1
|
Nagar S, Mehta R, Kaur P, Sadia FZ, Reddy S, Olorunnimbe OR, Vancurova I, Vancura A. The yeast checkpoint kinase Dun1p represses transcription of RNR genes independently of catalytic activity or Rad53p during respiratory growth. J Biol Chem 2025; 301:108232. [PMID: 39880091 PMCID: PMC11914510 DOI: 10.1016/j.jbc.2025.108232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
One of the key events in DNA damage response is activation of checkpoint kinases leading to activation of ribonucleotide reductase (RNR) and increased synthesis of deoxyribonucleotide triphosphates (dNTPs) required for DNA repair. Among other mechanisms, the activation of dNTP synthesis is driven by derepression of genes encoding RNR subunits RNR2, RNR3, and RNR4, following checkpoint activation and checkpoint kinase Dun1p-mediated phosphorylation and inactivation of transcriptional repressor Crt1p. We report here that in the absence of genotoxic stress during respiratory growth on nonfermentable carbon source acetate, inactivation of checkpoint kinases results in significant growth defect and alters transcriptional regulation of RNR2-4 genes and genes encoding enzymes of the tricarboxylic acid and glyoxylate cycles and gluconeogenesis. Dun1p, independently of its kinase activity or signaling from the upstream checkpoint kinase Rad53p, represses RNR2, RNR3, and RNR4 genes by maintaining Crt1p occupancy in the corresponding promoters. Consistently with the role of dNTPs in the regulation of mitochondrial DNA copy number, DUN1 inactivation elevates mitochondrial DNA copy number in acetate-grown cells. Together, our data reveal an unexpected role for Dun1p in transcriptional regulation of RNR2-4 and metabolic genes during growth on nonfermentable carbon source and suggest that Dun1p contributes to transcription regulation independently of its kinase activity as a structural component by binding to protein(s) involved in gene regulation.
Collapse
Affiliation(s)
- Shreya Nagar
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Riddhi Mehta
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Pritpal Kaur
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Fatema Zohra Sadia
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Suprataptha Reddy
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | | | - Ivana Vancurova
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Ales Vancura
- Department of Biological Sciences, St John's University, Queens, New York, USA.
| |
Collapse
|
2
|
Maytum A, Obier N, Cauchy P, Bonifer C. Regulation of developmentally controlled enhancer activity by extrinsic signals in normal and malignant cells: AP-1 at the centre. FRONTIERS IN EPIGENETICS AND EPIGENOMICS 2024; 2:freae.2024.1465958. [PMID: 39506987 PMCID: PMC7616781 DOI: 10.3389/freae.2024.1465958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The ability of cells to respond to external stimuli is one of the characteristics of life as we know it. Multicellular organisms have developed a huge machinery that interprets the cellular environment and instigates an appropriate cellular response by changing gene expression, metabolism, proliferation state and motility. Decades of research have studied the pathways transmitting the various signals within the cell. However, whilst we know most of the players, we know surprisingly little about the mechanistic details of how extrinsic signals are interpreted and integrated within the genome. In this article we revisit the long-standing debate of whether factors regulating cellular growth (cytokines) act in an instructive or permissive fashion on cell fate decisions. We touch upon this topic by highlighting the paradigm of AP-1 as one of the most important signaling-responsive transcription factor family and summarize our work and that of others to explain what is known about cytokine responsive cis-regulatory elements driving differential gene expression. We propose that cytokines and, by extension, multiple types of external signals are the main drivers of cell differentiation and act via inducible transcription factors that transmit signaling processes to the genome and are essential for changing gene expression to drive transitions between gene regulatory networks. Importantly, inducible transcription factors cooperate with cell type specific factors within a pre-existing chromatin landscape and integrate multiple signaling pathways at specific enhancer elements, to both maintain and alter cellular identities. We also propose that signaling processes and signaling responsive transcription factors are at the heart of tumor development.
Collapse
Affiliation(s)
- Alexander Maytum
- Blood Cell Development Group, Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria 3052 Australia, Country
| | - Nadine Obier
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Pierre Cauchy
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Constanze Bonifer
- Blood Cell Development Group, Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria 3052 Australia, Country
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Geisberg JV, Moqtaderi Z, Struhl K. Chromatin regulates alternative polyadenylation via the RNA polymerase II elongation rate. Proc Natl Acad Sci U S A 2024; 121:e2405827121. [PMID: 38748572 PMCID: PMC11127049 DOI: 10.1073/pnas.2405827121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
The RNA polymerase II (Pol II) elongation rate influences poly(A) site selection, with slow and fast Pol II derivatives causing upstream and downstream shifts, respectively, in poly(A) site utilization. In yeast, depletion of either of the histone chaperones FACT or Spt6 causes an upstream shift of poly(A) site use that strongly resembles the poly(A) profiles of slow Pol II mutant strains. Like slow Pol II mutant strains, FACT- and Spt6-depleted cells exhibit Pol II processivity defects, indicating that both Spt6 and FACT stimulate the Pol II elongation rate. Poly(A) profiles of some genes show atypical downstream shifts; this subset of genes overlaps well for FACT- or Spt6-depleted strains but is different from the atypical genes in Pol II speed mutant strains. In contrast, depletion of histone H3 or H4 causes a downstream shift of poly(A) sites for most genes, indicating that nucleosomes inhibit the Pol II elongation rate in vivo. Thus, chromatin-based control of the Pol II elongation rate is a potential mechanism, distinct from direct effects on the cleavage/polyadenylation machinery, to regulate alternative polyadenylation in response to genetic or environmental changes.
Collapse
Affiliation(s)
- Joseph V. Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
4
|
Galello F, Bermúdez-Moretti M, Martínez MCO, Rossi S, Portela P. The cAMP-PKA signalling crosstalks with CWI and HOG-MAPK pathways in yeast cell response to osmotic and thermal stress. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:90-105. [PMID: 38495453 PMCID: PMC10941952 DOI: 10.15698/mic2024.03.818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
The yeast Saccharomyces cerevisiae is widely used in food and non-food industries. During industrial fermentation yeast strains are exposed to fluctuations in oxygen concentration, osmotic pressure, pH, ethanol concentration, nutrient availability and temperature. Fermentation performance depends on the ability of the yeast strains to adapt to these changes. Suboptimal conditions trigger responses to the external stimuli to allow homeostasis to be maintained. Stress-specific signalling pathways are activated to coordinate changes in transcription, translation, protein function, and metabolic fluxes while a transient arrest of growth and cell cycle progression occur. cAMP-PKA, HOG-MAPK and CWI signalling pathways are turned on during stress response. Comprehension of the mechanisms involved in the responses and in the adaptation to these stresses during fermentation is key to improving this industrial process. The scope of this review is to outline the advancement of knowledge about the cAMP-PKA signalling and the crosstalk of this pathway with the CWI and HOG-MAPK cascades in response to the environmental challenges heat and hyperosmotic stress.
Collapse
Affiliation(s)
- Fiorella Galello
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Mariana Bermúdez-Moretti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - María Clara Ortolá Martínez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Silvia Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Paula Portela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| |
Collapse
|
5
|
Chakraborty J, Chakraborty S, Chakraborty S, Narayan MN. Entanglement of MAPK pathways with gene expression and its omnipresence in the etiology for cancer and neurodegenerative disorders. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194988. [PMID: 37739217 DOI: 10.1016/j.bbagrm.2023.194988] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Mitogen Activated Protein Kinase (MAPK) is one of the most well characterized cellular signaling pathways that controls fundamental cellular processes including proliferation, differentiation, and apoptosis. These cellular functions are consequences of transcription of regulatory genes that are influenced and regulated by the MAP-Kinase signaling cascade. MAP kinase components such as Receptor Tyrosine Kinases (RTKs) sense external cues or ligands and transmit these signals via multiple protein complexes such as RAS-RAF, MEK, and ERKs and eventually modulate the transcription factors inside the nucleus to induce transcription and other regulatory functions. Aberrant activation, dysregulation of this signaling pathway, and genetic alterations in any of these components results in the developmental disorders, cancer, and neurodegenerative disorders. Over the years, the MAPK pathway has been a prime pharmacological target, to treat complex human disorders that are genetically linked such as cancer, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The current review re-visits the mechanism of MAPK pathways in gene expression regulation. Further, a current update on the progress of the mechanistic understanding of MAPK components is discussed from a disease perspective.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Institute for Advancing Health through Agriculture, Texas A&M Agrilife, College Station, TX, USA
| | - Sayan Chakraborty
- Department of Anesthesiology, Weill Cornell School of Medicine, New York, USA
| | - Sohag Chakraborty
- Human Oncology & Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, USA
| | - Mahesh N Narayan
- Department of Chemistry and Biochemistry, University of Texas, El Paso, TX, USA.
| |
Collapse
|
6
|
Li R, Liu H, Shi Q, Zhang G, Pang G, Xu Y, Song J, Lu Y. An ascorbic acid-decorated nanostructured surface on titanium inhibits breast cancer development and promotes osteogenesis. Biomed Mater 2023; 19:015006. [PMID: 38000084 DOI: 10.1088/1748-605x/ad0fa2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/24/2023] [Indexed: 11/26/2023]
Abstract
The chest wall is the most frequent metastatic site of breast cancer (BC) and the metastasis usually occurs in a solitary setting. Chest wall resection is a way to treat solitary BC metastasis, but intraoperative bone defects and local tumor recurrence still affect the life quality of patients. Titanium-based prostheses are widely used for chest wall repair and reconstruction, but their inherent bio-inertness makes their clinical performance unfavorable. Nanostructured surfaces can give titanium substrates the ability to excellently modulate a variety of cellular functions. Ascorbic acid is a potential stimulator of tumor suppression and osteogenic differentiation. An ascorbic acid-decorated nanostructured titanium surface was prepared through alkali treatment and spin-coating technique and its effects on the biological responses of BC cells and osteoblasts were assessed. The results exhibited that the nanorod structure and ascorbic acid synergistically inhibited the proliferation, spreading, and migration of BC cells. Additionally, the ascorbic acid-decorated nanostructured surface significantly promoted the proliferation and osteogenic differentiation of osteoblasts. This work may provide valuable references for the clinical application of titanium materials in chest wall reconstruction after the resection of metastatic BC.
Collapse
Affiliation(s)
- Rong Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, People's Republic of China
| | - Hongyu Liu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, People's Republic of China
| | - Qinying Shi
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, People's Republic of China
| | - Guannan Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, People's Republic of China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan 030006, People's Republic of China
| | - Guobao Pang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, People's Republic of China
| | - Yannan Xu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, People's Republic of China
| | - Jianbo Song
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, People's Republic of China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan 030006, People's Republic of China
| | - Ying Lu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, People's Republic of China
| |
Collapse
|
7
|
Wagner ER, Gasch AP. Advances in S. cerevisiae Engineering for Xylose Fermentation and Biofuel Production: Balancing Growth, Metabolism, and Defense. J Fungi (Basel) 2023; 9:786. [PMID: 37623557 PMCID: PMC10455348 DOI: 10.3390/jof9080786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Genetically engineering microorganisms to produce chemicals has changed the industrialized world. The budding yeast Saccharomyces cerevisiae is frequently used in industry due to its genetic tractability and unique metabolic capabilities. S. cerevisiae has been engineered to produce novel compounds from diverse sugars found in lignocellulosic biomass, including pentose sugars, like xylose, not recognized by the organism. Engineering high flux toward novel compounds has proved to be more challenging than anticipated since simply introducing pathway components is often not enough. Several studies show that the rewiring of upstream signaling is required to direct products toward pathways of interest, but doing so can diminish stress tolerance, which is important in industrial conditions. As an example of these challenges, we reviewed S. cerevisiae engineering efforts, enabling anaerobic xylose fermentation as a model system and showcasing the regulatory interplay's controlling growth, metabolism, and stress defense. Enabling xylose fermentation in S. cerevisiae requires the introduction of several key metabolic enzymes but also regulatory rewiring of three signaling pathways at the intersection of the growth and stress defense responses: the RAS/PKA, Snf1, and high osmolarity glycerol (HOG) pathways. The current studies reviewed here suggest the modulation of global signaling pathways should be adopted into biorefinery microbial engineering pipelines to increase efficient product yields.
Collapse
Affiliation(s)
- Ellen R. Wagner
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Audrey P. Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
8
|
Maldonado E, Rojas DA, Urbina F, Valenzuela-Pérez L, Castillo C, Solari A. Trypanosoma cruzi DNA Polymerase β Is Phosphorylated In Vivo and In Vitro by Protein Kinase C (PKC) and Casein Kinase 2 (CK2). Cells 2022; 11:cells11223693. [PMID: 36429121 PMCID: PMC9688435 DOI: 10.3390/cells11223693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
DNA polymerase β plays a fundamental role in the life cycle of Trypanosoma cruzi since it participates in the kinetoplast DNA repair and replication. This enzyme can be found in two forms in cell extracts of T. cruzi epimastigotes form. The H form is a phosphorylated form of DNA polymerase β, while the L form is not phosphorylated. The protein kinases which are able to in vivo phosphorylate DNA polymerase β have not been identified yet. In this work, we purified the H form of this DNA polymerase and identified the phosphorylation sites. DNA polymerase β is in vivo phosphorylated at several amino acid residues including Tyr35, Thr123, Thr137 and Ser286. Thr123 is phosphorylated by casein kinase 2 and Thr137 and Ser286 are phosphorylated by protein kinase C-like enzymes. Protein kinase C encoding genes were identified in T. cruzi, and those genes were cloned, expressed in bacteria and the recombinant protein was purified. It was found that T. cruzi possesses three different protein kinase C-like enzymes named TcPKC1, TcPKC2, and TcPKC3. Both TcPKC1 and TcPKC2 were able to in vitro phosphorylate recombinant DNA polymerase β, and in addition, TcPKC1 gets auto phosphorylated. Those proteins contain several regulatory domains at the N-terminus, which are predicted to bind phosphoinositols, and TcPKC1 contains a lipocalin domain at the C-terminus that might be able to bind free fatty acids. Tyr35 is phosphorylated by an unidentified protein kinase and considering that the T. cruzi genome does not contain Tyr kinase encoding genes, it is probable that Tyr35 could be phosphorylated by a dual protein kinase. Wee1 is a eukaryotic dual protein kinase involved in cell cycle regulation. We identified a Wee1 homolog in T. cruzi and the recombinant kinase was assayed using DNA polymerase β as a substrate. T. cruzi Wee1 was able to in vitro phosphorylate recombinant DNA polymerase β, although we were not able to demonstrate specific phosphorylation on Tyr35. Those results indicate that there exists a cell signaling pathway involving PKC-like kinases in T. cruzi.
Collapse
Affiliation(s)
- Edio Maldonado
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
- Correspondence: (E.M.); (A.S.)
| | - Diego A. Rojas
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Fabiola Urbina
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Lucía Valenzuela-Pérez
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Christian Castillo
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago 7500975, Chile
| | - Aldo Solari
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
- Correspondence: (E.M.); (A.S.)
| |
Collapse
|
9
|
Sanz AB, García R, Pavón-Vergés M, Rodríguez-Peña JM, Arroyo J. Control of Gene Expression via the Yeast CWI Pathway. Int J Mol Sci 2022; 23:ijms23031791. [PMID: 35163713 PMCID: PMC8836261 DOI: 10.3390/ijms23031791] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 12/18/2022] Open
Abstract
Living cells exposed to stressful environmental situations can elicit cellular responses that guarantee maximal cell survival. Most of these responses are mediated by mitogen-activated protein kinase (MAPK) cascades, which are highly conserved from yeast to humans. Cell wall damage conditions in the yeast Saccharomyces cerevisiae elicit rescue mechanisms mainly associated with reprogramming specific transcriptional responses via the cell wall integrity (CWI) pathway. Regulation of gene expression by this pathway is coordinated by the MAPK Slt2/Mpk1, mainly via Rlm1 and, to a lesser extent, through SBF (Swi4/Swi6) transcription factors. In this review, we summarize the molecular mechanisms controlling gene expression upon cell wall stress and the role of chromatin structure in these processes. Some of these mechanisms are also discussed in the context of other stresses governed by different yeast MAPK pathways. Slt2 regulates both transcriptional initiation and elongation by interacting with chromatin at the promoter and coding regions of CWI-responsive genes but using different mechanisms for Rlm1- and SBF-dependent genes. Since MAPK pathways are very well conserved in eukaryotic cells and are essential for controlling cellular physiology, improving our knowledge regarding how they regulate gene expression could impact the future identification of novel targets for therapeutic intervention.
Collapse
|
10
|
de Nadal E, Posas F. OUP accepted manuscript. FEMS Yeast Res 2022; 22:6543702. [PMID: 35254447 PMCID: PMC8953452 DOI: 10.1093/femsyr/foac013] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Eulàlia de Nadal
- Corresponding author: Institute for Research in Biomedicine (IRB Barcelona) Parc Científic de Barcelona c/ Baldiri Reixac, 10. 08028 Barcelona - Spain. E-mail:
| | - Francesc Posas
- Corresponding author: Institute for Research in Biomedicine (IRB Barcelona) Parc Científic de Barcelona c/ Baldiri Reixac, 10. 08028 Barcelona - Spain. E-mail:
| |
Collapse
|
11
|
Pieterse L, Beteck RM, Baratte B, Jesumoroti OJ, Robert T, Ruchaud S, Bach S, Legoabe LJ. Synthesis and biological evaluation of selected 7H-pyrrolo[2,3-d]pyrimidine derivatives as novel CDK9/CyclinT and Haspin inhibitors. Chem Biol Interact 2021; 349:109643. [PMID: 34508710 DOI: 10.1016/j.cbi.2021.109643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/07/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
Protein kinases, including CDK9/CyclinT and Haspin, are regarded as potential drug targets in cancer therapy. Findings from a previous study suggested 7-azaindole as a privileged scaffold for producing inhibitors of CDK9/CyclinT and Haspin. Inspired by these findings, the current study synthesised and evaluated thirteen (13) C6-substituted 7-azaindole and twenty (20) C4-substituted structurally related 7H-pyrrolo[2,3-d]pyrimidine derivatives against a panel of protein kinases, including CDK9/CyclinT and Haspin. Eleven of the 7H-pyrrolo[2,3-d]pyrimidine derivatives exhibited activity toward CDK9/CyclinT, while 4 of compounds had activity against Haspin. The best CDK9/CyclinT (IC50 of 0.38 μM) and Haspin (IC50 of 0.11 μM) activities were achieved by compounds 7d and 7f, respectively. Hence, these compounds may be valuable starting points for development of new anti-cancer drugs.
Collapse
Affiliation(s)
- Lianie Pieterse
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Blandine Baratte
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de Criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, 29680, Roscoff Cedex, France
| | - Omobolanle J Jesumoroti
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Thomas Robert
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de Criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, 29680, Roscoff Cedex, France
| | - Sandrine Ruchaud
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680, Roscoff, France
| | - Stéphane Bach
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa; Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de Criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, 29680, Roscoff Cedex, France
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
12
|
Weinhouse C. The roles of inducible chromatin and transcriptional memory in cellular defense system responses to redox-active pollutants. Free Radic Biol Med 2021; 170:85-108. [PMID: 33789123 PMCID: PMC8382302 DOI: 10.1016/j.freeradbiomed.2021.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
People are exposed to wide range of redox-active environmental pollutants. Air pollution, heavy metals, pesticides, and endocrine disrupting chemicals can disrupt cellular redox status. Redox-active pollutants in our environment all trigger their own sets of specific cellular responses, but they also activate a common set of general stress responses that buffer the cell against homeostatic insults. These cellular defense system (CDS) pathways include the heat shock response, the oxidative stress response, the hypoxia response, the unfolded protein response, the DNA damage response, and the general stress response mediated by the stress-activated p38 mitogen-activated protein kinase. Over the past two decades, the field of environmental epigenetics has investigated epigenetic responses to environmental pollutants, including redox-active pollutants. Studies of these responses highlight the role of chromatin modifications in controlling the transcriptional response to pollutants and the role of transcriptional memory, often referred to as "epigenetic reprogramming", in predisposing previously exposed individuals to more potent transcriptional responses on secondary challenge. My central thesis in this review is that high dose or chronic exposure to redox-active pollutants leads to transcriptional memories at CDS target genes that influence the cell's ability to mount protective responses. To support this thesis, I will: (1) summarize the known chromatin features required for inducible gene activation; (2) review the known forms of transcriptional memory; (3) discuss the roles of inducible chromatin and transcriptional memory in CDS responses that are activated by redox-active environmental pollutants; and (4) propose a conceptual framework for CDS pathway responsiveness as a readout of total cellular exposure to redox-active pollutants.
Collapse
Affiliation(s)
- Caren Weinhouse
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97214, USA.
| |
Collapse
|
13
|
Chromatin phosphoproteomics unravels a function for AT-hook motif nuclear localized protein AHL13 in PAMP-triggered immunity. Proc Natl Acad Sci U S A 2021; 118:2004670118. [PMID: 33419940 DOI: 10.1073/pnas.2004670118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In many eukaryotic systems during immune responses, mitogen-activated protein kinases (MAPKs) link cytoplasmic signaling to chromatin events by targeting transcription factors, chromatin remodeling complexes, and the RNA polymerase machinery. So far, knowledge on these events is scarce in plants and no attempts have been made to focus on phosphorylation events of chromatin-associated proteins. Here we carried out chromatin phosphoproteomics upon elicitor-induced activation of Arabidopsis The events in WT were compared with those in mpk3, mpk4, and mpk6 mutant plants to decipher specific MAPK targets. Our study highlights distinct signaling networks involving MPK3, MPK4, and MPK6 in chromatin organization and modification, as well as in RNA transcription and processing. Among the chromatin targets, we characterized the AT-hook motif containing nuclear localized (AHL) DNA-binding protein AHL13 as a substrate of immune MAPKs. AHL13 knockout mutant plants are compromised in pathogen-associated molecular pattern (PAMP)-induced reactive oxygen species production, expression of defense genes, and PAMP-triggered immunity. Transcriptome analysis revealed that AHL13 regulates key factors of jasmonic acid biosynthesis and signaling and affects immunity toward Pseudomonas syringae and Botrytis cinerea pathogens. Mutational analysis of the phosphorylation sites of AHL13 demonstrated that phosphorylation regulates AHL13 protein stability and thereby its immune functions.
Collapse
|
14
|
Carbon Catabolite Repression Governs Diverse Physiological Processes and Development in Aspergillus nidulans. mBio 2021; 13:e0373421. [PMID: 35164551 PMCID: PMC8844935 DOI: 10.1128/mbio.03734-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Carbon catabolite repression (CCR) is a common phenomenon of microorganisms that enable efficient utilization of carbon nutrients, critical for the fitness of microorganisms in the wild and for pathogenic species to cause infection. In most filamentous fungal species, the conserved transcription factor CreA/Cre1 mediates CCR. Previous studies demonstrated a primary function for CreA/Cre1 in carbon metabolism; however, the phenotype of creA/cre1 mutants indicated broader roles. The global function and regulatory mechanism of this wide-domain transcription factor has remained elusive. Here, we applied two powerful genomics methods (transcriptome sequencing and chromatin immunoprecipitation sequencing) to delineate the direct and indirect roles of Aspergillus nidulans CreA across diverse physiological processes, including secondary metabolism, iron homeostasis, oxidative stress response, development, N-glycan biosynthesis, unfolded protein response, and nutrient and ion transport. The results indicate intricate connections between the regulation of carbon metabolism and diverse cellular functions. Moreover, our work also provides key mechanistic insights into CreA regulation and identifies CreA as a master regulator controlling many transcription factors of different regulatory networks. The discoveries for this highly conserved transcriptional regulator in a model fungus have important implications for CCR in related pathogenic and industrial species. IMPORTANCE The ability to scavenge and use a wide range of nutrients for growth is crucial for microorganisms' survival in the wild. Carbon catabolite repression (CCR) is a transcriptional regulatory phenomenon of both bacteria and fungi to coordinate the expression of genes required for preferential utilization of carbon sources. Since carbon metabolism is essential for growth, CCR is central to the fitness of microorganisms. In filamentous fungi, CCR is mediated by the conserved transcription factor CreA/Cre1, whose function in carbon metabolism has been well established. However, the global roles and regulatory mechanism of CreA/Cre1 are poorly defined. This study uncovers the direct and indirect functions of CreA in the model organism Aspergillus nidulans over diverse physiological processes and development and provides mechanistic insights into how CreA controls different regulatory networks. The work also reveals an interesting functional divergence between filamentous fungal and yeast CreA/Cre1 orthologues.
Collapse
|
15
|
cAMP-PKA signal transduction specificity in Saccharomyces cerevisiae. Curr Genet 2020; 66:1093-1099. [PMID: 32935175 DOI: 10.1007/s00294-020-01107-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 08/23/2020] [Accepted: 09/01/2020] [Indexed: 01/02/2023]
Abstract
Living cells have developed a set of complex signaling responses, which allow them to withstand different environmental challenges. Signaling pathways enable the cell to monitor external and internal states and to articulate the appropriate physiological responses. Cellular signal transmission requires the dynamic formation of spatiotemporal controlled molecular interactions. One of the most important signaling circuits in Saccharomyces cerevisiae is the one controlled by cAMP-Protein Kinase A (PKA). In budding yeast, extracellular glucose and a plethora of signals related with growth and stress conditions regulate the intracellular cAMP levels that modulate PKA activity which in turn regulates a broad range of cellular processes. The cAMP-PKA signaling output requires a controlled specificity of the PKA responses. In this review we discuss the molecular mechanisms that are involved in the establishment of the specificity in the cAMP-PKA signaling pathway in S.cerevisiae.
Collapse
|
16
|
Reca S, Galello F, Ojeda L, Pautasso C, Cañonero L, Moreno S, Portela P, Rossi S. Chromatin remodeling and transcription of the TPK1 subunit of PKA during stress in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194599. [DOI: 10.1016/j.bbagrm.2020.194599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023]
|
17
|
Bai C, Tesker M, Melamed-Kadosh D, Engelberg D, Admon A. Hog1-induced transcription of RTC3 and HSP12 is robust and occurs in cells lacking Msn2, Msn4, Hot1 and Sko1. PLoS One 2020; 15:e0237540. [PMID: 32804965 PMCID: PMC7430751 DOI: 10.1371/journal.pone.0237540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/28/2020] [Indexed: 11/19/2022] Open
Abstract
The yeast MAP kinase Hog1 pathway activates transcription of several hundreds genes. Large-scale gene expression and DNA binding assays suggest that most Hog1-induced genes are regulated by the transcriptional activators Msn2/4, Hot1 and Sko1. These studies also revealed the target genes of each activator and the putative binding sites on their promoters. In a previous study we identified a group of genes, which we considered the bona fide targets of Hog1, because they were induced in response to expression of intrinsically active mutant of Hog1, in the absence of any stress. We previously analyzed the promoter of the most highly induced gene, STL1, and noticed that some promoter properties were different from those proposed by large-scale data. We therefore continue to study promoters individually and present here analyses of promoters of more Hog1's targets, RTC3, HSP12, DAK1 and ALD3. We report that RTC3 and HSP12 promoters are robust and are induced, to different degrees, even in cells lacking all four activators. DAK1 and ALD3 promoters are not robust and fully depend on a single activator, DAK1 on Sko1 and ALD3 on Msn2/4. Most of these observations could not be inferred from the large-scale data. Msn2/4 are involved in regulating all four promoters. It was assumed, therefore, that the promoters are spontaneously active in ras2Δ cells, in which Msn2/4 are known to be de-repressed. Intriguingly, the promoters were not active in BY4741ras2Δ cells, but were de-repressed, as expected, in ras2Δ cells of other genetic backgrounds. This study describes two phenomena. One, some Hog1's target promoters are most robust, backupped by many activators. Second, in contrast to most laboratory strains, the widely used BY4741 strain does not induce Msn2/4 activity when the Ras/cAMP cascade is downregulated.
Collapse
Affiliation(s)
- Chen Bai
- Singapore-HUJ Alliance for Research and Enterprise, Molecular Mechanisms of Inflammatory Diseases Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore, Singapore
- Dept. of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Masha Tesker
- Dept. of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - David Engelberg
- Singapore-HUJ Alliance for Research and Enterprise, Molecular Mechanisms of Inflammatory Diseases Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore, Singapore
- Dept. of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Dept. of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail: (AA); (DE)
| | - Arie Admon
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
- * E-mail: (AA); (DE)
| |
Collapse
|
18
|
Wosika V, Pelet S. Single-particle imaging of stress-promoters induction reveals the interplay between MAPK signaling, chromatin and transcription factors. Nat Commun 2020; 11:3171. [PMID: 32576833 PMCID: PMC7311541 DOI: 10.1038/s41467-020-16943-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 06/02/2020] [Indexed: 01/25/2023] Open
Abstract
Precise regulation of gene expression in response to environmental changes is crucial for cell survival, adaptation and proliferation. In eukaryotic cells, extracellular signal integration is often carried out by Mitogen-Activated Protein Kinases (MAPK). Despite a robust MAPK signaling activity, downstream gene expression can display a great variability between single cells. Using a live mRNA reporter, here we monitor the dynamics of transcription in Saccharomyces cerevisiae upon hyper-osmotic shock. We find that the transient activity of the MAPK Hog1 opens a temporal window where stress-response genes can be activated. We show that the first minutes of Hog1 activity are essential to control the activation of a promoter. Chromatin repression on a locus slows down this transition and contributes to the variability in gene expression, while binding of transcription factors increases the level of transcription. However, soon after Hog1 activity peaks, negative regulators promote chromatin closure of the locus and transcription progressively stops.
Collapse
Affiliation(s)
- Victoria Wosika
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Serge Pelet
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
19
|
Feng C, Song C, Liu Y, Qian F, Gao Y, Ning Z, Wang Q, Jiang Y, Li Y, Li M, Chen J, Zhang J, Li C. KnockTF: a comprehensive human gene expression profile database with knockdown/knockout of transcription factors. Nucleic Acids Res 2020; 48:D93-D100. [PMID: 31598675 PMCID: PMC6943067 DOI: 10.1093/nar/gkz881] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/25/2019] [Accepted: 10/05/2019] [Indexed: 12/26/2022] Open
Abstract
Transcription factors (TFs) and their target genes have important functions in human diseases and biological processes. Gene expression profile analysis before and after knockdown or knockout is one of the most important strategies for obtaining target genes of TFs and exploring TF functions. Human gene expression profile datasets with TF knockdown and knockout are accumulating rapidly. Based on the urgent need to comprehensively and effectively collect and process these data, we developed KnockTF (http://www.licpathway.net/KnockTF/index.html), a comprehensive human gene expression profile database of TF knockdown and knockout. KnockTF provides a number of resources for human gene expression profile datasets associated with TF knockdown and knockout and annotates TFs and their target genes in a tissue/cell type-specific manner. The current version of KnockTF has 570 manually curated RNA-seq and microarray datasets associated with 308 TFs disrupted by different knockdown and knockout techniques and across multiple tissue/cell types. KnockTF collects upstream pathway information of TFs and functional annotation results of downstream target genes. It provides details about TFs binding to promoters, super-enhancers and typical enhancers of target genes. KnockTF constructs a TF-differentially expressed gene network and performs network analyses for genes of interest. KnockTF will help elucidate TF-related functions and potential biological effects.
Collapse
Affiliation(s)
- Chenchen Feng
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Chao Song
- Department of Pharmacology, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Yuejuan Liu
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Fengcui Qian
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Yu Gao
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Ziyu Ning
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Qiuyu Wang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Yong Jiang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Yanyu Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Meng Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Jiaxin Chen
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Jian Zhang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Chunquan Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| |
Collapse
|
20
|
Fitzgerald PJ, Watson BO. In vivo electrophysiological recordings of the effects of antidepressant drugs. Exp Brain Res 2019; 237:1593-1614. [PMID: 31079238 PMCID: PMC6584243 DOI: 10.1007/s00221-019-05556-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Antidepressant drugs are a standard biological treatment for various neuropsychiatric disorders, yet relatively little is known about their electrophysiologic and synaptic effects on mood systems that set moment-to-moment emotional tone. In vivo electrical recording of local field potentials (LFPs) and single neuron spiking has been crucial for elucidating important details of neural processing and control in many other systems, and yet electrical approaches have not been broadly applied to the actions of antidepressants on mood-related circuits. Here we review the literature encompassing electrophysiologic effects of antidepressants in animals, including studies that examine older drugs, and extending to more recently synthesized novel compounds, as well as rapidly acting antidepressants. The existing studies on neuromodulator-based drugs have focused on recording in the brainstem nuclei, with much less known about their effects on prefrontal or sensory cortex. Studies on neuromodulatory drugs have moreover focused on single unit firing patterns with less emphasis on LFPs, whereas the rapidly acting antidepressant literature shows the opposite trend. In a synthesis of this information, we hypothesize that all classes of antidepressants could have common final effects on limbic circuitry. Whereas NMDA receptor blockade may induce a high powered gamma oscillatory state via direct and fast alteration of glutamatergic systems in mood-related circuits, neuromodulatory antidepressants may induce similar effects over slower timescales, corresponding with the timecourse of response in patients, while resetting synaptic excitatory versus inhibitory signaling to a normal level. Thus, gamma signaling may provide a biomarker (or “neural readout”) of the therapeutic effects of all classes of antidepressants.
Collapse
Affiliation(s)
- Paul J Fitzgerald
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109-5720, USA.
| | - Brendon O Watson
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109-5720, USA.
| |
Collapse
|
21
|
Samain E, Aussenac T, Selim S. The Effect of Plant Genotype, Growth Stage, and Mycosphaerella graminicola Strains on the Efficiency and Durability of Wheat-Induced Resistance by Paenibacillus sp. Strain B2. FRONTIERS IN PLANT SCIENCE 2019; 10:587. [PMID: 31143198 PMCID: PMC6521617 DOI: 10.3389/fpls.2019.00587] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/18/2019] [Indexed: 05/20/2023]
Abstract
Plant-growth-promoting rhizobacteria are known as potential biofertilizers and plant-resistance inducers. The current work aims to study the durability of the resistance induced as a response to the inoculation of wheat grains with Paenibacillus sp. strain B2 (PB2) and its influence by plant genotype, growth stage, and Mycosphaerella graminicola strain (the causal agent of Septoria tritici blotch or STB). The results of the plate-counting method showed that PB2 has high potential for wheat-root external colonization [>106 colony-forming unit (CFU)/g of root], and the quantitative real-time polymerase chain reaction (qPCR) analysis demonstrated its internal root-colonization capacity on all tested cultivars. However, the colonization seems to be dependent on wheat-growth stage. The durability of PB2-induced resistance (PB2-IR) was tested at the 3-leaf, tillering, and flag-leaf-growth stages. Additionally, the results showed that the PB2-IR is durable and able to protect the flag leaf, the most important leaf layer during grain fill. It conferred a high protection efficiency (55-94%) against four virulent strains of M. graminicola and over 11 wheat cultivars with different resistance levels to STB. Although, PB2-IR is dependent on M. graminicola strains, wheat genotypes and growth stages, its efficiency, under field conditions, at protecting the last wheat-leaf layers was not an influence. However, it showed 71-79% of protection and reached 81-94% in association with half of the recommended dose of Cherokee® fungicide. This may be explained using laboratory results by its direct impact on M. graminicola strains in these leaf layers and by the indirect reduction of the inoculum coming from leaves infected during the earlier growth stages. Gene expression results showed that PB2-IR is correlated to upregulation of genes involved in defense and cell rescue and a priming effect in the basal defense, jasmonic acid signaling, phenylpropanoids and phytoalexins, and reactive oxygen species gene markers. To conclude, PB2 induces a high and durable resistance against M. graminicola under controlled and field conditions. The PB2-IR is a pathogen strain and is plant-growth-stage and genotype dependent. These results highlight the importance of taking into consideration these factors so as to avoid losing the effectiveness of induced resistance under field conditions.
Collapse
Affiliation(s)
- Erika Samain
- AGHYLE, College of Agricultural Sciences, Institut Polytechnique UniLaSalle, Beauvais, France
- SDP, Laon, France
| | - Thierry Aussenac
- UP Transformations & Agro-Ressources, Institut Polytechnique UniLaSalle, Beauvais, France
| | - Sameh Selim
- AGHYLE, College of Agricultural Sciences, Institut Polytechnique UniLaSalle, Beauvais, France
| |
Collapse
|
22
|
Sellam A, Chaillot J, Mallick J, Tebbji F, Richard Albert J, Cook MA, Tyers M. The p38/HOG stress-activated protein kinase network couples growth to division in Candida albicans. PLoS Genet 2019; 15:e1008052. [PMID: 30921326 PMCID: PMC6456229 DOI: 10.1371/journal.pgen.1008052] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/09/2019] [Accepted: 02/28/2019] [Indexed: 12/26/2022] Open
Abstract
Cell size is a complex trait that responds to developmental and environmental cues. Quantitative size analysis of mutant strain collections disrupted for protein kinases and transcriptional regulators in the pathogenic yeast Candida albicans uncovered 66 genes that altered cell size, few of which overlapped with known size genes in the budding yeast Saccharomyces cerevisiae. A potent size regulator specific to C. albicans was the conserved p38/HOG MAPK module that mediates the osmostress response. Basal HOG activity inhibited the SBF G1/S transcription factor complex in a stress-independent fashion to delay the G1/S transition. The HOG network also governed ribosome biogenesis through the master transcriptional regulator Sfp1. Hog1 bound to the promoters and cognate transcription factors for ribosome biogenesis regulons and interacted genetically with the SBF G1/S machinery, and thereby directly linked cell growth and division. These results illuminate the evolutionary plasticity of size control and identify the HOG module as a nexus of cell cycle and growth regulation.
Collapse
Affiliation(s)
- Adnane Sellam
- Infectious Diseases Research Centre (CRI), CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Julien Chaillot
- Infectious Diseases Research Centre (CRI), CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Jaideep Mallick
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Faiza Tebbji
- Infectious Diseases Research Centre (CRI), CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Julien Richard Albert
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael A. Cook
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, Québec, Canada
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
23
|
Sanz AB, García R, Rodríguez-Peña JM, Nombela C, Arroyo J. Slt2 MAPK association with chromatin is required for transcriptional activation of Rlm1 dependent genes upon cell wall stress. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:1029-1039. [DOI: 10.1016/j.bbagrm.2018.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/25/2018] [Accepted: 09/12/2018] [Indexed: 11/26/2022]
|
24
|
Varghese E, Samuel SM, Abotaleb M, Cheema S, Mamtani R, Büsselberg D. The "Yin and Yang" of Natural Compounds in Anticancer Therapy of Triple-Negative Breast Cancers. Cancers (Basel) 2018; 10:E346. [PMID: 30248941 PMCID: PMC6209965 DOI: 10.3390/cancers10100346] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Among the different types of breast cancers, triple-negative breast cancers (TNBCs) are highly aggressive, do not respond to conventional hormonal/human epidermal growth factor receptor 2 (HER2)-targeted interventions due to the lack of the respective receptor targets, have chances of early recurrence, metastasize, tend to be more invasive in nature, and develop drug resistance. The global burden of TNBCs is increasing regardless of the number of cytotoxic drugs being introduced into the market each year as they have only moderate efficacy and/or unforeseen side effects. Therefore, the demand for more efficient therapeutic interventions, with reduced side effects, for the treatment of TNBCs is rising. While some plant metabolites/derivatives actually induce the risk of cancers, many plant-derived active principles have gained attention as efficient anticancer agents against TNBCs, with fewer adverse side effects. Here we discuss the possible oncogenic molecular pathways in TNBCs and how the purified plant-derived natural compounds specifically target and modulate the genes and/or proteins involved in these aberrant pathways to exhibit their anticancer potential. We have linked the anticancer potential of plant-derived natural compounds (luteolin, chalcones, piperine, deguelin, quercetin, rutin, fisetin, curcumin, resveratrol, and others) to their ability to target multiple dysregulated signaling pathways (such as the Wnt/β-catenin, Notch, NF-κB, PI3K/Akt/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK) and Hedgehog) leading to suppression of cell growth, proliferation, migration, inflammation, angiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, and activation of apoptosis in TNBCs. Plant-derived compounds in combination with classical chemotherapeutic agents were more efficient in the treatment of TNBCs, possibly with lesser side effects.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Sohaila Cheema
- Institute for Population Health, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Ravinder Mamtani
- Institute for Population Health, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| |
Collapse
|
25
|
Yurko N, Liu X, Yamazaki T, Hoque M, Tian B, Manley JL. MPK1/SLT2 Links Multiple Stress Responses with Gene Expression in Budding Yeast by Phosphorylating Tyr1 of the RNAP II CTD. Mol Cell 2017; 68:913-925.e3. [PMID: 29220656 DOI: 10.1016/j.molcel.2017.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/21/2017] [Accepted: 11/15/2017] [Indexed: 12/28/2022]
Abstract
The RNA polymerase II largest subunit C-terminal domain consists of repeated YSPTSPS heptapeptides. The role of tyrosine-1 (Tyr1) remains incompletely understood, as, for example, mutating all Tyr1 residues to Phe (Y1F) is lethal in vertebrates but a related mutant has only a mild phenotype in S. pombe. Here we show that Y1F substitution in budding yeast resulted in a strong slow-growth phenotype. The Y1F strain was also hypersensitive to several different cellular stresses that involve MAP kinase signaling. These phenotypes were all linked to transcriptional changes, and we also identified genetic and biochemical interactions between Tyr1 and both transcription initiation and termination factors. Further studies uncovered defects related to MAP kinase I (Slt2) pathways, and we provide evidence that Slt2 phosphorylates Tyr1 in vitro and in vivo. Our study has thus identified Slt2 as a Tyr1 kinase, and in doing so provided links between stress response activation and Tyr1 phosphorylation.
Collapse
Affiliation(s)
- Nathan Yurko
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Xiaochuan Liu
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Takashi Yamazaki
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Mainul Hoque
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
26
|
Dai Y, Kennedy-Darling J, Shortreed MR, Scalf M, Gasch AP, Smith LM. Multiplexed Sequence-Specific Capture of Chromatin and Mass Spectrometric Discovery of Associated Proteins. Anal Chem 2017; 89:7841-7846. [PMID: 28654248 DOI: 10.1021/acs.analchem.7b01784] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Comprehensive understanding of a gene's expression and regulation at the molecular level requires identification of all proteins interacting with the gene. HyCCAPP (Hybridization Capture of Chromatin Associated Proteins for Proteomics) is an approach that uses single-stranded DNA oligonucleotides to capture specific genomic sequences in cross-linked chromatin fragments and identify associated proteins by mass spectrometry. Previous studies have shown HyCCAPP to provide useful information on protein-DNA interactions, revealing the proteins associated with the GAL1-10 region in yeast. We present here a multiplexed version of HyCCAPP. Utilizing a toehold-mediated capture/release strategy, HyCCAPP is targeted to multiple genomic loci in parallel, and the protein binders at each locus are eluted in a programmable and selective fashion. Multiplexed HyCCAPP was applied to four genes (25S rDNA, ARX1, CTT1, and RPL30) in S. cerevisiae under normal and stressed conditions. Capture and release efficiencies and specificities were comparable to those obtained without multiplexing. Using mass spectrometry-based bottom-up proteomics, hundreds of proteins were discovered at each locus in each condition. Statistical analysis revealed 34-88 enriched proteins in each gene capture. Many of these proteins had expected functions, including DNA-related and ribosome biogenesis-associated activities. Multiplexed HyCCAPP provides a useful strategy for the identification of proteins interacting with specific chromatin regions.
Collapse
Affiliation(s)
- Yunxiang Dai
- Department of Chemistry, University of Wisconsin , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Julia Kennedy-Darling
- Department of Chemistry, University of Wisconsin , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin , 425 Henry Mall, Madison, Wisconsin 53706, United States
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin , 1101 University Avenue, Madison, Wisconsin 53706, United States.,Genome Center of Wisconsin, University of Wisconsin , 425G Henry Mall, Room 3420, Madison, Wisconsin 53706, United States
| |
Collapse
|
27
|
Different phosphoisoforms of RNA polymerase II engage the Rtt103 termination factor in a structurally analogous manner. Proc Natl Acad Sci U S A 2017; 114:E3944-E3953. [PMID: 28465432 DOI: 10.1073/pnas.1700128114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) orchestrates dynamic recruitment of specific cellular machines during different stages of transcription. Signature phosphorylation patterns of Y1S2P3T4S5P6S7 heptapeptide repeats of the CTD engage specific "readers." Whereas phospho-Ser5 and phospho-Ser2 marks are ubiquitous, phospho-Thr4 is reported to only impact specific genes. Here, we identify a role for phospho-Thr4 in transcription termination at noncoding small nucleolar RNA (snoRNA) genes. Quantitative proteomics reveals an interactome of known readers as well as protein complexes that were not known to rely on Thr4 for association with Pol II. The data indicate a key role for Thr4 in engaging the machinery used for transcription elongation and termination. We focus on Rtt103, a protein that binds phospho-Ser2 and phospho-Thr4 marks and facilitates transcription termination at protein-coding genes. To elucidate how Rtt103 engages two distinct CTD modifications that are differentially enriched at noncoding genes, we relied on NMR analysis of Rtt103 in complex with phospho-Thr4- or phospho-Ser2-bearing CTD peptides. The structural data reveal that Rtt103 interacts with phospho-Thr4 in a manner analogous to its interaction with phospho-Ser2-modified CTD. The same set of hydrogen bonds involving either the oxygen on phospho-Thr4 and the hydroxyl on Ser2, or the phosphate on Ser2 and the Thr4 hydroxyl, can be formed by rotation of an arginine side chain, leaving the intermolecular interface otherwise unperturbed. This economy of design enables Rtt103 to engage Pol II at distinct sets of genes with differentially enriched CTD marks.
Collapse
|
28
|
Franceschi RT, Ge C. Control of the Osteoblast Lineage by Mitogen-Activated Protein Kinase Signaling. ACTA ACUST UNITED AC 2017; 3:122-132. [PMID: 29057206 DOI: 10.1007/s40610-017-0059-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF THE REVIEW This review will provide a timely assessment of MAP kinase actions in bone development and homeostasis with particular emphasis on transcriptional control of the osteoblast lineage. RECENT FINDINGS ERK and p38 MAP kinases function as transducers of signals initiated by the extracellular matrix, mechanical loading, TGF-β, BMPs and FGF2. MAPK signals may also affect and/or interact with other important pathways such as WNT and HIPPO. ERK and p38 MAP kinase pathways phosphorylate specific osteogenic transcription factors including RUNX2, Osterix, ATF4 and DLX5. For RUNX2, phosphorylation at specific serine residues initiates epigenetic changes in chromatin necessary for decondensation and increased transcription. MAPK also suppresses marrow adipogenesis by phosphorylating and inhibiting PPARγ, which may explain the well-known relationship between reduced skeletal loading and marrow fat accumulation. SUMMARY MAPKs transduce signals from the extracellular environment to the nucleus allowing bone cells to respond to changes in hormonal/growth factor signaling and mechanical loading thereby optimizing bone structure to meet physiological and mechanical needs of the body.
Collapse
Affiliation(s)
- Renny T Franceschi
- Departments of Periodontics and Oral Medicine, University of Michigan School of Dentistry and Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI 48109-1078
| | - Chunxi Ge
- Departments of Periodontics and Oral Medicine, University of Michigan School of Dentistry and Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI 48109-1078
| |
Collapse
|
29
|
Pelet S. Nuclear relocation of Kss1 contributes to the specificity of the mating response. Sci Rep 2017; 7:43636. [PMID: 28262771 PMCID: PMC5337980 DOI: 10.1038/srep43636] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/25/2017] [Indexed: 01/14/2023] Open
Abstract
Mitogen Activated Protein Kinases (MAPK) play a central role in transducing extra-cellular signals into defined biological responses. These enzymes, conserved in all eukaryotes, exert their function via the phosphorylation of numerous substrates located throughout the cell and by inducing a complex transcriptional program. The partitioning of their activity between the cytoplasm and the nucleus is thus central to their function. Budding yeast serves as a powerful system to understand the regulation of these fundamental biological phenomena. Under vegetative growth, the MAPK Kss1 is enriched in the nucleus of the cells. Stimulation with mating pheromone results in a rapid relocation of the protein in the cytoplasm. Activity of either Fus3 or Kss1 in the mating pathway is sufficient to drive this change in location by disassembling the complex formed between Kss1, Ste12 and Dig1. Artificial enrichment of the MAPK Kss1 in the nucleus in presence of mating pheromone alters the transcriptional response of the cells and induces a cell-cycle arrest in absence of Fus3 and Far1.
Collapse
Affiliation(s)
- Serge Pelet
- Department of Fundamental Microbiology University of Lausanne Lausanne, Switzerland
| |
Collapse
|
30
|
van Wijlick L, Swidergall M, Brandt P, Ernst JF. Candida albicansresponds to glycostructure damage by Ace2-mediated feedback regulation of Cek1 signaling. Mol Microbiol 2016; 102:827-849. [DOI: 10.1111/mmi.13494] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Lasse van Wijlick
- Department Biologie; Molekulare Mykologie, Heinrich-Heine-Universität; 40225 Düsseldorf Germany
- Manchot Graduate School Molecules of Infection, Heinrich-Heine-Universität; 40225 Düsseldorf Germany
| | - Marc Swidergall
- Department Biologie; Molekulare Mykologie, Heinrich-Heine-Universität; 40225 Düsseldorf Germany
| | - Philipp Brandt
- Department Biologie; Molekulare Mykologie, Heinrich-Heine-Universität; 40225 Düsseldorf Germany
| | - Joachim F. Ernst
- Department Biologie; Molekulare Mykologie, Heinrich-Heine-Universität; 40225 Düsseldorf Germany
- Manchot Graduate School Molecules of Infection, Heinrich-Heine-Universität; 40225 Düsseldorf Germany
| |
Collapse
|
31
|
Papp L, Sipiczki M, Miklós I. Expression pattern and phenotypic characterization of the mutant strain reveals target genes and processes regulated by pka1 in the dimorphic fission yeast Schizosaccharomyces japonicus. Curr Genet 2016; 63:487-497. [PMID: 27678009 DOI: 10.1007/s00294-016-0651-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/10/2016] [Accepted: 09/13/2016] [Indexed: 12/01/2022]
Abstract
The cAMP cascade plays an important role in several biological processes. Thus, study of its molecular details can contribute to a better understanding of these processes, treatment of diseases, or even finding antifungal drug targets. To gain further information about the PKA pathway, and its evolutionarily conserved and species-specific features, the central regulator pka1 gene, which encodes the cAMP-dependent protein kinase catalytic subunit, was studied in the less known haplontic, dimorphic fission yeast Schizosaccharomyces japonicus. Namely, this species belongs to a highly divergent phylogenetic branch of fungi. Furthermore, S. japonicus had only a single copy pka1 gene in contrast to the budding yeasts. Therefore, the pka1 deleted mutant was created, whose RNA sequencing and phenotypic studies revealed that the Pka1 regulated at least 373 genes, among them further kinases, phosphatases and transcriptional regulators. It regulated elongation of hyphae, cell size, aging and stress response. Furthermore, half of the pka1 target genes seemed to be conserved in Schizosaccharomyces pombe and S. japonicus. However, there were oppositely regulated genes in the two closely related species. The target genes suggest that this single gene must be able to fulfill all the functions of TPK1-3 of Saccharomyces cerevisiae. Thus, our results shed light on certain similarities and differences of the PKA pathway of S. japonicus compared to the budding yeasts and confirmed the multifunctionality of the pka1 gene, but further experiments are needed to prove its involvement in the metabolic processes and transport.
Collapse
Affiliation(s)
- László Papp
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Matthias Sipiczki
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Ida Miklós
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
| |
Collapse
|
32
|
Mikula M, Skrzypczak M, Goryca K, Paczkowska K, Ledwon JK, Statkiewicz M, Kulecka M, Grzelak M, Dabrowska M, Kuklinska U, Karczmarski J, Rumienczyk I, Jastrzebski K, Miaczynska M, Ginalski K, Bomsztyk K, Ostrowski J. Genome-wide co-localization of active EGFR and downstream ERK pathway kinases mirrors mitogen-inducible RNA polymerase 2 genomic occupancy. Nucleic Acids Res 2016; 44:10150-10164. [PMID: 27587583 PMCID: PMC5137434 DOI: 10.1093/nar/gkw763] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 01/20/2023] Open
Abstract
Genome-wide mechanisms that coordinate expression of subsets of functionally related genes are largely unknown. Recent studies show that receptor tyrosine kinases and components of signal transduction cascades including the extracellular signal-regulated protein kinase (ERK), once thought to act predominantly in the vicinity of plasma membrane and in the cytoplasm, can be recruited to chromatin encompassing transcribed genes. Genome-wide distribution of these transducers and their relationship to transcribing RNA polymerase II (Pol2) could provide new insights about co-regulation of functionally related gene subsets. Chromatin immunoprecipitations (ChIP) followed by deep sequencing, ChIP-Seq, revealed that genome-wide binding of epidermal growth factor receptor, EGFR and ERK pathway components at EGF-responsive genes was highly correlated with characteristic mitogen-induced Pol2-profile. Endosomes play a role in intracellular trafficking of proteins including their nuclear import. Immunofluorescence revealed that EGF-activated EGFR, MEK1/2 and ERK1/2 co-localize on endosomes. Perturbation of endosome internalization process, through the depletion of AP2M1 protein, resulted in decreased number of the EGFR containing endosomes and inhibition of Pol2, EGFR/ERK recruitment to EGR1 gene. Thus, mitogen-induced co-recruitment of EGFR/ERK components to subsets of genes, a kinase module possibly pre-assembled on endosome to synchronize their nuclear import, could coordinate genome-wide transcriptional events to ensure effective cell proliferation.
Collapse
Affiliation(s)
- M Mikula
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - M Skrzypczak
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089, Poland
| | - K Goryca
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - K Paczkowska
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - J K Ledwon
- Medical Center for Postgraduate Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Roentgena 5, 02-781 Warsaw, Poland
| | - M Statkiewicz
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - M Kulecka
- Medical Center for Postgraduate Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Roentgena 5, 02-781 Warsaw, Poland
| | - M Grzelak
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089, Poland
| | - M Dabrowska
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - U Kuklinska
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - J Karczmarski
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - I Rumienczyk
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - K Jastrzebski
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - M Miaczynska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - K Ginalski
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089, Poland
| | - K Bomsztyk
- University of Washington, Department of Medicine, 850 Republican Street, Seattle, WA, USA
| | - J Ostrowski
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland.,Medical Center for Postgraduate Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Roentgena 5, 02-781 Warsaw, Poland
| |
Collapse
|
33
|
Segalés J, Perdiguero E, Muñoz-Cánoves P. Regulation of Muscle Stem Cell Functions: A Focus on the p38 MAPK Signaling Pathway. Front Cell Dev Biol 2016; 4:91. [PMID: 27626031 PMCID: PMC5003838 DOI: 10.3389/fcell.2016.00091] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/17/2016] [Indexed: 12/17/2022] Open
Abstract
Formation of skeletal muscle fibers (myogenesis) during development and after tissue injury in the adult constitutes an excellent paradigm to investigate the mechanisms whereby environmental cues control gene expression programs in muscle stem cells (satellite cells) by acting on transcriptional and epigenetic effectors. Here we will review the molecular mechanisms implicated in the transition of satellite cells throughout the distinct myogenic stages (i.e., activation from quiescence, proliferation, differentiation, and self-renewal). We will also discuss recent findings on the causes underlying satellite cell functional decline with aging. In particular, our review will focus on the epigenetic changes underlying fate decisions and on how the p38 MAPK signaling pathway integrates the environmental signals at the chromatin to build up satellite cell adaptive responses during the process of muscle regeneration, and how these responses are altered in aging. A better comprehension of the signaling pathways connecting external and intrinsic factors will illuminate the path for improving muscle regeneration in the aged.
Collapse
Affiliation(s)
- Jessica Segalés
- Cell Biology Group, Department of Experimental and Health Sciences, CIBER on Neurodegenerative diseases (CIBERNED), Pompeu Fabra University Barcelona, Spain
| | - Eusebio Perdiguero
- Cell Biology Group, Department of Experimental and Health Sciences, CIBER on Neurodegenerative diseases (CIBERNED), Pompeu Fabra University Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Cell Biology Group, Department of Experimental and Health Sciences, CIBER on Neurodegenerative diseases (CIBERNED), Pompeu Fabra UniversityBarcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona, Spain; Tissue Regeneration Laboratory, Centro Nacional de Investigaciones CardiovascularesMadrid, Spain
| |
Collapse
|
34
|
Goshen-Lago T, Goldberg-Carp A, Melamed D, Darlyuk-Saadon I, Bai C, Ahn NG, Admon A, Engelberg D. Variants of the yeast MAPK Mpk1 are fully functional independently of activation loop phosphorylation. Mol Biol Cell 2016; 27:2771-83. [PMID: 27413009 PMCID: PMC5007096 DOI: 10.1091/mbc.e16-03-0167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
MAPKs are catalytically and biologically active only when dually phosphorylated on a TEY motif. Mutations in the yeast MAPK Mpk1 are described that render it fully functional when mutated in its TEY motif and even when it carries a kinase-dead mutation. MAP kinases of the ERK family are conserved from yeast to humans. Their catalytic activity is dependent on dual phosphorylation of their activation loop’s TEY motif, catalyzed by MAPK kinases (MEKs). Here we studied variants of Mpk1, a yeast orthologue of Erk, which is essential for cell wall integrity. Cells lacking MPK1, or the genes encoding the relevant MEKs, MKK1 and MKK2, do not proliferate under cell wall stress, imposed, for example, by caffeine. Mutants of Mpk1, Mpk1(Y268C) and Mpk1(Y268A), function independently of Mkk1 and Mkk2. We show that these variants are phosphorylated at their activation loop in mkk1∆mkk2∆ and mkk1∆mkk2∆pbs2∆ste7∆ cells, suggesting that they autophosphorylate. However, strikingly, when Y268C/A mutations were combined with the kinase-dead mutation, K54R, or mutations at the TEY motif, T190A+Y192F, the resulting proteins still allowed mkk1∆mkk2∆ cells to proliferate under caffeine stress. Mutating the equivalent residue, Tyr-280/Tyr-261, in Erk1/Erk2 significantly impaired Erk1/2’s catalytic activity. This study describes the first case in which a MAPK, Erk/Mpk1, imposes a phenotype via a mechanism that is independent of TEY phosphorylation and an unusual case in which an equivalent mutation in a highly conserved domain of yeast and mammalian Erks causes an opposite effect.
Collapse
Affiliation(s)
- Tal Goshen-Lago
- Department of Biological Chemistry, Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Anat Goldberg-Carp
- Department of Biological Chemistry, Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dganit Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ilona Darlyuk-Saadon
- CREATE-NUS-HUJ, Cellular and Molecular Mechanisms of Inflammation Program, National University of Singapore, Singapore 138602 Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456
| | - Chen Bai
- CREATE-NUS-HUJ, Cellular and Molecular Mechanisms of Inflammation Program, National University of Singapore, Singapore 138602 Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456
| | - Natalie G Ahn
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| | - Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - David Engelberg
- Department of Biological Chemistry, Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 91904, Israel CREATE-NUS-HUJ, Cellular and Molecular Mechanisms of Inflammation Program, National University of Singapore, Singapore 138602 Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456
| |
Collapse
|
35
|
Li J, Hardy K, Phetsouphanh C, Tu WJ, Sutcliffe EL, McCuaig R, Sutton CR, Zafar A, Munier CML, Zaunders JJ, Xu Y, Theodoratos A, Tan A, Lim PS, Knaute T, Masch A, Zerweck J, Brezar V, Milburn PJ, Dunn J, Casarotto MG, Turner SJ, Seddiki N, Kelleher AD, Rao S. Nuclear PKC-θ facilitates rapid transcriptional responses in human memory CD4+ T cells through p65 and H2B phosphorylation. J Cell Sci 2016; 129:2448-61. [PMID: 27149922 PMCID: PMC4920249 DOI: 10.1242/jcs.181248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/21/2016] [Indexed: 12/14/2022] Open
Abstract
Memory T cells are characterized by their rapid transcriptional programs upon re-stimulation. This transcriptional memory response is facilitated by permissive chromatin, but exactly how the permissive epigenetic landscape in memory T cells integrates incoming stimulatory signals remains poorly understood. By genome-wide ChIP-sequencing ex vivo human CD4+ T cells, here, we show that the signaling enzyme, protein kinase C theta (PKC-θ) directly relays stimulatory signals to chromatin by binding to transcriptional-memory-responsive genes to induce transcriptional activation. Flanked by permissive histone modifications, these PKC-enriched regions are significantly enriched with NF-κB motifs in ex vivo bulk and vaccinia-responsive human memory CD4+ T cells. Within the nucleus, PKC-θ catalytic activity maintains the Ser536 phosphorylation on the p65 subunit of NF-κB (also known as RelA) and can directly influence chromatin accessibility at transcriptional memory genes by regulating H2B deposition through Ser32 phosphorylation. Furthermore, using a cytoplasm-restricted PKC-θ mutant, we highlight that chromatin-anchored PKC-θ integrates activating signals at the chromatin template to elicit transcriptional memory responses in human memory T cells. Summary: Memory T cells have a rapid transcriptional program upon re-stimulation. Chromatin-anchored PKC-θ integrates activating signals at the chromatin template to elicit this transcriptional memory in T cells.
Collapse
Affiliation(s)
- Jasmine Li
- Faculty of Education, Science, Technology & Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia Department of Microbiology & Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Kristine Hardy
- Faculty of Education, Science, Technology & Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Chan Phetsouphanh
- The Kirby Institute, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Wen Juan Tu
- Faculty of Education, Science, Technology & Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Elissa L Sutcliffe
- Faculty of Education, Science, Technology & Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Robert McCuaig
- Faculty of Education, Science, Technology & Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Christopher R Sutton
- Faculty of Education, Science, Technology & Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Anjum Zafar
- Faculty of Education, Science, Technology & Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - C Mee Ling Munier
- The Kirby Institute, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - John J Zaunders
- The Kirby Institute, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Yin Xu
- The Kirby Institute, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Angelo Theodoratos
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Abel Tan
- Faculty of Education, Science, Technology & Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Pek Siew Lim
- Faculty of Education, Science, Technology & Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Tobias Knaute
- JPT Peptide Technologies Gmbh, Berlin 12489, Germany
| | - Antonia Masch
- Department of Enzymology, Institute of Biochemistry & Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle 06108, Germany
| | | | - Vedran Brezar
- INSERM U955 Eq16 Faculte de medicine Henri Mondor and Universite Paris-Est Creteil/Vaccine Research Institute, Creteil 94010, France
| | - Peter J Milburn
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Jenny Dunn
- Faculty of Education, Science, Technology & Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Marco G Casarotto
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Stephen J Turner
- Department of Microbiology & Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Nabila Seddiki
- INSERM U955 Eq16 Faculte de medicine Henri Mondor and Universite Paris-Est Creteil/Vaccine Research Institute, Creteil 94010, France
| | - Anthony D Kelleher
- The Kirby Institute, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Sudha Rao
- Faculty of Education, Science, Technology & Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| |
Collapse
|
36
|
McReynolds AC, Karra AS, Li Y, Lopez ED, Turjanski AG, Dioum E, Lorenz K, Zaganjor E, Stippec S, McGlynn K, Earnest S, Cobb MH. Phosphorylation or Mutation of the ERK2 Activation Loop Alters Oligonucleotide Binding. Biochemistry 2016; 55:1909-17. [PMID: 26950759 DOI: 10.1021/acs.biochem.6b00096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mitogen-activated protein kinase ERK2 is able to elicit a wide range of context-specific responses to distinct stimuli, but the mechanisms underlying this versatility remain in question. Some cellular functions of ERK2 are mediated through regulation of gene expression. In addition to phosphorylating numerous transcriptional regulators, ERK2 is known to associate with chromatin and has been shown to bind oligonucleotides directly. ERK2 is activated by the upstream kinases MEK1/2, which phosphorylate both tyrosine 185 and threonine 183. ERK2 requires phosphorylation on both sites to be fully active. Some additional ERK2 phosphorylation sites have also been reported, including threonine 188. It has been suggested that this phospho form has distinct properties. We detected some ERK2 phosphorylated on T188 in bacterial preparations of ERK2 by mass spectrometry and further demonstrate that phosphomimetic substitution of this ERK2 residue impairs its kinase activity toward well-defined substrates and also affects its DNA binding. We used electrophoretic mobility shift assays with oligonucleotides derived from the insulin gene promoter and other regions to examine effects of phosphorylation and mutations on the binding of ERK2 to DNA. We show that ERK2 can bind oligonucleotides directly. Phosphorylation and mutations alter DNA binding and support the idea that signaling functions may be influenced through an alternate phosphorylation site.
Collapse
Affiliation(s)
- Andrea C McReynolds
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Aroon S Karra
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Yan Li
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States.,Protein/Peptide Sequencing Facility, National Institute of Neurological Disorders and Stroke , Bethesda, Maryland 20824, United States
| | - Elias Daniel Lopez
- Laboratory of Structural Bioinformatics, Department of Chemical Biology, University of Buenos Aires , Buenos Aires, Argentina
| | - Adrian G Turjanski
- Laboratory of Structural Bioinformatics, Department of Chemical Biology, University of Buenos Aires , Buenos Aires, Argentina
| | - Elhadji Dioum
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Kristina Lorenz
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. , Dortmund, Germany
| | - Elma Zaganjor
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Steve Stippec
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Kathleen McGlynn
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Svetlana Earnest
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Melanie H Cobb
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| |
Collapse
|
37
|
Segalés J, Islam ABMMK, Kumar R, Liu QC, Sousa-Victor P, Dilworth FJ, Ballestar E, Perdiguero E, Muñoz-Cánoves P. Chromatin-wide and transcriptome profiling integration uncovers p38α MAPK as a global regulator of skeletal muscle differentiation. Skelet Muscle 2016; 6:9. [PMID: 26981231 PMCID: PMC4791895 DOI: 10.1186/s13395-016-0074-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/05/2016] [Indexed: 11/23/2022] Open
Abstract
Background Extracellular stimuli induce gene expression responses through intracellular signaling mediators. The p38 signaling pathway is a paradigm of the mitogen-activated protein kinase (MAPK) family that, although originally identified as stress-response mediator, contributes to establishing stem cell differentiation fates. p38α is central for induction of the differentiation fate of the skeletal muscle stem cells (satellite cells) through not fully characterized mechanisms. Methods To investigate the global gene transcription program regulated by p38α during satellite cell differentiation (myogenesis), and to specifically address whether this regulation occurs through direct action of p38α on gene promoters, we performed a combination of microarray gene expression and genome-wide binding analyses. For experimental robustness, two myogenic cellular systems with genetic and chemical loss of p38α function were used: (1) satellite cells derived from mice with muscle-specific deletion of p38α, and (2) the C2C12 murine myoblast cell line cultured in the absence or presence of the p38α/β inhibitor SB203580. Analyses were performed at cell proliferation and early differentiation stages. Results We show that p38α binds to a large set of active promoters during the transition of myoblasts from proliferation to differentiation stages. p38α-bound promoters are enriched with binding motifs for several transcription factors, with Sp1, Tcf3/E47, Lef1, FoxO4, MyoD, and NFATc standing out in all experimental conditions. p38α association with chromatin correlates very well with high levels of transcription, in agreement with its classical function as an activator of myogenic differentiation. Interestingly, p38α also associates with genes repressed at the onset of differentiation, thus highlighting the relevance of p38-dependent chromatin regulation for transcriptional activation and repression during myogenesis. Conclusions These results uncover p38α association and function on chromatin at novel classes of target genes during skeletal muscle cell differentiation. This is consistent with this MAPK isoform being a transcriptional regulator. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0074-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica Segalés
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain
| | - Abul B M M K Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Roshan Kumar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 USA
| | - Qi-Cai Liu
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
| | - Pedro Sousa-Victor
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain ; Present address: Buck Institute for Research on Aging, Novato, CA USA
| | - F Jeffrey Dilworth
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
| | - Esteban Ballestar
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Eusebio Perdiguero
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain ; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
38
|
Baccarini L, Martínez-Montañés F, Rossi S, Proft M, Portela P. PKA-chromatin association at stress responsive target genes from Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1329-39. [DOI: 10.1016/j.bbagrm.2015.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
|
39
|
Brezar V, Tu WJ, Seddiki N. PKC-Theta in Regulatory and Effector T-cell Functions. Front Immunol 2015; 6:530. [PMID: 26528291 PMCID: PMC4602307 DOI: 10.3389/fimmu.2015.00530] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/28/2015] [Indexed: 01/20/2023] Open
Abstract
One of the major goals in immunology research is to understand the regulatory mechanisms that underpin the rapid switch on/off of robust and efficient effector (Teffs) or regulatory (Tregs) T-cell responses. Understanding the molecular mechanisms underlying the regulation of such responses is critical for the development of effective therapies. T-cell activation involves the engagement of T-cell receptor and co-stimulatory signals, but the subsequent recruitment of serine/threonine-specific protein Kinase C-theta (PKC-θ) to the immunological synapse (IS) is instrumental for the formation of signaling complexes, which ultimately lead to a transcriptional network in T cells. Recent studies demonstrated that major differences between Teffs and Tregs occurred at the IS where its formation induces altered signaling pathways in Tregs. These pathways are characterized by reduced recruitment of PKC-θ, suggesting that PKC-θ inhibits Tregs suppressive function in a negative feedback loop. As the balance of Teffs and Tregs has been shown to be central in several diseases, it was not surprising that some studies revealed that PKC-θ plays a major role in the regulation of this balance. This review will examine recent knowledge on the role of PKC-θ in T-cell transcriptional responses and how this protein can impact on the function of both Tregs and Teffs.
Collapse
Affiliation(s)
- Vedran Brezar
- INSERM U955, Équipe 16 and Faculté de Médecine, Université Paris Est , Créteil , France ; Vaccine Research Institute (VRI) , Créteil , France
| | - Wen Juan Tu
- Faculty of Education, Science, Technology and Maths, University of Canberra , Canberra, ACT , Australia
| | - Nabila Seddiki
- INSERM U955, Équipe 16 and Faculté de Médecine, Université Paris Est , Créteil , France ; Vaccine Research Institute (VRI) , Créteil , France
| |
Collapse
|
40
|
A Gβ protein and the TupA Co-Regulator Bind to Protein Kinase A Tpk2 to Act as Antagonistic Molecular Switches of Fungal Morphological Changes. PLoS One 2015; 10:e0136866. [PMID: 26334875 PMCID: PMC4559445 DOI: 10.1371/journal.pone.0136866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/09/2015] [Indexed: 11/19/2022] Open
Abstract
The human pathogenic fungus Paracoccidioides brasiliensis (Pb) undergoes a morphological transition from a saprobic mycelium to pathogenic yeast that is controlled by the cAMP-signaling pathway. There is a change in the expression of the Gβ-protein PbGpb1, which interacts with adenylate cyclase, during this morphological transition. We exploited the fact that the cAMP-signaling pathway of Saccharomyces cerevisiae does not include a Gβ-protein to probe the functional role of PbGpb1. We present data that indicates that PbGpb1 and the transcriptional regulator PbTupA both bind to the PKA protein PbTpk2. PbTPK2 was able to complement a TPK2Δ strain of S. cerevisiae, XPY5a/α, which was defective in pseudohyphal growth. Whilst PbGPB1 had no effect on the parent S. cerevisiae strain, MLY61a/α, it repressed the filamentous growth of XPY5a/α transformed with PbTPK2, behaviour that correlated with a reduced expression of the floculin FLO11. In vitro, PbGpb1 reduced the kinase activity of PbTpk2, suggesting that inhibition of PbTpk2 by PbGpb1 reduces the level of expression of Flo11, antagonizing the filamentous growth of the cells. In contrast, expressing the co-regulator PbTUPA in XPY5a/α cells transformed with PbTPK2, but not untransformed cells, induced hyperfilamentous growth, which could be antagonized by co-transforming the cells with PbGPB1. PbTUPA was unable to induce the hyperfilamentous growth of a FLO8Δ strain, suggesting that PbTupA functions in conjunction with the transcription factor Flo8 to control Flo11 expression. Our data indicates that P. brasiliensis PbGpb1 and PbTupA, both of which have WD/β-propeller structures, bind to PbTpk2 to act as antagonistic molecular switches of cell morphology, with PbTupA and PbGpb1 inducing and repressing filamentous growth, respectively. Our findings define a potential mechanism for controlling the morphological switch that underpins the virulence of dimorphic fungi.
Collapse
|
41
|
de Nadal E, Posas F. Osmostress-induced gene expression--a model to understand how stress-activated protein kinases (SAPKs) regulate transcription. FEBS J 2015; 282:3275-85. [PMID: 25996081 PMCID: PMC4744689 DOI: 10.1111/febs.13323] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/27/2015] [Accepted: 05/18/2015] [Indexed: 01/18/2023]
Abstract
Adaptation is essential for maximizing cell survival and for cell fitness in response to sudden changes in the environment. Several aspects of cell physiology change during adaptation. Major changes in gene expression are associated with cell exposure to environmental changes, and several aspects of mRNA biogenesis appear to be targeted by signaling pathways upon stress. Exhaustive reviews have been written regarding adaptation to stress and regulation of gene expression. In this review, using osmostress in yeast as a prototypical case study, we highlight those aspects of regulation of gene induction that are general to various environmental stresses as well as mechanistic aspects that are potentially conserved from yeast to mammals.
Collapse
Affiliation(s)
- Eulàlia de Nadal
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Francesc Posas
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
42
|
Dunn J, McCuaig R, Tu WJ, Hardy K, Rao S. Multi-layered epigenetic mechanisms contribute to transcriptional memory in T lymphocytes. BMC Immunol 2015; 16:27. [PMID: 25943594 PMCID: PMC4422045 DOI: 10.1186/s12865-015-0089-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/31/2015] [Indexed: 12/24/2022] Open
Abstract
Background Immunological memory is the ability of the immune system to respond more rapidly and effectively to previously encountered pathogens, a key feature of adaptive immunity. The capacity of memory T cells to “remember” previous cellular responses to specific antigens ultimately resides in their unique patterns of gene expression. Following re-exposure to an antigen, previously activated genes are transcribed more rapidly and robustly in memory T cells compared to their naïve counterparts. The ability for cells to remember past transcriptional responses is termed “adaptive transcriptional memory”. Results Recent global epigenome studies suggest that epigenetic mechanisms are central to establishing and maintaining transcriptional memory, with elegant studies in model organisms providing tantalizing insights into the epigenetic programs that contribute to adaptive immunity. These epigenetic mechanisms are diverse, and include not only classical acetylation and methylation events, but also exciting and less well-known mechanisms involving histone structure, upstream signalling pathways, and nuclear localisation of genomic regions. Conclusions Current global health challenges in areas such as tuberculosis and influenza demand not only more effective and safer vaccines, but also vaccines for a wider range of health priorities, including HIV, cancer, and emerging pathogens such as Ebola. Understanding the multi-layered epigenetic mechanisms that underpin the rapid recall responses of memory T cells following reactivation is a critical component of this development pathway.
Collapse
Affiliation(s)
- Jennifer Dunn
- Faculty of Education, Science, Technology & Maths, University of Canberra, Canberra, ACT, Australia.
| | - Robert McCuaig
- Faculty of Education, Science, Technology & Maths, University of Canberra, Canberra, ACT, Australia.
| | - Wen Juan Tu
- Faculty of Education, Science, Technology & Maths, University of Canberra, Canberra, ACT, Australia.
| | - Kristine Hardy
- Faculty of Education, Science, Technology & Maths, University of Canberra, Canberra, ACT, Australia.
| | - Sudha Rao
- Faculty of Education, Science, Technology & Maths, University of Canberra, Canberra, ACT, Australia.
| |
Collapse
|
43
|
Brancaccio A, Palacios D. Chromatin signaling in muscle stem cells: interpreting the regenerative microenvironment. Front Aging Neurosci 2015; 7:36. [PMID: 25904863 PMCID: PMC4387924 DOI: 10.3389/fnagi.2015.00036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
Muscle regeneration in the adult occurs in response to damage at expenses of a population of adult stem cells, the satellite cells. Upon injury, either physical or genetic, signals released within the satellite cell niche lead to the commitment, expansion and differentiation of the pool of muscle progenitors to repair damaged muscle. To achieve this goal satellite cells undergo a dramatic transcriptional reprogramming to coordinately activate and repress specific subset of genes. Although the epigenetics of muscle regeneration has been extensively discussed, less emphasis has been put on how extra-cellular cues are translated into the specific chromatin reorganization necessary for progression through the myogenic program. In this review we will focus on how satellite cells sense the regenerative microenvironment in physiological and pathological circumstances, paying particular attention to the mechanism through which the external stimuli are transduced to the nucleus to modulate chromatin structure and gene expression. We will discuss the pathways involved and how alterations in this chromatin signaling may contribute to satellite cells dysfunction during aging and disease.
Collapse
Affiliation(s)
- Arianna Brancaccio
- Laboratory of Epigenetics and Signaling, IRCCS Fondazione Santa Lucia Rome, Italy
| | - Daniela Palacios
- Laboratory of Epigenetics and Signaling, IRCCS Fondazione Santa Lucia Rome, Italy
| |
Collapse
|
44
|
Nadal-Ribelles M, Mas G, Millán-Zambrano G, Solé C, Ammerer G, Chávez S, Posas F, de Nadal E. H3K4 monomethylation dictates nucleosome dynamics and chromatin remodeling at stress-responsive genes. Nucleic Acids Res 2015; 43:4937-49. [PMID: 25813039 PMCID: PMC4446418 DOI: 10.1093/nar/gkv220] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/04/2015] [Indexed: 11/13/2022] Open
Abstract
Chromatin remodeling is essential for proper adaptation to extracellular stimuli. The p38-related Hog1 SAPK is an important regulator of transcription that mediates chromatin remodeling upon stress. Hog1 targets the RSC chromatin remodeling complex to stress-responsive genes and rsc deficient cells display reduced induction of gene expression. Here we show that the absence of H3K4 methylation, either achieved by deletion of the SET1 methyltransferase or by amino acid substitution of H3K4, bypasses the requirement of RSC for stress-responsive gene expression. Monomethylation of H3K4 is specifically inhibiting RSC-independent chromatin remodeling and thus, it prevents osmostress-induced gene expression. The absence of H3K4 monomethylation permits that the association of alternative remodelers with stress-responsive genes and the Swr1 complex (SWR-C) is instrumental in the induction of gene expression upon stress. Accordingly, the absence of SWR-C or histone H2A.Z results in compromised chromatin remodeling and impaired gene expression in the absence of RSC and H3K4 methylation. These results indicate that expression of stress-responsive genes is controlled by two remodeling mechanisms: RSC in the presence of monomethylated H3K4, and SWR-C in the absence of H3K4 monomethylation. Our findings point to a novel role for H3K4 monomethylation in dictating the specificity of chromatin remodeling, adding an extra layer of regulation to the transcriptional stress response.
Collapse
Affiliation(s)
- Mariona Nadal-Ribelles
- Cell signaling unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Glòria Mas
- Cell signaling unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Gonzalo Millán-Zambrano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Carme Solé
- Cell signaling unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Gustav Ammerer
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Francesc Posas
- Cell signaling unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Eulàlia de Nadal
- Cell signaling unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| |
Collapse
|
45
|
Hog1 targets Whi5 and Msa1 transcription factors to downregulate cyclin expression upon stress. Mol Cell Biol 2015; 35:1606-18. [PMID: 25733686 DOI: 10.1128/mcb.01279-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/20/2015] [Indexed: 12/17/2022] Open
Abstract
Yeast cells have developed complex mechanisms to cope with extracellular insults. An increase in external osmolarity leads to activation of the stress-activated protein kinase Hog1, which is the main regulator of adaptive responses, such as gene expression and cell cycle progression, that are essential for cellular survival. Upon osmostress, the G1-to-S transition is regulated by Hog1 through stabilization of the cyclin-dependent kinase inhibitor Sic1 and the downregulation of G1 cyclin expression by an unclear mechanism. Here, we show that Hog1 interacts with and phosphorylates components of the core cell cycle transcriptional machinery such as Whi5 and the coregulator Msa1. Phosphorylation of these two transcriptional regulators by Hog1 is essential for inhibition of G1 cyclin expression, for control of cell morphogenesis, and for maximal cell survival upon stress. The control of both Whi5 and Msa1 by Hog1 also revealed the necessity for proper coordination of budding and DNA replication. Thus, Hog1 regulates G1 cyclin transcription upon osmostress to ensure coherent passage through Start.
Collapse
|
46
|
A Comprehensive Membrane Interactome Mapping of Sho1p Reveals Fps1p as a Novel Key Player in the Regulation of the HOG Pathway in S. cerevisiae. J Mol Biol 2015; 427:2088-103. [PMID: 25644660 DOI: 10.1016/j.jmb.2015.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/21/2015] [Accepted: 01/24/2015] [Indexed: 01/05/2023]
Abstract
Sho1p, an integral membrane protein, plays a vital role in the high-osmolarity glycerol (HOG) mitogen-activated protein kinase pathway in the yeast Saccharomyces cerevisiae. Activated under conditions of high osmotic stress, it interacts with other HOG pathway proteins to mediate cell signaling events, ensuring that yeast cells can adapt and remain viable. In an attempt to further understand how the function of Sho1p is regulated through its protein-protein interactions (PPIs), we identified 49 unique Sho1p PPIs through the use of membrane yeast two-hybrid (MYTH), an assay specifically suited to identify PPIs of full-length integral membrane proteins in their native membrane environment. Secondary validation by literature search, or two complementary PPI assays, confirmed 80% of these interactions, resulting in a high-quality Sho1p interactome. This set of putative PPIs included both previously characterized interactors, along with a large subset of interactors that have not been previously identified as binding to Sho1p. The SH3 domain of Sho1p was found to be important for binding to many of these interactors. One particular novel interactor of interest is the glycerol transporter Fps1p, which was shown to require the SH3 domain of Sho1p for binding via its N-terminal soluble regulatory domain. Furthermore, we found that Fps1p is involved in the positive regulation of Sho1p function and plays a role in the phosphorylation of the downstream kinase Hog1p. This study represents the largest membrane interactome analysis of Sho1p to date and complements past studies on the HOG pathway by increasing our understanding of Sho1p regulation.
Collapse
|
47
|
Sutcliffe EL, Rao S. Duplicity of protein kinase C-θ: Novel insights into human T-cell biology. Transcription 2014; 2:189-192. [PMID: 21922062 DOI: 10.4161/trns.2.4.16565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/16/2011] [Accepted: 06/21/2011] [Indexed: 01/13/2023] Open
Abstract
We recently reported on a new wrinkle of complexity in how eukaryotic genes are regulated by providing evidence for a hitherto unknown nuclear function of the signaling kinase, Protein Kinase C-theta (PKC-θ). This chromatin-anchored complex positively regulates inducible immune genes and negatively regulates target miRNA genes. These data challenge the traditional view of mammalian signaling kinases and provides new avenues for therapeutic drug design.
Collapse
Affiliation(s)
- Elissa L Sutcliffe
- Discipline of Biomedical Sciences; Faculty of Applied Science; University of Canberra; Canberra, Australia
| | | |
Collapse
|
48
|
Solé C, Nadal-Ribelles M, de Nadal E, Posas F. A novel role for lncRNAs in cell cycle control during stress adaptation. Curr Genet 2014; 61:299-308. [PMID: 25262381 PMCID: PMC4500851 DOI: 10.1007/s00294-014-0453-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/09/2014] [Accepted: 09/12/2014] [Indexed: 11/30/2022]
Abstract
Eukaryotic cells have developed sophisticated systems to constantly monitor changes in the extracellular environment and to orchestrate a proper cellular response. To maximize survival, cells delay cell-cycle progression in response to environmental changes. In response to extracellular insults, stress-activated protein kinases (SAPKs) modulate cell-cycle progression and gene expression. In yeast, osmostress induces activation of the p38-related SAPK Hog1, which plays a key role in reprogramming gene expression upon osmostress. Genomic analysis has revealed the existence of a large number of long non-coding RNAs (lncRNAs) with different functions in a variety of organisms, including yeast. Upon osmostress, hundreds of lncRNAs are induced by the SAPK p38/Hog1. One gene that expresses Hog1-dependent lncRNA in an antisense orientation is the CDC28 gene, which encodes CDK1 kinase that controls the cell cycle in yeast. Cdc28 lncRNA mediates the induction of CDC28 expression and this increase in the level of Cdc28 results in more efficient re-entry of the cells into the cell cycle after stress. Thus, the control of lncRNA expression as a new mechanism for the regulation of cell-cycle progression opens new avenues to understand how stress adaptation can be accomplished in response to changing environments.
Collapse
Affiliation(s)
- Carme Solé
- Cell Signaling unit, Departament de Ciències Experimentals i de la Salut, Cell Signaling Research Group, Universitat Pompeu Fabra (UPF), Dr Aiguader 88, E-08003 Barcelona, Spain
| | - Mariona Nadal-Ribelles
- Cell Signaling unit, Departament de Ciències Experimentals i de la Salut, Cell Signaling Research Group, Universitat Pompeu Fabra (UPF), Dr Aiguader 88, E-08003 Barcelona, Spain
| | - Eulàlia de Nadal
- Cell Signaling unit, Departament de Ciències Experimentals i de la Salut, Cell Signaling Research Group, Universitat Pompeu Fabra (UPF), Dr Aiguader 88, E-08003 Barcelona, Spain
| | - Francesc Posas
- Cell Signaling unit, Departament de Ciències Experimentals i de la Salut, Cell Signaling Research Group, Universitat Pompeu Fabra (UPF), Dr Aiguader 88, E-08003 Barcelona, Spain
| |
Collapse
|
49
|
Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther 2014; 4:117. [PMID: 24073831 PMCID: PMC3854789 DOI: 10.1186/scrt328] [Citation(s) in RCA: 448] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The standard procedure for the osteogenic differentiation of multipotent stem cells is treatment of a confluent monolayer with a cocktail of dexamethasone (Dex), ascorbic acid (Asc) and β-glycerophosphate (β-Gly). This review describes the effects of these substances on intracellular signaling cascades that lead to osteogenic differentiation of bone marrow stroma-derived stem cells. We conclude that Dex induces Runx2 expression by FHL2/β-catenin-mediated transcriptional activation and that Dex enhances Runx2 activity by upregulation of TAZ and MKP1. Asc leads to the increased secretion of collagen type I (Col1), which in turn leads to increased Col1/α2β1 integrin-mediated intracellular signaling. The phosphate from β-Gly serves as a source for the phosphate in hydroxylapatite and in addition influences intracellular signaling molecules. In this context we give special attention to the differences between dystrophic and bone-specific mineralization.
Collapse
|
50
|
Wang M, Chen C, Zhu C, Sun X, Ruan R, Li H. Os2 MAP kinase-mediated osmostress tolerance in Penicillium digitatum is associated with its positive regulation on glycerol synthesis and negative regulation on ergosterol synthesis. Microbiol Res 2014; 169:511-21. [DOI: 10.1016/j.micres.2013.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 01/01/2023]
|