiliation(s)
| | - Tohru Dairi
- Graduate School of Engineering, Hokkaido University, Sapporo, Japan
| |
Collapse
|
41
|
Schramma KR, Forneris CC, Caruso A, Seyedsayamdost MR. Mechanistic Investigations of Lysine-Tryptophan Cross-Link Formation Catalyzed by Streptococcal Radical S-Adenosylmethionine Enzymes. Biochemistry 2018; 57:461-468. [PMID: 29320164 DOI: 10.1021/acs.biochem.7b01147] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptide is a ribosomally synthesized and post-translationally modified peptide with a unique cyclization motif consisting of an intramolecular lysine-tryptophan cross-link. Three radical S-adenosylmethionine enzymes, StrB, AgaB, and SuiB from different species of Streptococcus, have been shown to install this modification onto their respective precursor peptides in a leader-dependent fashion. Herein, we conduct detailed investigations to differentiate among several plausible mechanistic proposals, specifically addressing radical versus electrophilic addition to the indole during cross-link formation, the role of substrate side chains in binding in the enzyme active site, and the identity of the catalytic base in the reaction cycle. Our results are consistent with a radical electrophilic aromatic substitution mechanism for the key carbon-carbon bond-forming step. They also elaborate on other mechanistic features that underpin this unique and synthetically challenging post-translational modification.
Collapse
Affiliation(s)
- Kelsey R Schramma
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Clarissa C Forneris
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Alessio Caruso
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States.,Department of Molecular Biology, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
42
|
Phage display and selection of lanthipeptides on the carboxy-terminus of the gene-3 minor coat protein. Nat Commun 2017; 8:1500. [PMID: 29138389 PMCID: PMC5686179 DOI: 10.1038/s41467-017-01413-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are an emerging class of natural products with drug-like properties. To fully exploit the potential of RiPPs as peptide drug candidates, tools for their systematic engineering are required. Here we report the engineering of lanthipeptides, a subclass of RiPPs characterized by multiple thioether cycles that are enzymatically introduced in a regio- and stereospecific manner, by phage display. This was achieved by heterologous co-expression of linear lanthipeptide precursors fused to the widely neglected C-terminus of the bacteriophage M13 minor coat protein pIII, rather than the conventionally used N-terminus, along with the modifying enzymes from distantly related bacteria. We observe that C-terminal precursor peptide fusions to pIII are enzymatically modified in the cytoplasm of the producing cell and subsequently displayed as mature cyclic peptides on the phage surface. Biopanning of large C-terminal display libraries readily identifies artificial lanthipeptide ligands specific to urokinase plasminogen activator (uPA) and streptavidin. Lanthipeptides are a class of cyclic post-translationally modified peptides with potential drug-like properties. Here the authors develop a phage display system by expressing lanthipeptide precursors as C-terminal fusions to the phage M13 coat protein pIII in E. coli along with the heterologous modifying enzymes.
Collapse
|
43
|
Bartholomae M, Buivydas A, Viel JH, Montalbán-López M, Kuipers OP. Major gene-regulatory mechanisms operating in ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthesis. Mol Microbiol 2017; 106:186-206. [DOI: 10.1111/mmi.13764] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Maike Bartholomae
- Department of Molecular Genetics; University of Groningen, Nijenborgh 7; 9747AG Groningen The Netherlands
| | - Andrius Buivydas
- Department of Molecular Genetics; University of Groningen, Nijenborgh 7; 9747AG Groningen The Netherlands
| | - Jakob H. Viel
- Department of Molecular Genetics; University of Groningen, Nijenborgh 7; 9747AG Groningen The Netherlands
| | - Manuel Montalbán-López
- Department of Microbiology; University of Granada, C. Fuentenueva s/n; 18071 Granada Spain
| | - Oscar P. Kuipers
- Department of Molecular Genetics; University of Groningen, Nijenborgh 7; 9747AG Groningen The Netherlands
| |
Collapse
|
44
|
Mathur H, Field D, Rea MC, Cotter PD, Hill C, Ross RP. Bacteriocin-Antimicrobial Synergy: A Medical and Food Perspective. Front Microbiol 2017; 8:1205. [PMID: 28706513 PMCID: PMC5489601 DOI: 10.3389/fmicb.2017.01205] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/14/2017] [Indexed: 12/18/2022] Open
Abstract
The continuing emergence of multi-drug resistant pathogens has sparked an interest in seeking alternative therapeutic options. Antimicrobial combinatorial therapy is one such avenue. A number of studies have been conducted, involving combinations of bacteriocins with other antimicrobials, to circumvent the development of antimicrobial resistance and/or increase antimicrobial potency. Such bacteriocin-antimicrobial combinations could have tremendous value, in terms of reducing the likelihood of resistance development due to the involvement of two distinct mechanisms of antimicrobial action. Furthermore, antimicrobial synergistic interactions may also have potential financial implications in terms of decreasing the costs of treatment by reducing the concentration of an expensive antimicrobial and utilizing it in combination with an inexpensive one. In addition, combinatorial therapies with bacteriocins can broaden antimicrobial spectra and/or result in a reduction in the concentration of an antibiotic required for effective treatments to the extent that potentially toxic or adverse side effects can be reduced or eliminated. Here, we review studies in which bacteriocins were found to be effective in combination with other antimicrobials, with a view to targeting clinical and/or food-borne pathogens. Furthermore, we discuss some of the bottlenecks which are currently hindering the development of bacteriocins as viable therapeutic options, as well as addressing the need to exercise caution when attempting to predict clinical outcomes of bacteriocin-antimicrobial combinations.
Collapse
Affiliation(s)
- Harsh Mathur
- Teagasc Food Research Centre, MooreparkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Des Field
- APC Microbiome Institute, University College CorkCork, Ireland.,School of Microbiology, University College CorkCork, Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, MooreparkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, MooreparkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Colin Hill
- APC Microbiome Institute, University College CorkCork, Ireland.,School of Microbiology, University College CorkCork, Ireland
| | - R Paul Ross
- APC Microbiome Institute, University College CorkCork, Ireland.,School of Microbiology, University College CorkCork, Ireland
| |
Collapse
|
45
|
Repka LM, Chekan JR, Nair SK, van der Donk WA. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes. Chem Rev 2017; 117:5457-5520. [PMID: 28135077 PMCID: PMC5408752 DOI: 10.1021/acs.chemrev.6b00591] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Lanthipeptides
are ribosomally synthesized and post-translationally
modified peptides (RiPPs) that display a wide variety of biological
activities, from antimicrobial to antiallodynic. Lanthipeptides that
display antimicrobial activity are called lantibiotics. The post-translational
modification reactions of lanthipeptides include dehydration of Ser
and Thr residues to dehydroalanine and dehydrobutyrine, a transformation
that is carried out in three unique ways in different classes of lanthipeptides.
In a cyclization process, Cys residues then attack the dehydrated
residues to generate the lanthionine and methyllanthionine thioether
cross-linked amino acids from which lanthipeptides derive their name.
The resulting polycyclic peptides have constrained conformations that
confer their biological activities. After installation of the characteristic
thioether cross-links, tailoring enzymes introduce additional post-translational
modifications that are unique to each lanthipeptide and that fine-tune
their activities and/or stability. This review focuses on studies
published over the past decade that have provided much insight into
the mechanisms of the enzymes that carry out the post-translational
modifications.
Collapse
Affiliation(s)
- Lindsay M Repka
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jonathan R Chekan
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Satish K Nair
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A van der Donk
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
46
|
Wang J, Ge X, Zhang L, Teng K, Zhong J. One-pot synthesis of class II lanthipeptide bovicin HJ50 via an engineered lanthipeptide synthetase. Sci Rep 2016; 6:38630. [PMID: 27924934 PMCID: PMC5141572 DOI: 10.1038/srep38630] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/17/2016] [Indexed: 02/08/2023] Open
Abstract
Lanthipeptides are a large class of bacteria-produced, ribosomally-synthesized and post-translationally modified peptides. They are recognized as peptide antibiotics because most of them exhibit potent antimicrobial activities against Gram-positive bacteria especially those that are phylogenetically related to producers. Maturation of class II lanthipeptide like bovicin HJ50 undergoes precursor modification by LanM and a subsequent leader peptide cleavage by LanT. Herein, via co-expression of precursor gene bovA, modification gene bovM and transporter gene bovT in Escherichia coli C43 (DE3), bioactive bovicin HJ50 was successfully produced and secreted. To further achieve in vitro one-pot synthesis of bovicin HJ50, an engineered bovicin HJ50 synthetase BovT150M was obtained by fusing the peptidase domain of BovT (BovT150) to the N-terminus of BovM. BovT150M exhibited dual functions of precursor modification and leader peptide cleavage to release mature bovicin HJ50. Under the guidance of BovA leader peptide, BovT150M exhibited substrate tolerance to modify non-native substrates including suicin and lacticin 481. This work exemplifies the feasibility of enzyme chimera of peptidase domain (LanT150) and modification enzyme (LanM) as a one-pot lanthipeptide synthetase.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Xiaoxuan Ge
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Li Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Kunling Teng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| |
Collapse
|
47
|
Garg N, Goto Y, Chen T, van der Donk WA. Characterization of the stereochemical configuration of lanthionines formed by the lanthipeptide synthetase GeoM. Biopolymers 2016; 106:834-842. [PMID: 27178086 PMCID: PMC5108700 DOI: 10.1002/bip.22876] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/13/2016] [Accepted: 04/26/2016] [Indexed: 12/25/2022]
Abstract
The biosynthesis of the class II lanthipeptide geobacillin II was reconstituted in vitro. The purified precursor peptide was modified by the lanthipeptide synthetase GeoM at temperatures ranging between 37 and 80°C demonstrating the thermostability of the enzyme. Geobacillin II shares with cytolysin, haloduracin, and carnolysin a DhxDhxXxxXxxCys motif (Dhx = dehydroalanine or dehydrobutyrine) as precursor to its N-terminal A-ring. Like in these other three lantibiotics, the lanthionine in the A-ring of geobacillin II had the LL stereochemical configuration as shown by chiral gas chromatography/mass spectrometry. Various analogues of geobacillin II were produced using co-expression of mutants of the precursor peptide GeoAII and the synthetase GeoM in Escherichia coli. The findings in this study suggest that the stereochemical outcome of the A-ring in geobacillin II is not solely dependent on the peptide sequence as previously suggested for haloduracin © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 834-842, 2016.
Collapse
Affiliation(s)
- Neha Garg
- Roger Adams Laboratory, Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Yuki Goto
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Ting Chen
- College of Liberal Arts and Sciences, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Howard Hughes Medical Institute
| |
Collapse
|
48
|
Structural basis for precursor protein-directed ribosomal peptide macrocyclization. Nat Chem Biol 2016; 12:973-979. [PMID: 27669417 PMCID: PMC5117808 DOI: 10.1038/nchembio.2200] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/03/2016] [Indexed: 11/08/2022]
Abstract
Macrocyclization is a common feature of natural product biosynthetic pathways including the diverse family of ribosomal peptides. Microviridins are architecturally complex cyanobacterial ribosomal peptides whose members target proteases with potent reversible inhibition. The product structure is constructed by three macrocyclizations catalyzed sequentially by two members of the ATP-grasp family, a unique strategy for ribosomal peptide macrocyclization. Here, we describe the detailed structural basis for the enzyme-catalyzed macrocyclizations in the microviridin J pathway of Microcystis aeruginosa. The macrocyclases, MdnC and MdnB, interact with a conserved α-helix of the precursor peptide using a novel precursor peptide recognition mechanism. The results provide insight into the unique protein/protein interactions key to the chemistry, suggest an origin of the natural combinatorial synthesis of microviridin peptides and provide a framework for future engineering efforts to generate designed compounds.
Collapse
|
49
|
Tang W, Thibodeaux GN, van der Donk WA. The Enterococcal Cytolysin Synthetase Coevolves with Substrate for Stereoselective Lanthionine Synthesis. ACS Chem Biol 2016; 11:2438-46. [PMID: 27348535 DOI: 10.1021/acschembio.6b00397] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Stereochemical control is critical in natural product biosynthesis. For ribosomally synthesized and post-translationally modified peptides (RiPPs), the mechanism(s) by which stereoselectivity is achieved is still poorly understood. In this work, we focused on the stereoselective lanthionine synthesis in lanthipeptides, a major class of RiPPs formed by the addition of Cys residues to dehydroalanine (Dha) or dehydrobutyrine (Dhb). Nonenzymatic cyclization of the small subunit of a virulence lanthipeptide, the enterococcal cytolysin, resulted in the native modified peptide as the major product, suggesting that both regioselectivity and stereoselectivity are inherent to the dehydrated peptide sequence. These results support previous computational studies that a Dhx-Dhx-Xxx-Xxx-Cys motif (Dhx = Dha or Dhb; Xxx = any amino acid except Dha, Dhb, and Cys) preferentially cyclizes by attack on the Re face of Dha or Dhb. Characterization of the stereochemistry of the products formed enzymatically with substrate mutants revealed that the lanthionine synthetase actively reinforces Re face attack. These findings support the hypothesis of substrate-controlled selectivity in lanthionine synthesis but also reveal likely coevolution of substrates and lanthionine synthetases to ensure the stereoselective synthesis of lanthipeptides with defined biological activities.
Collapse
Affiliation(s)
- Weixin Tang
- Department of Chemistry and
Howard Hughes Medical Institute, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Gabrielle N. Thibodeaux
- Department of Chemistry and
Howard Hughes Medical Institute, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department of Chemistry and
Howard Hughes Medical Institute, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
50
|
Truman AW. Cyclisation mechanisms in the biosynthesis of ribosomally synthesised and post-translationally modified peptides. Beilstein J Org Chem 2016; 12:1250-68. [PMID: 27559376 PMCID: PMC4979651 DOI: 10.3762/bjoc.12.120] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/02/2016] [Indexed: 12/15/2022] Open
Abstract
Ribosomally synthesised and post-translationally modified peptides (RiPPs) are a large class of natural products that are remarkably chemically diverse given an intrinsic requirement to be assembled from proteinogenic amino acids. The vast chemical space occupied by RiPPs means that they possess a wide variety of biological activities, and the class includes antibiotics, co-factors, signalling molecules, anticancer and anti-HIV compounds, and toxins. A considerable amount of RiPP chemical diversity is generated from cyclisation reactions, and the current mechanistic understanding of these reactions will be discussed here. These cyclisations involve a diverse array of chemical reactions, including 1,4-nucleophilic additions, [4 + 2] cycloadditions, ATP-dependent heterocyclisation to form thiazolines or oxazolines, and radical-mediated reactions between unactivated carbons. Future prospects for RiPP pathway discovery and characterisation will also be highlighted.
Collapse
Affiliation(s)
- Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| |
Collapse
|