1
|
Usui T, Ono S, Nakamura A, Kato K, Ose T, Yao M. Crystallographic analysis of the Escherichia coli tRNA seleno-modification enzyme in complex with tRNA. Acta Crystallogr F Struct Biol Commun 2025; 81:35-40. [PMID: 39783014 PMCID: PMC11783179 DOI: 10.1107/s2053230x25000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
The bacterial enzyme tRNA 2-selenouridine synthase (SelU) catalyzes the conversion of 5-substituted 2-thiouridine (R5S2U) to 5-substituted 2-selenouridine (R5Se2U) at the wobble positions of several tRNAs. Seleno-modification potentially regulates translation efficiency in response to selenium availability. Notably, SelU uses the 2-geranylthiouridine (R5geS2U) intermediate for sulfur removal, and this geranylthiol (geS) is a unique leaving group among tRNA-maturation enzymes. However, the underlying sequence of the SelU reaction remains unclear. Here, a crystallographic study of the Escherichia coli SelU-tRNA complex is reported. Robust and well formed SelU-tRNA crystals were obtained after several optimizations, including co-expression with tRNA and additive screening. Diffraction data were collected at a resolution of 3.10 Å using a wavelength of 1.0000 Å. The crystals belonged to space group C2, and the phase was determined by molecular replacement using the AlphaFold2-predicted SelU structure as a search model. Electron-density mapping revealed the presence of two SelU-tRNA complexes in the asymmetric unit.
Collapse
Affiliation(s)
- Takuya Usui
- Graduate School of Life ScienceHokkaido UniversityKita 10, Nishi 8, Kita-kuSapporoHokkaido060-0810Japan
| | - Sayaka Ono
- Graduate School of Life ScienceHokkaido UniversityKita 10, Nishi 8, Kita-kuSapporoHokkaido060-0810Japan
| | - Akiyoshi Nakamura
- Faculty of Advanced Life ScienceHokkaido UniversityKita 10, Nishi 8, Kita-kuSapporoHokkaido060-0810Japan
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology1-1-1 HigashiTsukubaIbaraki305-0046Japan
| | - Koji Kato
- Graduate School of Life ScienceHokkaido UniversityKita 10, Nishi 8, Kita-kuSapporoHokkaido060-0810Japan
- Faculty of Advanced Life ScienceHokkaido UniversityKita 10, Nishi 8, Kita-kuSapporoHokkaido060-0810Japan
- Research Institute for Interdisciplinary ScienceOkayama UniversityTsushima-naka 1-1-1, Kita-kuOkayama CityOkayama700-8530Japan
| | - Toyoyuki Ose
- Graduate School of Life ScienceHokkaido UniversityKita 10, Nishi 8, Kita-kuSapporoHokkaido060-0810Japan
- Faculty of Advanced Life ScienceHokkaido UniversityKita 10, Nishi 8, Kita-kuSapporoHokkaido060-0810Japan
| | - Min Yao
- Graduate School of Life ScienceHokkaido UniversityKita 10, Nishi 8, Kita-kuSapporoHokkaido060-0810Japan
- Faculty of Advanced Life ScienceHokkaido UniversityKita 10, Nishi 8, Kita-kuSapporoHokkaido060-0810Japan
| |
Collapse
|
2
|
Sangsuwan W, Taweesablamlert A, Boonkerd A, Isarangkool Na Ayutthaya C, Yoo S, Javid B, Faikhruea K, Vilaivan T, Aonbangkhen C, Chuawong P. A quest for novel antimicrobial targets: Inhibition of Asp-tRNA Asn/Glu-tRNA Gln amidotransferase (GatCAB) by synthetic analogs of aminoacyl-adenosine in vitro and live bacteria. Bioorg Chem 2024; 150:107530. [PMID: 38852310 DOI: 10.1016/j.bioorg.2024.107530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
The Asp-tRNAAsn/Glu-tRNAGln amidotransferase (GatCAB) has been proposed as a novel antibacterial drug target due to its indispensability in prominent human pathogens. While several inhibitors with in vitro activity have been identified, none have been demonstrated to have potent activity against live bacteria. In this work, seven non-hydrolyzable transition state mimics of GatCAB were synthesized and tested as the transamidase inhibitors against GatCAB from the human pathogen Helicobacter pylori. Notably, the methyl sulfone analog of glutamyl-adenosine significantly reduced GatCAB's transamination rate. Additionally, four lipid-conjugates of these mimics displayed antibacterial activity against Bacillus subtilis, likely due to enhanced cell permeability. Inhibitory activity against GatCAB in live bacteria was confirmed using a sensitive gain-of-function dual luciferase reporter in Mycobacterium bovis-BCG. Only the lipid-conjugated methyl sulfone analog exhibited a significant increase in mistranslation rate, highlighting its cell permeability and inhibitory potential. This study provides insights for developing urgently needed novel antibacterial agents amidst emerging antimicrobial drug resistance.
Collapse
Affiliation(s)
- Withsakorn Sangsuwan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
| | - Amata Taweesablamlert
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
| | - Anon Boonkerd
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
| | - Chawarat Isarangkool Na Ayutthaya
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
| | - Sion Yoo
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| | - Babak Javid
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| | - Kriangsak Faikhruea
- Organic Synthesis Research Unit (OSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit (OSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Pitak Chuawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
3
|
Lewis AM, Fallon T, Dittemore GA, Sheppard K. Evolution and variation in amide aminoacyl-tRNA synthesis. IUBMB Life 2024; 76:505-522. [PMID: 38391119 DOI: 10.1002/iub.2811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
The amide proteogenic amino acids, asparagine and glutamine, are two of the twenty amino acids used in translation by all known life. The aminoacyl-tRNA synthetases for asparagine and glutamine, asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase, evolved after the split in the last universal common ancestor of modern organisms. Before that split, life used two-step indirect pathways to synthesize asparagine and glutamine on their cognate tRNAs to form the aminoacyl-tRNA used in translation. These two-step pathways were retained throughout much of the bacterial and archaeal domains of life and eukaryotic organelles. The indirect routes use non-discriminating aminoacyl-tRNA synthetases (non-discriminating aspartyl-tRNA synthetase and non-discriminating glutamyl-tRNA synthetase) to misaminoacylate the tRNA. The misaminoacylated tRNA formed is then transamidated into the amide aminoacyl-tRNA used in protein synthesis by tRNA-dependent amidotransferases (GatCAB and GatDE). The enzymes and tRNAs involved assemble into complexes known as transamidosomes to help maintain translational fidelity. These pathways have evolved to meet the varied cellular needs across a diverse set of organisms, leading to significant variation. In certain bacteria, the indirect pathways may provide a means to adapt to cellular stress by reducing the fidelity of protein synthesis. The retention of these indirect pathways versus acquisition of asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase in lineages likely involves a complex interplay of the competing uses of glutamine and asparagine beyond translation, energetic costs, co-evolution between enzymes and tRNA, and involvement in stress response that await further investigation.
Collapse
Affiliation(s)
- Alexander M Lewis
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| | - Trevor Fallon
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| | | | - Kelly Sheppard
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| |
Collapse
|
4
|
Tripathi P, Mousa JJ, Guntaka NS, Bruner SD. Structural basis of the amidase ClbL central to the biosynthesis of the genotoxin colibactin. Acta Crystallogr D Struct Biol 2023; 79:830-836. [PMID: 37561403 PMCID: PMC10478638 DOI: 10.1107/s2059798323005703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/28/2023] [Indexed: 08/11/2023] Open
Abstract
Colibactin is a genotoxic natural product produced by select commensal bacteria in the human gut microbiota. The compound is a bis-electrophile that is predicted to form interstrand DNA cross-links in target cells, leading to double-strand DNA breaks. The biosynthesis of colibactin is carried out by a mixed NRPS-PKS assembly line with several noncanonical features. An amidase, ClbL, plays a key role in the pathway, catalyzing the final step in the formation of the pseudodimeric scaffold. ClbL couples α-aminoketone and β-ketothioester intermediates attached to separate carrier domains on the NRPS-PKS assembly. Here, the 1.9 Å resolution structure of ClbL is reported, providing a structural basis for this key step in the colibactin biosynthetic pathway. The structure reveals an open hydrophobic active site surrounded by flexible loops, and comparison with homologous amidases supports its unusual function and predicts macromolecular interactions with pathway carrier-protein substrates. Modeling protein-protein interactions supports a predicted molecular basis for enzyme-carrier domain interactions. Overall, the work provides structural insight into this unique enzyme that is central to the biosynthesis of colibactin.
Collapse
Affiliation(s)
| | - Jarrod J. Mousa
- Department of Chemistry, University of Florida, Gainesville, FL 32601, USA
| | | | - Steven D. Bruner
- Department of Chemistry, University of Florida, Gainesville, FL 32601, USA
| |
Collapse
|
5
|
O'Reilly FJ, Graziadei A, Forbrig C, Bremenkamp R, Charles K, Lenz S, Elfmann C, Fischer L, Stülke J, Rappsilber J. Protein complexes in cells by AI-assisted structural proteomics. Mol Syst Biol 2023; 19:e11544. [PMID: 36815589 PMCID: PMC10090944 DOI: 10.15252/msb.202311544] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Accurately modeling the structures of proteins and their complexes using artificial intelligence is revolutionizing molecular biology. Experimental data enable a candidate-based approach to systematically model novel protein assemblies. Here, we use a combination of in-cell crosslinking mass spectrometry and co-fractionation mass spectrometry (CoFrac-MS) to identify protein-protein interactions in the model Gram-positive bacterium Bacillus subtilis. We show that crosslinking interactions prior to cell lysis reveals protein interactions that are often lost upon cell lysis. We predict the structures of these protein interactions and others in the SubtiWiki database with AlphaFold-Multimer and, after controlling for the false-positive rate of the predictions, we propose novel structural models of 153 dimeric and 14 trimeric protein assemblies. Crosslinking MS data independently validates the AlphaFold predictions and scoring. We report and validate novel interactors of central cellular machineries that include the ribosome, RNA polymerase, and pyruvate dehydrogenase, assigning function to several uncharacterized proteins. Our approach uncovers protein-protein interactions inside intact cells, provides structural insight into their interaction interfaces, and is applicable to genetically intractable organisms, including pathogenic bacteria.
Collapse
Affiliation(s)
- Francis J O'Reilly
- Chair of BioanalyticsTechnische Universität BerlinBerlinGermany
- Present address:
Center for Structural Biology, Center for Cancer ResearchNational Cancer Institute (NCI)FrederickMDUSA
| | | | | | - Rica Bremenkamp
- Department of General Microbiology, Institute of Microbiology and GeneticsAugust‐University GöttingenGöttingenGermany
| | | | - Swantje Lenz
- Chair of BioanalyticsTechnische Universität BerlinBerlinGermany
| | - Christoph Elfmann
- Department of General Microbiology, Institute of Microbiology and GeneticsAugust‐University GöttingenGöttingenGermany
| | - Lutz Fischer
- Chair of BioanalyticsTechnische Universität BerlinBerlinGermany
| | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and GeneticsAugust‐University GöttingenGöttingenGermany
| | - Juri Rappsilber
- Chair of BioanalyticsTechnische Universität BerlinBerlinGermany
- Wellcome Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| |
Collapse
|
6
|
Lyu Z, Wilson C, Ling J. Translational Fidelity during Bacterial Stresses and Host Interactions. Pathogens 2023; 12:383. [PMID: 36986305 PMCID: PMC10057733 DOI: 10.3390/pathogens12030383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Translational fidelity refers to accuracy during protein synthesis and is maintained in all three domains of life. Translational errors occur at base levels during normal conditions and may rise due to mutations or stress conditions. In this article, we review our current understanding of how translational fidelity is perturbed by various environmental stresses that bacterial pathogens encounter during host interactions. We discuss how oxidative stress, metabolic stresses, and antibiotics affect various types of translational errors and the resulting effects on stress adaption and fitness. We also discuss the roles of translational fidelity during pathogen-host interactions and the underlying mechanisms. Many of the studies covered in this review will be based on work with Salmonella enterica and Escherichia coli, but other bacterial pathogens will also be discussed.
Collapse
Affiliation(s)
| | | | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
7
|
Koper K, Han SW, Pastor DC, Yoshikuni Y, Maeda HA. Evolutionary Origin and Functional Diversification of Aminotransferases. J Biol Chem 2022; 298:102122. [PMID: 35697072 PMCID: PMC9309667 DOI: 10.1016/j.jbc.2022.102122] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Aminotransferases (ATs) are pyridoxal 5′-phosphate–dependent enzymes that catalyze the transamination reactions between amino acid donor and keto acid acceptor substrates. Modern AT enzymes constitute ∼2% of all classified enzymatic activities, play central roles in nitrogen metabolism, and generate multitude of primary and secondary metabolites. ATs likely diverged into four distinct AT classes before the appearance of the last universal common ancestor and further expanded to a large and diverse enzyme family. Although the AT family underwent an extensive functional specialization, many AT enzymes retained considerable substrate promiscuity and multifunctionality because of their inherent mechanistic, structural, and functional constraints. This review summarizes the evolutionary history, diverse metabolic roles, reaction mechanisms, and structure–function relationships of the AT family enzymes, with a special emphasis on their substrate promiscuity and multifunctionality. Comprehensive characterization of AT substrate specificity is still needed to reveal their true metabolic functions in interconnecting various branches of the nitrogen metabolic network in different organisms.
Collapse
Affiliation(s)
- Kaan Koper
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sang-Woo Han
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Yasuo Yoshikuni
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Global Center for Food, Land, and Water Resources, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
8
|
Bzówka M, Mitusińska K, Raczyńska A, Skalski T, Samol A, Bagrowska W, Magdziarz T, Góra A. Evolution of tunnels in α/β-hydrolase fold proteins—What can we learn from studying epoxide hydrolases? PLoS Comput Biol 2022; 18:e1010119. [PMID: 35580137 PMCID: PMC9140254 DOI: 10.1371/journal.pcbi.1010119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 05/27/2022] [Accepted: 04/19/2022] [Indexed: 12/27/2022] Open
Abstract
The evolutionary variability of a protein’s residues is highly dependent on protein region and function. Solvent-exposed residues, excluding those at interaction interfaces, are more variable than buried residues whereas active site residues are considered to be conserved. The abovementioned rules apply also to α/β-hydrolase fold proteins—one of the oldest and the biggest superfamily of enzymes with buried active sites equipped with tunnels linking the reaction site with the exterior. We selected soluble epoxide hydrolases as representative of this family to conduct the first systematic study on the evolution of tunnels. We hypothesised that tunnels are lined by mostly conserved residues, and are equipped with a number of specific variable residues that are able to respond to evolutionary pressure. The hypothesis was confirmed, and we suggested a general and detailed way of the tunnels’ evolution analysis based on entropy values calculated for tunnels’ residues. We also found three different cases of entropy distribution among tunnel-lining residues. These observations can be applied for protein reengineering mimicking the natural evolution process. We propose a ‘perforation’ mechanism for new tunnels design via the merging of internal cavities or protein surface perforation. Based on the literature data, such a strategy of new tunnel design could significantly improve the enzyme’s performance and can be applied widely for enzymes with buried active sites. So far very little is known about proteins tunnels evolution. The goal of this study is to evaluate the evolution of tunnels in the family of soluble epoxide hydrolases—representatives of numerous α/β-hydrolase fold enzymes. As a result two types of tunnels evolution analysis were proposed (a general and a detailed approach), as well as a ‘perforation’ mechanism which can mimic native evolution in proteins and can be used as an additional strategy for enzymes redesign.
Collapse
Affiliation(s)
- Maria Bzówka
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Karolina Mitusińska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Agata Raczyńska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Tomasz Skalski
- Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Aleksandra Samol
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Weronika Bagrowska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Tomasz Magdziarz
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Artur Góra
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
- * E-mail:
| |
Collapse
|
9
|
Qureshi KA, Imtiaz M, Parvez A, Rai PK, Jaremko M, Emwas AH, Bholay AD, Fatmi MQ. In Vitro and In Silico Approaches for the Evaluation of Antimicrobial Activity, Time-Kill Kinetics, and Anti-Biofilm Potential of Thymoquinone (2-Methyl-5-propan-2-ylcyclohexa-2,5-diene-1,4-dione) against Selected Human Pathogens. Antibiotics (Basel) 2022; 11:antibiotics11010079. [PMID: 35052956 PMCID: PMC8773234 DOI: 10.3390/antibiotics11010079] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 11/17/2022] Open
Abstract
Thymoquinone (2-methyl-5-propan-2-ylcyclohexa-2,5-diene-1,4-dione; TQ), a principal bioactive phytoconstituent of Nigella sativa essential oil, has been reported to have high antimicrobial potential. Thus, the current study evaluated TQ’s antimicrobial potential against a range of selected human pathogens using in vitro assays, including time-kill kinetics and anti-biofilm activity. In silico molecular docking of TQ against several antimicrobial target proteins and a detailed intermolecular interaction analysis was performed, including binding energies and docking feasibility. Of the tested bacteria and fungi, S. epidermidis ATCC 12228 and Candida albicans ATCC 10231 were the most susceptible to TQ, with 50.3 ± 0.3 mm and 21.1 ± 0.1 mm zones of inhibition, respectively. Minimum inhibitory concentration (MIC) values of TQ are in the range of 12.5–50 µg/mL, while minimum biocidal concentration (MBC) values are in the range of 25–100 µg/mL against the tested organisms. Time-kill kinetics of TQ revealed that the killing time for the tested bacteria is in the range of 1–6 h with the MBC of TQ. Anti-biofilm activity results demonstrate that the minimum biofilm inhibitory concentration (MBIC) values of TQ are in the range of 25–50 µg/mL, while the minimum biofilm eradication concentration (MBEC) values are in the range of 25–100 µg/mL, for the tested bacteria. In silico molecular docking studies revealed four preferred antibacterial and antifungal target proteins for TQ: D-alanyl-D-alanine synthetase (Ddl) from Thermus thermophilus, transcriptional regulator qacR from Staphylococcus aureus, N-myristoyltransferase from Candida albicans, and NADPH-dependent D-xylose reductase from Candida tenuis. In contrast, the nitroreductase family protein from Bacillus cereus and spore coat polysaccharide biosynthesis protein from Bacillus subtilis and UDP-N-acetylglucosamine pyrophosphorylase from Aspergillus fumigatus are the least preferred antibacterial and antifungal target proteins for TQ, respectively. Molecular dynamics (MD) simulations revealed that TQ could bind to all four target proteins, with Ddl and NADPH-dependent D-xylose reductase being the most efficient. Our findings corroborate TQ’s high antimicrobial potential, suggesting it may be a promising drug candidate for multi-drug resistant (MDR) pathogens, notably Gram-positive bacteria and Candida albicans.
Collapse
Affiliation(s)
- Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
- Correspondence: (K.A.Q.); (M.Q.F.)
| | - Mahrukh Imtiaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45600, Pakistan;
| | - Adil Parvez
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi 110062, India;
| | - Pankaj K. Rai
- Department of Biotechnology, Faculty of Biosciences, Invertis University, Bareilly 243123, India;
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Avinash D. Bholay
- Department of Microbiology, KTHM College, Savitribai Phule Pune University (SPPU), Nashik 422002, India;
| | - Muhammad Qaiser Fatmi
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45600, Pakistan;
- Correspondence: (K.A.Q.); (M.Q.F.)
| |
Collapse
|
10
|
Papageorgiou AC. Structural Characterization of Multienzyme Assemblies: An Overview. Methods Mol Biol 2022; 2487:51-72. [PMID: 35687229 DOI: 10.1007/978-1-0716-2269-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multienzyme assemblies have attracted significant attention in recent years for use in industrial applications instead of single enzymes. Owing to their ability to catalyze cascade reactions, multienzyme assemblies have become inspirational tools for the in vitro construction of multienzyme molecular machines. The use of such molecular machines could offer several advantages such as fewer side reactions, a high product yield, a fast reaction speed, easy product separation, a tolerable toxic environment, and robust system operability compared to current microbial cell catalytic systems. Besides, they can provide all the benefits found in the use of enzymes, including reusability, catalytic efficiency, and specificity. Similar to single enzymes, multienzyme assemblies could offer economical and environmentally friendly alternatives to conventional catalysts and play a central role as biocatalysts in green chemistry applications. However, detailed characterization of multienzyme assemblies and a full understanding of their mechanistic details are required for their efficient use in industrial biotransformations. Since the determination of the first enzyme structure in 1965, structural information has played a pivotal role in the characterization of enzymes and elucidation of their structure-function relationship. Among the structural biology techniques, X-ray crystallography has provided key mechanistic details into multienzyme assemblies. Here, the structural characterization of multienzyme assemblies is reviewed and several examples are provided.
Collapse
|
11
|
Mitusińska K, Wojsa P, Bzówka M, Raczyńska A, Bagrowska W, Samol A, Kapica P, Góra A. Structure-function relationship between soluble epoxide hydrolases structure and their tunnel network. Comput Struct Biotechnol J 2021; 20:193-205. [PMID: 35024092 PMCID: PMC8715294 DOI: 10.1016/j.csbj.2021.10.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/04/2022] Open
Abstract
Enzymes with buried active sites maintain their catalytic function via a single tunnel or tunnel network. In this study we analyzed the functionality of soluble epoxide hydrolases (sEHs) tunnel network, by comparing the overall enzyme structure with the tunnel's shape and size. sEHs were divided into three groups based on their structure and the tunnel usage. The obtained results were compared with known substrate preferences of the studied enzymes, as well as reported in our other work evolutionary analyses data. The tunnel network architecture corresponded well with the evolutionary lineage of the source organism and large differences between enzymes were observed from long fragments insertions. This strategy can be used during protein re-engineering process for large changes introduction, whereas tunnel modification can be applied for fine-tuning of enzyme.
Collapse
Key Words
- CH65-EH, soluble epoxide hydrolase from an unknown source, sampled in hot springs in China
- Protein engineering
- Sibe-EH, soluble epoxide hydrolase from an unknown source, sampled in hot springs in Russia
- Soluble epoxide hydrolases
- StEH1, Solanum tuberosum soluble epoxide hydrolase
- Structure–function relationship
- TrEH, Trichoderma reesei soluble epoxide hydrolase
- Tunnel network
- VrEH2, Vigna radiata soluble epoxide hydrolase
- bmEH, Bacillus megaterium soluble epoxide hydrolase
- hsEH, Homo sapiens soluble epoxide hydrolase
- msEH, Mus musculus soluble epoxide hydrolase
- sEHs, soluble epoxide hydrolases
Collapse
Affiliation(s)
- Karolina Mitusińska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Piotr Wojsa
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Maria Bzówka
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Agata Raczyńska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Weronika Bagrowska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Aleksandra Samol
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Patryk Kapica
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Artur Góra
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
12
|
Nolan LM, Cain AK, Clamens T, Furniss RCD, Manoli E, Sainz-Polo MA, Dougan G, Albesa-Jové D, Parkhill J, Mavridou DA, Filloux A. Identification of Tse8 as a Type VI secretion system toxin from Pseudomonas aeruginosa that targets the bacterial transamidosome to inhibit protein synthesis in prey cells. Nat Microbiol 2021; 6:1199-1210. [PMID: 34413503 PMCID: PMC7611593 DOI: 10.1038/s41564-021-00950-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
The Type VI secretion system (T6SS) is a bacterial nanomachine that delivers toxic effectors to kill competitors or subvert some of their key functions. Here, we use transposon directed insertion-site sequencing to identify T6SS toxins associated with the H1-T6SS, one of the three T6SS machines found in Pseudomonas aeruginosa. This approach identified several putative toxin-immunity pairs, including Tse8-Tsi8. Full characterization of this protein pair demonstrated that Tse8 is delivered by the VgrG1a spike complex into prey cells where it targets the transamidosome, a multiprotein complex involved in protein synthesis in bacteria that lack either one, or both, of the asparagine and glutamine transfer RNA synthases. Biochemical characterization of the interactions between Tse8 and the transamidosome components GatA, GatB and GatC suggests that the presence of Tse8 alters the fine-tuned stoichiometry of the transamidosome complex, and in vivo assays demonstrate that Tse8 limits the ability of prey cells to synthesize proteins. These data expand the range of cellular components targeted by the T6SS by identifying a T6SS toxin affecting protein synthesis and validate the use of a transposon directed insertion site sequencing-based global genomics approach to expand the repertoire of T6SS toxins in T6SS-encoding bacteria.
Collapse
Affiliation(s)
- Laura M. Nolan
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Amy K. Cain
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Thomas Clamens
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - R. Christopher D. Furniss
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Eleni Manoli
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Maria A. Sainz-Polo
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - David Albesa-Jové
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Despoina A.I. Mavridou
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom,Department of Molecular Biosciences, University of Texas at Austin, Austin, 78712, Texas, USA,Correspondence to Alain Filloux: ; Despoina Mavridou:
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom,Correspondence to Alain Filloux: ; Despoina Mavridou:
| |
Collapse
|
13
|
Abstract
Most bacteria employ a two-step indirect tRNA aminoacylation pathway for the synthesis of aminoacylated tRNAGln and tRNAAsn. The heterotrimeric enzyme GatCAB performs a critical amidotransferase reaction in the second step of this pathway. We have previously demonstrated in mycobacteria that this two-step pathway is error prone and translational errors contribute to adaptive phenotypes such as antibiotic tolerance. Furthermore, we identified clinical isolates of the globally important pathogen Mycobacterium tuberculosis with partial loss-of-function mutations in gatA, and demonstrated that these mutations result in high, specific rates of translational error and increased rifampin tolerance. However, the mechanisms by which these clinically derived mutations in gatA impact GatCAB function were unknown. Here, we describe biochemical and biophysical characterization of M. tuberculosis GatCAB, containing either wild-type gatA or one of two gatA mutants from clinical strains. We show that these mutations have minimal impact on enzymatic activity of GatCAB; however, they result in destabilization of the GatCAB complex as well as that of the ternary asparaginyl-transamidosome. Stabilizing complex formation with the solute trehalose increases specific translational fidelity of not only the mutant strains but also of wild-type mycobacteria. Therefore, our data suggest that alteration of GatCAB stability may be a mechanism for modulation of translational fidelity. IMPORTANCE Most bacteria use a two-step indirect pathway to aminoacylate tRNAGln and tRNAAsn, despite the fact that the indirect pathway consumes more energy and is error prone. We have previously shown that the higher protein synthesis errors from this indirect pathway in mycobacteria allow adaptation to hostile environments such as antibiotic treatment through generation of novel alternate proteins not coded by the genome. However, the precise mechanisms of how translational fidelity is tuned were not known. Here, we biochemically and biophysically characterize the critical enzyme of the Mycobacterium tuberculosis indirect pathway, GatCAB, as well as two mutant enzymes previously identified from clinical isolates that were associated with increased mistranslation. We show that the mutants dysregulate the pathway via destabilizing the enzyme complex. Importantly, increasing stability improves translational fidelity in both wild-type and mutant bacteria, demonstrating a mechanism by which mycobacteria may tune mistranslation rates.
Collapse
|
14
|
Figuccia S, Degiorgi A, Ceccatelli Berti C, Baruffini E, Dallabona C, Goffrini P. Mitochondrial Aminoacyl-tRNA Synthetase and Disease: The Yeast Contribution for Functional Analysis of Novel Variants. Int J Mol Sci 2021; 22:ijms22094524. [PMID: 33926074 PMCID: PMC8123711 DOI: 10.3390/ijms22094524] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
In most eukaryotes, mitochondrial protein synthesis is essential for oxidative phosphorylation (OXPHOS) as some subunits of the respiratory chain complexes are encoded by the mitochondrial DNA (mtDNA). Mutations affecting the mitochondrial translation apparatus have been identified as a major cause of mitochondrial diseases. These mutations include either heteroplasmic mtDNA mutations in genes encoding for the mitochondrial rRNA (mtrRNA) and tRNAs (mttRNAs) or mutations in nuclear genes encoding ribosomal proteins, initiation, elongation and termination factors, tRNA-modifying enzymes, and aminoacyl-tRNA synthetases (mtARSs). Aminoacyl-tRNA synthetases (ARSs) catalyze the attachment of specific amino acids to their cognate tRNAs. Differently from most mttRNAs, which are encoded by mitochondrial genome, mtARSs are encoded by nuclear genes and then imported into the mitochondria after translation in the cytosol. Due to the extensive use of next-generation sequencing (NGS), an increasing number of mtARSs variants associated with large clinical heterogeneity have been identified in recent years. Being most of these variants private or sporadic, it is crucial to assess their causative role in the disease by functional analysis in model systems. This review will focus on the contributions of the yeast Saccharomyces cerevisiae in the functional validation of mutations found in mtARSs genes associated with human disorders.
Collapse
Affiliation(s)
| | | | | | | | - Cristina Dallabona
- Correspondence: (C.D.); (P.G.); Tel.: +39-0521-905600 (C.D.); +39-0521-905107 (P.G.)
| | - Paola Goffrini
- Correspondence: (C.D.); (P.G.); Tel.: +39-0521-905600 (C.D.); +39-0521-905107 (P.G.)
| |
Collapse
|
15
|
Hathazi D, Griffin H, Jennings MJ, Giunta M, Powell C, Pearce SF, Munro B, Wei W, Boczonadi V, Poulton J, Pyle A, Calabrese C, Gomez‐Duran A, Schara U, Pitceathly RDS, Hanna MG, Joost K, Cotta A, Paim JF, Navarro MM, Duff J, Mattman A, Chapman K, Servidei S, Della Marina A, Uusimaa J, Roos A, Mootha V, Hirano M, Tulinius M, Giri M, Hoffmann EP, Lochmüller H, DiMauro S, Minczuk M, Chinnery PF, Müller JS, Horvath R. Metabolic shift underlies recovery in reversible infantile respiratory chain deficiency. EMBO J 2020; 39:e105364. [PMID: 33128823 PMCID: PMC7705457 DOI: 10.15252/embj.2020105364] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 12/23/2022] Open
Abstract
Reversible infantile respiratory chain deficiency (RIRCD) is a rare mitochondrial myopathy leading to severe metabolic disturbances in infants, which recover spontaneously after 6-months of age. RIRCD is associated with the homoplasmic m.14674T>C mitochondrial DNA mutation; however, only ~ 1/100 carriers develop the disease. We studied 27 affected and 15 unaffected individuals from 19 families and found additional heterozygous mutations in nuclear genes interacting with mt-tRNAGlu including EARS2 and TRMU in the majority of affected individuals, but not in healthy carriers of m.14674T>C, supporting a digenic inheritance. Our transcriptomic and proteomic analysis of patient muscle suggests a stepwise mechanism where first, the integrated stress response associated with increased FGF21 and GDF15 expression enhances the metabolism modulated by serine biosynthesis, one carbon metabolism, TCA lipid oxidation and amino acid availability, while in the second step mTOR activation leads to increased mitochondrial biogenesis. Our data suggest that the spontaneous recovery in infants with digenic mutations may be modulated by the above described changes. Similar mechanisms may explain the variable penetrance and tissue specificity of other mtDNA mutations and highlight the potential role of amino acids in improving mitochondrial disease.
Collapse
|
16
|
González-Magaña A, Sainz-Polo MÁ, Pretre G, Çapuni R, Lucas M, Altuna J, Montánchez I, Fucini P, Albesa-Jové D. Structural insights into Pseudomonas aeruginosaType six secretion system exported effector 8. J Struct Biol 2020; 212:107651. [PMID: 33096229 DOI: 10.1016/j.jsb.2020.107651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Recent reports indicate that the Type six secretion system exported effector 8 (Tse8) is a cytoactive effector secreted by the Type VI secretion system (T6SS) of the human pathogen Pseudomonas aeruginosa. The T6SS is a nanomachine that assembles inside of the bacteria and injects effectors/toxins into target cells, providing a fitness advantage over competing bacteria and facilitating host colonisation. Here we present the first crystal structure of Tse8 revealing that it conserves the architecture of the catalytic triad Lys84-transSer162-Ser186 that characterises members of the Amidase Signature superfamily. Furthermore, using binding affinity experiments, we show that the interaction of phenylmethylsulfonyl fluoride (PMSF) to Tse8 is dependent on the putative catalytic residue Ser186, providing support for its nucleophilic reactivity. This work thus demonstrates that Tse8 belongs to the Amidase Signature (AS) superfamily. Furthermore, it highlights Tse8 similarity to two family members: the Stenotrophomonas maltophilia Peptide Amidase and the Glutamyl-tRNAGln amidotransferase subunit A from Staphylococcus aureus.
Collapse
Affiliation(s)
- Amaia González-Magaña
- Instituto Biofisika (UPV/EHU, CSIC), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, University of the Basque Country, 48940 Leioa, Spain
| | - M Ángela Sainz-Polo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Gabriela Pretre
- Instituto Biofisika (UPV/EHU, CSIC), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, University of the Basque Country, 48940 Leioa, Spain
| | - Retina Çapuni
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - María Lucas
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria. Santander, 39011 Cantabria, Spain
| | - Jon Altuna
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Itxaso Montánchez
- Departamento de Inmunología, Microbiología y Parasitología, University of the Basque Country, 48940 Leioa, Spain
| | - Paola Fucini
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - David Albesa-Jové
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
17
|
Yu J, Shinoda A, Kato K, Tanaka I, Yao M. A solution-free crystal-mounting platform for native SAD. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:938-945. [PMID: 33021495 DOI: 10.1107/s2059798320011584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/25/2020] [Indexed: 11/11/2022]
Abstract
The native SAD phasing method uses the anomalous scattering signals from the S atoms contained in most proteins, the P atoms in nucleic acids or other light atoms derived from the solution used for crystallization. These signals are very weak and careful data collection is required, which makes this method very difficult. One way to enhance the anomalous signal is to use long-wavelength X-rays; however, these wavelengths are more strongly absorbed by the materials in the pathway. Therefore, a crystal-mounting platform for native SAD data collection that removes solution around the crystals has been developed. This platform includes a novel solution-free mounting tool and an automatic robot, which extracts the surrounding solution, flash-cools the crystal and inserts the loop into a UniPuck cassette for use in the synchrotron. Eight protein structures (including two new structures) have been successfully solved by the native SAD method from crystals prepared using this platform.
Collapse
Affiliation(s)
- Jian Yu
- Faculty of Advanced Life Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Akira Shinoda
- Faculty of Advanced Life Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Koji Kato
- Faculty of Advanced Life Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Isao Tanaka
- Faculty of Advanced Life Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Min Yao
- Faculty of Advanced Life Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
18
|
Cai RJ, Su HW, Li YY, Javid B. Forward Genetics Reveals a gatC-gatA Fusion Polypeptide Causes Mistranslation and Rifampicin Tolerance in Mycobacterium smegmatis. Front Microbiol 2020; 11:577756. [PMID: 33072044 PMCID: PMC7541841 DOI: 10.3389/fmicb.2020.577756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
Most bacteria, including mycobacteria, utilize a two-step indirect tRNA aminoacylation pathway to generate correctly aminoacylated glutaminyl and asparaginyl tRNAs. This involves an initial step in which a non-discriminatory aminoacyl tRNA synthetase misacylates the tRNA, followed by a second step in which the essential amidotransferase, GatCAB, amidates the misacylated tRNA to its correct, cognate form. It had been previously demonstrated that mutations in gatA can mediate increased error rates specifically of glutamine to glutamate or asparagine to aspartate in protein synthesis. However, the role of mutations in gatB or gatC in mediating mistranslation are unknown. Here, we applied a forward genetic screen to enrich for mistranslating mutants of Mycobacterium smegmatis. The majority (57/67) of mutants had mutations in one of the gatCAB genes. Intriguingly, the most common mutation identified was an insertion in the 3' of gatC, abolishing its stop codon, and resulting in a fused GatC-GatA polypeptide. Modeling the effect of the fusion on GatCAB structure suggested a disruption of the interaction of GatB with the CCA-tail of the misacylated tRNA, suggesting a potential mechanism by which this mutation may mediate increased translational errors. Furthermore, we confirm that the majority of mutations in gatCAB that result in increased mistranslation also cause increased tolerance to rifampicin, although there was not a perfect correlation between mistranslation rates and degree of tolerance. Overall, our study identifies that mutations in all three gatCAB genes can mediate adaptive mistranslation and that mycobacteria are extremely tolerant to perturbation in the indirect tRNA aminoacylation pathway.
Collapse
Affiliation(s)
- Rong-Jun Cai
- Centre for Global Health and Infectious Diseases, Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
| | - Hong-Wei Su
- Centre for Global Health and Infectious Diseases, Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
| | - Yang-Yang Li
- Centre for Global Health and Infectious Diseases, Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine, Beijing, China
| | - Babak Javid
- Centre for Global Health and Infectious Diseases, Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine, Beijing, China.,Beijing Advanced Innovation Center in Structural Biology, Beijing, China.,Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
19
|
Han NC, Kelly P, Ibba M. Translational quality control and reprogramming during stress adaptation. Exp Cell Res 2020; 394:112161. [PMID: 32619498 DOI: 10.1016/j.yexcr.2020.112161] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022]
Abstract
Organisms encounter stress throughout their lives, and therefore require the ability to respond rapidly to environmental changes. Although transcriptional responses are crucial for controlling changes in gene expression, regulation at the translational level often allows for a faster response at the protein levels which permits immediate adaptation. The fidelity and robustness of protein synthesis are actively regulated under stress. For example, mistranslation can be beneficial to cells upon environmental changes and also alters cellular stress responses. Additionally, stress modulates both global and selective translational regulation through mechanisms including the change of aminoacyl-tRNA activity, tRNA pool reprogramming and ribosome heterogeneity. In this review, we draw on studies from both the prokaryotic and eukaryotic systems to discuss current findings of cellular adaptation at the level of translation, specifically translational fidelity and activity changes in response to a wide array of environmental stressors including oxidative stress, nutrient depletion, temperature variation, antibiotics and host colonization.
Collapse
Affiliation(s)
- Nien-Ching Han
- Department of Microbiology, The Ohio State University, Columbus, OH, 43220, USA
| | - Paul Kelly
- The Ohio State University Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH, 43220, USA
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, Columbus, OH, 43220, USA.
| |
Collapse
|
20
|
Wu Z, Liu C, Zhang Z, Zheng R, Zheng Y. Amidase as a versatile tool in amide-bond cleavage: From molecular features to biotechnological applications. Biotechnol Adv 2020; 43:107574. [PMID: 32512219 DOI: 10.1016/j.biotechadv.2020.107574] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022]
Abstract
Amidases (EC 3. 5. 1. X) are versatile biocatalysts for synthesis of chiral carboxylic acids, α-amino acids and amides due to their hydrolytic and acyl transfer activity towards the C-N linkages. They have been extensively exploited and studied during the past years for their high specific activity and excellent enantioselectivity involved in various biotechnological applications in pharmaceutical and agrochemical industries. Additionally, they have attracted considerable attentions in biodegradation and bioremediation owing to environmental pressures. Motivated by industrial demands, crystallographic investigations and catalytic mechanisms of amidases based on structural biology have witnessed a dramatic promotion in the last two decades. The protein structures showed that different types of amidases have their typical stuctural elements, such as the conserved AS domains in signature amidases and the typical architecture of metal-associated active sites in acetamidase/formamidase family amidases. This review provides an overview of recent research advances in various amidases, with a focus on their structural basis of phylogenetics, substrate specificities and catalytic mechanisms as well as their biotechnological applications. As more crystal structures of amidases are determined, the structure/function relationships of these enzymes will also be further elucidated, which will facilitate molecular engineering and design of amidases to meet industrial requirements.
Collapse
Affiliation(s)
- Zheming Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Changfeng Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhaoyu Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Renchao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
21
|
Chew BLA, Tanoto FR, Luo D. LC-MS assay targeting the mycobacterial indirect aminoacylation pathway uncovers glutaminase activities of the nondiscriminating aspartyl-synthetase. FEBS Lett 2020; 594:2159-2167. [PMID: 32279326 DOI: 10.1002/1873-3468.13786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/28/2020] [Accepted: 03/26/2020] [Indexed: 11/08/2022]
Abstract
The synthesis of asparagine (Asn)-tRNAAsn in most prokaryotes uses an indirect aminoacylation pathway involving a nondiscriminating aspartyl synthetase (ND-AspRS) and a glutamine amidotransferase (GatCAB). This was recently implicated as an adaptive mistranslation mechanism for antimicrobial resistance in Mycobacterium tuberculosis, but it remains poorly understood. We report an accessible liquid chromatography-mass spectrometry method with unparalleled chemical specificity, sensitivity, and quantification over the current assays to enable the direct analysis and drug screening campaigns of this pathway. Through this method, we show that the mycobacterial ND-AspRS stimulates the glutaminase activity of GatCAB. We further uncover novel glutaminase activity of the synthetase. These biological insights help better understand the indirect aminoacylation biology and allude to new roles beyond protein translation.
Collapse
Affiliation(s)
- Bing Liang Alvin Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, Singapore
- NTU Institute of Health Technologies, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore City, Singapore
| | | | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| |
Collapse
|
22
|
Esquirol L, Peat TS, Sugrue E, Balotra S, Rottet S, Warden AC, Wilding M, Hartley CJ, Jackson CJ, Newman J, Scott C. Bacterial catabolism of s-triazine herbicides: biochemistry, evolution and application. Adv Microb Physiol 2020; 76:129-186. [PMID: 32408946 DOI: 10.1016/bs.ampbs.2020.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The synthetic s-triazines are abundant, nitrogen-rich, heteroaromatic compounds used in a multitude of applications including, herbicides, plastics and polymers, and explosives. Their presence in the environment has led to the evolution of bacterial catabolic pathways in bacteria that allow use of these anthropogenic chemicals as a nitrogen source that supports growth. Herbicidal s-triazines have been used since the mid-twentieth century and are among the most heavily used herbicides in the world, despite being withdrawn from use in some areas due to concern about their safety and environmental impact. Bacterial catabolism of the herbicidal s-triazines has been studied extensively. Pseudomonas sp. strain ADP, which was isolated more than thirty years after the introduction of the s-triazine herbicides, has been the model system for most of these studies; however, several alternative catabolic pathways have also been identified. Over the last five years, considerable detail about the molecular mode of action of the s-triazine catabolic enzymes has been uncovered through acquisition of their atomic structures. These structural studies have also revealed insights into the evolutionary origins of this newly acquired metabolic capability. In addition, s-triazine-catabolizing bacteria and enzymes have been used in a range of applications, including bioremediation of herbicides and cyanuric acid, introducing metabolic resistance to plants, and as a novel selectable marker in fermentation organisms. In this review, we cover the discovery and characterization of bacterial strains, metabolic pathways and enzymes that catabolize the s-triazines. We also consider the evolution of these new enzymes and pathways and discuss the practical applications that have been considered for these bacteria and enzymes. One Sentence Summary: A detailed understanding of bacterial herbicide catabolic enzymes and pathways offer new evolutionary insights and novel applied tools.
Collapse
Affiliation(s)
- Lygie Esquirol
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Thomas S Peat
- CSIRO Biomedical Manufacturing, Parkville, VIC, Australia
| | - Elena Sugrue
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Sahil Balotra
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Sarah Rottet
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Andrew C Warden
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Matthew Wilding
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia; CSIRO Biomedical Manufacturing, Parkville, VIC, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Carol J Hartley
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Janet Newman
- CSIRO Biomedical Manufacturing, Parkville, VIC, Australia
| | - Colin Scott
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
23
|
Abstract
The introduction of manmade chemicals, including the herbicide atrazine, into the environment has led to the emergence of microorganisms with new biodegradation pathways. Esquirol et al. demonstrate that the AtzE enzyme catalyzes a central step in atrazine degradation and that expression of AtzE requires coexpression of the small protein AtzG. Remarkably, AtzG and AtzE appear to have evolved from GatC and GatA, components of an ancient enzyme involved in indirect tRNA aminoacylation, providing an elegant demonstration of metabolic repurposing.
Collapse
Affiliation(s)
- Tamara L Hendrickson
- From the Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
24
|
Aziz M, Wang X, Tripathi A, Bankaitis VA, Chapman KD. Structural analysis of a plant fatty acid amide hydrolase provides insights into the evolutionary diversity of bioactive acylethanolamides. J Biol Chem 2019; 294:7419-7432. [PMID: 30894416 PMCID: PMC6509493 DOI: 10.1074/jbc.ra118.006672] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/20/2019] [Indexed: 01/09/2023] Open
Abstract
N-Acylethanolamines (NAEs) are fatty acid derivatives that in animal systems include the well-known bioactive metabolites of the endocannabinoid signaling pathway. Plants use NAE signaling as well, and these bioactive molecules often have oxygenated acyl moieties. Here, we report the three-dimensional crystal structures of the signal-terminating enzyme fatty acid amide hydrolase (FAAH) from Arabidopsis in its apo and ligand-bound forms at 2.1- and 3.2-Å resolutions, respectively. This plant FAAH structure revealed features distinct from those of the only other available FAAH structure (rat). The structures disclosed that although catalytic residues are conserved with the mammalian enzyme, AtFAAH has a more open substrate-binding pocket that is partially lined with polar residues. Fundamental differences in the organization of the membrane-binding "cap" and the membrane access channel also were evident. In accordance with the observed structural features of the substrate-binding pocket, kinetic analysis showed that AtFAAH efficiently uses both unsubstituted and oxygenated acylethanolamides as substrates. Moreover, comparison of the apo and ligand-bound AtFAAH structures identified three discrete sets of conformational changes that accompany ligand binding, suggesting a unique "squeeze and lock" substrate-binding mechanism. Using molecular dynamics simulations, we evaluated these conformational changes further and noted a partial unfolding of a random-coil helix within the region 531-537 in the apo structure but not in the ligand-bound form, indicating that this region likely confers plasticity to the substrate-binding pocket. We conclude that the structural divergence in bioactive acylethanolamides in plants is reflected in part in the structural and functional properties of plant FAAHs.
Collapse
Affiliation(s)
- Mina Aziz
- From the BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203 and
| | - Xiaoqiang Wang
- From the BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203 and
| | - Ashutosh Tripathi
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Vytas A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Kent D Chapman
- From the BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203 and
| |
Collapse
|
25
|
Li L, Adachi M, Yu J, Kato K, Shinoda A, Ostermann A, Schrader TE, Ose T, Yao M. Neutron crystallographic study of heterotrimeric glutamine amidotransferase CAB. Acta Crystallogr F Struct Biol Commun 2019; 75:193-196. [PMID: 30839294 PMCID: PMC6404854 DOI: 10.1107/s2053230x19000220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/05/2019] [Indexed: 11/10/2022] Open
Abstract
Heterotrimeric glutamine amidotransferase CAB (GatCAB) possesses an ammonia-self-sufficient mechanism in which ammonia is produced and used in the inner complex by GatA and GatB, respectively. The X-ray structure of GatCAB revealed that the two identified active sites of GatA and GatB are markedly distant, but are connected in the complex by a channel of 30 Å in length. In order to clarify whether ammonia is transferred through this channel in GatCAB by visualizing ammonia, neutron diffraction studies are indispensable. Here, GatCAB crystals were grown to approximate dimensions of 2.8 × 0.8 × 0.8 mm (a volume of 1.8 mm3) with the aid of a polymer using microseeding and macroseeding processes. Monochromatic neutron diffraction data were collected using the neutron single-crystal diffractometer BIODIFF at the Heinz Maier-Leibnitz Zentrum, Germany. The GatCAB crystals belonged to space group P212121, with unit-cell parameters a = 74.6, b = 94.5, c = 182.5 Å and with one GatCAB complex (molecular mass 119 kDa) in the asymmetric unit. This study represented a challenge in current neutron diffraction technology.
Collapse
Affiliation(s)
- Long Li
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Motoyasu Adachi
- National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Jian Yu
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Koji Kato
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Akira Shinoda
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Andreas Ostermann
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Tobias E. Schrader
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Toyoyuki Ose
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- PRESTO, Japan Science and Technology Agency, Tokyo 113-0033, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
26
|
Development of Assay Systems for Amber Codon Decoding at the Steps of Initiation and Elongation in Mycobacteria. J Bacteriol 2018; 200:JB.00372-18. [PMID: 30181124 DOI: 10.1128/jb.00372-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/24/2018] [Indexed: 11/20/2022] Open
Abstract
Genetic analysis of the mechanism of protein synthesis in Gram-positive bacteria has remained largely unexplored because of the unavailability of appropriate in vivo assay systems. We developed chloramphenicol acetyltransferase (CAT)-based in vivo reporter systems to study translation initiation and elongation in Mycobacterium smegmatis The CAT reporters utilize specific decoding of amber codons by mutant initiator tRNA (i-tRNA, metU) molecules containing a CUA anticodon (metU CUA). The assay systems allow structure-function analyses of tRNAs without interfering with the cellular protein synthesis and function with or without the expression of heterologous GlnRS from Escherichia coli We show that despite their naturally occurring slow-growth phenotypes, the step of i-tRNA formylation is vital in translation initiation in mycobacteria and that formylation-deficient i-tRNA mutants (metU CUA/A1, metU CUA/G72, and metU CUA/G72G73) with a Watson-Crick base pair at the 1·72 position participate in elongation. In the absence of heterologous GlnRS expression, the mutant tRNAs are predominantly aminoacylated (glutamylated) by nondiscriminating GluRS. Acid urea gels show complete transamidation of the glutamylated metU CUA/G72G73 tRNA to its glutaminylated form (by GatCAB) in M. smegmatis In contrast, the glutamylated metU CUA/G72 tRNA did not show a detectable level of transamidation. Interestingly, the metU CUA/A1 mutant showed an intermediate activity of transamidation and accumulated in both glutamylated and glutaminylated forms. These observations suggest important roles for the discriminator base position and/or a weak Watson-Crick base pair at 1·72 for in vivo recognition of the glutamylated tRNAs by M. smegmatis GatCAB.IMPORTANCE Genetic analysis of the translational apparatus in Gram-positive bacteria has remained largely unexplored because of the unavailability of appropriate in vivo assay systems. We developed chloramphenicol acetyltransferase (CAT)-based reporters which utilize specific decoding of amber codons by mutant tRNAs at the steps of initiation and/or elongation to allow structure-function analysis of the translational machinery. We show that formylation of the initiator tRNA (i-tRNA) is crucial even for slow-growing bacteria and that i-tRNA mutants with a CUA anticodon are aminoacylated by nondiscriminating GluRS. The discriminator base position, and/or a weak Watson-Crick base pair at the top of the acceptor stem, provides important determinants for transamidation of the i-tRNA-attached Glu to Gln by the mycobacterial GatCAB.
Collapse
|
27
|
Friederich MW, Timal S, Powell CA, Dallabona C, Kurolap A, Palacios-Zambrano S, Bratkovic D, Derks TGJ, Bick D, Bouman K, Chatfield KC, Damouny-Naoum N, Dishop MK, Falik-Zaccai TC, Fares F, Fedida A, Ferrero I, Gallagher RC, Garesse R, Gilberti M, González C, Gowan K, Habib C, Halligan RK, Kalfon L, Knight K, Lefeber D, Mamblona L, Mandel H, Mory A, Ottoson J, Paperna T, Pruijn GJM, Rebelo-Guiomar PF, Saada A, Sainz B, Salvemini H, Schoots MH, Smeitink JA, Szukszto MJ, Ter Horst HJ, van den Brandt F, van Spronsen FJ, Veltman JA, Wartchow E, Wintjes LT, Zohar Y, Fernández-Moreno MA, Baris HN, Donnini C, Minczuk M, Rodenburg RJ, Van Hove JLK. Pathogenic variants in glutamyl-tRNA Gln amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder. Nat Commun 2018; 9:4065. [PMID: 30283131 PMCID: PMC6170436 DOI: 10.1038/s41467-018-06250-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/23/2018] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial protein synthesis requires charging a mitochondrial tRNA with its amino acid. Here, the authors describe pathogenic variants in the GatCAB protein complex genes required for the generation of glutaminyl-mt-tRNAGln, that impairs mitochondrial translation and presents with cardiomyopathy. Mitochondrial protein synthesis requires charging mt-tRNAs with their cognate amino acids by mitochondrial aminoacyl-tRNA synthetases, with the exception of glutaminyl mt-tRNA (mt-tRNAGln). mt-tRNAGln is indirectly charged by a transamidation reaction involving the GatCAB aminoacyl-tRNA amidotransferase complex. Defects involving the mitochondrial protein synthesis machinery cause a broad spectrum of disorders, with often fatal outcome. Here, we describe nine patients from five families with genetic defects in a GatCAB complex subunit, including QRSL1, GATB, and GATC, each showing a lethal metabolic cardiomyopathy syndrome. Functional studies reveal combined respiratory chain enzyme deficiencies and mitochondrial dysfunction. Aminoacylation of mt-tRNAGln and mitochondrial protein translation are deficient in patients’ fibroblasts cultured in the absence of glutamine but restore in high glutamine. Lentiviral rescue experiments and modeling in S. cerevisiae homologs confirm pathogenicity. Our study completes a decade of investigations on mitochondrial aminoacylation disorders, starting with DARS2 and ending with the GatCAB complex.
Collapse
Affiliation(s)
- Marisa W Friederich
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, 80045, CO, USA
| | - Sharita Timal
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands.,Department of Human Genetics, Radboud Institute for Molecular Life Sciences and Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Christopher A Powell
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 OXY, United Kingdom
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | - Alina Kurolap
- The Genetics Institute, Rambam Health Care Campus, Haifa, 3109601, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 3109601, Israel
| | - Sara Palacios-Zambrano
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER). Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Drago Bratkovic
- SA Pathology, Women and Children's Hospital Adelaide, Adelaide, 5006, Australia
| | - Terry G J Derks
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - David Bick
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Katelijne Bouman
- Department of Genetics, University Medical Center of Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - Kathryn C Chatfield
- Department of Pediatrics, Section of Pediatric Cardiology, Children's Hospital Colorado, University of Colorado, Aurora, CO, 80045, USA
| | - Nadine Damouny-Naoum
- The Genetics Institute, Rambam Health Care Campus, Haifa, 3109601, Israel.,Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Megan K Dishop
- Department of Pathology, Children's Hospital Colorado, University of Colorado, Aurora, 80045, CO, USA
| | - Tzipora C Falik-Zaccai
- Institute of Human Genetics, Galilee Medical Center, Nahariya, 22100, Israel.,The Azrieli Faculty of Medicine in the Galilee, Bar Ilan University, Safed, 1311502, Israel
| | - Fuad Fares
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Ayalla Fedida
- Institute of Human Genetics, Galilee Medical Center, Nahariya, 22100, Israel.,The Azrieli Faculty of Medicine in the Galilee, Bar Ilan University, Safed, 1311502, Israel
| | - Ileana Ferrero
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | - Renata C Gallagher
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, 80045, CO, USA
| | - Rafael Garesse
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER). Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Micol Gilberti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | - Cristina González
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER). Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Katherine Gowan
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, 80045, USA
| | - Clair Habib
- Department of Pediatrics, Bnai Zion Medical Center, Haifa, 3339419, Israel
| | - Rebecca K Halligan
- SA Pathology, Women and Children's Hospital Adelaide, Adelaide, 5006, Australia
| | - Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Nahariya, 22100, Israel
| | - Kaz Knight
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, 80045, CO, USA
| | - Dirk Lefeber
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences and Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Laura Mamblona
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER). Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Hanna Mandel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 3109601, Israel.,Institute of Human Genetics, Galilee Medical Center, Nahariya, 22100, Israel.,Metabolic Unit, Rambam Health Care Campus, Haifa, 3109601, Israel
| | - Adi Mory
- The Genetics Institute, Rambam Health Care Campus, Haifa, 3109601, Israel
| | - John Ottoson
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, 80045, CO, USA
| | - Tamar Paperna
- The Genetics Institute, Rambam Health Care Campus, Haifa, 3109601, Israel
| | - Ger J M Pruijn
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, 6500 HB, The Netherlands
| | - Pedro F Rebelo-Guiomar
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 OXY, United Kingdom.,Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, Porto, 4200-135, Portugal
| | - Ann Saada
- Monique and Jacques Roboh Department of Genetic Research and the Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Bruno Sainz
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER). Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain.,Enfermedades Crónicas y Cáncer Area, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, 28034, Spain
| | - Hayley Salvemini
- SA Pathology, Women and Children's Hospital Adelaide, Adelaide, 5006, Australia
| | - Mirthe H Schoots
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands
| | - Jan A Smeitink
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Maciej J Szukszto
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 OXY, United Kingdom
| | - Hendrik J Ter Horst
- Division of Neonatology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - Frans van den Brandt
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Francjan J van Spronsen
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - Joris A Veltman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences and Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands.,Institute of Genetic Medicine, Newcastle University, Newcastle, NE1 3BZ, United Kingdom
| | - Eric Wartchow
- Department of Pathology, Children's Hospital Colorado, University of Colorado, Aurora, 80045, CO, USA
| | - Liesbeth T Wintjes
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Yaniv Zohar
- Institute of Pathology, Rambam Health Care Campus, 3109601, Haifa, Israel
| | - Miguel A Fernández-Moreno
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER). Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Hagit N Baris
- The Genetics Institute, Rambam Health Care Campus, Haifa, 3109601, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 3109601, Israel
| | - Claudia Donnini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | - Michal Minczuk
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 OXY, United Kingdom
| | - Richard J Rodenburg
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Johan L K Van Hove
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, 80045, CO, USA.
| |
Collapse
|
28
|
Esquirol L, Peat TS, Wilding M, Liu JW, French NG, Hartley CJ, Onagi H, Nebl T, Easton CJ, Newman J, Scott C. An unexpected vestigial protein complex reveals the evolutionary origins of an s-triazine catabolic enzyme. J Biol Chem 2018. [PMID: 29523689 DOI: 10.1074/jbc.ra118.001996] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyanuric acid is a metabolic intermediate of s-triazines, such as atrazine (a common herbicide) and melamine (used in resins and plastics). Cyanuric acid is mineralized to ammonia and carbon dioxide by the soil bacterium Pseudomonas sp. strain ADP via three hydrolytic enzymes (AtzD, AtzE, and AtzF). Here, we report the purification and biochemical and structural characterization of AtzE. Contrary to previous reports, we found that AtzE is not a biuret amidohydrolase, but instead it catalyzes the hydrolytic deamination of 1-carboxybiuret. X-ray crystal structures of apo AtzE and AtzE bound with the suicide inhibitor phenyl phosphorodiamidate revealed that the AtzE enzyme complex consists of two independent molecules in the asymmetric unit. We also show that AtzE forms an α2β2 heterotetramer with a previously unidentified 68-amino acid-long protein (AtzG) encoded in the cyanuric acid mineralization operon from Pseudomonas sp. strain ADP. Moreover, we observed that AtzG is essential for the production of soluble, active AtzE and that this obligate interaction is a vestige of their shared evolutionary origin. We propose that AtzEG was likely recruited into the cyanuric acid-mineralizing pathway from an ancestral glutamine transamidosome that required protein-protein interactions to enforce the exclusion of solvent from the transamidation reaction.
Collapse
Affiliation(s)
- Lygie Esquirol
- From the Biocatalysis and Synthetic Biology Team and.,the Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, and
| | - Thomas S Peat
- CSIRO Biomedical Manufacturing, Parkville, Melbourne, Victoria 3052, Australia
| | - Matthew Wilding
- the Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, and.,CSIRO Biomedical Manufacturing, Parkville, Melbourne, Victoria 3052, Australia
| | - Jian-Wei Liu
- From the Biocatalysis and Synthetic Biology Team and
| | | | | | - Hideki Onagi
- the Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, and
| | - Thomas Nebl
- CSIRO Biomedical Manufacturing, Parkville, Melbourne, Victoria 3052, Australia
| | - Christopher J Easton
- the Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, and
| | - Janet Newman
- CSIRO Biomedical Manufacturing, Parkville, Melbourne, Victoria 3052, Australia
| | - Colin Scott
- From the Biocatalysis and Synthetic Biology Team and .,Synthetic Biology Future Science Platform, CSIRO Land and Water, Canberra, Australian Capital Territory 2601
| |
Collapse
|
29
|
Indirect tRNA aminoacylation during accurate translation and phenotypic mistranslation. Curr Opin Chem Biol 2017; 41:114-122. [DOI: 10.1016/j.cbpa.2017.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/03/2017] [Accepted: 10/08/2017] [Indexed: 11/18/2022]
|
30
|
Structural basis for tRNA-dependent cysteine biosynthesis. Nat Commun 2017; 8:1521. [PMID: 29142195 PMCID: PMC5688128 DOI: 10.1038/s41467-017-01543-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/26/2017] [Indexed: 11/25/2022] Open
Abstract
Cysteine can be synthesized by tRNA-dependent mechanism using a two-step indirect pathway, where O-phosphoseryl-tRNA synthetase (SepRS) catalyzes the ligation of a mismatching O-phosphoserine (Sep) to tRNACys followed by the conversion of tRNA-bounded Sep into cysteine by Sep-tRNA:Cys-tRNA synthase (SepCysS). In ancestral methanogens, a third protein SepCysE forms a bridge between the two enzymes to create a ternary complex named the transsulfursome. By combination of X-ray crystallography, SAXS and EM, together with biochemical evidences, here we show that the three domains of SepCysE each bind SepRS, SepCysS, and tRNACys, respectively, which mediates the dynamic architecture of the transsulfursome and thus enables a global long-range channeling of tRNACys between SepRS and SepCysS distant active sites. This channeling mechanism could facilitate the consecutive reactions of the two-step indirect pathway of Cys-tRNACys synthesis (tRNA-dependent cysteine biosynthesis) to prevent challenge of translational fidelity, and may reflect the mechanism that cysteine was originally added into genetic code. tRNA-dependent cysteine biosynthesis is catalyzed by the transsulfursome protein complex. Here, the authors use a multidisciplinary approach to structurally characterize the archaeal transsulfursome and propose a model for tRNA channeling in the complex.
Collapse
|
31
|
Identification and characterization of a novel amidase signature family amidase from Parvibaculum lavamentivorans ZJB14001. Protein Expr Purif 2017; 129:60-68. [DOI: 10.1016/j.pep.2016.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 11/17/2022]
|
32
|
Mei X, Alvarez J, Bon Ramos A, Samanta U, Iwata-Reuyl D, Swairjo MA. Crystal structure of the archaeosine synthase QueF-like-Insights into amidino transfer and tRNA recognition by the tunnel fold. Proteins 2016; 85:103-116. [PMID: 27802572 DOI: 10.1002/prot.25202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 11/10/2022]
Abstract
The tunneling-fold (T-fold) structural superfamily has emerged as a versatile protein scaffold of diverse catalytic activities. This is especially evident in the pathways to the 7-deazaguanosine modified nucleosides of tRNA queuosine and archaeosine. Four members of the T-fold superfamily have been confirmed in these pathways and here we report the crystal structure of a fifth enzyme; the recently discovered amidinotransferase QueF-Like (QueF-L), responsible for the final step in the biosynthesis of archaeosine in the D-loop of tRNA in a subset of Crenarchaeota. QueF-L catalyzes the conversion of the nitrile group of the 7-cyano-7-deazaguanine (preQ0 ) base of preQ0 -modified tRNA to a formamidino group. The structure, determined in the presence of preQ0 , reveals a symmetric T-fold homodecamer of two head-to-head facing pentameric subunits, with 10 active sites at the inter-monomer interfaces. Bound preQ0 forms a stable covalent thioimide bond with a conserved active site cysteine similar to the intermediate previously observed in the nitrile reductase QueF. Despite distinct catalytic functions, phylogenetic distributions, and only 19% sequence identity, the two enzymes share a common preQ0 binding pocket, and likely a common mechanism of thioimide formation. However, due to tight twisting of its decamer, QueF-L lacks the NADPH binding site present in QueF. A large positively charged molecular surface and a docking model suggest simultaneous binding of multiple tRNA molecules and structure-specific recognition of the D-loop by a surface groove. The structure sheds light on the mechanism of nitrile amidation, and the evolution of diverse chemistries in a common fold. Proteins 2016; 85:103-116. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xianghan Mei
- Department of Chemistry and Biochemistry, San Diego State University- 5500 Campanile Drive, San Diego, California, 92182
| | - Jonathan Alvarez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, 91766-1854
| | - Adriana Bon Ramos
- Department of Chemistry, Portland State University, Portland, Oregon, 97207
| | - Uttamkumar Samanta
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, 91766-1854
| | - Dirk Iwata-Reuyl
- Department of Chemistry, Portland State University, Portland, Oregon, 97207
| | - Manal A Swairjo
- Department of Chemistry and Biochemistry, San Diego State University- 5500 Campanile Drive, San Diego, California, 92182
| |
Collapse
|
33
|
Pham VH, Maaroufi H, Balg C, Blais SP, Messier N, Roy PH, Otis F, Voyer N, Lapointe J, Chênevert R. Inhibition ofHelicobacter pyloriGlu-tRNAGlnamidotransferase by novel analogues of the putative transamidation intermediate. FEBS Lett 2016; 590:3335-3345. [DOI: 10.1002/1873-3468.12380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Van Hau Pham
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie; Université Laval; Québec Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec Canada
- The Quebec Network for Research on Protein Function, Structure and Engineering (PROTEO); Université Laval; Québec Canada
| | - Halim Maaroufi
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec Canada
| | - Christian Balg
- The Quebec Network for Research on Protein Function, Structure and Engineering (PROTEO); Université Laval; Québec Canada
- Département de Chimie, Faculté des Sciences et de Génie; Université Laval; Québec Canada
| | - Sébastien P. Blais
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie; Université Laval; Québec Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec Canada
- The Quebec Network for Research on Protein Function, Structure and Engineering (PROTEO); Université Laval; Québec Canada
| | - Nancy Messier
- CHU de Québec; Centre de Recherche en Infectiologie; Université Laval; Québec Canada
| | - Paul H. Roy
- CHU de Québec; Centre de Recherche en Infectiologie; Université Laval; Québec Canada
| | - François Otis
- The Quebec Network for Research on Protein Function, Structure and Engineering (PROTEO); Université Laval; Québec Canada
- Département de Chimie, Faculté des Sciences et de Génie; Université Laval; Québec Canada
| | - Normand Voyer
- The Quebec Network for Research on Protein Function, Structure and Engineering (PROTEO); Université Laval; Québec Canada
- Département de Chimie, Faculté des Sciences et de Génie; Université Laval; Québec Canada
| | - Jacques Lapointe
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie; Université Laval; Québec Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec Canada
- The Quebec Network for Research on Protein Function, Structure and Engineering (PROTEO); Université Laval; Québec Canada
| | - Robert Chênevert
- The Quebec Network for Research on Protein Function, Structure and Engineering (PROTEO); Université Laval; Québec Canada
- Département de Chimie, Faculté des Sciences et de Génie; Université Laval; Québec Canada
| |
Collapse
|
34
|
The essential mycobacterial amidotransferase GatCAB is a modulator of specific translational fidelity. Nat Microbiol 2016; 1:16147. [PMID: 27564922 DOI: 10.1038/nmicrobiol.2016.147] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/19/2016] [Indexed: 01/14/2023]
Abstract
Although regulation of translation fidelity is an essential process1-7, diverse organisms and organelles have differing requirements of translational accuracy8-15, and errors in gene translation serve an adaptive function under certain conditions16-20. Therefore, optimal levels of fidelity may vary according to context. Most bacteria utilize a two-step pathway for the specific synthesis of aminoacylated glutamine and/or asparagine tRNAs, involving the glutamine amidotransferase GatCAB21-25, but it had not been appreciated that GatCAB may play a role in modulating mistranslation rates. Here, by using a forward genetic screen, we show that the mycobacterial GatCAB enzyme complex mediates the translational fidelity of glutamine and asparagine codons. We identify mutations in gatA that cause partial loss of function in the holoenzyme, with a consequent increase in rates of mistranslation. By monitoring single-cell transcription dynamics, we demonstrate that reduced gatCAB expression leads to increased mistranslation rates, which result in enhanced rifampicin-specific phenotypic resistance. Consistent with this, strains with mutations in gatA from clinical isolates of Mycobacterium tuberculosis show increased mistranslation, with associated antibiotic tolerance, suggesting a role for mistranslation as an adaptive strategy in tuberculosis. Together, our findings demonstrate a potential role for the indirect tRNA aminoacylation pathway in regulating translational fidelity and adaptive mistranslation.
Collapse
|
35
|
Zhao L, Rathnayake UM, Dewage SW, Wood WN, Veltri AJ, Cisneros GA, Hendrickson TL. Characterization of tunnel mutants reveals a catalytic step in ammonia delivery by an aminoacyl-tRNA amidotransferase. FEBS Lett 2016; 590:3122-32. [DOI: 10.1002/1873-3468.12347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Liangjun Zhao
- Department of Chemistry; Wayne State University; Detroit MI USA
| | | | | | - Whitney N. Wood
- Department of Chemistry; Wayne State University; Detroit MI USA
| | | | | | | |
Collapse
|
36
|
Chen M, Nakazawa Y, Kubo Y, Asano N, Kato K, Tanaka I, Yao M. Crystallographic analysis of a subcomplex of the transsulfursome with tRNA for Cys-tRNA(Cys) synthesis. Acta Crystallogr F Struct Biol Commun 2016; 72:569-72. [PMID: 27380375 PMCID: PMC4933008 DOI: 10.1107/s2053230x16009559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/14/2016] [Indexed: 11/10/2022] Open
Abstract
In most organisms, Cys-tRNA(Cys) is directly synthesized by cysteinyl-tRNA synthetase (CysRS). Many methanogenic archaea, however, use a two-step, indirect pathway to synthesize Cys-tRNA(Cys) owing to a lack of CysRS and cysteine-biosynthesis systems. This reaction is catalyzed by O-phosphoseryl-tRNA synthetase (SepRS), Sep-tRNA:Cys-tRNA synthase (SepCysS) and SepRS/SepCysS pathway enhancer (SepCysE) as the transsulfursome, in which SepCysE connects both SepRS and SepCysS. On the transsulfursome, SepRS first ligates an O-phosphoserine to tRNA(Cys), and the mischarged intermediate Sep-tRNA(Cys) is then transferred to SepCysS, where it is further modified to Cys-tRNA(Cys). In this study, a subcomplex of the transsulfursome with tRNA(Cys) (SepCysS-SepCysE-tRNA(Cys)), which is involved in the second reaction step of the indirect pathway, was constructed and then crystallized. The crystals diffracted X-rays to a resolution of 2.6 Å and belonged to space group P6522, with unit-cell parameters a = b = 107.2, c = 551.1 Å. The structure determined by molecular replacement showed that the complex consists of a SepCysS dimer, a SepCysE dimer and one tRNA(Cys) in the asymmetric unit.
Collapse
Affiliation(s)
- Meirong Chen
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yuto Nakazawa
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yume Kubo
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Nozomi Asano
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Koji Kato
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Isao Tanaka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
37
|
Pham VH, Maaroufi H, Levesque RC, Lapointe J. Cyclic peptides identified by phage display are competitive inhibitors of the tRNA-dependent amidotransferase of Helicobacter pylori. Peptides 2016; 79:8-15. [PMID: 26976271 DOI: 10.1016/j.peptides.2016.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 02/07/2023]
Abstract
In Helicobacter pylori, the heterotrimeric tRNA-dependent amidotransferase (GatCAB) is essential for protein biosynthesis because it catalyzes the conversion of misacylated Glu-tRNA(Gln) and Asp-tRNA(Asn) into Gln-tRNA(Gln) and Asn-tRNA(Asn), respectively. In this study, we used a phage library to identify peptide inhibitors of GatCAB. A library displaying loop-constrained heptapeptides was used to screen for phages binding to the purified GatCAB. To optimize the probability of obtaining competitive inhibitors of GatCAB with respect to its substrate Glu-tRNA(Gln), we used that purified substrate in the biopanning process of the phage-display technique to elute phages bound to GatCAB at the third round of the biopanning process. Among the eluted phages, we identified several that encode cyclic peptides rich in Trp and Pro that inhibit H. pylori GatCAB in vitro. Peptides P10 and P9 were shown to be competitive inhibitors of GatCAB with respect to its substrate Glu-tRNA(Gln), with Ki values of 126 and 392μM, respectively. The docking models revealed that the Trp residues of these peptides form π-π stacking interactions with Tyr81 of the synthetase active site, as does the 3'-terminal A76 of tRNA, supporting their competitive behavior with respect to Glu-tRNA(Gln) in the transamidation reaction. These peptides can be used as scaffolds in the search for novel antibiotics against the pathogenic bacteria that require GatCAB for Gln-tRNA(Gln) and/or Asn-tRNA(Asn) formation.
Collapse
Affiliation(s)
- Van Hau Pham
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada; The Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Québec G1V 0A6, Canada.
| | - Halim Maaroufi
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Roger C Levesque
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada; Département de Biologie Médicale, Faculté de Médicine, Université Laval, Québec G1V 0A6, Canada
| | - Jacques Lapointe
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada; The Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Québec G1V 0A6, Canada.
| |
Collapse
|
38
|
Nair N, Raff H, Islam MT, Feen M, Garofalo DM, Sheppard K. The Bacillus subtilis and Bacillus halodurans Aspartyl-tRNA Synthetases Retain Recognition of tRNA(Asn). J Mol Biol 2016; 428:618-630. [PMID: 26804570 DOI: 10.1016/j.jmb.2016.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 12/19/2022]
Abstract
Synthesis of asparaginyl-tRNA (Asn-tRNA(Asn)) in bacteria can be formed either by directly ligating Asn to tRNA(Asn) using an asparaginyl-tRNA synthetase (AsnRS) or by synthesizing Asn on the tRNA. In the latter two-step indirect pathway, a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) attaches Asp to tRNA(Asn) and the amidotransferase GatCAB transamidates the Asp to Asn on the tRNA. GatCAB can be similarly used for Gln-tRNA(Gln) formation. Most bacteria are predicted to use only one route for Asn-tRNA(Asn) formation. Given that Bacillus halodurans and Bacillus subtilis encode AsnRS for Asn-tRNA(Asn) formation and Asn synthetases to synthesize Asn and GatCAB for Gln-tRNA(Gln) synthesis, their AspRS enzymes were thought to be specific for tRNA(Asp). However, we demonstrate that the AspRSs are non-discriminating and can be used with GatCAB to synthesize Asn. The results explain why B. subtilis with its Asn synthetase genes knocked out is still an Asn prototroph. Our phylogenetic analysis suggests that this may be common among Firmicutes and 30% of all bacteria. In addition, the phylogeny revealed that discrimination toward tRNA(Asp) by AspRS has evolved independently multiple times. The retention of the indirect pathway in B. subtilis and B. halodurans likely reflects the ancient link between Asn biosynthesis and its use in translation that enabled Asn to be added to the genetic code.
Collapse
Affiliation(s)
- Nilendra Nair
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Hannah Raff
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | | | - Melanie Feen
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Denise M Garofalo
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Kelly Sheppard
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA.
| |
Collapse
|
39
|
Lee S, Park EH, Ko HJ, Bang WG, Kim HY, Kim KH, Choi IG. Crystal structure analysis of a bacterial aryl acylamidase belonging to the amidase signature enzyme family. Biochem Biophys Res Commun 2015; 467:268-74. [DOI: 10.1016/j.bbrc.2015.09.177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
|
40
|
Mailu BM, Li L, Arthur J, Nelson TM, Ramasamy G, Fritz-Wolf K, Becker K, Gardner MJ. Plasmodium Apicoplast Gln-tRNAGln Biosynthesis Utilizes a Unique GatAB Amidotransferase Essential for Erythrocytic Stage Parasites. J Biol Chem 2015; 290:29629-41. [PMID: 26318454 DOI: 10.1074/jbc.m115.655100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 01/25/2023] Open
Abstract
The malaria parasite Plasmodium falciparum apicoplast indirect aminoacylation pathway utilizes a non-discriminating glutamyl-tRNA synthetase to synthesize Glu-tRNA(Gln) and a glutaminyl-tRNA amidotransferase to convert Glu-tRNA(Gln) to Gln-tRNA(Gln). Here, we show that Plasmodium falciparum and other apicomplexans possess a unique heterodimeric glutamyl-tRNA amidotransferase consisting of GatA and GatB subunits (GatAB). We localized the P. falciparum GatA and GatB subunits to the apicoplast in blood stage parasites and demonstrated that recombinant GatAB converts Glu-tRNA(Gln) to Gln-tRNA(Gln) in vitro. We demonstrate that the apicoplast GatAB-catalyzed reaction is essential to the parasite blood stages because we could not delete the Plasmodium berghei gene encoding GatA in blood stage parasites in vivo. A phylogenetic analysis placed the split between Plasmodium GatB, archaeal GatE, and bacterial GatB prior to the phylogenetic divide between bacteria and archaea. Moreover, Plasmodium GatA also appears to have emerged prior to the bacterial-archaeal phylogenetic divide. Thus, although GatAB is found in Plasmodium, it emerged prior to the phylogenetic separation of archaea and bacteria.
Collapse
Affiliation(s)
- Boniface M Mailu
- From the Center for Infectious Disease Research, Seattle, Washington 98109
| | - Ling Li
- From the Center for Infectious Disease Research, Seattle, Washington 98109
| | - Jen Arthur
- From the Center for Infectious Disease Research, Seattle, Washington 98109
| | - Todd M Nelson
- From the Center for Infectious Disease Research, Seattle, Washington 98109
| | - Gowthaman Ramasamy
- From the Center for Infectious Disease Research, Seattle, Washington 98109
| | - Karin Fritz-Wolf
- the Department of Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen 35392 Germany, and the Max-Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - Katja Becker
- the Department of Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen 35392 Germany, and
| | - Malcolm J Gardner
- From the Center for Infectious Disease Research, Seattle, Washington 98109, the Department of Global Health, University of Washington, Seattle, Washington 98195,
| |
Collapse
|
41
|
Dispensability of zinc and the putative zinc-binding domain in bacterial glutamyl-tRNA synthetase. Biosci Rep 2015; 35:BSR20150005. [PMID: 25686371 PMCID: PMC4381286 DOI: 10.1042/bsr20150005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The putative zinc-binding domain (pZBD) in Escherichia coli glutamyl-tRNA synthetase (GluRS) is known to correctly position the tRNA acceptor arm and modulate the amino acid-binding site. However, its functional role in other bacterial species is not clear since many bacterial GluRSs lack a zinc-binding motif in the pZBD. From experimental studies on pZBD-swapped E. coli GluRS, with Thermosynechoccus elongatus GluRS, Burkholderia thailandensis GluRS and E. coli glutamyl-queuosine-tRNAAsp synthetase (Glu-Q-RS), we show that E. coli GluRS, containing the zinc-free pZBD of B. thailandensis, is as functional as the zinc-bound wild-type E. coli GluRS, whereas the other constructs, all zinc-bound, show impaired function. A pZBD-tinkered version of E. coli GluRS that still retained Zn-binding capacity, also showed reduced activity. This suggests that zinc is not essential for the pZBD to be functional. From extensive structural and sequence analyses from whole genome database of bacterial GluRS, we further show that in addition to many bacterial GluRS lacking a zinc-binding motif, the pZBD is actually deleted in some bacteria, all containing either glutaminyl-tRNA synthetase (GlnRS) or a second copy of GluRS (GluRS2). Correlation between the absence of pZBD and the occurrence of glutamine amidotransferase CAB (GatCAB) in the genome suggests that the primordial role of the pZBD was to facilitate transamidation of misacylated Glu-tRNAGln via interaction with GatCAB, whereas its role in tRNAGlu interaction may be a consequence of the presence of pZBD. Zinc is functionally important in glutamylation of tRNAGlu in Escherichia coli, yet, it is absent from many bacterial glutamyl-tRNA synthetases (GluRSs). We demonstrate and rationalize why zinc or the putative zinc-binding domain (pZBD) is not indispensable in all bacterial GluRSs.
Collapse
|
42
|
Dewage SW, Cisneros GA. Computational analysis of ammonia transfer along two intramolecular tunnels in Staphylococcus aureus glutamine-dependent amidotransferase (GatCAB). J Phys Chem B 2015; 119:3669-77. [PMID: 25654336 DOI: 10.1021/jp5123568] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most bacteria and all archaea misacylate the tRNAs corresponding to Asn and Gln with Asp and Glu (Asp-tRNA(Asn) and Glu-tRNA(Gln)).The GatCAB enzyme of most bacteria converts misacylated Glu-tRNA(Gln) to Gln-tRNA(Gln) in order to enable the incorporation of glutamine during protein synthesis. The conversion process involves the intramolecular transfer of ammonia between two spatially separated active sites. This study presents a computational analysis of the two putative intramolecular tunnels that have been suggested to describe the ammonia transfer between the two active sites. Molecular dynamics simulations have been performed for wild-type GatCAB of S. aureus and its mutants: T175(A)V, K88(B)R, E125(B)D, and E125(B)Q. The two tunnels have been analyzed in terms of free energy of ammonia transfer along them. The probability of occurrence of each type of tunnel and the variation of the probability for wild-type GatCAB and its mutants is also discussed.
Collapse
Affiliation(s)
- Sajeewa Walimuni Dewage
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | | |
Collapse
|
43
|
Francis BR. The Hypothesis that the Genetic Code Originated in Coupled Synthesis of Proteins and the Evolutionary Predecessors of Nucleic Acids in Primitive Cells. Life (Basel) 2015; 5:467-505. [PMID: 25679748 PMCID: PMC4390864 DOI: 10.3390/life5010467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/02/2015] [Indexed: 12/22/2022] Open
Abstract
Although analysis of the genetic code has allowed explanations for its evolution to be proposed, little evidence exists in biochemistry and molecular biology to offer an explanation for the origin of the genetic code. In particular, two features of biology make the origin of the genetic code difficult to understand. First, nucleic acids are highly complicated polymers requiring numerous enzymes for biosynthesis. Secondly, proteins have a simple backbone with a set of 20 different amino acid side chains synthesized by a highly complicated ribosomal process in which mRNA sequences are read in triplets. Apparently, both nucleic acid and protein syntheses have extensive evolutionary histories. Supporting these processes is a complex metabolism and at the hub of metabolism are the carboxylic acid cycles. This paper advances the hypothesis that the earliest predecessor of the nucleic acids was a β-linked polyester made from malic acid, a highly conserved metabolite in the carboxylic acid cycles. In the β-linked polyester, the side chains are carboxylic acid groups capable of forming interstrand double hydrogen bonds. Evolution of the nucleic acids involved changes to the backbone and side chain of poly(β-d-malic acid). Conversion of the side chain carboxylic acid into a carboxamide or a longer side chain bearing a carboxamide group, allowed information polymers to form amide pairs between polyester chains. Aminoacylation of the hydroxyl groups of malic acid and its derivatives with simple amino acids such as glycine and alanine allowed coupling of polyester synthesis and protein synthesis. Use of polypeptides containing glycine and l-alanine for activation of two different monomers with either glycine or l-alanine allowed simple coded autocatalytic synthesis of polyesters and polypeptides and established the first genetic code. A primitive cell capable of supporting electron transport, thioester synthesis, reduction reactions, and synthesis of polyesters and polypeptides is proposed. The cell consists of an iron-sulfide particle enclosed by tholin, a heterogeneous organic material that is produced by Miller-Urey type experiments that simulate conditions on the early Earth. As the synthesis of nucleic acids evolved from β-linked polyesters, the singlet coding system for replication evolved into a four nucleotide/four amino acid process (AMP = aspartic acid, GMP = glycine, UMP = valine, CMP = alanine) and then into the triplet ribosomal process that permitted multiple copies of protein to be synthesized independent of replication. This hypothesis reconciles the “genetics first” and “metabolism first” approaches to the origin of life and explains why there are four bases in the genetic alphabet.
Collapse
Affiliation(s)
- Brian R Francis
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
44
|
Structure of the Pseudomonas aeruginosa transamidosome reveals unique aspects of bacterial tRNA-dependent asparagine biosynthesis. Proc Natl Acad Sci U S A 2014; 112:382-7. [PMID: 25548166 DOI: 10.1073/pnas.1423314112] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many prokaryotes lack a tRNA synthetase to attach asparagine to its cognate tRNA(Asn), and instead synthesize asparagine from tRNA(Asn)-bound aspartate. This conversion involves two enzymes: a nondiscriminating aspartyl-tRNA synthetase (ND-AspRS) that forms Asp-tRNA(Asn), and a heterotrimeric amidotransferase GatCAB that amidates Asp-tRNA(Asn) to form Asn-tRNA(Asn) for use in protein synthesis. ND-AspRS, GatCAB, and tRNA(Asn) may assemble in an ∼400-kDa complex, known as the Asn-transamidosome, which couples the two steps of asparagine biosynthesis in space and time to yield Asn-tRNA(Asn). We report the 3.7-Å resolution crystal structure of the Pseudomonas aeruginosa Asn-transamidosome, which represents the most common machinery for asparagine biosynthesis in bacteria. We show that, in contrast to a previously described archaeal-type transamidosome, a bacteria-specific GAD domain of ND-AspRS provokes a principally new architecture of the complex. Both tRNA(Asn) molecules in the transamidosome simultaneously serve as substrates and scaffolds for the complex assembly. This architecture rationalizes an elevated dynamic and a greater turnover of ND-AspRS within bacterial-type transamidosomes, and possibly may explain a different evolutionary pathway of GatCAB in organisms with bacterial-type vs. archaeal-type Asn-transamidosomes. Importantly, because the two-step pathway for Asn-tRNA(Asn) formation evolutionarily preceded the direct attachment of Asn to tRNA(Asn), our structure also may reflect the mechanism by which asparagine was initially added to the genetic code.
Collapse
|
45
|
Shinoda A, Tanaka Y, Yao M, Tanaka I. Anchoring protein crystals to mounting loops with hydrogel using inkjet technology. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2794-9. [PMID: 25372671 DOI: 10.1107/s139900471401476x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/23/2014] [Indexed: 11/10/2022]
Abstract
X-ray crystallography is an important technique for structure-based drug discovery, mainly because it is the only technique that can reveal whether a ligand binds to the target protein as well as where and how it binds. However, ligand screening by X-ray crystallography involves a crystal-soaking experiment, which is usually performed manually. Thus, the throughput is not satisfactory for screening large numbers of candidate ligands. In this study, a technique to anchor protein crystals to mounting loops by using gel and inkjet technology has been developed; the method allows soaking of the mounted crystals in ligand-containing solution. This new technique may assist in the design of a fully automated drug-screening pipeline.
Collapse
Affiliation(s)
- Akira Shinoda
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Isao Tanaka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
46
|
X-ray structure of the amidase domain of AtzF, the allophanate hydrolase from the cyanuric acid-mineralizing multienzyme complex. Appl Environ Microbiol 2014; 81:470-80. [PMID: 25362066 DOI: 10.1128/aem.02783-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activity of the allophanate hydrolase from Pseudomonas sp. strain ADP, AtzF, provides the final hydrolytic step for the mineralization of s-triazines, such as atrazine and cyanuric acid. Indeed, the action of AtzF provides metabolic access to two of the three nitrogens in each triazine ring. The X-ray structure of the N-terminal amidase domain of AtzF reveals that it is highly homologous to allophanate hydrolases involved in a different catabolic process in other organisms (i.e., the mineralization of urea). The smaller C-terminal domain does not appear to have a physiologically relevant catalytic function, as reported for the allophanate hydrolase of Kluyveromyces lactis, when purified enzyme was tested in vitro. However, the C-terminal domain does have a function in coordinating the quaternary structure of AtzF. Interestingly, we also show that AtzF forms a large, ca. 660-kDa, multienzyme complex with AtzD and AtzE that is capable of mineralizing cyanuric acid. The function of this complex may be to channel substrates from one active site to the next, effectively protecting unstable metabolites, such as allophanate, from solvent-mediated decarboxylation to a dead-end metabolic product.
Collapse
|
47
|
Alperstein A, Ulrich B, Garofalo DM, Dreisbach R, Raff H, Sheppard K. The predatory bacterium Bdellovibrio bacteriovorus aspartyl-tRNA synthetase recognizes tRNAAsn as a substrate. PLoS One 2014; 9:e110842. [PMID: 25338061 PMCID: PMC4206432 DOI: 10.1371/journal.pone.0110842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/20/2014] [Indexed: 11/29/2022] Open
Abstract
The predatory bacterium Bdellovibrio bacteriovorus preys on other Gram-negative bacteria and was predicted to be an asparagine auxotroph. However, despite encoding asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase, B. bacteriovorus also contains the amidotransferase GatCAB. Deinococcus radiodurans, and Thermus thermophilus also encode both of these aminoacyl-tRNA synthetases with GatCAB. Both also code for a second aspartyl-tRNA synthetase and use the additional aspartyl-tRNA synthetase with GatCAB to synthesize asparagine on tRNAAsn. Unlike those two bacteria, B. bacteriovorus encodes only one aspartyl-tRNA synthetase. Here we demonstrate the lone B. bacteriovorus aspartyl-tRNA synthetase catalyzes aspartyl-tRNAAsn formation that GatCAB can then amidate to asparaginyl-tRNAAsn. This non-discriminating aspartyl-tRNA synthetase with GatCAB thus provides B. bacteriovorus a second route for Asn-tRNAAsn formation with the asparagine synthesized in a tRNA-dependent manner. Thus, in contrast to a previous prediction, B. bacteriovorus codes for a biosynthetic route for asparagine. Analysis of bacterial genomes suggests a significant number of other bacteria may also code for both routes for Asn-tRNAAsn synthesis with only a limited number encoding a second aspartyl-tRNA synthetase.
Collapse
Affiliation(s)
- Ariel Alperstein
- Chemistry Department, Skidmore College, Saratoga Springs, New York, United States of America
| | - Brittany Ulrich
- Chemistry Department, Skidmore College, Saratoga Springs, New York, United States of America
| | - Denise M. Garofalo
- Chemistry Department, Skidmore College, Saratoga Springs, New York, United States of America
| | - Ruth Dreisbach
- Chemistry Department, Skidmore College, Saratoga Springs, New York, United States of America
| | - Hannah Raff
- Chemistry Department, Skidmore College, Saratoga Springs, New York, United States of America
| | - Kelly Sheppard
- Chemistry Department, Skidmore College, Saratoga Springs, New York, United States of America
- * E-mail:
| |
Collapse
|
48
|
Suzuki T, Yamashita K, Tanaka Y, Tanaka I, Yao M. Crystallization and preliminary X-ray crystallographic analysis of a bacterial Asn-transamidosome. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:790-3. [PMID: 24915095 DOI: 10.1107/s2053230x14007274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/01/2014] [Indexed: 11/10/2022]
Abstract
Most canonical aminoacyl-tRNAs are synthesized directly by their cognate aminoacyl-tRNA synthetases (aaRSs), but glutaminyl-tRNA(Gln) and asparaginyl-tRNA(Asn) are synthesized indirectly by two-step processes. These processes are catalyzed by the transamidosome, a large ribonucleoprotein particle composed of GatA, GatB, GatC, aaRS and tRNA. In this study, the Asn-transamidosome from Pseudomonas aeruginosa was reconstructed and crystallized by mixing purified GatCAB complex, AspRS and tRNA(Asn). The crystal of the Asn-transamidosome belonged to space group P2₁, with unit-cell parameters a=93.3, b=186.0, c=287.8 Å, β=93.3°, and diffracted to 3.73 Å resolution. Preliminary X-ray crystallographic analysis showed that the asymmetric unit contained two Asn-transamidosomes, each composed of two GatCABs, one AspRS dimer and two tRNAAsns, indicating that the construction of the current Asn-transamidosome differs from that of Thermus thermophilus.
Collapse
Affiliation(s)
- Tateki Suzuki
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keitaro Yamashita
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Isao Tanaka
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
49
|
Glutamyl-tRNAGln amidotransferase is essential for mammalian mitochondrial translation in vivo. Biochem J 2014; 460:91-101. [DOI: 10.1042/bj20131107] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have demonstrated that in mitochondria of mammalian cells the aminoacylation of tRNAGln is produced by an indirect pathway involving the enzyme glutamyl-tRNAGln amidotransferase. Misaminoacylated Glu-tRNAGln is rejected from the ribosomes maintaining the fidelity of the mitochondrial protein synthesis.
Collapse
|
50
|
Araiso Y, Huot JL, Sekiguchi T, Frechin M, Fischer F, Enkler L, Senger B, Ishitani R, Becker HD, Nureki O. Crystal structure of Saccharomyces cerevisiae mitochondrial GatFAB reveals a novel subunit assembly in tRNA-dependent amidotransferases. Nucleic Acids Res 2014; 42:6052-63. [PMID: 24692665 PMCID: PMC4027206 DOI: 10.1093/nar/gku234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Yeast mitochondrial Gln-mtRNAGln is synthesized by the transamidation of mischarged Glu-mtRNAGln by a non-canonical heterotrimeric tRNA-dependent amidotransferase (AdT). The GatA and GatB subunits of the yeast AdT (GatFAB) are well conserved among bacteria and eukaryota, but the GatF subunit is a fungi-specific ortholog of the GatC subunit found in all other known heterotrimeric AdTs (GatCAB). Here we report the crystal structure of yeast mitochondrial GatFAB at 2.0 Å resolution. The C-terminal region of GatF encircles the GatA–GatB interface in the same manner as GatC, but the N-terminal extension domain (NTD) of GatF forms several additional hydrophobic and hydrophilic interactions with GatA. NTD-deletion mutants displayed growth defects, but retained the ability to respire. Truncation of the NTD in purified mutants reduced glutaminase and transamidase activities when glutamine was used as the ammonia donor, but increased transamidase activity relative to the full-length enzyme when the donor was ammonium chloride. Our structure-based functional analyses suggest the NTD is a trans-acting scaffolding peptide for the GatA glutaminase active site. The positive surface charge and novel fold of the GatF–GatA interface, shown in this first crystal structure of an organellar AdT, stand in contrast with the more conventional, negatively charged bacterial AdTs described previously.
Collapse
Affiliation(s)
- Yuhei Araiso
- Unité Mixte de Recherche 7156 Génétique Moléculaire Génomique Microbiologie, Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Jonathan L Huot
- Unité Mixte de Recherche 7156 Génétique Moléculaire Génomique Microbiologie, Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Takuya Sekiguchi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Mathieu Frechin
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Frédéric Fischer
- Unité Propre de Recherche Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, F-67084 Strasbourg, France
| | - Ludovic Enkler
- Unité Mixte de Recherche 7156 Génétique Moléculaire Génomique Microbiologie, Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Bruno Senger
- Unité Mixte de Recherche 7156 Génétique Moléculaire Génomique Microbiologie, Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Ryuichiro Ishitani
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Hubert D Becker
- Unité Mixte de Recherche 7156 Génétique Moléculaire Génomique Microbiologie, Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Osamu Nureki
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, 113-0033 Tokyo, Japan
| |
Collapse
|