1
|
Carr CE, Ramírez-Colón JL, Duzdevich D, Lee S, Taniguchi M, Ohshiro T, Komoto Y, Soderblom JM, Zuber MT. Solid-State Single-Molecule Sensing with the Electronic Life-Detection Instrument for Enceladus/Europa (ELIE). ASTROBIOLOGY 2023; 23:1056-1070. [PMID: 37782210 DOI: 10.1089/ast.2022.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Growing evidence of the potential habitability of Ocean Worlds across our solar system is motivating the advancement of technologies capable of detecting life as we know it-sharing a common ancestry or physicochemical origin with life on Earth-or don't know it, representing a distinct emergence of life different than our one known example. Here, we propose the Electronic Life-detection Instrument for Enceladus/Europa (ELIE), a solid-state single-molecule instrument payload that aims to search for life based on the detection of amino acids and informational polymers (IPs) at the parts per billion to trillion level. As a first proof-of-principle in a laboratory environment, we demonstrate the single-molecule detection of the amino acid L-proline at a 10 μM concentration in a compact system. Based on ELIE's solid-state quantum electronic tunneling sensing mechanism, we further propose the quantum property of the HOMO-LUMO gap (energy difference between a molecule's highest energy-occupied molecular orbital and lowest energy-unoccupied molecular orbital) as a novel metric to assess amino acid complexity. Finally, we assess the potential of ELIE to discriminate between abiotically and biotically derived α-amino acid abundance distributions to reduce the false positive risk for life detection. Nanogap technology can also be applied to the detection of nucleobases and short sequences of IPs such as, but not limited to, RNA and DNA. Future missions may utilize ELIE to target preserved biosignatures on the surface of Mars, extant life in its deep subsurface, or life or its biosignatures in a plume, surface, or subsurface of ice moons such as Enceladus or Europa. One-Sentence Summary: A solid-state nanogap can determine the abundance distribution of amino acids, detect nucleic acids, and shows potential for detecting life as we know it and life as we don't know it.
Collapse
Affiliation(s)
- Christopher E Carr
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - José L Ramírez-Colón
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Daniel Duzdevich
- Massachusetts General Hospital, Department of Molecular Biology, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
- Current address: Department of Chemistry, University of Chicago, Chicago, Illinois, USA
| | - Sam Lee
- MIT Department of Electrical Engineering and Computer Science, Cambridge, Massachusetts, USA
| | - Masateru Taniguchi
- Osaka University, Institute of Scientific and Industrial Research, Osaka, Japan
| | - Takahito Ohshiro
- Osaka University, Institute of Scientific and Industrial Research, Osaka, Japan
| | - Yuki Komoto
- Osaka University, Institute of Scientific and Industrial Research, Osaka, Japan
| | - Jason M Soderblom
- MIT Department of Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA
| | - M T Zuber
- MIT Department of Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Steele SC, Fu RR, Volk MW, North TL, Brenner AR, Muxworthy AR, Collins GS, Davison TM. Paleomagnetic evidence for a long-lived, potentially reversing martian dynamo at ~3.9 Ga. SCIENCE ADVANCES 2023; 9:eade9071. [PMID: 37224261 PMCID: PMC10957104 DOI: 10.1126/sciadv.ade9071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/19/2023] [Indexed: 05/26/2023]
Abstract
The 4.1-billion-year-old meteorite Allan Hills 84001 (ALH 84001) may preserve a magnetic record of the extinct martian dynamo. However, previous paleomagnetic studies have reported heterogeneous, nonunidirectional magnetization in the meteorite at submillimeter scales, calling into question whether it records a dynamo field. We use the quantum diamond microscope to analyze igneous Fe-sulfides in ALH 84001 that may carry remanence as old as 4.1 billion years (Ga). We find that individual, 100-μm-scale ferromagnetic mineral assemblages are strongly magnetized in two nearly antipodal directions. This suggests that the meteorite recorded strong fields following impact heating at 4.1 to 3.95 Ga, after which at least one further impact heterogeneously remagnetized the meteorite in a nearly antipodal local field. These observations are most simply explained by a reversing martian dynamo that was active until 3.9 Ga, thereby implying a late cessation for the martian dynamo and potentially documenting reversing behavior in a nonterrestrial planetary dynamo.
Collapse
Affiliation(s)
- Sarah C. Steele
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Roger R. Fu
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Michael W. R. Volk
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Earth Sciences, Utrecht University, Utrecht 3584 CS, Netherlands
| | - Thomas L. North
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Alec R. Brenner
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Adrian R. Muxworthy
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Gareth S. Collins
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Thomas M. Davison
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
3
|
Pleyer HL, Moeller R, Fujimori A, Fox S, Strasdeit H. Chemical, Thermal, and Radiation Resistance of an Iron Porphyrin: A Model Study of Biosignature Stability. ASTROBIOLOGY 2022; 22:776-799. [PMID: 35647896 PMCID: PMC9298530 DOI: 10.1089/ast.2021.0144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/22/2022] [Indexed: 06/15/2023]
Abstract
Metal complexes of porphyrins and porphyrin-type compounds are ubiquitous in all three domains of life, with hemes and chlorophylls being the best-known examples. Their diagenetic transformation products are found as geoporphyrins, in which the characteristic porphyrin core structure is retained and which can be up to 1.1 billion years old. Because of this, and their relative ease of detection, metalloporphyrins appear attractive as chemical biosignatures in the search for extraterrestrial life. In this study, we investigated the stability of solid chlorido(2,3,7,8,12,13,17,18-octaethylporphyrinato)iron(III) [FeCl(oep)], which served as a model for heme-like molecules and iron geoporphyrins. [FeCl(oep)] was exposed to a variety of astrobiologically relevant extreme conditions, namely: aqueous acids and bases, oxidants, heat, and radiation. Key results are: (1) the [Fe(oep)]+ core is stable over the pH range 0.0-13.5 even at 80°C; (2) the oxidizing power follows the order ClO- > H2O2 > ClO3- > HNO3 > ClO4-; (3) in an inert atmosphere, the iron porphyrin is thermally stable to near 250°C; (4) at high temperatures, carbon dioxide gas is not inert but acts as an oxidant, forming carbon monoxide; (5) a decomposition layer is formed on ultraviolet irradiation and protects the [FeCl(oep)] underneath; (6) an NaCl/NaHCO3 salt mixture has a protective effect against X-rays; and (7) no such effect is observed when [FeCl(oep)] is exposed to iron ion particle radiation. The relevance to potential iron porphyrin biosignatures on Mars, Europa, and Enceladus is discussed.
Collapse
Affiliation(s)
- Hannes Lukas Pleyer
- Department of Bioinorganic Chemistry and Chemical Evolution, Institute of Chemistry, University of Hohenheim, Stuttgart, Germany
| | - Ralf Moeller
- Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Akira Fujimori
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Chiba, Japan
| | - Stefan Fox
- Department of Bioinorganic Chemistry and Chemical Evolution, Institute of Chemistry, University of Hohenheim, Stuttgart, Germany
| | - Henry Strasdeit
- Department of Bioinorganic Chemistry and Chemical Evolution, Institute of Chemistry, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
4
|
Treiman AH. Uninhabitable and Potentially Habitable Environments on Mars: Evidence from Meteorite ALH 84001. ASTROBIOLOGY 2021; 21:940-953. [PMID: 33857382 DOI: 10.1089/ast.2020.2306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The martian meteorite ALH 84001 formed before ∼4.0 Ga, so it could have preserved information about habitability on early Mars and habitability since then. ALH 84001 is particularly important as it contains carbonate (and other) minerals that were deposited by liquid water, raising the chance that they may have formed in a habitable environment. Despite vigorous efforts from the scientific community, there is no accepted evidence that ALH 84001 contains traces or markers of ancient martian life-all the purported signs have been shown to be incorrect or ambiguous. However, the meteorite provides evidence for three distinct episodes of potentially habitable environments on early Mars. First is evidence that the meteorite's precursors interacted with clay-rich material, formed approximately at 4.2 Ga. Second is that igneous olivine crystals in ALH 84001 were partially dissolved and removed, presumably by liquid water. Third is, of course, the deposition of the carbonate globules, which occurred at ∼15-25°C and involved near-neutral to alkaline waters. The environments of olivine dissolution and carbonate deposition are not known precisely; hydrothermal and soil environments are current possibilities. By analogies with similar alteration minerals and sequences in the nakhlite martian meteorites and volcanic rocks from Spitzbergen (Norway), a hydrothermal environment is favored. As with the nakhlite alterations, those in ALH 84001 likely formed in a hydrothermal system related to a meteoroid impact event. Following deposition of the carbonates (at 3.95 Ga), ALH 84001 preserves no evidence of habitable environments, that is, interaction with water. The meteorite contains several materials (formed by impact shock at ∼3.9 Ga) that should have reacted readily with water to form hydrous silicates, but there is no evidence any formed.
Collapse
Affiliation(s)
- Allan H Treiman
- Lunar and Planetary Institute / Universities Space Research Association, Houston, Texas, USA
| |
Collapse
|
5
|
Tan J, Sephton MA. Organic Records of Early Life on Mars: The Role of Iron, Burial, and Kinetics on Preservation. ASTROBIOLOGY 2020; 20:53-72. [PMID: 31755737 PMCID: PMC6987739 DOI: 10.1089/ast.2019.2046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/11/2019] [Indexed: 05/19/2023]
Abstract
Samples that are likely to contain evidence of past life on Mars must have been deposited when and where environments exhibited habitable conditions. Mars analog sites provide the opportunity to study how life could have exploited such habitable conditions. Acidic iron- and sulfur-rich streams are good geochemical analogues for the late Noachian and early Hesperian, periods of martian history where habitable conditions were widespread. Past life on Mars would have left behind fossilized microbial organic remains. These are often-sought diagnostic evidence, but they must be shielded from the harsh radiation flux at the martian surface and its deleterious effect on organic matter. One mechanism that promotes such preservation is burial, which raises questions about how organic biomarkers are influenced by the postburial effects of diagenesis. We investigated the kinetics of organic degradation in the subsurface of Mars. Natural mixtures of acidic iron- and sulfur-rich stream sediments and their associated microbial populations and remains were subjected to hydrous pyrolysis, which simulated the increased temperatures and pressures of burial alongside any promoted organic/mineral interactions. Calculations were made to extrapolate the observed changes over martian history. Our experiments indicate that low carbon contents, high water-to-rock ratios, and the presence of iron-rich minerals combine to provide unfavorable conditions for the preservation of soluble organic matter over the billions of years necessary to produce present-day organic records of late Noachian and early Hesperian life on Mars. Successful sample selection strategies must therefore consider the pre-, syn-, and postburial histories of sedimentary records on Mars and the balance between the production of biomass and the long-term preservation of organic biomarkers over geological time.
Collapse
Affiliation(s)
- Jonathan Tan
- Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London, United Kingdom
- Address correspondence to: Jonathan Tan, Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mark A. Sephton
- Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Mojarro A, Hachey J, Bailey R, Brown M, Doebler R, Ruvkun G, Zuber MT, Carr CE. Nucleic Acid Extraction and Sequencing from Low-Biomass Synthetic Mars Analog Soils for In Situ Life Detection. ASTROBIOLOGY 2019; 19:1139-1152. [PMID: 31204862 PMCID: PMC6708270 DOI: 10.1089/ast.2018.1929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent studies regarding the origins of life and Mars-Earth meteorite transfer simulations suggest that biological informational polymers, such as nucleic acids (DNA and RNA), have the potential to provide unambiguous evidence of life on Mars. To this end, we are developing a metagenomics-based life-detection instrument which integrates nucleic acid extraction and nanopore sequencing: the Search for Extra-Terrestrial Genomes (SETG). Our goal is to isolate and sequence nucleic acids from extant or preserved life on Mars in order to determine if a particular genetic sequence (1) is distantly related to life on Earth, indicating a shared ancestry due to lithological exchange, or (2) is unrelated to life on Earth, suggesting convergent origins of life on Mars. In this study, we validate prior work on nucleic acid extraction from cells deposited in Mars analog soils down to microbial concentrations (i.e., 104 cells in 50 mg of soil) observed in the driest and coldest regions on Earth. In addition, we report low-input nanopore sequencing results from 2 pg of purified Bacillus subtilis spore DNA simulating ideal extraction yields equivalent to 1 ppb life-detection sensitivity. We achieve this by employing carrier sequencing, a method of sequencing sub-nanogram DNA in the background of a genomic carrier. After filtering of carrier, low-quality, and low-complexity reads we detected 5 B. subtilis reads, 18 contamination reads (including Homo sapiens), and 6 high-quality noise reads believed to be sequencing artifacts.
Collapse
Affiliation(s)
- Angel Mojarro
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Address correspondence to: Angel Mojarro, Massachusetts Institute of Technology, 77 Massachusetts Ave, Room E25-647, Cambridge, MA 02139
| | | | - Ryan Bailey
- Claremont Biosolutions, LLC, Upland, California
| | - Mark Brown
- Claremont Biosolutions, LLC, Upland, California
| | | | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Maria T. Zuber
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christopher E. Carr
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
7
|
Betts BH, Warmflash D, Fraze RE, Friedman L, Vorobyova E, Lilburn TG, Smith A, Rettberg P, Jönsson KI, Ciftcioglu N, Fox GE, Svitek T, Kirschvinck JL, Moeller R, Wassmann M, Berger T. Phobos LIFE (Living Interplanetary Flight Experiment). ASTROBIOLOGY 2019; 19:1177-1185. [PMID: 31397580 PMCID: PMC6775494 DOI: 10.1089/ast.2018.1904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/14/2018] [Indexed: 06/10/2023]
Abstract
The Planetary Society's Phobos Living Interplanetary Flight Experiment (Phobos LIFE) flew in the sample return capsule of the Russian Federal Space Agency's Phobos Grunt mission and was to have been a test of one aspect of the hypothesis that life can move between nearby planets within ejected rocks. Although the Phobos Grunt mission failed, we present here the scientific and engineering design and motivation of the Phobos LIFE experiment to assist with the scientific and engineering design of similar future experiments. Phobos LIFE flew selected organisms in a simulated meteoroid. The 34-month voyage would have been the first such test to occur in the high-radiation environment outside the protection of Earth's magnetosphere for more than a few days. The patented Phobos LIFE "biomodule" is an 88 g cylinder consisting of a titanium outer shell, several types of redundant seals, and 31 individual Delrin sample containers. Phobos LIFE contained 10 different organisms, representing all three domains of life, and one soil sample. The organisms are all very well characterized, most with sequenced genomes. Most are extremophiles, and most have flown in low Earth orbit. Upon return from space, the health and characteristics of organisms were to have been compared with controls that remained on Earth and have not yet been opened.
Collapse
Affiliation(s)
| | | | - Raymond E. Fraze
- Stellar Exploration, Inc., San Luis Obispo, California, USA
- Vector Design, Hereford, Arizona, USA
| | | | - Elena Vorobyova
- Space Research Institute (IKI), Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | | | - Amy Smith
- George Mason University, Manassas, Virginia, USA
| | - Petra Rettberg
- German Aerospace Center (DLR e. V.), Institute of Aerospace Medicine, Radiation Biology Department, Cologne (Köln), Germany
| | - K. Ingemar Jönsson
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
| | | | | | - Tomas Svitek
- Stellar Exploration, Inc., San Luis Obispo, California, USA
| | - Joseph L. Kirschvinck
- Caltech, Pasadena, California, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Ralf Moeller
- German Aerospace Center (DLR e. V.), Institute of Aerospace Medicine, Radiation Biology Department, Cologne (Köln), Germany
| | - Marko Wassmann
- German Aerospace Center (DLR e. V.), Executive Board Division Space Research and Development, Programme Space R&D, Cologne (Köln), Germany
| | - Thomas Berger
- German Aerospace Center (DLR e. V.), Institute of Aerospace Medicine, Radiation Biology Department, Cologne (Köln), Germany
| |
Collapse
|
8
|
McMahon S, Bosak T, Grotzinger JP, Milliken RE, Summons RE, Daye M, Newman SA, Fraeman A, Williford KH, Briggs DEG. A Field Guide to Finding Fossils on Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2018; 123:1012-1040. [PMID: 30034979 PMCID: PMC6049883 DOI: 10.1029/2017je005478] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/28/2018] [Accepted: 04/23/2018] [Indexed: 05/05/2023]
Abstract
The Martian surface is cold, dry, exposed to biologically harmful radiation and apparently barren today. Nevertheless, there is clear geological evidence for warmer, wetter intervals in the past that could have supported life at or near the surface. This evidence has motivated National Aeronautics and Space Administration and European Space Agency to prioritize the search for any remains or traces of organisms from early Mars in forthcoming missions. Informed by (1) stratigraphic, mineralogical and geochemical data collected by previous and current missions, (2) Earth's fossil record, and (3) experimental studies of organic decay and preservation, we here consider whether, how, and where fossils and isotopic biosignatures could have been preserved in the depositional environments and mineralizing media thought to have been present in habitable settings on early Mars. We conclude that Noachian-Hesperian Fe-bearing clay-rich fluvio-lacustrine siliciclastic deposits, especially where enriched in silica, currently represent the most promising and best understood astropaleontological targets. Siliceous sinters would also be an excellent target, but their presence on Mars awaits confirmation. More work is needed to improve our understanding of fossil preservation in the context of other environments specific to Mars, particularly within evaporative salts and pore/fracture-filling subsurface minerals.
Collapse
Affiliation(s)
- S. McMahon
- Department of Geology and GeophysicsYale UniversityNew HavenCTUSA
- UK Centre for Astrobiology, School of Physics and AstronomyUniversity of EdinburghEdinburghUK
| | - T. Bosak
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - J. P. Grotzinger
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - R. E. Milliken
- Department of Earth, Environmental and Planetary SciencesBrown UniversityProvidenceRIUSA
| | - R. E. Summons
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - M. Daye
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - S. A. Newman
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - A. Fraeman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - K. H. Williford
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - D. E. G. Briggs
- Department of Geology and GeophysicsYale UniversityNew HavenCTUSA
| |
Collapse
|
9
|
Mojarro A, Ruvkun G, Zuber MT, Carr CE. Nucleic Acid Extraction from Synthetic Mars Analog Soils for in situ Life Detection. ASTROBIOLOGY 2017; 17:747-760. [PMID: 28704064 PMCID: PMC5567878 DOI: 10.1089/ast.2016.1535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Biological informational polymers such as nucleic acids have the potential to provide unambiguous evidence of life beyond Earth. To this end, we are developing an automated in situ life-detection instrument that integrates nucleic acid extraction and nanopore sequencing: the Search for Extra-Terrestrial Genomes (SETG) instrument. Our goal is to isolate and determine the sequence of nucleic acids from extant or preserved life on Mars, if, for example, there is common ancestry to life on Mars and Earth. As is true of metagenomic analysis of terrestrial environmental samples, the SETG instrument must isolate nucleic acids from crude samples and then determine the DNA sequence of the unknown nucleic acids. Our initial DNA extraction experiments resulted in low to undetectable amounts of DNA due to soil chemistry-dependent soil-DNA interactions, namely adsorption to mineral surfaces, binding to divalent/trivalent cations, destruction by iron redox cycling, and acidic conditions. Subsequently, we developed soil-specific extraction protocols that increase DNA yields through a combination of desalting, utilization of competitive binders, and promotion of anaerobic conditions. Our results suggest that a combination of desalting and utilizing competitive binders may establish a "universal" nucleic acid extraction protocol suitable for analyzing samples from diverse soils on Mars. Key Words: Life-detection instruments-Nucleic acids-Mars-Panspermia. Astrobiology 17, 747-760.
Collapse
Affiliation(s)
- Angel Mojarro
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Maria T. Zuber
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christopher E. Carr
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
10
|
The early heat loss evolution of Mars and their implications for internal and environmental history. Sci Rep 2014; 4:4338. [PMID: 24614056 PMCID: PMC3949296 DOI: 10.1038/srep04338] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 02/20/2014] [Indexed: 11/22/2022] Open
Abstract
The time around 3.7 Ga ago was an epoch when substantial changes in Mars occurred: a substantial decline in aqueous erosion/degradation of landscape features; a change from abundant phyllosilicate formation to abundant acidic and evaporitic mineralogy; a change from olivine-rich volcanism to olivine-pyroxene volcanism; and maybe the cessation of the martian dynamo. Here I show that Mars also experienced profound changes in its internal dynamics in the same approximate time, including a reduction of heat flow and a drastic increasing of lithosphere strength. The reduction of heat flow indicates a limited cooling (or even a heating-up) of the deep interior for post-3.7 Ga times. The drastic increasing of lithosphere strength indicates a cold lithosphere above the inefficiently cooled (or even heated) interior. All those changes experienced by Mars were most probably linked and suggest the existence of profound interrelations between interior dynamics and environmental evolution of this planet.
Collapse
|
11
|
Carr CE, Rowedder H, Lui CS, Zlatkovsky I, Papalias CW, Bolander J, Myers JW, Bustillo J, Rothberg JM, Zuber MT, Ruvkun G. Radiation resistance of sequencing chips for in situ life detection. ASTROBIOLOGY 2013; 13:560-569. [PMID: 23734755 DOI: 10.1089/ast.2012.0923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Life beyond Earth may be based on RNA or DNA if such life is related to life on Earth through shared ancestry due to meteoritic exchange, such as may be the case for Mars, or if delivery of similar building blocks to habitable environments has biased the evolution of life toward utilizing nucleic acids. In this case, in situ sequencing is a powerful approach to identify and characterize such life without the limitations or expense of returning samples to Earth, and can monitor forward contamination. A new semiconductor sequencing technology based on sensing hydrogen ions released during nucleotide incorporation can enable massively parallel sequencing in a small, robust, optics-free CMOS chip format. We demonstrate that these sequencing chips survive several analogues of space radiation at doses consistent with a 2-year Mars mission, including protons with solar particle event-distributed energy levels and 1 GeV oxygen and iron ions. We find no measurable impact of irradiation at 1 and 5 Gy doses on sequencing quality nor on low-level hardware characteristics. Further testing is required to study the impacts of soft errors as well as to characterize performance under neutron and gamma irradiation and at higher doses, which would be expected during operation in environments with significant trapped energetic particles such as during a mission to Europa. Our results support future efforts to use in situ sequencing to test theories of panspermia and/or whether life has a common chemical basis.
Collapse
Affiliation(s)
- Christopher E Carr
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Carr CE, Rowedder H, Vafadari C, Lui CS, Cascio E, Zuber MT, Ruvkun G. Radiation resistance of biological reagents for in situ life detection. ASTROBIOLOGY 2013; 13:68-78. [PMID: 23330963 DOI: 10.1089/ast.2012.0869] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Life on Mars, if it exists, may share a common ancestry with life on Earth derived from meteoritic transfer of microbes between the planets. One means to test this hypothesis is to isolate, detect, and sequence nucleic acids in situ on Mars, then search for similarities to known common features of life on Earth. Such an instrument would require biological and chemical components, such as polymerase and fluorescent dye molecules. We show that reagents necessary for detection and sequencing of DNA survive several analogues of the radiation expected during a 2-year mission to Mars, including proton (H-1), heavy ion (Fe-56, O-18), and neutron bombardment. Some reagents have reduced performance or fail at higher doses. Overall, our findings suggest it is feasible to utilize space instruments with biological components, particularly for mission durations of up to several years in environments without large accumulations of charged particles, such as the surface of Mars, and have implications for the meteoritic transfer of microbes between planets.
Collapse
Affiliation(s)
- Christopher E Carr
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Onofri S, de la Torre R, de Vera JP, Ott S, Zucconi L, Selbmann L, Scalzi G, Venkateswaran KJ, Rabbow E, Sánchez Iñigo FJ, Horneck G. Survival of rock-colonizing organisms after 1.5 years in outer space. ASTROBIOLOGY 2012; 12:508-16. [PMID: 22680696 DOI: 10.1089/ast.2011.0736] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cryptoendolithic microbial communities and epilithic lichens have been considered as appropriate candidates for the scenario of lithopanspermia, which proposes a natural interplanetary exchange of organisms by means of rocks that have been impact ejected from their planet of origin. So far, the hardiness of these terrestrial organisms in the severe and hostile conditions of space has not been tested over extended periods of time. A first long-term (1.5 years) exposure experiment in space was performed with a variety of rock-colonizing eukaryotic organisms at the International Space Station on board the European EXPOSE-E facility. Organisms were selected that are especially adapted to cope with the environmental extremes of their natural habitats. It was found that some-but not all-of those most robust microbial communities from extremely hostile regions on Earth are also partially resistant to the even more hostile environment of outer space, including high vacuum, temperature fluctuation, the full spectrum of extraterrestrial solar electromagnetic radiation, and cosmic ionizing radiation. Although the reported experimental period of 1.5 years in space is not comparable with the time spans of thousands or millions of years believed to be required for lithopanspermia, our data provide first evidence of the differential hardiness of cryptoendolithic communities in space.
Collapse
Affiliation(s)
- Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, Viterbo, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hauber E, Reiss D, Ulrich M, Preusker F, Trauthan F, Zanetti M, Hiesinger H, Jaumann R, Johansson L, Johnsson A, Van Gasselt S, Olvmo M. Landscape evolution in Martian mid-latitude regions: insights from analogous periglacial landforms in Svalbard. ACTA ACUST UNITED AC 2011. [DOI: 10.1144/sp356.7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractPeriglacial landforms on Spitsbergen (Svalbard, Norway) are morphologically similar to landforms on Mars that are probably related to the past and/or present existence of ice at or near the surface. Many of these landforms, such as gullies, debris-flow fans, polygonal terrain, fractured mounds and rock-glacier-like features, are observed in close spatial proximity in mid-latitude craters on Mars. On Svalbard, analogous landforms occur in strikingly similar proximity, which makes them useful study cases to infer the spatial and chronological evolution of Martian cold-climate surface processes. The analysis of the morphological inventory of analogous landforms on Svalbard and Mars allows the processes operating on Mars to be constrained. Different qualitative scenarios of landscape evolution on Mars help to better understand the action of periglacial processes on Mars in the recent past.
Collapse
Affiliation(s)
- E. Hauber
- Institut für Planetenforschung, DLR, Rutherfordstrasse 2, 12489 Berlin, Germany
| | - D. Reiss
- Institut für Planetologie, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - M. Ulrich
- Alfred-Wegener-Institut, 14473 Potsdam, Germany
| | - F. Preusker
- Institut für Planetenforschung, DLR, Rutherfordstrasse 2, 12489 Berlin, Germany
| | - F. Trauthan
- Institut für Planetenforschung, DLR, Rutherfordstrasse 2, 12489 Berlin, Germany
| | - M. Zanetti
- Institut für Planetologie, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - H. Hiesinger
- Institut für Planetologie, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - R. Jaumann
- Institut für Planetenforschung, DLR, Rutherfordstrasse 2, 12489 Berlin, Germany
| | - L. Johansson
- Department of Earth Sciences, University of Gothenburg, Box 460, SE-405 30 Göteborg, Sweden
| | - A. Johnsson
- Department of Earth Sciences, University of Gothenburg, Box 460, SE-405 30 Göteborg, Sweden
| | - S. Van Gasselt
- Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstrasse 74-100, 12249 Berlin, Germany
| | - M. Olvmo
- Department of Earth Sciences, University of Gothenburg, Box 460, SE-405 30 Göteborg, Sweden
| |
Collapse
|
15
|
Resistance of Microorganisms to Extreme Environmental Conditions and Its Contribution to Astrobiology. SUSTAINABILITY 2010. [DOI: 10.3390/su2061602] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Fajardo-Cavazos P, Langenhorst F, Melosh HJ, Nicholson WL. Bacterial spores in granite survive hypervelocity launch by spallation: implications for lithopanspermia. ASTROBIOLOGY 2009; 9:647-57. [PMID: 19778276 DOI: 10.1089/ast.2008.0326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bacterial spores are considered good candidates for endolithic life-forms that could survive interplanetary transport by natural impact processes, i.e., lithopanspermia. Organisms within rock can only embark on an interplanetary journey if they survive ejection from the surface of the donor planet and the associated extremes of compressional shock, heating, and acceleration. Previous simulation experiments have measured each of these three stresses more or less in isolation of one another, and results to date indicate that spores of the model organism Bacillus subtilis can survive each stress applied singly. Few simulations, however, have combined all three stresses simultaneously. Because considerable experimental and theoretical evidence supports a spallation mechanism for launch, we devised an experimental simulation of launch by spallation using the Ames Vertical Gun Range (AVGR). B. subtilis spores were applied to the surface of a granite target that was impacted from above by an aluminum projectile fired at 5.4 km/s. Granite spall fragments were captured in a foam recovery fixture and then recovered and assayed for shock damage by transmission electron microscopy and for spore survival by viability assays. Peak shock pressure at the impact site was calculated to be 57.1 GPa, though recovered spall fragments were only very lightly shocked at pressures of 5-7 GPa. Spore survival was calculated to be on the order of 10(-5), which is in agreement with results of previous static compressional shock experiments. These results demonstrate that endolithic spores can survive launch by spallation from a hypervelocity impact, which lends further evidence in favor of lithopanspermia theory.
Collapse
Affiliation(s)
- Patricia Fajardo-Cavazos
- Department of Microbiology and Cell Science, University of Florida , Space Life Sciences Laboratory, Kennedy Space Center, Florida 32899, USA
| | | | | | | |
Collapse
|
17
|
Nicholson WL. Ancient micronauts: interplanetary transport of microbes by cosmic impacts. Trends Microbiol 2009; 17:243-50. [PMID: 19464895 DOI: 10.1016/j.tim.2009.03.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/17/2009] [Accepted: 03/23/2009] [Indexed: 10/20/2022]
Abstract
Recent developments in microbiology, geophysics and planetary sciences raise the possibility that the planets in our solar system might not be biologically isolated. Hence, the possibility of lithopanspermia (the interplanetary transport of microbial passengers inside rocks) is presently being re-evaluated, with implications for the origin and evolution of life on Earth and within our solar system. Here, I summarize our current understanding of the physics of impacts, space transport of meteorites, and the potentiality of microorganisms to undergo and survive interplanetary transfer.
Collapse
Affiliation(s)
- Wayne L Nicholson
- Department of Microbiology and Cell Science, University of Florida, Space Life Sciences Laboratory, Building M6-1025, Room 201-B, Kennedy Space Center, FL 32899, USA.
| |
Collapse
|
18
|
Abstract
It is uncertain whether the Moon ever formed a metallic core or generated a core dynamo. The lunar crust and returned samples are magnetized, but the source of this magnetization could be meteoroid impacts rather than a dynamo. Here, we report magnetic measurements and 40Ar/39Ar thermochronological calculations for the oldest known unshocked lunar rock, troctolite 76535. These data imply that there was a long-lived field on the Moon of at least 1 microtesla approximately 4.2 billion years ago. The early age, substantial intensity, and long lifetime of this field support the hypothesis of an ancient lunar core dynamo.
Collapse
Affiliation(s)
- Ian Garrick-Bethell
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 54-521, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
19
|
Knoll AH, Jolliff BL, Farrand WH, Bell III JF, Clark BC, Gellert R, Golombek MP, Grotzinger JP, Herkenhoff KE, Johnson JR, McLennan SM, Morris R, Squyres SW, Sullivan R, Tosca NJ, Yen A, Learner Z. Veneers, rinds, and fracture fills: Relatively late alteration of sedimentary rocks at Meridiani Planum, Mars. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je002949] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Affiliation(s)
- Itay Halevy
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maria T. Zuber
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel P. Schrag
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
21
|
Toporski J, Steele A. Observations from a 4-year contamination study of a sample depth profile through Martian meteorite Nakhla. ASTROBIOLOGY 2007; 7:389-401. [PMID: 17480167 DOI: 10.1089/ast.2006.0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Morphological, compositional, and biological evidence indicates the presence of numerous well-developed microbial hyphae structures distributed within four different sample splits of the Nakhla meteorite obtained from the British Museum (allocation BM1913,25). By examining depth profiles of the sample splits over time, morphological changes displayed by the structures were documented, as well as changes in their distribution on the samples, observations that indicate growth, decay, and reproduction of individual microorganisms. Biological staining with DNA-specific molecular dyes followed by epifluorescence microscopy showed that the hyphae structures contain DNA. Our observations demonstrate the potential of microbial interaction with extraterrestrial materials, emphasize the need for rapid investigation of Mars return samples as well as any other returned or impactor-delivered extraterrestrial materials, and suggest the identification of appropriate storage conditions that should be followed immediately after samples retrieved from the field are received by a handling/curation facility. The observations are further relevant in planetary protection considerations as they demonstrate that microorganisms may endure and reproduce in extraterrestrial materials over long (at least 4 years) time spans. The combination of microscopy images coupled with compositional and molecular staining techniques is proposed as a valid method for detection of life forms in martian materials as a first-order assessment. Time-resolved in situ observations further allow observation of possible (bio)dynamics within the system.
Collapse
Affiliation(s)
- Jan Toporski
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC, USA.
| | | |
Collapse
|
22
|
Perry RS, Hartmann WK. Mars primordial crust: unique sites for investigating proto-biologic properties. ORIGINS LIFE EVOL B 2006; 36:533-40. [PMID: 17131091 DOI: 10.1007/s11084-006-9037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The Martian meteorite collection suggests that intact outcrops or boulder-scale fragments of the 4.5 Ga Martian crust exist within tens of meters of the present day surface of Mars. Mars may be the only planet where such primordial crust samples, representing the first 100 Ma of a planet's environment, are available. The primordial crust has been destroyed on Earth by plate tectonics and other geological phenomena and is buried on the Moon under hundreds or thousands of meters of megaregoltih. Early Mars appears to have been remarkably similar to early Earth, and samples of rock from the first few Ma or first 100 Ma may reveal "missing link" proto-biological forms that could shed light on the transition from abiotic organic chemistry to living cells. Such organic snapshots of nascent life are unlikely to be found on Earth.
Collapse
Affiliation(s)
- Randall S Perry
- Department of Earth Science and Engineering, South Kensington Campus, Impacts and Astromaterials Research Centre, Imperial College, London, UK.
| | | |
Collapse
|
23
|
Pavlov AK, Kalinin VL, Konstantinov AN, Shelegedin VN, Pavlov AA. Was Earth ever infected by martian biota? Clues from radioresistant bacteria. ASTROBIOLOGY 2006; 6:911-8. [PMID: 17155889 DOI: 10.1089/ast.2006.6.911] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Here we propose that the radioresistance (tolerance to ionizing radiation) observed in several terrestrial bacteria has a martian origin. Multiple inconsistencies with the current view of radioresistance as an accidental side effect of tolerance to desiccation are discussed. Experiments carried out 25 years ago were reproduced to demonstrate that "ordinary" bacteria can develop high radioresistance ability after multiple cycles of exposure to high radiation dosages followed by cycles of recovery of the bacterial population. We argue that "natural" cycles of this kind could have taken place only on the martian surface, and we hypothesize that Mars microorganisms could have developed radioresistance in just several million years' time and, subsequently, have undergone transfer to Earth by way of martian meteorites. Our mechanism implies multiple and frequent exchanges of biota between Mars and Earth.
Collapse
Affiliation(s)
- Anatoly K Pavlov
- Laboratory of Nuclear and Space Physics, Ioffe Physico-Technical Institute of Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | | | |
Collapse
|
24
|
Rochette P, Gattacceca J, Chevrier V, Mathé PE, Menvielle M. Magnetism, iron minerals, and life on Mars. ASTROBIOLOGY 2006; 6:423-36. [PMID: 16805698 DOI: 10.1089/ast.2006.6.423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A short critical review is provided on two questions linking magnetism and possible early life on Mars: (1) Did Mars have an Earth-like internal magnetic field, and, if so, during which period and was it a requisite for life? (2) Is there a connection between iron minerals in the martian regolith and life? We also discuss the possible astrobiological implications of magnetic measurements at the surface of Mars using two proposed instruments. A magnetic remanence device based on magnetic field measurements can be used to identify Noachian age rocks and lightning impacts. A contact magnetic susceptibility probe can be used to investigate weathering rinds on martian rocks and identify meteorites among the small regolith rocks. Both materials are considered possible specific niches for microorganisms and, thus, potential astrobiological targets. Experimental results on analogues are presented to support the suitability of such in situ measurements.
Collapse
Affiliation(s)
- P Rochette
- CEREGE, CNRS/Universitá d'Aix Marseille 3, Aix en Provence, France.
| | | | | | | | | |
Collapse
|
25
|
Schulze-Makuch D, Irwin LN, Lipps JH, LeMone D, Dohm JM, Fairén AG. Scenarios for the evolution of life on Mars. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005je002430] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|