1
|
Shen J, Luo Y, Tao Q, White PJ, Sun G, Li M, Luo J, He Y, Li B, Li Q, Xu Q, Cai Y, Li H, Wang C. The exacerbation of soil acidification correlates with structural and functional succession of the soil microbiome upon agricultural intensification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154524. [PMID: 35288138 DOI: 10.1016/j.scitotenv.2022.154524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Agricultural intensification driven by land-use changes has caused continuous and cumulative soil acidification (SA) throughout the global agroecosystem. Microorganisms mediate acid-generating reactions; however, the microbial mechanisms responsible for exacerbating SA feedback remain largely unknown. To determine the microbial community composition and putative function associated with SA, we conducted a metagenomic analysis of soils across a chronosequence that has elapsed since the conversion of rice-wheat (RW) to rice-vegetable (RV) rotations. Compared to RW rotations, soil pH decreased by 0.50 and 1.56 units (p < 0.05) in response to 10-year and 20-year RV rotations, respectively. Additionally, acid saturation ratios were increased by 7.3% and 36.2% (p < 0.05), respectively. The loss of microbial beta-diversity was a key element that contributed to the exacerbation of SA in the RV. Notably, the 20-year RV-enriched microbial taxa were more hydrogen (H+)-, aluminium (Al3+)-, and nitrate nitrogen (NO3--N) -dependent and contained more genera exhibiting dehydrogenation functions than did RW-enriched taxa. "M00115, M00151, M00417, and M00004" and "M00531 and M00135" that are the "proton-pumping" and "proton-consuming" gene modules, respectively, were linked to the massive recruitment of acid-dependent biomarkers in 20-year RV soils, particularly Rhodanobacter, Gemmatirosa, Sphingomonas, and Streptomyces. Collectively, soils in long-term RV rotations were highly acidified and acid-sensitive, as the enrichment of microbial dehydrogenation genes allowing for soil buffering capacity is more vulnerable to H+ loading and consequently promotes the colonization of more acid-tolerant and acidogenic microbes, and ultimately provide new clues for researchers to elucidate the interaction between SA and the soil microbiome.
Collapse
Affiliation(s)
- Jie Shen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Youlin Luo
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Philip J White
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Geng Sun
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Meng Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Jipeng Luo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuting He
- Chengdu Popularization of Agricultural Technique Station, Chengdu 610041, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Cai
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanxiu Li
- Fruit and Vegetable Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
2
|
Bokhtia RM, Girgis AS, Ibrahim TS, Rasslan F, Nossier ES, Barghash RF, Sakhuja R, Abdel-Aal EH, Panda SS, Al-Mahmoudy AMM. Synthesis, Antibacterial Evaluation, and Computational Studies of a Diverse Set of Linezolid Conjugates. Pharmaceuticals (Basel) 2022; 15:191. [PMID: 35215303 PMCID: PMC8880098 DOI: 10.3390/ph15020191] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
The development of new antibiotics to treat multidrug-resistant (MDR) bacteria or possess broad-spectrum activity is one of the challenging tasks. Unfortunately, there are not many new antibiotics in clinical trials. So, the molecular hybridization approach could be an effective strategy to develop potential drug candidates using the known scaffolds. We synthesized a total of 31 diverse linezolid conjugates 3, 5, 7, 9, 11, 13, and 15 using our established benzotriazole chemistry with good yield and purity. Some of the synthesized conjugates exhibited promising antibacterial properties against different strains of bacteria. Among all the synthesized compounds, 5d is the most promising antibacterial agent with MIC 4.5 µM against S. aureus and 2.25 µM against B. subtilis. Using our experimental data pool, we developed a robust QSAR (R2 = 0.926, 0.935; R2cvOO = 0.898, 0.915; R2cvMO = 0.903, 0.916 for the S. aureus and B. subtilis models, respectively) and 3D-pharmacophore models. We have also determined the drug-like properties of the synthesized conjugates using computational tools. Our findings provide valuable insight into the possible linezolid-based antibiotic drug candidates.
Collapse
Affiliation(s)
- Riham M. Bokhtia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.M.B.); (E.H.A.-A.); (A.M.M.A.-M.)
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| | - Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (A.S.G.); (R.F.B.)
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Fatma Rasslan
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al Azhar University, Cairo 11651, Egypt;
| | - Eman S. Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Reham F. Barghash
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (A.S.G.); (R.F.B.)
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India;
| | - Eatedal H. Abdel-Aal
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.M.B.); (E.H.A.-A.); (A.M.M.A.-M.)
| | - Siva S. Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| | - Amany M. M. Al-Mahmoudy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.M.B.); (E.H.A.-A.); (A.M.M.A.-M.)
| |
Collapse
|
3
|
Antibiotic-Resistant Genes and Bacteria as Evolving Contaminants of Emerging Concerns (e-CEC): Is It Time to Include Evolution in Risk Assessment? Antibiotics (Basel) 2021; 10:antibiotics10091066. [PMID: 34572648 PMCID: PMC8469798 DOI: 10.3390/antibiotics10091066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
The pressing issue of the abundance of antibiotic resistance genes and resistant bacteria in the environment (ARGs and ARB, respectively) requires procedures for assessing the risk to health. The chemo-centric environmental risk assessment models identify hazard(s) in a dose–response manner, obtaining exposure, toxicity, risk, impact and policy. However, this risk assessment approach based on ARGs/ARB evaluation from a quantitative viewpoint shows high unpredictability because ARGs/ARB cannot be considered as standard hazardous molecules: ARB duplicate and ARGs evolve within a biological host. ARGs/ARB are currently listed as Contaminants of Emerging Concern (CEC). In light of such characteristics, we propose to define ARGs/ARB within a new category of evolving CEC (or e-CEC). ARGs/ARB, like any other evolving determinants (e.g., viruses, bacteria, genes), escape environmental controls. When they do so, just one molecule left remaining at a control point can form the origin of a new dangerous and selection-responsive population. As a consequence, perhaps it is time to acknowledge this trait and to include evolutionary concepts within modern risk assessment of e-CEC. In this perspective we analyze the evolutionary responses most likely to influence risk assessment, and we speculate on the means by which current methods could measure evolution. Further work is required to implement and exploit such experimental procedures in future risk assessment protocols.
Collapse
|
4
|
Zhao Q, Xin L, Liu Y, Liang C, Li J, Jian Y, Li H, Shi Z, Liu H, Cao W. Current Landscape and Future Perspective of Oxazolidinone Scaffolds Containing Antibacterial Drugs. J Med Chem 2021; 64:10557-10580. [PMID: 34260235 DOI: 10.1021/acs.jmedchem.1c00480] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The widespread use of antibiotics has made the problem of bacterial resistance increasingly serious, and the study of new drug-resistant bacteria has become the main direction of antibacterial drug research. Among antibiotics, the fully synthetic oxazolidinone antibacterial drugs linezolid and tedizolid have been successfully marketed and have achieved good clinical treatment effects. Oxazolidinone antibacterial drugs have good pharmacokinetic and pharmacodynamic characteristics and unique antibacterial mechanisms, and resistant bacteria are sensitive to them. This Perspective focuses on reviewing oxazolidinones based on the structural modification of linezolid and new potential oxazolidinone drugs in the past 10 years, mainly describing their structure, antibacterial activity, safety, druggability, and so on, and discusses their structure-activity relationships, providing insight into the reasonable design of safer and more potent oxazolidinone antibacterial drugs.
Collapse
Affiliation(s)
- Qianqian Zhao
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Liang Xin
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,Xi'an Xuri Shengchang Pharmaceutical Technology Co., Ltd., High-tech Zone, Xi'an 710075, P. R. China
| | - Yuzhi Liu
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Jingyi Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Yanlin Jian
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Han Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Zhenfeng Shi
- Department of Urology Surgery Center, Xinjiang Uyghur People's Hospital, Urumqi 830002, P. R. China
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, P. R. China
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, P. R. China
| |
Collapse
|
5
|
Wu D, Wang L, Su Y, Dolfing J, Xie B. Associations between human bacterial pathogens and ARGs are magnified in leachates as landfill ages. CHEMOSPHERE 2021; 264:128446. [PMID: 33038756 DOI: 10.1016/j.chemosphere.2020.128446] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 05/23/2023]
Abstract
Landfills constitute the largest treatment and disposal reservoirs of anthropogenic waste on earth and they are continuously releasing antibiotic resistance genes (ARGs) to the environment for decades via leachates. Little is known about the association between ARGs and human bacterial pathogens as a function of time. Here, we quantified 10 subtypes of ARGs, integrons, and human bacterial pathogens (HBPs). Except for the ARGs encoding resistance to sulfonamides, the subtypes encoding resistance to beta-lactams, macrolides, and aminoglycosides were not related to integrons (Spearman, P > 0.05). Over time presence of ARGs became increasingly more correlated with the presence of human bacterial pathogens (Procrustes test; R = 0.81, P < 0.05), which were primarily identified as the Proteobacteria, Actinobacteria, and Firmicutes. Rather than the prevalence of integrons, dynamics of the bacterial community, including the increased nitrogen metabolism activity of Proteobacteria and decreased bacterial diversity were assumed to lead to a magnified association between HBPs and target ARGs (Varpart; > 13%).
Collapse
Affiliation(s)
- Dong Wu
- Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Liuhong Wang
- Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China
| | - Yinglong Su
- Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jan Dolfing
- Faculty Energy and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8QH, UK
| | - Bing Xie
- Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
6
|
Ananbeh H, Merlos Rodrigo MA, Jelinkova P, Strmiska V, Splichal Z, Jehmlich N, Michalkova H, Stojanović M, Voberkova S, Adam V, Moulick A. Soil protein as a potential antimicrobial agent against methicillin -resistant Staphylococcus aureus. ENVIRONMENTAL RESEARCH 2020; 188:109320. [PMID: 32540568 DOI: 10.1016/j.envres.2020.109320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/04/2020] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
Recently, the interest is increasing to find alternatives to replace the usage of antibiotics since their massive and improper usage enhance the antibiotic resistance in human pathogens. In this study, for the first time we showed that the soil proteins have very high antibacterial activity (98% of growth inhibition) against methicillin resistant Staphylococcus aureus (MRSA), one of the most threatening human pathogens. We found that the protein extract (C3) from the forest with past intensive management showed higher antibacterial activity than that of unmanaged forest. The MIC and IC50 were found to be 30 and 15.0 μg protein g-1 dry soil respectively. C3 was found to kill the bacteria by cell wall disruption and genotoxicity which was confirmed by optical and fluorescent microscopy and comet assay. According to qPCR study, the mecA (the antibiotic resistant gene) expression in MRSA was found to be down-regulated after C3 treatment. In contrast, C3 showed no hemolytic toxicity on human red blood cells which was confirmed by hemolytic assay. According to ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS), 144 proteins were identified in C3 among which the majority belonged to Gram negative bacteria (45.8%). Altogether, our results will help to develop novel, cost-effective, non-toxic and highly efficient antibacterial medicines from natural sources against antibiotic resistant infections.
Collapse
Affiliation(s)
- Hanadi Ananbeh
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Pavlina Jelinkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Veterinary Research Institute, Department of Food and Feed Safety, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Vladislav Strmiska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Zbynek Splichal
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Marko Stojanović
- Global Change Research Institute, Academy of Sciences of the Czech Republic, Bělidla 4a, 603 00, Brno, Czech Republic
| | - Stanislava Voberkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic; Central European Institute of Technology, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Amitava Moulick
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic.
| |
Collapse
|
7
|
Tenconi E, Traxler MF, Hoebreck C, van Wezel GP, Rigali S. Production of Prodiginines Is Part of a Programmed Cell Death Process in Streptomyces coelicolor. Front Microbiol 2018; 9:1742. [PMID: 30127771 PMCID: PMC6087738 DOI: 10.3389/fmicb.2018.01742] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/12/2018] [Indexed: 12/24/2022] Open
Abstract
Actinobacteria are prolific producers of antitumor antibiotics with antiproliferative activity, but why these bacteria synthetize metabolites with this bioactivity has so far remained a mystery. In this work we raised the hypothesis that under certain circumstances, production of antiproliferative agents could be part of a genetically programmed death of the producing organism. While programmed cell death (PCD) has been well documented when Streptomyces species switch from vegetative (nutrition) to aerial (reproduction) growth, lethal determinants are yet to be discovered. Using DNA-damaging prodiginines of Streptomyces coelicolor as model system, we revealed that, under certain conditions, their biosynthesis is always triggered in the dying zone of the mycelial network prior to morphological differentiation, right after an initial round of cell death. The programmed massive death round of the vegetative mycelium is absent in a prodiginine non-producer (ΔredD strain), and mutant complementation restored both prodiginine production and cell death. The redD null mutant of S. coelicolor also showed increased DNA, RNA, and proteins synthesis when most of the mycelium of the wild-type strain was dead when prodiginines accumulated. Moreover, addition of the prodiginine synthesis inhibitors also resulted in enhanced accumulation of viable filaments. Overall, our data enable us to propose a model where the time-space production of prodiginines is programmed to be triggered by the perception of dead cells, and their biosynthesis further amplifies the PCD process. As prodiginine production coincides with the moment S. coelicolor undergoes morphogenesis, the production of these lethal compounds might be used to eradicate the obsolete part of the population in order to provide nutrients for development of the survivors. Hence, next to weapons in competition between organisms or signals in inter- and intra-species communications, we propose a third role for antibiotics (in the literal meaning of the word ‘against life’) i.e., elements involved in self-toxicity in order to control cell proliferation, and/or for PCD associated with developmental processes.
Collapse
Affiliation(s)
- Elodie Tenconi
- InBioS - Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Matthew F Traxler
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Charline Hoebreck
- InBioS - Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Sébastien Rigali
- InBioS - Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| |
Collapse
|
8
|
Pepper IL, Gerba CP, Gentry TJ. Global Emerging Microbial Issues in the Anthropocene Era. Environ Microbiol 2015. [DOI: 10.1016/b978-0-12-394626-3.00031-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Powell JP, Wenzel RP. Antibiotic options for treating community-acquired MRSA. Expert Rev Anti Infect Ther 2014; 6:299-307. [DOI: 10.1586/14787210.6.3.299] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
He Y, Heine E, Keusgen N, Keul H, Möller M. Synthesis and Characterization of Amphiphilic Monodisperse Compounds and Poly(ethylene imine)s: Influence of Their Microstructures on the Antimicrobial Properties. Biomacromolecules 2012; 13:612-23. [DOI: 10.1021/bm300033a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yingchun He
- Institute
of Technical and Macromolecular Chemistry
and DWI an der RWTH Aachen e.V., RWTH Aachen, Forckenbeckstrasse 50, D-52056, Aachen, Germany
| | - Elisabeth Heine
- Institute
of Technical and Macromolecular Chemistry
and DWI an der RWTH Aachen e.V., RWTH Aachen, Forckenbeckstrasse 50, D-52056, Aachen, Germany
| | - Nina Keusgen
- Institute
of Technical and Macromolecular Chemistry
and DWI an der RWTH Aachen e.V., RWTH Aachen, Forckenbeckstrasse 50, D-52056, Aachen, Germany
| | - Helmut Keul
- Institute
of Technical and Macromolecular Chemistry
and DWI an der RWTH Aachen e.V., RWTH Aachen, Forckenbeckstrasse 50, D-52056, Aachen, Germany
| | - Martin Möller
- Institute
of Technical and Macromolecular Chemistry
and DWI an der RWTH Aachen e.V., RWTH Aachen, Forckenbeckstrasse 50, D-52056, Aachen, Germany
| |
Collapse
|
11
|
White EJ, Fridrikh SV, Chennagiri N, Cameron DB, Gauvin GP, Gilmanshin R. Staphylococcus aureus Strain Typing by Single-Molecule DNA Mapping in Fluidic Microchips with Fluorescent Tags. Clin Chem 2009; 55:2121-9. [DOI: 10.1373/clinchem.2009.128967] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Epidemiologic studies require identification or typing of microbial strains. Macrorestriction DNA mapping analyzed by pulsed-field gel electrophoresis (PFGE) is considered the current gold standard of genomic typing. This technique, however, is difficult to implement because it is labor-intensive and difficult to automate, it requires a long time to obtain results, and results often vary between laboratories.
Methods: We used direct linear analysis (DLA), which uses a single reagent set and long fragments of microbial genomic DNA to identify various microbes. In this technique, an automated system extracts fragments exceeding 100 kb from restriction enzyme digests of genomic DNA from microbial isolates and hybridizes them with a sequence-dependent fluorescent tag. These fragments are then stretched in a microfluidics chip, and the patterns of the distribution of the tags are discerned with fluorescence confocal microscopy. The tag pattern on each DNA fragment is compared with a database of known microbial DNA sequences or with measured patterns of other microbial DNAs.
Results: We used DLA to type 71 Staphylococcus aureus strains. Of these, 9 had been sequenced, 10 were representative of the major pulsed-field types present in the US, and 52 were isolated recently in a hospital in Cambridge, MA. Matching DNA fragments were identified in different samples by a clustering algorithm and were used to quantify the similarities of the strains.
Conclusions: DLA-based strain typing is a powerful technique with a resolution comparable to macrorestriction mapping with PFGE, but DLA is faster, more automated, and more reproducible.
Collapse
Affiliation(s)
| | | | | | | | - Gregory P Gauvin
- Department of Pathology, Mount Auburn Hospital, Cambridge, MA
- Department of Pathology, Tufts University School of Medicine, Boston, MA
| | | |
Collapse
|
12
|
Dewan PC, Anantharaman A, Chauhan VS, Sahal D. Antimicrobial Action of Prototypic Amphipathic Cationic Decapeptides and Their Branched Dimers. Biochemistry 2009; 48:5642-57. [DOI: 10.1021/bi900272r] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pooja C. Dewan
- Malaria Research Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Aparna Anantharaman
- Malaria Research Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Virander S. Chauhan
- Malaria Research Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Dinkar Sahal
- Malaria Research Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
13
|
Bacterial Communities in Natural Ecosystems. Environ Microbiol 2009. [DOI: 10.1016/b978-0-12-370519-8.00017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
Schulte-Oehlmann U, Oehlmann J, Püttmann W. Humanpharmakawirkstoffe in der Umwelt: Einträge, Vorkommen und der Versuch einer Bestandsaufnahme. ACTA ACUST UNITED AC 2007. [DOI: 10.1065/uwsf2007.07.202] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Urban PL, Goodall DM, Bergström ET, Bruce NC. Electrophoretic assay for penicillinase: Substrate specificity screening by parallel CE with an active pixel sensor. Electrophoresis 2007; 28:1926-36. [PMID: 17476719 DOI: 10.1002/elps.200600626] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report application of a new UV imaging detector incorporating an active pixel sensor in an electrophoretic enzyme assay for penicillinase (beta-lactamase) with multiple substrates. The method based on electrophoretically mediated microanalysis was developed on a standard CE system with a single-point diode array detector and 200 nm UV wavelength, then transferred to a parallel capillary setup with the UV imaging detector for screening of penicillinase substrate specificity. One capillary is used for the assay and the other for reference, with an enzyme solution plug introduced into the first at the same time as a water plug into the second capillary. A mixture of antibiotics and markers is subsequently introduced as a sample plug to both capillaries, and driven through the enzyme (or water) plug by application of voltage. Most individual reactant and product peaks were separated and compounds amenable to beta-lactam hydrolysis could readily be identified and the extent of the reaction quantified within a single electrophoretic run.
Collapse
Affiliation(s)
- Pawel L Urban
- Department of Chemistry, University of York, Heslington, UK
| | | | | | | |
Collapse
|
16
|
Simberkoff MS. A basic science article of clinical importance. Curr Infect Dis Rep 2006. [DOI: 10.1007/s11908-006-0060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|