1
|
Symeonidou E, Jørgensen UG, Madsen MB, Priemé A. Effects of temperature, chloride and perchlorate salt concentration on the metabolic activity of Deinococcus radiodurans. Extremophiles 2024; 28:34. [PMID: 39044042 PMCID: PMC11266278 DOI: 10.1007/s00792-024-01351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
The extremophile bacterium Deinococcus radiodurans is characterized by its ability to survive and sustain its activity at high levels of radiation and is considered an organism that might survive in extraterrestrial environments. In the present work, we studied the combined effects of temperature and chlorine-containing salts, with focus on perchlorate salts which have been detected at high concentrations in Martian regolith, on D. radiodurans activity (CO2 production rates) and viability after incubation in liquid cultures for up to 30 days. Reduced CO2 production capacity and viability was observed at high perchlorate concentrations (up to 10% w/v) during incubation at 0 or 25 °C. Both the metabolic activity and viability were reduced as the perchlorate and chloride salt concentration increased and temperature decreased, and an interactive effect of temperature and salt concentration on the metabolic activity was found. These results indicate the ability of D. radiodurans to remain metabolically active and survive in low temperature environments rich in perchlorate.
Collapse
Affiliation(s)
- Eftychia Symeonidou
- Astrophysics and Planetary Science, Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
- Center for ExoLife Sciences, (CELS), Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Uffe Gråe Jørgensen
- Astrophysics and Planetary Science, Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
- Center for ExoLife Sciences, (CELS), Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Morten Bo Madsen
- Astrophysics and Planetary Science, Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
- Center for ExoLife Sciences, (CELS), Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Anders Priemé
- Center for ExoLife Sciences, (CELS), Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark.
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| |
Collapse
|
2
|
Apestigue V, Gonzalo A, Jiménez JJ, Boland J, Lemmon M, de Mingo JR, García-Menendez E, Rivas J, Azcue J, Bastide L, Andrés-Santiuste N, Martínez-Oter J, González-Guerrero M, Martin-Ortega A, Toledo D, Alvarez-Rios FJ, Serrano F, Martín-Vodopivec B, Manzano J, López Heredero R, Carrasco I, Aparicio S, Carretero Á, MacDonald DR, Moore LB, Alcacera MÁ, Fernández-Viguri JA, Martín I, Yela M, Álvarez M, Manzano P, Martín JA, Del Hoyo JC, Reina M, Urqui R, Rodriguez-Manfredi JA, de la Torre Juárez M, Hernandez C, Cordoba E, Leiter R, Thompson A, Madsen S, Smith MD, Viúdez-Moreiras D, Saiz-Lopez A, Sánchez-Lavega A, Gomez-Martín L, Martínez GM, Gómez-Elvira FJ, Arruego I. Radiation and Dust Sensor for Mars Environmental Dynamic Analyzer Onboard M2020 Rover. SENSORS (BASEL, SWITZERLAND) 2022; 22:2907. [PMID: 35458893 PMCID: PMC9029032 DOI: 10.3390/s22082907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/25/2022]
Abstract
The Radiation and Dust Sensor is one of six sensors of the Mars Environmental Dynamics Analyzer onboard the Perseverance rover from the Mars 2020 NASA mission. Its primary goal is to characterize the airbone dust in the Mars atmosphere, inferring its concentration, shape and optical properties. Thanks to its geometry, the sensor will be capable of studying dust-lifting processes with a high temporal resolution and high spatial coverage. Thanks to its multiwavelength design, it will characterize the solar spectrum from Mars' surface. The present work describes the sensor design from the scientific and technical requirements, the qualification processes to demonstrate its endurance on Mars' surface, the calibration activities to demonstrate its performance, and its validation campaign in a representative Mars analog. As a result of this process, we obtained a very compact sensor, fully digital, with a mass below 1 kg and exceptional power consumption and data budget features.
Collapse
Affiliation(s)
- Victor Apestigue
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Alejandro Gonzalo
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Juan J Jiménez
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Justin Boland
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Mark Lemmon
- Space Science Institute, 4765 Walnut St, Suite B, Boulder, CO 80301, USA
| | - Jose R de Mingo
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | | | - Joaquín Rivas
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Joaquín Azcue
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Laurent Bastide
- Ingeniería de Sistemas para la Defensa de España (ISDEFE), Beatriz de Bobadilla St, 3, 28040 Madrid, Spain
| | | | | | - Miguel González-Guerrero
- Ingeniería de Sistemas para la Defensa de España (ISDEFE), Beatriz de Bobadilla St, 3, 28040 Madrid, Spain
| | | | - Daniel Toledo
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | | | - Felipe Serrano
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | | | - Javier Manzano
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | | | - Isaías Carrasco
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Sergio Aparicio
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Ángel Carretero
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Daniel R MacDonald
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Lori B Moore
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | | | - Israel Martín
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Margarita Yela
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Maite Álvarez
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Paula Manzano
- Ingeniería de Sistemas para la Defensa de España (ISDEFE), Beatriz de Bobadilla St, 3, 28040 Madrid, Spain
| | - Jose A Martín
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Juan C Del Hoyo
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Manuel Reina
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Roser Urqui
- Ingeniería de Sistemas para la Defensa de España (ISDEFE), Beatriz de Bobadilla St, 3, 28040 Madrid, Spain
| | - Jose A Rodriguez-Manfredi
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
- Centro de Astrobiología (INTA-CSIC), 28850 Torrejon de Ardoz, Spain
| | | | - Christina Hernandez
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Elizabeth Cordoba
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Robin Leiter
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Art Thompson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Soren Madsen
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - Daniel Viúdez-Moreiras
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
- Centro de Astrobiología (INTA-CSIC), 28850 Torrejon de Ardoz, Spain
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, Consejo Supeior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Agustín Sánchez-Lavega
- Departamento Física Aplicada I, Escuela Superior de Ingenieros, Universidad del País Vasco, Alameda Urquijo St, 48013 Bilbao, Spain
| | - Laura Gomez-Martín
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| | - Germán M Martínez
- Lunar and Planetary Institute, Universities Space Research Association, Houston, TX 77058, USA
| | | | - Ignacio Arruego
- Instituto Nacional de Técnica Aeroespacial INTA, 28850 Torrejon de Ardoz, Spain
| |
Collapse
|
3
|
Edwards CS, Christensen PR, Mehall GL, Anwar S, Tunaiji EA, Badri K, Bowles H, Chase S, Farkas Z, Fisher T, Janiczek J, Kubik I, Harris-Laurila K, Holmes A, Lazbin I, Madril E, McAdam M, Miner M, O’Donnell W, Ortiz C, Pelham D, Patel M, Powell K, Shamordola K, Tourville T, Smith MD, Smith N, Woodward R, Weintraub A, Reed H, Pilinski EB. The Emirates Mars Mission (EMM) Emirates Mars InfraRed Spectrometer (EMIRS) Instrument. SPACE SCIENCE REVIEWS 2021; 217:77. [PMID: 34565915 PMCID: PMC8456076 DOI: 10.1007/s11214-021-00848-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The Emirates Mars Mission Emirates Mars Infrared Spectrometer (EMIRS) will provide remote measurements of the martian surface and lower atmosphere in order to better characterize the geographic and diurnal variability of key constituents (water ice, water vapor, and dust) along with temperature profiles on sub-seasonal timescales. EMIRS is a FTIR spectrometer covering the range from 6.0-100+ μm (1666-100 cm-1) with a spectral sampling as high as 5 cm-1 and a 5.4-mrad IFOV and a 32.5×32.5 mrad FOV. The EMIRS optical path includes a flat 45° pointing mirror to enable one degree of freedom and has a +/- 60° clear aperture around the nadir position which is fed to a 17.78-cm diameter Cassegrain telescope. The collected light is then fed to a flat-plate based Michelson moving mirror mounted on a dual linear voice-coil motor assembly. An array of deuterated L-alanine doped triglycine sulfate (DLaTGS) pyroelectric detectors are used to sample the interferogram every 2 or 4 seconds (depending on the spectral sampling selected). A single 0.846 μm laser diode is used in a metrology interferometer to provide interferometer positional control, sampled at 40 kHz (controlled at 5 kHz) and infrared signal sampled at 625 Hz. The EMIRS beamsplitter is a 60-mm diameter, 1-mm thick 1-arcsecond wedged chemical vapor deposited diamond with an antireflection microstructure to minimize first surface reflection. EMIRS relies on an instrumented internal v-groove blackbody target for a full-aperture radiometric calibration. The radiometric precision of a single spectrum (in 5 cm-1 mode) is <3.0×10-8 W cm-2 sr-1/cm-1 between 300 and 1350 cm-1 over instrument operational temperatures (<∼0.5 K NE Δ T @ 250 K). The absolute integrated radiance error is < 2% for scene temperatures ranging from 200-340 K. The overall EMIRS envelope size is 52.9×37.5×34.6 cm and the mass is 14.72 kg including the interface adapter plate. The average operational power consumption is 22.2 W, and the standby power consumption is 18.6 W with a 5.7 W thermostatically limited, always-on operational heater. EMIRS was developed by Arizona State University and Northern Arizona University in collaboration with the Mohammed bin Rashid Space Centre with Arizona Space Technologies developing the electronics. EMIRS was integrated, tested and radiometrically calibrated at Arizona State University, Tempe, AZ.
Collapse
Affiliation(s)
- Christopher S. Edwards
- Department of Physics and Astronomy, Northern Arizona University, NAU BOX 6010, Flagstaff, AZ 86011 USA
| | | | - Greg L. Mehall
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | - Saadat Anwar
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | - Eman Al Tunaiji
- Mohammed bin Rashid Space Center, Emirates Institute for Advanced Science and Technology, Al Khawaneej Area, Dubai, UAE
| | - Khalid Badri
- Mohammed bin Rashid Space Center, Emirates Institute for Advanced Science and Technology, Al Khawaneej Area, Dubai, UAE
| | - Heather Bowles
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | - Stillman Chase
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | - Zoltan Farkas
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | - Tara Fisher
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | - John Janiczek
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | - Ian Kubik
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | - Kelly Harris-Laurila
- Department of Physics and Astronomy, Northern Arizona University, NAU BOX 6010, Flagstaff, AZ 86011 USA
| | - Andrew Holmes
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | | | - Edgar Madril
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | - Mark McAdam
- Department of Physics and Astronomy, Northern Arizona University, NAU BOX 6010, Flagstaff, AZ 86011 USA
| | - Mark Miner
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | - William O’Donnell
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | - Carlos Ortiz
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | - Daniel Pelham
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | - Mehul Patel
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | - Kathryn Powell
- Department of Physics and Astronomy, Northern Arizona University, NAU BOX 6010, Flagstaff, AZ 86011 USA
| | - Ken Shamordola
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | - Tom Tourville
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | | | - Nathan Smith
- Department of Physics and Astronomy, Northern Arizona University, NAU BOX 6010, Flagstaff, AZ 86011 USA
| | - Rob Woodward
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | - Aaron Weintraub
- Department of Physics and Astronomy, Northern Arizona University, NAU BOX 6010, Flagstaff, AZ 86011 USA
| | - Heather Reed
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO USA
| | - Emily B. Pilinski
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO USA
| |
Collapse
|
4
|
Rodriguez-Manfredi JA, de la Torre Juárez M, Alonso A, Apéstigue V, Arruego I, Atienza T, Banfield D, Boland J, Carrera MA, Castañer L, Ceballos J, Chen-Chen H, Cobos A, Conrad PG, Cordoba E, del Río-Gaztelurrutia T, de Vicente-Retortillo A, Domínguez-Pumar M, Espejo S, Fairen AG, Fernández-Palma A, Ferrándiz R, Ferri F, Fischer E, García-Manchado A, García-Villadangos M, Genzer M, Giménez S, Gómez-Elvira J, Gómez F, Guzewich SD, Harri AM, Hernández CD, Hieta M, Hueso R, Jaakonaho I, Jiménez JJ, Jiménez V, Larman A, Leiter R, Lepinette A, Lemmon MT, López G, Madsen SN, Mäkinen T, Marín M, Martín-Soler J, Martínez G, Molina A, Mora-Sotomayor L, Moreno-Álvarez JF, Navarro S, Newman CE, Ortega C, Parrondo MC, Peinado V, Peña A, Pérez-Grande I, Pérez-Hoyos S, Pla-García J, Polkko J, Postigo M, Prieto-Ballesteros O, Rafkin SCR, Ramos M, Richardson MI, Romeral J, Romero C, Runyon KD, Saiz-Lopez A, Sánchez-Lavega A, Sard I, Schofield JT, Sebastian E, Smith MD, Sullivan RJ, Tamppari LK, Thompson AD, Toledo D, Torrero F, Torres J, Urquí R, Velasco T, Viúdez-Moreiras D, Zurita S, The MEDA team. The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission. SPACE SCIENCE REVIEWS 2021; 217:48. [PMID: 34776548 PMCID: PMC8550605 DOI: 10.1007/s11214-021-00816-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 05/16/2023]
Abstract
NASA's Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a barometer, a relative humidity sensor, a set of 5 thermocouples to measure atmospheric temperature at ∼1.5 m and ∼0.5 m above the surface, a set of thermopiles to characterize the thermal IR brightness temperatures of the surface and the lower atmosphere. MEDA adds a radiation and dust sensor to monitor the optical atmospheric properties that can be used to infer bulk aerosol physical properties such as particle size distribution, non-sphericity, and concentration. The MEDA package and its scientific purpose are described in this document as well as how it responded to the calibration tests and how it helps prepare for the human exploration of Mars. A comparison is also presented to previous environmental monitoring payloads landed on Mars on the Viking, Pathfinder, Phoenix, MSL, and InSight spacecraft.
Collapse
Affiliation(s)
| | | | | | - V. Apéstigue
- Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - I. Arruego
- Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - T. Atienza
- Universidad Politécnica de Cataluña, Barcelona, Spain
| | - D. Banfield
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY USA
| | - J. Boland
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| | | | - L. Castañer
- Universidad Politécnica de Cataluña, Barcelona, Spain
| | - J. Ceballos
- Instituto de Microelectrónica de Sevilla (US-CSIC), Seville, Spain
| | - H. Chen-Chen
- Universidad del País Vasco (UPV/EHU), Bilbao, Spain
| | - A. Cobos
- CRISA-Airbus, Tres Cantos, Spain
| | | | - E. Cordoba
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| | | | | | | | - S. Espejo
- Instituto de Microelectrónica de Sevilla (US-CSIC), Seville, Spain
| | - A. G. Fairen
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | - R. Ferrándiz
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - F. Ferri
- Università degli Studi di Padova, Padova, Italy
| | - E. Fischer
- University of Michigan, Ann Arbor, MI USA
| | | | | | - M. Genzer
- Finnish Meteorological Institute, Helsinki, Finland
| | - S. Giménez
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - J. Gómez-Elvira
- Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - F. Gómez
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | - A.-M. Harri
- Finnish Meteorological Institute, Helsinki, Finland
| | - C. D. Hernández
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| | - M. Hieta
- Finnish Meteorological Institute, Helsinki, Finland
| | - R. Hueso
- Universidad del País Vasco (UPV/EHU), Bilbao, Spain
| | - I. Jaakonaho
- Finnish Meteorological Institute, Helsinki, Finland
| | - J. J. Jiménez
- Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - V. Jiménez
- Universidad Politécnica de Cataluña, Barcelona, Spain
| | - A. Larman
- Added-Value-Solutions, Elgoibar, Spain
| | - R. Leiter
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| | - A. Lepinette
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | - G. López
- Universidad Politécnica de Cataluña, Barcelona, Spain
| | - S. N. Madsen
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| | - T. Mäkinen
- Finnish Meteorological Institute, Helsinki, Finland
| | - M. Marín
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | - G. Martínez
- Lunar and Planetary Institute, Houston, TX USA
| | - A. Molina
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | | | - S. Navarro
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | - C. Ortega
- Added-Value-Solutions, Elgoibar, Spain
| | - M. C. Parrondo
- Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - V. Peinado
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - A. Peña
- CRISA-Airbus, Tres Cantos, Spain
| | | | | | | | - J. Polkko
- Finnish Meteorological Institute, Helsinki, Finland
| | - M. Postigo
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | | | - M. Ramos
- Universidad de Alcalá, Alcalá de Henares, Spain
| | | | - J. Romeral
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - C. Romero
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | - A. Saiz-Lopez
- Dept. of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain
| | | | - I. Sard
- Added-Value-Solutions, Elgoibar, Spain
| | - J. T. Schofield
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| | - E. Sebastian
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - M. D. Smith
- NASA Goddard Space Flight Center, Greenbelt, MD USA
| | - R. J. Sullivan
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY USA
| | - L. K. Tamppari
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| | - A. D. Thompson
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
| | - D. Toledo
- Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | | | - J. Torres
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - R. Urquí
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | | | - S. Zurita
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - The MEDA team
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA USA
- CRISA-Airbus, Tres Cantos, Spain
- Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
- Universidad Politécnica de Cataluña, Barcelona, Spain
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY USA
- Added-Value-Solutions, Elgoibar, Spain
- Instituto de Microelectrónica de Sevilla (US-CSIC), Seville, Spain
- Universidad del País Vasco (UPV/EHU), Bilbao, Spain
- Carnegie Institution, Washington, DC USA
- Università degli Studi di Padova, Padova, Italy
- University of Michigan, Ann Arbor, MI USA
- Finnish Meteorological Institute, Helsinki, Finland
- Space Science Institute, Boulder, CO USA
- Lunar and Planetary Institute, Houston, TX USA
- Aeolis Corporation, Sierra Madre, CA USA
- Universidad Politécnica de Madrid, Madrid, Spain
- Southwest Research Institute, Boulder, CO USA
- Universidad de Alcalá, Alcalá de Henares, Spain
- John Hopkins APL, Laurel, MD USA
- Dept. of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain
- NASA Goddard Space Flight Center, Greenbelt, MD USA
| |
Collapse
|
5
|
Fornaro T, Steele A, Brucato JR. Catalytic/Protective Properties of Martian Minerals and Implications for Possible Origin of Life on Mars. Life (Basel) 2018; 8:life8040056. [PMID: 30400661 PMCID: PMC6315534 DOI: 10.3390/life8040056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 11/16/2022] Open
Abstract
Minerals might have played critical roles for the origin and evolution of possible life forms on Mars. The study of the interactions between the "building blocks of life" and minerals relevant to Mars mineralogy under conditions mimicking the harsh Martian environment may provide key insight into possible prebiotic processes. Therefore, this contribution aims at reviewing the most important investigations carried out so far about the catalytic/protective properties of Martian minerals toward molecular biosignatures under Martian-like conditions. Overall, it turns out that the fate of molecular biosignatures on Mars depends on a delicate balance between multiple preservation and degradation mechanisms, often regulated by minerals, which may take place simultaneously. Such a complexity requires more efforts in simulating realistically the Martian environment in order to better inspect plausible prebiotic pathways and shed light on the nature of the organic compounds detected both in meteorites and on the surface of Mars through in situ analysis.
Collapse
Affiliation(s)
- Teresa Fornaro
- Geophysical Laboratory of the Carnegie Institution for Science, 5251 Broad Branch Rd. NW, Washington, DC 20015, USA.
| | - Andrew Steele
- Geophysical Laboratory of the Carnegie Institution for Science, 5251 Broad Branch Rd. NW, Washington, DC 20015, USA.
| | - John Robert Brucato
- INAF-Astrophysical Observatory of Arcetri, L.go E. Fermi 5, 50125 Firenze, Italy.
| |
Collapse
|
6
|
Edwards CS, Christensen PR. Microscopic emission and reflectance thermal infrared spectroscopy: instrumentation for quantitative in situ mineralogy of complex planetary surfaces. APPLIED OPTICS 2013; 52:2200-2217. [PMID: 23670748 DOI: 10.1364/ao.52.002200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/14/2013] [Indexed: 06/02/2023]
Abstract
The diversity of investigations of planetary surfaces, especially Mars, using in situ instrumentation over the last decade is unprecedented in the exploration history of our solar system. The style of instrumentation that landed spacecraft can support is dependent on several parameters, including mass, power consumption, instrument complexity, cost, and desired measurement type (e.g., chemistry, mineralogy, petrology, morphology, etc.), all of which must be evaluated when deciding an appropriate spacecraft payload. We present a laboratory technique for a microscopic emission and reflectance spectrometer for the analysis of martian analog materials as a strong candidate for the next generation of in situ instruments designed to definitively assess sample mineralogy and petrology while preserving geologic context. We discuss the instrument capabilities, signal and noise, and overall system performance. We evaluate the ability of this instrument to quantitatively determine sample mineralogy, including bulk mineral abundances. This capability is greatly enhanced. Whereas the number of mineral components observed from existing emission spectrometers is high (often >5 to 10 depending on the number of accessory and alteration phases present), the number of mineral components at any microscopic measurement spot is low (typically <2 to 3). Since this style of instrument is based on a long heritage of thermal infrared emission spectrometers sent to orbit (the thermal emission spectrometer), sent to planetary surfaces [the mini-thermal emission spectrometers (mini-TES)], and evaluated in laboratory environments (e.g., the Arizona State University emission spectrometer laboratory), direct comparisons to existing data are uniquely possible with this style of instrument. The ability to obtain bulk mineralogy and atmospheric data, much in the same manner as the mini-TESs, is of significant additional value and maintains the long history of atmospheric monitoring for Mars. Miniaturization of this instrument has also been demonstrated, as the same microscope objective has been mounted to a flight-spare mini-TES. Further miniaturization of this instrument is straightforward with modern electronics, and the development of this instrument as an arm-mounted device is the end goal.
Collapse
Affiliation(s)
- C S Edwards
- California Institute of Technology, Division of Geological and Planetary Sciences,Pasadena, California 91125, USA.
| | | |
Collapse
|
7
|
Wang A, Freeman JJ, Chou IM, Jolliff BL. Stability of Mg-sulfates at −10°C and the rates of dehydration/rehydration processes under conditions relevant to Mars. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011je003818] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Wang A, Ling ZC. Ferric sulfates on Mars: A combined mission data analysis of salty soils at Gusev crater and laboratory experimental investigations. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003665] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
The Rover Environmental Monitoring Station Ground Temperature Sensor: a pyrometer for measuring ground temperature on Mars. SENSORS 2010; 10:9211-31. [PMID: 22163405 PMCID: PMC3230958 DOI: 10.3390/s101009211] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 09/14/2010] [Accepted: 09/25/2010] [Indexed: 11/30/2022]
Abstract
We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment.
Collapse
|
10
|
Wolkenberg P, Grassi D, Formisano V, Rinaldi G, D'Amore M, Smith M. Simultaneous observations of the Martian atmosphere by Planetary Fourier Spectrometer on Mars Express and Miniature Thermal Emission Spectrometer on Mars Exploration Rover. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008je003216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Wang A, Freeman JJ, Jolliff BL. Phase transition pathways of the hydrates of magnesium sulfate in the temperature range 50°C to 5°C: Implication for sulfates on Mars. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008je003266] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Tyler D, Barnes JR, Skyllingstad ED. Mesoscale and large-eddy simulation model studies of the Martian atmosphere in support of Phoenix. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Richardson MI, Toigo AD, Newman CE. PlanetWRF: A general purpose, local to global numerical model for planetary atmospheric and climate dynamics. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002825] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Jouglet D, Poulet F, Milliken RE, Mustard JF, Bibring JP, Langevin Y, Gondet B, Gomez C. Hydration state of the Martian surface as seen by Mars Express OMEGA: 1. Analysis of the 3 μ
m hydration feature. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002846] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- D. Jouglet
- Institut d'Astrophysique Spatiale (IAS); Université Paris 11; Orsay France
| | - F. Poulet
- Institut d'Astrophysique Spatiale (IAS); Université Paris 11; Orsay France
| | - R. E. Milliken
- Department of Geological Sciences; Brown University; Providence Rhode Island USA
| | - J. F. Mustard
- Department of Geological Sciences; Brown University; Providence Rhode Island USA
| | - J.-P. Bibring
- Institut d'Astrophysique Spatiale (IAS); Université Paris 11; Orsay France
| | - Y. Langevin
- Institut d'Astrophysique Spatiale (IAS); Université Paris 11; Orsay France
| | - B. Gondet
- Institut d'Astrophysique Spatiale (IAS); Université Paris 11; Orsay France
| | - C. Gomez
- Institut d'Astrophysique Spatiale (IAS); Université Paris 11; Orsay France
| |
Collapse
|
15
|
Wolff MJ, Smith MD, Clancy RT, Spanovich N, Whitney BA, Lemmon MT, Bandfield JL, Banfield D, Ghosh A, Landis G, Christensen PR, Bell JF, Squyres SW. Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002786] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M. J. Wolff
- Space Science Institute; Boulder Colorado USA
| | - M. D. Smith
- Goddard Space Flight Center; Greenbelt Maryland USA
| | | | - N. Spanovich
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | | | - M. T. Lemmon
- Department of Atmospheric Sciences; Texas A&M University; College Station Texas USA
| | - J. L. Bandfield
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - D. Banfield
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - A. Ghosh
- Department of Earth and Planetary Sciences; University of Tennessee; Knoxville Tennessee USA
| | - G. Landis
- Photovoltaics and Space Environment Branch; NASA John Glenn Research Center; Cleveland Ohio USA
| | - P. R. Christensen
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - J. F. Bell
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - S. W. Squyres
- Department of Astronomy; Cornell University; Ithaca New York USA
| |
Collapse
|
16
|
Ruff SW, Christensen PR, Blaney DL, Farrand WH, Johnson JR, Michalski JR, Moersch JE, Wright SP, Squyres SW. The rocks of Gusev Crater as viewed by the Mini-TES instrument. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002747] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- S. W. Ruff
- School of Earth and Space Exploration; Arizona State University; Tempe Arizona USA
| | - P. R. Christensen
- School of Earth and Space Exploration; Arizona State University; Tempe Arizona USA
| | - D. L. Blaney
- Jet Propulsion Laboratory; Pasadena California USA
| | | | | | - J. R. Michalski
- School of Earth and Space Exploration; Arizona State University; Tempe Arizona USA
| | - J. E. Moersch
- Department of Earth and Planetary Sciences; University of Tennessee; Knoxville Tennessee USA
| | - S. P. Wright
- School of Earth and Space Exploration; Arizona State University; Tempe Arizona USA
| | - S. W. Squyres
- Department of Astronomy; Cornell University; Ithaca New York USA
| |
Collapse
|
17
|
Smith MD, Wolff MJ, Spanovich N, Ghosh A, Banfield D, Christensen PR, Landis GA, Squyres SW. One Martian year of atmospheric observations using MER Mini-TES. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002770] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | | | - Don Banfield
- Department of Astronomy; Cornell University; Ithaca New York USA
| | | | | | | |
Collapse
|
18
|
Cantor BA, Kanak KM, Edgett KS. Mars Orbiter Camera observations of Martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002700] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Katharine M. Kanak
- Cooperative Institute for Mesoscale Meteorological Studies; University of Oklahoma; Norman Oklahoma USA
| | | |
Collapse
|
19
|
Arvidson RE, Poulet F, Morris RV, Bibring JP, Bell JF, Squyres SW, Christensen PR, Bellucci G, Gondet B, Ehlmann BL, Farrand WH, Fergason RL, Golombek M, Griffes JL, Grotzinger J, Guinness EA, Herkenhoff KE, Johnson JR, Klingelhöfer G, Langevin Y, Ming D, Seelos K, Sullivan RJ, Ward JG, Wiseman SM, Wolff M. Nature and origin of the hematite-bearing plains of Terra Meridiani based on analyses of orbital and Mars Exploration rover data sets. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002728] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- R. E. Arvidson
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - F. Poulet
- Institut d'Astrophysique Spatiale; Université Paris-Sud; Orsay France
| | | | - J.-P. Bibring
- Institut d'Astrophysique Spatiale; Université Paris-Sud; Orsay France
| | - J. F. Bell
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - S. W. Squyres
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - P. R. Christensen
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - G. Bellucci
- Istituto di Fisica dello Spazio Interplanetario; Istituto Nazionale di Astrofisica; Rome Italy
| | - B. Gondet
- Institut d'Astrophysique Spatiale; Université Paris-Sud; Orsay France
| | - B. L. Ehlmann
- School of Geography and Environment; University of Oxford; Oxford UK
| | | | - R. L. Fergason
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - M. Golombek
- Jet Propulsion Laboratory; Pasadena California USA
| | - J. L. Griffes
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - J. Grotzinger
- Geological and Planetary Sciences; California Institute of Technology; Pasadena California USA
| | - E. A. Guinness
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | | | | | - G. Klingelhöfer
- Institut für Anorganische und Analytische Chemie; Johannes Gutenberg-Universität; Mainz Germany
| | - Y. Langevin
- Institut d'Astrophysique Spatiale; Université Paris-Sud; Orsay France
| | - D. Ming
- NASA Johnson Space Center; Houston Texas USA
| | - K. Seelos
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - R. J. Sullivan
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - J. G. Ward
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - S. M. Wiseman
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - M. Wolff
- Space Science Institute; Boulder Colorado USA
| |
Collapse
|
20
|
Glotch TD, Bandfield JL. Determination and interpretation of surface and atmospheric Miniature Thermal Emission Spectrometer spectral end-members at the Meridiani Planum landing site. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002671] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Timothy D. Glotch
- Division of Geological and Planetary Science; California Institute of Technology; Pasadena California USA
| | - Joshua L. Bandfield
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| |
Collapse
|
21
|
Bell JF, Savransky D, Wolff MJ. Chromaticity of the Martian sky as observed by the Mars Exploration Rover Pancam instruments. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002687] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J. F. Bell
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - D. Savransky
- Department of Astronomy; Cornell University; Ithaca New York USA
| | | |
Collapse
|
22
|
Arvidson RE, Squyres SW, Anderson RC, Bell JF, Blaney D, Brückner J, Cabrol NA, Calvin WM, Carr MH, Christensen PR, Clark BC, Crumpler L, Des Marais DJ, de Souza PA, d'Uston C, Economou T, Farmer J, Farrand WH, Folkner W, Golombek M, Gorevan S, Grant JA, Greeley R, Grotzinger J, Guinness E, Hahn BC, Haskin L, Herkenhoff KE, Hurowitz JA, Hviid S, Johnson JR, Klingelhöfer G, Knoll AH, Landis G, Leff C, Lemmon M, Li R, Madsen MB, Malin MC, McLennan SM, McSween HY, Ming DW, Moersch J, Morris RV, Parker T, Rice JW, Richter L, Rieder R, Rodionov DS, Schröder C, Sims M, Smith M, Smith P, Soderblom LA, Sullivan R, Thompson SD, Tosca NJ, Wang A, Wänke H, Ward J, Wdowiak T, Wolff M, Yen A. Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002499] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Meslin PY, Sabroux JC, Berger L, Pineau JF, Chassefière E. Evidence of210Po on Martian dust at Meridiani Planum. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Tokano T, Ferri F, Colombatti G, Mäkinen T, Fulchignoni M. Titan's planetary boundary layer structure at the Huygens landing site. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002704] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Tokano T. Hydration state and abundance of zeolites on Mars and the water cycle. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005je002410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Squyres SW, Arvidson RE, Bell JF, Brückner J, Cabrol NA, Calvin W, Carr MH, Christensen PR, Clark BC, Crumpler L, Marais DJD, d'Uston C, Economou T, Farmer J, Farrand W, Folkner W, Golombek M, Gorevan S, Grant JA, Greeley R, Grotzinger J, Haskin L, Herkenhoff KE, Hviid S, Johnson J, Klingelhöfer G, Knoll AH, Landis G, Lemmon M, Li R, Madsen MB, Malin MC, McLennan SM, McSween HY, Ming DW, Moersch J, Morris RV, Parker T, Rice JW, Richter L, Rieder R, Sims M, Smith M, Smith P, Soderblom LA, Sullivan R, Wänke H, Wdowiak T, Wolff M, Yen A. The Opportunity Rover's Athena science investigation at Meridiani Planum, Mars. Science 2004; 306:1698-703. [PMID: 15576602 DOI: 10.1126/science.1106171] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.
Collapse
Affiliation(s)
- S W Squyres
- Department of Astronomy, Space Sciences Building, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lemmon MT, Wolff MJ, Smith MD, Clancy RT, Banfield D, Landis GA, Ghosh A, Smith PH, Spanovich N, Whitney B, Whelley P, Greeley R, Thompson S, Bell JF, Squyres SW. Atmospheric imaging results from the Mars exploration rovers: Spirit and Opportunity. Science 2004; 306:1753-6. [PMID: 15576613 DOI: 10.1126/science.1104474] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A visible atmospheric optical depth of 0.9 was measured by the Spirit rover at Gusev crater and by the Opportunity rover at Meridiani Planum. Optical depth decreased by about 0.6 to 0.7% per sol through both 90-sol primary missions. The vertical distribution of atmospheric dust at Gusev crater was consistent with uniform mixing, with a measured scale height of 11.56 +/- 0.62 kilometers. The dust's cross section weighted mean radius was 1.47 +/- 0.21 micrometers (mm) at Gusev and 1.52 +/- 0.18 mm at Meridiani. Comparison of visible optical depths with 9-mm optical depths shows a visible-to-infrared optical depth ratio of 2.0 +/- 0.2 for comparison with previous monitoring of infrared optical depths.
Collapse
Affiliation(s)
- M T Lemmon
- Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Opportunity: First 90 days on Mars. Nature 2004. [DOI: 10.1038/news041129-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Christensen PR, Wyatt MB, Glotch TD, Rogers AD, Anwar S, Arvidson RE, Bandfield JL, Blaney DL, Budney C, Calvin WM, Fallacaro A, Fergason RL, Gorelick N, Graff TG, Hamilton VE, Hayes AG, Johnson JR, Knudson AT, McSween HY, Mehall GL, Mehall LK, Moersch JE, Morris RV, Smith MD, Squyres SW, Ruff SW, Wolff MJ. Mineralogy at Meridiani Planum from the Mini-TES Experiment on the Opportunity Rover. Science 2004; 306:1733-9. [PMID: 15576609 DOI: 10.1126/science.1104909] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Miniature Thermal Emission Spectrometer (Mini-TES) on Opportunity investigated the mineral abundances and compositions of outcrops, rocks, and soils at Meridiani Planum. Coarse crystalline hematite and olivine-rich basaltic sands were observed as predicted from orbital TES spectroscopy. Outcrops of aqueous origin are composed of 15 to 35% by volume magnesium and calcium sulfates [a high-silica component modeled as a combination of glass, feldspar, and sheet silicates (approximately 20 to 30%)], and hematite; only minor jarosite is identified in Mini-TES spectra. Mini-TES spectra show only a hematite signature in the millimeter-sized spherules. Basaltic materials have more plagioclase than pyroxene, contain olivine, and are similar in inferred mineral composition to basalt mapped from orbit. Bounce rock is dominated by clinopyroxene and is close in inferred mineral composition to the basaltic martian meteorites. Bright wind streak material matches global dust. Waterlain rocks covered by unaltered basaltic sands suggest a change from an aqueous environment to one dominated by physical weathering.
Collapse
Affiliation(s)
- P R Christensen
- Department of Geological Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|