1
|
Du A, Li L, Jiao Z, Zhu G, Peng T, Li H. Protein expression pattern of calcium-responsive transactivator in early postnatal and adult testes. Histochem Cell Biol 2021; 155:491-502. [PMID: 33398438 PMCID: PMC8062385 DOI: 10.1007/s00418-020-01942-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 11/27/2022]
Abstract
Calcium-responsive transactivator (CREST), a nuclear protein highly expressed in postmitotic neurons, is involved in the regulation of cell cycle, differentiation and dendritic development of neuronal cells. Its mRNA has been detected in the testis of adult rat, whilst its protein expression and distribution pattern in the testis remain to be elucidated. In this study, we examined the distribution of CREST in the adult testes of both rats and human as well as the expression pattern of CREST in the testes of postnatal developing rats. In the adult testes of both human and rats, immunohistochemical analysis revealed that CREST was selectively distributed in the mature Sertoli cells but not in the spermatogenic cells. In the testes of postnatal developmental rats, CREST was expressed not only in Sertoli cells but also in the gonocytes and spermatogenic cells at the initial stage of spermatogenic cell differentiation. CREST immunoreactivity continued to increase in Sertoli cells during differentiation, reaching its peak in adulthood. However, CREST immunostaining intensity dramatically decreased as the spermatogenic cells differentiate, disappearing in the post-differentiation stage. Furthermore, Brg1 and p300, two CREST-interacting proteins ubiquitously expressed in the body, are found to be colocalized with CREST in the spermatogenic epithelial cells including Sertoli cells. The unique expression pattern of CREST in developing testis suggests that CREST might play regulatory roles in the differentiation of spermatogenic epithelial cells. The Sertoli cell-specific expression of CREST in the adulthood hints that CREST might be a novel biomarker for the mature Sertoli cells.
Collapse
Affiliation(s)
- Ana Du
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Li
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhaoshuang Jiao
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gaochun Zhu
- Department of Anatomy, School of Basic Medicine, Nanchang University, Nanchang, 330006, China
| | - Ting Peng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - He Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
2
|
Henneberger C, Jüttner R, Schmidt SA, Walter J, Meier JC, Rothe T, Grantyn R. GluR- and TrkB-mediated maturation of GABA receptor function during the period of eye opening. Eur J Neurosci 2005; 21:431-40. [PMID: 15673442 DOI: 10.1111/j.1460-9568.2005.03869.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Synapse maturation includes the shortening of postsynaptic currents, due to changes in the subunit composition of respective transmitter receptors. Patch clamp experiments revealed that GABAergic inhibitory postsynaptic currents (ISPCs) of superior colliculus neurons significantly shorten from postnatal day (P)1 to P21. The change started after P6 and was steepest between P12 and P15, i.e. around eye opening. It was accompanied by enhanced sensitivity to zolpidem and increased expression of GABAAR alpha1 mRNA, whereas the level of alpha3 mRNA decreased. This result is consistent with the hypothesis that the IPSC kinetics of developing collicular neurons is determined by the level of alpha1/alpha3. As alpha1/alpha3 peaked when N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic currents reached their maximum (P12) it was asked whether NMDAR activity can shape the kinetics of GABAergic IPSCs. Cultured collicular neurons were treated with NMDA or NMDAR block, and it was found that the former resulted in faster and the latter in slower IPSC decay. Group I mGluR blockade had no effect. Experiments with bdnf-/- mice revealed that, with some delay, the increase of alpha1/alpha3 mRNA also occurred in the chronic absence of brain-derived neurotrophic factor (BDNF) and, again, this was accompanied by the shortening of IPSCs. In addition, there was an age-dependent depression of IPSC amplitudes by endogenous BDNF, which might reflect the developmental increase in the expression of GABAAR gamma2L, as opposed to gamma2S. Together, these experiments suggest that the GABAAR alpha subunit switch and the associated change in the IPSC kinetics were specifically controlled by NMDAR activity and independent on the signalling through group I mGluRs or TrkB.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Blotting, Northern
- Brain-Derived Neurotrophic Factor/deficiency
- Dizocilpine Maleate/pharmacology
- Embryo, Mammalian
- Eye/growth & development
- GABA Agonists/pharmacology
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- In Vitro Techniques
- Mice
- Mice, Knockout
- N-Methylaspartate/pharmacology
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Neurons/cytology
- Neurons/drug effects
- Neurons/physiology
- Patch-Clamp Techniques/methods
- Pyridines/pharmacology
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor, trkB/physiology
- Receptors, GABA-A/physiology
- Receptors, Glutamate/physiology
- Receptors, N-Methyl-D-Aspartate/agonists
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Superior Colliculi/cytology
- Superior Colliculi/growth & development
- Synapses/drug effects
- Synapses/physiology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Valine/analogs & derivatives
- Valine/pharmacology
- Zolpidem
Collapse
Affiliation(s)
- Christian Henneberger
- Sensory and Developmental Physiology, Johannes Mueller Centre for Physiology, University Medicine (Charité), Tucholskystr. 2, D-10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|