1
|
Packmor F, Kishkinev D, Zechmeister T, Mouritsen H, Holland RA. Migratory birds can extract positional information from magnetic inclination and magnetic declination alone. Proc Biol Sci 2024; 291:rspb20241363. [PMID: 39532133 DOI: 10.1098/rspb.2024.1363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 07/23/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Migratory birds are able to navigate over great distances with remarkable accuracy. The mechanism they use to achieve this feat is thought to involve two distinct steps: locating their position (the 'map') and heading towards the direction determined (the 'compass'). For decades, this map-and-compass concept has shaped our perception of navigation in animals, although the nature of the map remains debated. However, some recent studies suggest the involvement of the Earth's magnetic field in the map step. Here, we tested whether migratory songbirds, Eurasian reed warblers (Acrocephalus scirpaceus), can determine their position based on two magnetic field components that are also associated with direction finding, i.e. magnetic inclination and magnetic declination. During a virtual magnetic displacement experiment, the birds were exposed to altered magnetic inclination and magnetic declination values that would indicate a displacement from their natural migratory corridor, but the total intensity of the field remained unchanged, creating a spatial mismatch between these components. The response was a change in the birds' migratory direction consistent with a compensatory re-orientation. This suggests that birds can extract positional as well as directional information from these cues, even when they are in conflict with another component of the magnetic field. It remains to be seen whether birds use the total intensity of Earth's magnetic field for navigation.
Collapse
Affiliation(s)
- Florian Packmor
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
- Lower Saxon Wadden Sea National Park Authority, Wilhelmshaven 26382, Germany
| | - Dmitry Kishkinev
- School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK
| | | | - Henrik Mouritsen
- Research group 'Neurosensorik/Animal Navigation', Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg 26129, Germany
- Research Center for Neurosensory Sciences, University of Oldenburg, Oldenburg 26129, Germany
| | - Richard A Holland
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| |
Collapse
|
2
|
MacAulay S, Cable J. Gyrodactylus in the spotlight: how exposure to light impacts disease and the feeding behavior of the freshwater tropical guppy (Poecilia reticulata). JOURNAL OF FISH BIOLOGY 2024; 105:682-690. [PMID: 38828698 DOI: 10.1111/jfb.15816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
Artificial light at night (ALAN) negatively impacts organisms in many ways, from their feeding behaviors to their response and ability to deal with disease. Our knowledge of ALAN is focused on hosts, but we must also consider their parasites, which constitute half of all described animal species. Here, we assessed the impact of light exposure on a model host-parasite system (Poecilia reticulata and the ectoparasitic monogenean Gyrodactylus turnbulli). First, parasite-free fish were exposed to 12:12 h light:dark (control) or 24:0 h light:dark (ALAN) for 21 days followed by experimental infection. Second, naturally acquired G. turnbulli infections were monitored for 28 days during exposure of their hosts to a specified light regime (6:18 h, 12:12 h, or 24:0 h light:dark). Experimentally infected fish exposed to constant light had, on average, a greater maximum parasite burden than controls, but no other measured parasite metrics were impacted. Host feeding behavior was also significantly affected: fish under ALAN fed faster and took more bites than controls, whilst fish exposed to reduced light fed slower. Thus, ALAN can impact parasite burdens, even in the short term, and altering light conditions will impact fish feeding behavior. Such responses could initiate disease outbreaks or perturb food-webs with wider ecological impacts.
Collapse
Affiliation(s)
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
3
|
Karwinkel T, Peter A, Holland RA, Thorup K, Bairlein F, Schmaljohann H. A conceptual framework on the role of magnetic cues in songbird migration ecology. Biol Rev Camb Philos Soc 2024; 99:1576-1593. [PMID: 38629349 DOI: 10.1111/brv.13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 07/06/2024]
Abstract
Migrating animals perform astonishing seasonal movements by orienting and navigating over thousands of kilometres with great precision. Many migratory species use cues from the sun, stars, landmarks, olfaction and the Earth's magnetic field for this task. Among vertebrates, songbirds are the most studied taxon in magnetic-cue-related research. Despite multiple studies, we still lack a clear understanding of when, where and how magnetic cues affect the decision-making process of birds and hence, their realised migratory behaviour in the wild. This understanding is especially important to interpret the results of laboratory experiments in an ecologically appropriate way. In this review, we summarise the current findings about the role of magnetic cues for migratory decisions in songbirds. First, we review the methodological principles for orientation and navigation research, specifically by comparing experiments on caged birds with experiments on free-flying birds. While cage experiments can show the sensory abilities of birds, studies with free-flying birds can characterise the ecological roles of magnetic cues. Second, we review the migratory stages, from stopover to endurance flight, in which songbirds use magnetic cues for their migratory decisions and incorporate this into a novel conceptual framework. While we lack studies examining whether and when magnetic cues affect orientation or navigation decisions during flight, the role of magnetic cues during stopover is relatively well studied, but mostly in the laboratory. Notably, many such studies have produced contradictory results so that understanding the biological importance of magnetic cues for decisions in free-flying songbirds is not straightforward. One potential explanation is that reproducibility of magnetic-cue experiments is low, probably because variability in the behavioural responses of birds among experiments is high. We are convinced that parts of this variability can be explained by species-specific and context-dependent reactions of birds to the study conditions and by the bird's high flexibility in whether they include magnetic cues in a decision or not. Ultimately, this review should help researchers in the challenging field of magnetoreception to design experiments meticulously and interpret results of such studies carefully by considering the migration ecology of their focal species.
Collapse
Affiliation(s)
- Thiemo Karwinkel
- Institute of Avian Research 'Vogelwarte Helgoland', An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
- Carl von Ossietzky Universität Oldenburg, School of Mathematics and Science, Institute of Biology and Environmental Sciences, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany
| | - Annika Peter
- Carl von Ossietzky Universität Oldenburg, School of Mathematics and Science, Institute of Biology and Environmental Sciences, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany
| | - Richard A Holland
- School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Kasper Thorup
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
| | - Franz Bairlein
- Institute of Avian Research 'Vogelwarte Helgoland', An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
- Max Planck Institute of Animal Behavior, Am Obstberg 1, Radolfzell, 78315, Germany
| | - Heiko Schmaljohann
- Institute of Avian Research 'Vogelwarte Helgoland', An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
- Carl von Ossietzky Universität Oldenburg, School of Mathematics and Science, Institute of Biology and Environmental Sciences, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany
| |
Collapse
|
4
|
Bai X, Zhu Z, Schwing A, Forsyth D, Gruev V. Learning a global underwater geolocalization model with sectoral transformer. OPTICS EXPRESS 2024; 32:20706-20718. [PMID: 38859446 DOI: 10.1364/oe.515192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/06/2024] [Indexed: 06/12/2024]
Abstract
Polarization-based underwater geolocalization presents an innovative method for positioning unmanned autonomous devices beneath the water surface, in environments where GPS signals are ineffective. While the state-of-the-art deep neural network (DNN) method achieves high-precision geolocalization based on sun polarization patterns in same-site tasks, its learning-based nature limits its generalizability to unseen sites and subsequently impairs its performance on cross-site tasks, where an unavoidable domain gap between training and test data exists. In this paper, we present an advanced Deep Neural Network (DNN) methodology, which includes a neural network built on a Transformer architecture, similar to the core of large language models such as ChatGPT, and integrates an unscented Kalman filter (UKF) for estimating underwater geolocation using polarization-based images. This combination effectively simulates the sun's daily trajectory, yielding enhanced performance across different locations and quicker inference speeds compared to current benchmarks. Following thorough analysis of over 10 million polarization images from four global locations, we conclude that our proposed technique significantly boosts cross-site geolocalization accuracy by around 28% when contrasted with traditional DNN methods.
Collapse
|
5
|
Romanova N, Utvenko G, Prokshina A, Cellarius F, Fedorishcheva A, Pakhomov A. Migratory birds are able to choose the appropriate migratory direction under dim yellow narrowband light. Proc Biol Sci 2023; 290:20232499. [PMID: 38113940 PMCID: PMC10730290 DOI: 10.1098/rspb.2023.2499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Currently, it is generally assumed that migratory birds are oriented in the appropriate migratory direction under UV, blue and green light (short-wavelength) and are unable to use their magnetic compass in total darkness and under yellow and red light (long-wavelength). However, it has also been suggested that the magnetic compass has two sensitivity peaks: in the short and long wavelengths, but with different intensities. In this project, we aimed to study the orientation of long-distance migrants, pied flycatchers (Ficedula hypoleuca), under different narrowband light conditions during autumn and spring migrations. The birds were tested in the natural magnetic field (NMF) and a changed magnetic field (CMF) rotated counterclockwise by 120° under dim green (autumn) and yellow (spring and autumn) light, which are on the 'threshold' between the short-wavelength and long-wavelength light. We showed that pied flycatchers (i) were completely disoriented under green light both in the NMF and CMF but (ii) showed the migratory direction in the NMF and the appropriate response to CMF under yellow light. Our data contradict the results of previous experiments under narrowband green and yellow light and raise doubts about the existence of only short-wavelength magnetoreception. The parameters of natural light change dramatically in spectral composition and intensity after local sunset, and the avian magnetic compass should be adapted to function properly under such constantly changing light conditions.
Collapse
Affiliation(s)
- Nadezhda Romanova
- Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991, Russia
| | - Gleb Utvenko
- Department of Vertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Biological Station Rybachy, Zoological Institute RAS, Kaliningrad Region, Rybachy 238535, Russia
| | - Anisia Prokshina
- Department of Vertebrate Zoology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Fyodor Cellarius
- Department of Vertebrate Zoology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | | | - Alexander Pakhomov
- Biological Station Rybachy, Zoological Institute RAS, Kaliningrad Region, Rybachy 238535, Russia
| |
Collapse
|
6
|
Muheim R, Phillips JB. Effects of low-level RF fields reveal complex pattern of magnetic input to the avian magnetic compass. Sci Rep 2023; 13:19970. [PMID: 37968316 PMCID: PMC10651899 DOI: 10.1038/s41598-023-46547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
The avian magnetic compass can be disrupted by weak narrow-band and broadband radio-frequency (RF) fields in the lower MHz range. However, it is unclear whether disruption of the magnetic compass results from the elimination of the perception pattern produced by the magnetic field or from qualitative changes that make the pattern unrecognizable. We show that zebra finches trained in a 4-arm maze to orient relative to the magnetic field are disoriented when tested in the presence of low-level (~ 10 nT) Larmor-frequency RF fields. However, they are able to orient when tested in such RF fields if trained under this condition, indicating that the RF field alters, but does not eliminate, the magnetic input. Larmor-frequency RF fields of higher intensities, with or without harmonics, dramatically alter the magnetic compass response. In contrast, exposure to broadband RF fields in training, in testing, or in both training and testing eliminates magnetic compass information. These findings demonstrate that low-level RF fields at intensities found in many laboratory and field experiments may have very different effects on the perception of the magnetic field in birds, depending on the type and intensity of the RF field, and the birds' familiarity with the RF-generated pattern.
Collapse
Affiliation(s)
- Rachel Muheim
- Department of Biology, Lund University, Biology Building, 223 62, Lund, Sweden.
| | - John B Phillips
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0406, USA
| |
Collapse
|
7
|
McLaren JD, Schmaljohann H, Blasius B. Gauge-and-compass migration: inherited magnetic headings and signposts can adapt to changing geomagnetic landscapes. MOVEMENT ECOLOGY 2023; 11:37. [PMID: 37408064 DOI: 10.1186/s40462-023-00406-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND For many migratory species, inexperienced (naïve) individuals reach remote non-breeding areas independently using one or more inherited compass headings and, potentially, magnetic signposts to gauge where to switch between compass headings. Inherited magnetic-based migration has not yet been assessed as a population-level process, particularly across strong geomagnetic gradients or where long-term geomagnetic shifts (hereafter, secular variation) could create mismatches with magnetic headings. Therefore, it remains unclear whether inherited magnetic headings and signposts could potentially adapt to secular variation under natural selection. METHODS To address these unknowns, we modelled migratory orientation programs using an evolutionary algorithm incorporating global geomagnetic data (1900-2023). Modelled population mixing incorporated both natal dispersal and trans-generational inheritance of magnetic headings and signposts, including intrinsic (stochastic) variability in inheritance. Using the model, we assessed robustness of trans-hemispheric migration of a migratory songbird whose Nearctic breeding grounds have undergone rapid secular variation (mean 34° clockwise drift in declination, 1900-2023), and which travels across strong geomagnetic gradients via Europe to Africa. RESULTS Model-evolved magnetic-signposted migration was overall successful throughout the 124-year period, with 60-90% mean successful arrival across a broad range in plausible precision in compass headings and gauging signposts. Signposted migration reduced trans-Atlantic flight distances and was up to twice as successful compared with non-signposted migration. Magnetic headings shifted plastically in response to the secular variation (mean 16°-17° among orientation programs), whereas signpost latitudes were more constrained (3°-5° mean shifts). This plasticity required intrinsic variability in inheritance (model-evolved σ ≈ 2.6° standard error), preventing clockwise secular drift from causing unsustainable open-ocean flights. CONCLUSIONS Our study supports the potential long-term viability of inherited magnetic migratory headings and signposts, and illustrates more generally how inherited migratory orientation programs can both mediate and constrain evolution of routes, in response to global environmental change.
Collapse
Affiliation(s)
- James D McLaren
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26129, Oldenburg, Germany.
| | - Heiko Schmaljohann
- Institute for Biology and Environmental Sciences (IBU), Carl Von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany
- Institute of Avian Research, 26386, Wilhelmshaven, Germany
| | - Bernd Blasius
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26129, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, 26129, Oldenburg, Germany
| |
Collapse
|
8
|
Cooper NW, Dossman BC, Berrigan LE, Brown JM, Cormier DA, Bégin-Marchand C, Rodewald AD, Taylor PD, Tremblay JA, Marra PP. Atmospheric pressure predicts probability of departure for migratory songbirds. MOVEMENT ECOLOGY 2023; 11:23. [PMID: 37122025 PMCID: PMC10150475 DOI: 10.1186/s40462-022-00356-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/22/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Weather can have both delayed and immediate impacts on animal populations, and species have evolved behavioral adaptions to respond to weather conditions. Weather has long been hypothesized to affect the timing and intensity of avian migration, and radar studies have demonstrated strong correlations between weather and broad-scale migration patterns. How weather affects individual decisions about the initiation of migratory flights, particularly at the beginning of migration, remains uncertain. METHODS Here, we combine automated radio telemetry data from four species of songbirds collected at five breeding and wintering sites in North America with hourly weather data from a global weather model. We use these data to determine how wind profit, atmospheric pressure, precipitation, and cloud cover affect probability of departure from breeding and wintering sites. RESULTS We found that the probability of departure was related to changes in atmospheric pressure, almost completely regardless of species, season, or location. Individuals were more likely to depart on nights when atmospheric pressure had been rising over the past 24 h, which is predictive of fair weather over the next several days. By contrast, wind profit, precipitation, and cloud cover were each only informative predictors of departure probability in a single species. CONCLUSIONS Our results suggest that individual birds actively use weather information to inform decision-making regarding the initiation of departure from the breeding and wintering grounds. We propose that birds likely choose which date to depart on migration in a hierarchical fashion with weather not influencing decision-making until after the departure window has already been narrowed down by other ultimate and proximate factors.
Collapse
Affiliation(s)
- Nathan W Cooper
- Migratory Bird Center, Smithsonian's National Zoo and Conservation Biology Institute, MRC 5503, 3001 Connecticut Ave. NW, Washington, DC, 20013, USA.
| | - Bryant C Dossman
- Department of Biology and McCourt School of Public Policy, Georgetown University, 37th and O Streets NW, Washington, DC, 20057, USA
- Cornell Lab of Ornithology and Department of Natural Resources and the Environment, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA
| | - Lucas E Berrigan
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
- Motus Wildlife Tracking System, Birds Canada, Port Rowan, ON, N0E 1M0, Canada
| | - J Morgan Brown
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
- Wildlife Conservation Society Canada, 169 Titanium Way, Whitehorse, YT, Y1A 0E9, Canada
| | - Dominic A Cormier
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
| | - Camille Bégin-Marchand
- Wildlife Research Division, Environment and Climate Change Canada, 1550 Av. D'Estimauville, Québec, QC, G1J 0C3, Canada
| | - Amanda D Rodewald
- Cornell Lab of Ornithology and Department of Natural Resources and the Environment, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA
| | - Philip D Taylor
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
| | - Junior A Tremblay
- Wildlife Research Division, Environment and Climate Change Canada, 1550 Av. D'Estimauville, Québec, QC, G1J 0C3, Canada
| | - Peter P Marra
- Department of Biology and McCourt School of Public Policy, Georgetown University, 37th and O Streets NW, Washington, DC, 20057, USA
| |
Collapse
|
9
|
Cooper NW, Dossman BC, Berrigan LE, Brown JM, Brunner AR, Chmura HE, Cormier DA, Bégin-Marchand C, Rodewald AD, Taylor PD, Tonra CM, Tremblay JA, Marra PP. Songbirds initiate migratory flights synchronously relative to civil dusk. MOVEMENT ECOLOGY 2023; 11:24. [PMID: 37122011 PMCID: PMC10150543 DOI: 10.1186/s40462-023-00382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Each spring and fall billions of songbirds depart on nocturnal migrations across the globe. Theory suggests that songbirds should depart on migration shortly after sunset to maximize their potential for nightly flight duration or to time departure with the emergence of celestial cues needed for orientation and navigation. Although captive studies have found that songbirds depart during a narrow window of time after sunset, observational studies have found that wild birds depart later and more asynchronously relative to sunset than predicted. METHODS We used coded radio tags and automated radio-telemetry to estimate the time that nearly 400 individuals from nine songbird species departed their breeding or wintering grounds across North America. We also assessed whether each species was most likely beginning long-distance migratory flights at departure or instead first making non-migratory regional flights. We then explored variation in nocturnal departure time by post-departure movement type, species, age, sex, and season. RESULTS We found that 90% of individuals from species that were likely initiating long-distance migratory flights departed within 69 min of civil dusk, regardless of species, season, age, or sex. By contrast, species that likely first made non-migratory regional movements away from the migratory destination departed later and more asynchronously throughout the night. Regardless of post-departure movement type, 98% of individuals departed after civil dusk but otherwise showed no preference in relation to twilight phase. CONCLUSIONS Although the presence of celestial orientation cues at civil dusk may set a starting point for departure each night, the fact that species likely beginning long-distance migration departed earlier and more synchronously relative to civil dusk than those first making non-migratory regional movements is consistent with the hypothesis that departing promptly after civil dusk functions to maximize the potential for nightly flight duration and distance. By studying the onset of migration, our study provides baseline information about departure decisions that may enhance our understanding of departure timing throughout migration.
Collapse
Affiliation(s)
- Nathan W Cooper
- Migratory Bird Center, Smithsonian's National Zoo and Conservation Biology Institute, 3001 Connecticut Ave. NW - MRC 5503, Washington, DC, 20008, USA.
| | - Bryant C Dossman
- Department of Biology and McCourt School of Public Policy, Georgetown University, 37th and O Streets NW, Washington, DC, 20057, USA
- Cornell Lab of Ornithology, Department of Natural Resources and the Environment, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA
| | - Lucas E Berrigan
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
- Motus Wildlife Tracking System, N0E 1M0, Birds, Port Rowan, ON, Canada
| | - J Morgan Brown
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 904 Science Park, 1098XH, Amsterdam, The Netherlands
| | - Alicia R Brunner
- Cornell Lab of Ornithology, Department of Natural Resources and the Environment, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Rd, 43210, Columbus, OH, USA
| | - Helen E Chmura
- Rocky Mountain Research Station, USDA Forest Service, 800 East Beckwith Avenue, 59801, Missoula, MT, USA
| | - Dominic A Cormier
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
| | - Camille Bégin-Marchand
- Wildlife Research Division, Environment and Climate Change Canada, 1550 Av. D'Estimauville, G1J 0C3, Québec, QC, Canada
| | - Amanda D Rodewald
- Cornell Lab of Ornithology, Department of Natural Resources and the Environment, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA
| | - Philip D Taylor
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
| | - Christopher M Tonra
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Rd, 43210, Columbus, OH, USA
| | - Junior A Tremblay
- Wildlife Research Division, Environment and Climate Change Canada, 1550 Av. D'Estimauville, G1J 0C3, Québec, QC, Canada
| | - Peter P Marra
- Department of Biology and McCourt School of Public Policy, Georgetown University, 37th and O Streets NW, Washington, DC, 20057, USA
| |
Collapse
|
10
|
Dufour P, Åkesson S, Hellström M, Hewson C, Lagerveld S, Mitchell L, Chernetsov N, Schmaljohann H, Crochet PA. The Yellow-browed Warbler (Phylloscopus inornatus) as a model to understand vagrancy and its potential for the evolution of new migration routes. MOVEMENT ECOLOGY 2022; 10:59. [PMID: 36517925 PMCID: PMC9753335 DOI: 10.1186/s40462-022-00345-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/30/2022] [Indexed: 06/17/2023]
Abstract
Why and how new migration routes emerge remain fundamental questions in ecology, particularly in the context of current global changes. In its early stages, when few individuals are involved, the evolution of new migration routes can be easily confused with vagrancy, i.e. the occurrence of individuals outside their regular breeding, non-breeding or migratory distribution ranges. Yet, vagrancy can in theory generate new migration routes if vagrants survive, return to their breeding grounds and transfer their new migration route to their offspring, thus increasing a new migratory phenotype in the population. Here, we review the conceptual framework and empirical challenges of distinguishing regular migration from vagrancy in small obligate migratory passerines and explain how this can inform our understanding of migration evolution. For this purpose, we use the Yellow-browed Warbler (Phylloscopus inornatus) as a case study. This Siberian species normally winters in southern Asia and its recent increase in occurrence in Western Europe has become a prominent evolutionary puzzle. We first review and discuss available evidence suggesting that the species is still mostly a vagrant in Western Europe but might be establishing a new migration route initiated by vagrants. We then list possible empirical approaches to check if some individuals really undertake regular migratory movements between Western Europe and Siberia, which would make this species an ideal model for studying the links between vagrancy and the emergence of new migratory routes.
Collapse
Affiliation(s)
- Paul Dufour
- LECA, CNRS, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, Grenoble, France.
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden.
| | - Susanne Åkesson
- Department of Biology, Center for Animal Movement Research, Lund University, Ecology Building, 22362, Lund, Sweden
| | | | - Chris Hewson
- British Trust for Ornithology, The Nunnery, Thetford, Norfolk, IP27 2PU, UK
| | - Sander Lagerveld
- Wageningen University & Research, Ankerpark 27, 1781 AG, Den Helder, Netherlands
| | - Lucy Mitchell
- Environmental Research Institute, Centre for Energy and Environment (CfEE), The North Highland College UHI, Ormlie Road, Thurso, KW14 7EE, UK
| | - Nikita Chernetsov
- Ornithology Lab, Zoological Institute RAS, 1 Universitetskaya Emb, 199034, St. Petersburg, Russia
- Department of Vertebrate Zoology, St. Petersburg State University, 7-9 Universitetskaya Emb, 199034, St. Petersburg, Russia
| | - Heiko Schmaljohann
- Institute for Biology and Environmental Sciences (IBU), Car Von Ossietzky University of Oldenburg, Carl-Von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
- Institute of Avian Research, An Der Vogelwarte 21, 26386, Wilhelmshaven, Germany
| | | |
Collapse
|
11
|
Hamblin MR. Role of Polarized Light in Photobiomodulation. Photobiomodul Photomed Laser Surg 2022; 40:775-776. [PMID: 36507767 DOI: 10.1089/photob.2022.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg-Doornfontein Campus, Doornfontein, South Africa
| |
Collapse
|
12
|
McLaren JD, Schmaljohann H, Blasius B. Predicting performance of naïve migratory animals, from many wrongs to self-correction. Commun Biol 2022; 5:1058. [PMID: 36195660 PMCID: PMC9532420 DOI: 10.1038/s42003-022-03995-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Migratory orientation of many animals is inheritable, enabling inexperienced (naïve) individuals to migrate independently using a geomagnetic or celestial compass. It remains unresolved how naïve migrants reliably reach remote destinations, sometimes correcting for orientation error or displacement. To assess naïve migratory performance (successful arrival), we simulate and assess proposed compass courses for diverse airborne migratory populations, accounting for spherical-geometry effects, compass precision, cue transfers (e.g., sun to star compass), and geomagnetic variability. We formulate how time-compensated sun-compass headings partially self-correct, according to how inner-clocks are updated. For the longest-distance migrations simulated, time-compensated sun-compass courses are most robust to error, and most closely resemble known routes. For shorter-distance nocturnal migrations, geomagnetic or star-compass courses are most robust, due to not requiring nightly cue-transfers. Our predictive study provides a basis for assessment of compass-based naïve migration and mechanisms of self-correction, and supports twilight sun-compass orientation being key to many long-distance inaugural migrations. A model is developed for assessing compass-based naïve animal migration, revealing effects of spherical geometry on migratory performance, and related mechanisms of self-correction.
Collapse
Affiliation(s)
- James D McLaren
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26129, Oldenburg, Germany.
| | - Heiko Schmaljohann
- Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany.,Institute of Avian Research, 26386, Wilhelmshaven, Germany
| | - Bernd Blasius
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26129, Oldenburg, Germany.,Helmholtz Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, 26129, Oldenburg, Germany
| |
Collapse
|
13
|
Xu H, Ding B, Xu Y, Huang Z, Wei D, Chen S, Lan T, Pan Y, Cheng HM, Liu B. Magnetically tunable and stable deep-ultraviolet birefringent optics using two-dimensional hexagonal boron nitride. NATURE NANOTECHNOLOGY 2022; 17:1091-1096. [PMID: 35953540 DOI: 10.1038/s41565-022-01186-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Birefringence is a fundamental optical property that can induce phase retardation of polarized light. Tuning the birefringence of liquid crystals is a core technology for light manipulation in current applications in the visible and infrared spectral regions. Due to the strong absorption or instability of conventional liquid crystals in deep-ultraviolet light, tunable birefringence remains elusive in this region, notwithstanding its significance in diverse applications. Here we show a stable and birefringence-tunable deep-ultraviolet modulator based on two-dimensional hexagonal boron nitride. It has an extremely large optical anisotropy factor of 6.5 × 10-12 C2 J-1 m-1 that gives rise to a specific magneto-optical Cotton-Mouton coefficient of 8.0 × 106 T-2 m-1, which is about five orders of magnitude higher than other potential deep-ultraviolet-transparent media. The large coefficient, high stability (retention rate of 99.7% after 270 cycles) and wide bandgap of boron nitride collectively enable the fabrication of stable deep-ultraviolet modulators with magnetically tunable birefringence.
Collapse
Affiliation(s)
- Hao Xu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Baofu Ding
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
- Institute of Technology for Carbon Neutrality/Faculty of Materials Science and Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Youan Xu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Xi'an Research Institute of High Technology, Xi'an, China
| | - Ziyang Huang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Dahai Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
| | - Shaohua Chen
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Tianshu Lan
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yikun Pan
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Hui-Ming Cheng
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
- Institute of Technology for Carbon Neutrality/Faculty of Materials Science and Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China.
- Advanced Technology Institute, University of Surrey, Guildford, UK.
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
14
|
Flack A, Aikens EO, Kölzsch A, Nourani E, Snell KR, Fiedler W, Linek N, Bauer HG, Thorup K, Partecke J, Wikelski M, Williams HJ. New frontiers in bird migration research. Curr Biol 2022; 32:R1187-R1199. [DOI: 10.1016/j.cub.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Pakhomov A, Prokshina A, Cellarius F, Mouritsen H, Chernetsov N. Access to the sky near the horizon and stars does not play a crucial role in compass calibration of European songbird migrants. J Exp Biol 2022; 225:276374. [PMID: 35903997 DOI: 10.1242/jeb.243631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
Migratory birds use different global cues including celestial and magnetic information to determine and maintain their seasonally appropriate migratory direction. A hierarchy among different compass systems in songbird migrants is still a matter for discussion due to highly variable and apparently contradictory results obtained in various experimental studies. How birds decide whether or not and how they should calibrate their compasses before departure remains unclear. A recent "extended unified theory" suggested that access to both a view of the sky near the horizon and stars during the cue-conflict exposure might be crucial for the results of cue-conflict experiments. In this study, we performed cue-conflict experiments in three European songbird species with different migratory strategies (garden warblers Sylvia borin, pied flycatcher Ficedula hypoleuca and European robin Erithacus rubecula; juveniles and adults; spring and autumn migrations) using a uniform experimental protocol. We exposed birds to the natural celestial cues in a shifted (120° clock/counterclockwise) magnetic field from sunset to the end of the nautical twilight and tested them in orientation cages immediately after cue-conflict treatments. None of the species (apart from adult robins) showed any sign of calibration even if they had access to a view of the sky and local surroundings near the horizon and stars during cue-conflict treatments. Based on results of our experiments and data of previous contradictory studies, we suggest that no uniform theory can explain why birds calibrate or do not calibrate their compass systems. Each species (and possibly even different populations) may choose its calibration strategy differently.
Collapse
Affiliation(s)
- Alexander Pakhomov
- Biological Station Rybachy, Zoological Institute RAS, Rybachy 238535, Kaliningrad Region, Russia
| | - Anisia Prokshina
- Department of Vertebrate Zoology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Fedor Cellarius
- Department of Vertebrate Zoology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Henrik Mouritsen
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-Universität Oldenburg, 26111 Oldenburg, Germany.,Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Strasse 9-11, 26129 Oldenburg, Germany
| | - Nikita Chernetsov
- Biological Station Rybachy, Zoological Institute RAS, Rybachy 238535, Kaliningrad Region, Russia.,Department of Vertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
16
|
Temporal and Spatial Characteristics of the Global Skylight Polarization Vector Field. REMOTE SENSING 2022. [DOI: 10.3390/rs14092193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There are two widely recognized global fields in nature: the gravity field and the geomagnetic field. Universal gravitation and Earth rotation are important sources of the Earth’s gravity and geomagnetic fields, which are well known to us. After years of long-term observation, global research, and analysis, it was discovered that we have neglected a direct incident energy of the universe on the Earth. Solar radiation, leading to energy exchange from the atmosphere 100 km above the land surface, is the energy source of the Earth. Polarization is one of the four basic physical properties of solar radiation. After the solar radiation reaches the surface of these media, it reflects, scatters or refracts, and exhibits different degrees of polarization. The polarized solar light forms the Earth–sky polarization vector field. The polarized light dispersion is expected to become a new method for global analysis of the human environment. Polarization detection is the best way to accurately explore the atmospheric effects. Local polarized skylight distribution was found in different sites in the world; however, the global distribution of the polarized sunlight radiation has never been explored. In this paper, we investigate the Global Skylight Polarization Field. This study aimed at providing new insight into the laws of polarization over our Earth. We use a Rayleigh scattering model to obtain the simulation results of the sky polarization field. Rayleigh scattering occurs when the particle size is much smaller than the wavelength of the incident electromagnetic wave. We also use a polarized fisheye camera to collect the sky polarization image and calculate the distribution pattern of the DOLP (degree of linear polarization) and AOLP (azimuth of linear polarization) of the skylight. The stability and gradual change in the degree of polarization in the zenith direction are verified, and the distribution law and daily change law of the degree of polarization in the sky are obtained. With the increase in the solar altitude angle, the degree of polarization will decrease. We also observed the skylight polarization in different weather conditions. Our results demonstrate the physical basis, characteristics, and usability of the polarization field. They show an inevitable trend from optical remote sensing to polarization remote sensing.
Collapse
|
17
|
Schmaljohann H, Eikenaar C, Sapir N. Understanding the ecological and evolutionary function of stopover in migrating birds. Biol Rev Camb Philos Soc 2022; 97:1231-1252. [PMID: 35137518 DOI: 10.1111/brv.12839] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022]
Abstract
Global movement patterns of migratory birds illustrate their fascinating physical and physiological abilities to cross continents and oceans. During their voyages, most birds land multiple times to make so-called 'stopovers'. Our current knowledge on the functions of stopover is mainly based on the proximate study of departure decisions. However, such studies are insufficient to gauge fully the ecological and evolutionary functions of stopover. If we study how a focal trait, e.g. changes in energy stores, affects the decision to depart from a stopover without considering the trait(s) that actually caused the bird to land, e.g. unfavourable environmental conditions for flight, we misinterpret the function of the stopover. It is thus important to realise and acknowledge that stopovers have many different functions, and that not every migrant has the same (set of) reasons to stop-over. Additionally, we may obtain contradictory results because the significance of different traits to a migrant is context dependent. For instance, late spring migrants may be more prone to risk-taking and depart from a stopover with lower energy stores than early spring migrants. Thus, we neglect that departure decisions are subject to selection to minimise immediate (mortality risk) and/or delayed (low future reproductive output) fitness costs. To alleviate these issues, we first define stopover as an interruption of migratory endurance flight to minimise immediate and/or delayed fitness costs. Second, we review all probable functions of stopover, which include accumulating energy, various forms of physiological recovery and avoiding adverse environmental conditions for flight, and list potential other functions that are less well studied, such as minimising predation, recovery from physical exhaustion and spatiotemporal adjustments to migration. Third, derived from these aspects, we argue for a paradigm shift in stopover ecology research. This includes focusing on why an individual interrupts its migratory flight, which is more likely to identify the individual-specific function(s) of the stopover correctly than departure-decision studies. Moreover, we highlight that the selective forces acting on stopover decisions are context dependent and are expected to differ between, e.g. K-/r-selected species, the sexes and migration strategies. For example, all else being equal, r-selected species (low survival rate, high reproductive rate) should have a stronger urge to continue the migratory endurance flight or resume migration from a stopover because the potential increase in immediate fitness costs suffered from a flight is offset by the expected higher reproductive success in the subsequent breeding season. Finally, we propose to focus less on proximate mechanisms controlling landing and departure decisions, and more on ultimate mechanisms to identify the selective forces shaping stopover decisions. Our ideas are not limited to birds but can be applied to any migratory species. Our revised definition of stopover and the proposed paradigm shift has the potential to stimulate a fruitful discussion towards a better evolutionary ecological understanding of the functions of stopover. Furthermore, identifying the functions of stopover will support targeted measures to conserve and restore the functionality of stopover sites threatened by anthropogenic environmental changes. This is especially important for long-distance migrants, which currently are in alarming decline.
Collapse
Affiliation(s)
- Heiko Schmaljohann
- Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, Oldenburg, 26129, Germany.,Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven, 26386, Germany
| | - Cas Eikenaar
- Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven, 26386, Germany
| | - Nir Sapir
- Department of Evolutionary and Environmental Biology and the Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave, Haifa, 3498838, Israel
| |
Collapse
|
18
|
Phillips J, Muheim R, Painter M, Raines J, Anderson C, Landler L, Dommer D, Raines A, Deutschlander M, Whitehead J, Fitzpatrick NE, Youmans P, Borland C, Sloan K, McKenna K. Why is it so difficult to study magnetic compass orientation in murine rodents? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:197-212. [PMID: 35094127 DOI: 10.1007/s00359-021-01532-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 01/21/2023]
Abstract
A magnetic compass sense has been demonstrated in all major classes of vertebrates, as well as in many invertebrates. In mammals, controlled laboratory studies of mice have provided evidence for a robust magnetic compass that is comparable to, or exceeds, the performance of that in other animals. Nevertheless, the vast majority of laboratory studies of spatial behavior and cognition in murine rodents have failed to produce evidence of sensitivity to magnetic cues. Given the central role that a magnetic compass sense plays in the spatial ecology and cognition of non-mammalian vertebrates, and the potential utility that a global/universal reference frame derived from the magnetic field would have in mammals, the question of why responses to magnetic cues have been so difficult to demonstrate reliably is of considerable importance. In this paper, we review evidence that the magnetic compass of murine rodents shares a number of properties with light-dependent compasses in a wide variety of other animals generally believed to be mediated by a radical pair mechanism (RPM) or related quantum process. Consistent with the RPM, we summarize both published and previously unpublished findings suggesting that the murine rodent compass is sensitive to low-level radio frequency (RF) fields. Finally, we argue that the presence of anthropogenic RF fields in laboratory settings, may be an important source of variability in responses of murine rodents to magnetic cues.
Collapse
Affiliation(s)
- John Phillips
- Dept of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0406, USA.
| | - Rachel Muheim
- Dept of Biology, Lund University, Biology Building, 223 62, Lund, Sweden
| | - Michael Painter
- Dept of Biology, Barry University, 11300 NE 2nd Ave, Miami, FL, 33161, USA
| | - Jenny Raines
- University of Virginia, 409 Lane Road, Charlottesville, VA, 22908, USA
| | - Chris Anderson
- Electrical Engineering Dept, US Naval Academy, 105 Maryland Ave, Annapolis, MD, 21402, USA
| | - Lukas Landler
- Institute of Zoology, University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Straße 33/I, 1180, Vienna, Austria
| | - Dave Dommer
- University of Mount Olive, 5001 South Miami Boulevard, Durham, NC, 27703, USA
| | - Adam Raines
- Dept of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0406, USA
| | - Mark Deutschlander
- Dept of Biology, Hobart and William Smith Colleges, 300 Pulteney St., Geneva, NY, 14456, USA
| | - John Whitehead
- Dept of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0406, USA
| | | | - Paul Youmans
- Dept of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0406, USA
| | - Chris Borland
- Civic Champs, 642 N. Madison St., Suite 116, Bloomington, IN, 47404, USA
| | - Kelly Sloan
- Sanibel Captiva Conservation Foundation, 3333 Sanibel Captiva Rd, PO Box 839, Sanibel, FL, 33957, USA
| | - Kaitlyn McKenna
- Dept of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0406, USA
| |
Collapse
|
19
|
Bianco G, Köhler RC, Ilieva M, Åkesson S. The importance of time of day for magnetic body alignment in songbirds. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:135-144. [PMID: 34997291 PMCID: PMC8918448 DOI: 10.1007/s00359-021-01536-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 10/25/2022]
Abstract
Spontaneous magnetic alignment is the simplest known directional response to the geomagnetic field that animals perform. Magnetic alignment is not a goal directed response and its relevance in the context of orientation and navigation has received little attention. Migratory songbirds, long-standing model organisms for studying magnetosensation, have recently been reported to align their body with the geomagnetic field. To explore whether the magnetic alignment behaviour in songbirds is involved in the underlying mechanism for compass calibration, which have been suggested to occur near to sunset, we studied juvenile Eurasian reed warblers (Acrocephalus scirpaceus) captured at stopover during their first autumn migration. We kept one group of birds in local daylight conditions and an experimental group under a 2 h delayed sunset. We used an ad hoc machine learning algorithm to track the birds' body alignment over a 2-week period. Our results show that magnetic body alignment occurs prior to sunset, but shifts to a more northeast-southwest alignment afterwards. Our findings support the hypothesis that body alignment could be associated with how directional celestial and magnetic cues are integrated in the compass of migratory birds.
Collapse
Affiliation(s)
- Giuseppe Bianco
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden.
| | - Robin Clemens Köhler
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Mihaela Ilieva
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113, Sofia, Bulgaria
| | - Susanne Åkesson
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden.
| |
Collapse
|
20
|
Zolotareva AD, Chernetsov NS. Celestial Orientation in Birds. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021090259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Packmor F, Kishkinev D, Bittermann F, Kofler B, Machowetz C, Zechmeister T, Zawadzki LC, Guilford T, Holland RA. A magnet attached to the forehead disrupts magnetic compass orientation in a migratory songbird. J Exp Biol 2021; 224:jeb243337. [PMID: 34713887 PMCID: PMC8645232 DOI: 10.1242/jeb.243337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022]
Abstract
For studies on magnetic compass orientation and navigation performance in small bird species, controlled experiments with orientation cages inside an electromagnetic coil system are the most prominent methodological paradigm. These are, however, not applicable when studying larger bird species and/or orientation behaviour during free flight. For this, researchers have followed a very different approach, attaching small magnets to birds, with the intention of depriving them of access to meaningful magnetic information. Unfortunately, results from studies using this approach appear rather inconsistent. As these are based on experiments with birds under free-flight conditions, which usually do not allow exclusion of other potential orientation cues, an assessment of the overall efficacy of this approach is difficult to conduct. Here, we directly tested the efficacy of small magnets for temporarily disrupting magnetic compass orientation in small migratory songbirds using orientation cages under controlled experimental conditions. We found that birds which have access to the Earth's magnetic field as their sole orientation cue show a general orientation towards their seasonally appropriate migratory direction. When carrying magnets on their forehead under these conditions, the same birds become disoriented. However, under changed conditions that allow birds access to other (i.e. celestial) orientation cues, any disruptive effect of the magnets they carry appears obscured. Our results provide clear evidence for the efficacy of the magnet approach for temporarily disrupting magnetic compass orientation in birds, but also reveal its limitations for application in experiments under free-flight conditions.
Collapse
Affiliation(s)
- Florian Packmor
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
- Institute of Avian Research ‘Vogelwarte Helgoland’, Wilhelmshaven 26386, Germany
| | - Dmitry Kishkinev
- School of Life Sciences, Keele University, Newcastle-under-Lyme ST5 5BG, UK
| | - Flora Bittermann
- Biological Station Lake Neusiedl, Illmitz 7142, Austria
- Nationalpark Neusiedler See – Seewinkel, Apetlon 7143, Austria
- Austrian Ornithological Centre, Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, 1160 Wien, Austria
| | | | - Clara Machowetz
- Biological Station Lake Neusiedl, Illmitz 7142, Austria
- Nationalpark Neusiedler See – Seewinkel, Apetlon 7143, Austria
- Austrian Ornithological Centre, Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, 1160 Wien, Austria
| | | | | | - Tim Guilford
- Department of Zoology, Oxford University, Oxford OX1 3SZ, UK
| | | |
Collapse
|
22
|
Liu Y, Hong Y, Lu Z, Zhang H, Xiong J, Zhao D, Shen C, Yu H. An optimized pulse coupled neural network image de-noising method for a field-programmable gate array based polarization camera. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:113703. [PMID: 34852566 DOI: 10.1063/5.0056983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The quality of polarization images is easy to be affected by the noise in the image acquired by a polarization camera. Consequently, a de-noising method optimized with a Pulse Coupled Neural Network (PCNN) for polarization images is proposed for a Field-Programmable Gate Array (FPGA)-based polarization camera in this paper, in which the polarization image de-noising is implemented using an adaptive PCNN improved by Gray Wolf Optimization (GWO) and Bi-Dimensional Empirical Mode Decomposition (BEMD). Unlike other artificial neural networks, PCNN does not need to be trained, but the parameters of PCNN such as the exponential decay time constant, the synaptic junction strength factor, and the inherent voltage constant play a critical influence on its de-noising performance. GWO is able to start optimization by generating a set of random solutions as the first population and saves the optimized solutions of PCNN. In addition, BEMD can decompose a complicated image into different Bi-Dimensional Intrinsic Mode Functions with local stabilized characteristics according to the input source image, and the decomposition result is able to lower the complexity of heavy noise image analysis. Moreover, the circuit in the polarization camera is accomplished by FPGA so as to obtain the polarization image with higher quality synchronously. These two schemes are combined to attenuate different types of noises and improve the quality of the polarization image significantly. Compared with the state-of-the-art image de-noising algorithms, the noise in the polarization image is suppressed effectively by the proposed optimized image de-noising method according to the indices of peak signal-to-noise ratio, standard deviation, mutual information, structural similarity, and root mean square error.
Collapse
Affiliation(s)
- Yueze Liu
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| | - Yingping Hong
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| | - Zhumao Lu
- State Grid Shanxi Electric Power Research Institute, Taiyuan 030051, People's Republic of China
| | - Huixin Zhang
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| | - Jijun Xiong
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| | - Donghua Zhao
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| | - Chong Shen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| | - Hua Yu
- State Grid Shanxi Electric Power Research Institute, Taiyuan 030051, People's Republic of China
| |
Collapse
|
23
|
Brown HKM, Rubega M, Dierssen HM. The light's in my eyes: optical modeling demonstrates wind is more important than sea surface-reflected sunlight for foraging herons. PeerJ 2021; 9:e12006. [PMID: 34692240 PMCID: PMC8485832 DOI: 10.7717/peerj.12006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 07/27/2021] [Indexed: 11/20/2022] Open
Abstract
Multiple lineages of birds have independently evolved foraging strategies that involve catching aquatic prey by striking at them through the water’s surface. Diurnal, visual predators that hunt across the air-water interface encounter several visual challenges, including sun glint, or reflection of sunlight by the water surface. Intense sun glint is common at the air-water interface, and it obscures visual cues from submerged prey. Visually-hunting, cross-media predators must therefore solve the problem of glint to hunt effectively. One obvious solution is to turn away from the sun, which would result in reduction of glint effects. However, turning too far will cast shadows over prey, causing them to flee. Therefore, we hypothesized that foraging herons would orient away from, but not directly opposite to the sun. Our ability to understand how predators achieve a solution to glint is limited by our ability to quantify the amount of glint that free-living predators are actually exposed to under different light conditions. Herons (Ardea spp.) are a good model system for answering questions about cross-media hunting because they are conspicuous, widely distributed, and forage throughout a variety of aquatic habitats, on a variety of submerged prey. To test our hypothesis, we employed radiative transfer modeling of water surface reflectance, drawn from optical oceanography, in a novel context to estimate the visual exposure to glint of free-living, actively foraging herons. We found evidence that Ardea spp. do not use body orientation to compensate for sun glint while foraging and therefore they must have some other, not yet understood, means of compensation, either anatomical or behavioral. Instead of facing away from the sun, herons tended to adjust their position to face into the wind at higher wind speeds. We suggest that radiative transfer modeling is a promising tool for elucidating the ecology and evolution of air-to-water foraging systems.
Collapse
Affiliation(s)
- Holly K M Brown
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States of America
| | - Margaret Rubega
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States of America
| | - Heidi M Dierssen
- Department of Marine Sciences, University of Connecticut at Avery Point, Groton, CT, United States of America
| |
Collapse
|
24
|
Abstract
After cross-equatorial wintering, migratory birds reliably return to their natal grounds, but a population of cliff swallows recently switched breeding hemisphere. They inverted their annual cycle and migration directions almost instantaneously.
Collapse
Affiliation(s)
- Barbara Helm
- GELIFES - Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands; Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.
| | - Rachel Muheim
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
25
|
Diego-Rasilla FJ, Phillips JB. Evidence for the use of a high-resolution magnetic map by a short-distance migrant, the Alpine newt (Ichthyosaura alpestris). J Exp Biol 2021; 224:269106. [PMID: 34114002 DOI: 10.1242/jeb.238345] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/06/2021] [Indexed: 11/20/2022]
Abstract
Newts can use spatial variation in the magnetic field (MF) to derive geographic position, but it is unclear how they detect the 'spatial signal', which, over the distances that newts move in a day, is an order of magnitude lower than temporal variation in the MF. Previous work has shown that newts take map readings using their light-dependent magnetic compass to align a magnetite-based 'map detector' relative to the MF. In this study, time of day, location and light exposure (required by the magnetic compass) were varied to determine when newts obtain map information. Newts were displaced from breeding ponds without access to route-based cues to sites where they were held and/or tested under diffuse natural illumination. We found that: (1) newts held overnight at the testing site exhibited accurate homing orientation, but not if transported to the testing site on the day of testing; (2) newts held overnight under diffuse lighting at a 'false testing site' and then tested at a site located in a different direction from their home pond oriented in the home direction from the holding site, not from the site where they were tested; and (3) newts held overnight in total darkness (except for light exposure for specific periods) only exhibited homing orientation the following day if exposed to diffuse illumination during the preceding evening twilight in the ambient MF. These findings demonstrate that, to determine the home direction, newts require access to light and the ambient MF during evening twilight when temporal variation in the MF is minimal.
Collapse
Affiliation(s)
| | - John B Phillips
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0406, USA
| |
Collapse
|
26
|
Åkesson S, Bakam H, Martinez Hernandez E, Ilieva M, Bianco G. Migratory orientation in inexperienced and experienced avian migrants. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1905076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Susanne Åkesson
- Department of Biology, Lund University, Ecology Building, Lund 22362, Sweden
| | - Himma Bakam
- Department of Biology, Lund University, Ecology Building, Lund 22362, Sweden
| | | | - Mihaela Ilieva
- Department of Biology, Lund University, Ecology Building, Lund 22362, Sweden
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., Sofia 1113, Bulgaria
| | - Giuseppe Bianco
- Department of Biology, Lund University, Ecology Building, Lund 22362, Sweden
| |
Collapse
|
27
|
Sharma A, Singh D, Gupta P, Bhardwaj SK, Kaur I, Kumar V. Molecular changes associated with migratory departure from wintering areas in obligate songbird migrants. J Exp Biol 2021; 224:269085. [PMID: 34105726 DOI: 10.1242/jeb.242153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/28/2021] [Indexed: 11/20/2022]
Abstract
Day length regulates the development of spring migratory and subsequent reproductive phenotypes in avian migrants. This study used molecular approaches, and compared mRNA and proteome-wide expression in captive redheaded buntings that were photostimulated under long-day (LD) conditions for 4 days (early stimulated, LD-eS) or for ∼3 weeks until each bird had shown 4 successive nights of Zugunruhe (stimulated, LD-S); controls were maintained under short days. After ∼3 weeks of LD, photostimulated indices of the migratory preparedness (fattening, weight gain and Zugunruhe) were paralleled with upregulated expression of acc, dgat2 and apoa1 genes in the liver, and of cd36, fabp3 and cpt1 genes in the flight muscle, suggesting enhanced fatty acid (FA) synthesis and transport in the LD-S state. Concurrently, elevated expression of genes involved in the calcium ion signalling and transport (camk1 and atp2a2; camk2a in LD-eS), cellular stress (hspa8 and sod1, not nos2) and metabolic pathways (apoa1 and sirt1), but not of genes associated with migratory behaviour (adcyap1 and vps13a), were found in the mediobasal hypothalamus (MBH). Further, MBH-specific quantitative proteomics revealed that out of 503 annotated proteins, 28 were differentially expressed (LD-eS versus LD-S: 21 up-regulated and 7 down-regulated) and they enriched five physiological pathways that are associated with FA transport and metabolism. These first comprehensive results on gene and protein expression suggest that changes in molecular correlates of FA transport and metabolism may aid the decision for migratory departure from wintering areas in obligate songbird migrants.
Collapse
Affiliation(s)
- Aakansha Sharma
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Devraj Singh
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Priya Gupta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, Delhi 110 067, India
| | | | - Inderjeet Kaur
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, Delhi 110 067, India.,Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi 110 007, India
| |
Collapse
|
28
|
Tyagi T, Bhardwaj SK. Magnetic Compass Orientation in a Palaearctic-Indian Night Migrant, the Red-Headed Bunting. Animals (Basel) 2021; 11:ani11061541. [PMID: 34070376 PMCID: PMC8227375 DOI: 10.3390/ani11061541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary The earth’s magnetic field, celestial cues, and retention of geographical cues en route provide birds with compass knowledge during migration. The magnetic compass works on the direction of the magnetic field, specifically, the course of the field lines. We tested Red-headed Buntings in orientation cages in the evening during spring migration. Simulated overcast testing resulted in a northerly mean direction, while in clear skies, birds oriented in an NNW (north–northwest) direction. Buntings were exposed to 120° anticlockwise shifted magnetic fields under simulated overcast skies and responded by shifting their orientation accordingly. The results showed that this Palaearctic night migrant possesses a magnetic compass, as well as the fact that magnetic cues act as primary directional messengers. When birds were exposed to different environmental conditions at 22 °C and 38 °C temperatures under simulated overcast conditions, they showed a delay in Zugunruhe (migratory restlessness) at 22 °C, while an advance migratory restlessness was observed under 38 °C conditions. Hot and cold weather clearly influenced the timing of migrations in Red-headed Buntings, but not the direction. Abstract Red-headed Buntings (Emberiza bruniceps) perform long-distance migrations within their southerly overwintering grounds and breeding areas in the northern hemisphere. Long-distance migration demands essential orientation mechanisms. The earth’s magnetic field, celestial cues, and memorization of geographical cues en route provide birds with compass knowledge during migration. Birds were tested during spring migration for orientation under natural clear skies, simulated overcast skies at natural day length and temperature, simulated overcast at 22 °C and 38 °C temperatures, and in the deflected (−120°) magnetic field. Under clear skies, the Red-headed Buntings were oriented NNW (north–northwest); simulated overcast testing resulted in a northerly mean direction at local temperatures as well as at 22 °C and 38 °C. The Buntings reacted strongly in favor of the rotated magnetic field under the simulated overcast sky, demonstrating the use of a magnetic compass for migrating in a specific direction.
Collapse
|
29
|
Abstract
Species throughout the animal kingdom use the Earth's magnetic field (MF) to navigate using either or both of two mechanisms. The first relies on magnetite crystals in tissue where their magnetic moments align with the MF to transduce a signal transmitted to the central nervous system. The second and the subject of this paper involves cryptochrome (CRY) proteins located in cone photoreceptors distributed across the retina, studied most extensively in birds. According to the "Radical Pair Mechanism" (RPM), blue/UV light excites CRY's flavin cofactor (FAD) to generate radical pairs whose singlet-to-triplet interconversion rate is modulated by an external MF. The signaling product of the RPM produces an impression of the field across the retinal surface. In birds, the resulting signal on the optic nerve is transmitted along the thalamofugal pathway to the primary visual cortex, which projects to brain regions concerned with image processing, memory, and executive function. The net result is a bird's orientation to the MF's inclination: its vector angle relative to the Earth's surface. The quality of ambient light (e.g., polarization) provides additional input to the compass. In birds, the Type IV CRY isoform appears pivotal to the compass, given its positioning within retinal cones; a cytosolic location therein indicating no role in the circadian clock; relatively steady diurnal levels (unlike Type II CRY's cycling); and a full complement of FAD (essential for photosensitivity). The evidence indicates that mammalian Type II CRY isoforms play a light-independent role in the cellular molecular clock without a photoreceptive function.
Collapse
Affiliation(s)
| | - Joseph Brain
- Environmental Physiology, Molecular, and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
30
|
Åkesson S, Grönroos J, Bianco G. Autumn migratory orientation and route choice in early and late dunlins Calidris alpina captured at a stopover site in Alaska. Biol Open 2021; 10:260593. [PMID: 33913474 PMCID: PMC8096618 DOI: 10.1242/bio.058655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/23/2021] [Indexed: 11/28/2022] Open
Abstract
We investigated the migratory orientation of early and late captured dunlins, Calidris alpina, by recording their migratory activity in circular orientation cages during autumn at a staging site in southwest Alaska and performed route simulations to the wintering areas. Two races of dunlins breeding in Alaska have different wintering grounds in North America (Pacific Northwest), and East Asia. Dunlins caught early in autumn (presumably Calidris alpinapacifica) oriented towards their wintering areas (east-southeast; ESE) supporting the idea that they migrate nonstop over the Gulf of Alaska to the Pacific Northwest. We found no difference in orientation between adult and juveniles, nor between fat and lean birds or under clear and overcast skies demonstrating that age, energetic status and cloud cover did not affect the dunlins’ migratory orientation. Later in autumn, we recorded orientation responses towards south-southwest suggesting arrival of the northern subspecies Calidris alpinaarcticola at our site. Route simulations revealed multiple compass mechanisms were compatible with the initial direction of early dunlins wintering in the Pacific Northwest, and for late dunlins migrating to East Asia. Future high-resolution tracking would reveal routes, stopover use including local movements and possible course shifts during migration from Alaska to wintering sites on both sides of the north Pacific Ocean. Summary: Orientation experiments with dunlins captured in Alaska during autumn migration confirm orientation to distant wintering areas. Route simulations revealed multiple compass mechanisms were compatible with the initial direction of early dunlins wintering in the Pacific Northwest, and for dunlins migrating to East Asia.
Collapse
Affiliation(s)
- Susanne Åkesson
- Department of Biology, Centre for Animal Movement Research, Lund University, Ecology Building, 22362 Lund, Sweden
| | - Johanna Grönroos
- Department of Environmental Science and Bioscience, Kristianstad University, 29188 Kristianstad, Sweden
| | - Giuseppe Bianco
- Department of Biology, Centre for Animal Movement Research, Lund University, Ecology Building, 22362 Lund, Sweden
| |
Collapse
|
31
|
Eikenaar C, Schäfer J, Hessler S, Packmor F, Schmaljohann H. Diel variation in corticosterone and departure decision making in migrating birds. Horm Behav 2020; 122:104746. [PMID: 32217064 DOI: 10.1016/j.yhbeh.2020.104746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/20/2020] [Accepted: 03/19/2020] [Indexed: 01/01/2023]
Abstract
Animals usually show distinct periods of diel activity and non-activity. Circulating baseline levels of glucocorticoid hormones (corticosterone and cortisol) often peak just before or at the transition from the non-active to the active period of the day. This upregulation of glucocorticoids may function to mobilize stored energy and prepare an animal for increased activity. Usually, the alternation of active and non-active periods is highly predictable; however, there is one group of animals for which this is not always the case. Many otherwise diurnal birds show nocturnal activity during the migration seasons. Nocturnal migratory flights are alternated with stopover periods during which the birds refuel and rest. Stopovers vary in length, meaning that nocturnal migrants are inactive in some nights (when they continue their stopover) but extremely active in other nights (when they depart and fly throughout the night). This provides an ideal natural situation for testing whether glucocorticoids are upregulated in preparation for an increase in activity, which we used in this study. We found that in northern wheatears (Oenanthe oenanthe), corticosterone levels peaked in the few hours before sunset in birds departing from stopover that night, and, importantly, that this peak was absent in birds continuing stopover. This indicates that corticosterone is upregulated in the face of an increase in energy demands, underlining corticosterone's preparative metabolic function (energy mobilization). The timing of upregulation of corticosterone also gives a first insight in when during the day nocturnally migrating birds decide whether or not to resume migration.
Collapse
Affiliation(s)
- Cas Eikenaar
- Institute of Avian Research, 26386 Wilhelmshaven, Germany.
| | - Jana Schäfer
- Institute of Avian Research, 26386 Wilhelmshaven, Germany
| | - Sven Hessler
- Institute of Avian Research, 26386 Wilhelmshaven, Germany
| | - Florian Packmor
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, United Kingdom
| | - Heiko Schmaljohann
- Institute of Avian Research, 26386 Wilhelmshaven, Germany; Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, D-26111 Oldenburg, Germany
| |
Collapse
|
32
|
Kok EMA, Hogan JA, Piersma T. Experimental tests of a seasonally changing visual preference for habitat in a long‐distance migratory shorebird. Ethology 2020. [DOI: 10.1111/eth.13036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Eva M. A. Kok
- Department of Coastal Systems NIOZ Royal Netherlands Institute for Sea Research and Utrecht University Den Burg The Netherlands
- Conservation Ecology Group Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| | - Jerry A. Hogan
- Department of Psychology University of Toronto Toronto ON Canada
| | - Theunis Piersma
- Department of Coastal Systems NIOZ Royal Netherlands Institute for Sea Research and Utrecht University Den Burg The Netherlands
- Conservation Ecology Group Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
- Rudi Drent Chair in Global Flyway Ecology Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| |
Collapse
|
33
|
|
34
|
Li J, Chu J, Zhang R, Chen J, Wang Y. Bio-inspired attitude measurement method using a polarization skylight and a gravitational field. APPLIED OPTICS 2020; 59:2955-2962. [PMID: 32225849 DOI: 10.1364/ao.387770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
High precision and reliability attitude measurement play an important role in autonomous unmanned navigation. Finding inspiration from desert ants, known as highly efficient navigators who can find their way after foraging for hundreds of meters from their home in hostile environments, we propose an attitude measurement method using polarization skylight and gravitational field. Contrary to the previous method, we utilize three-dimensional polarization vectors and any one-dimensional output of the accelerometers to calculate attitudes. In addition, we designed an accelerometer component selection algorithm, which is to select the one-dimensional component with the minimum motion acceleration from the output of the three-dimensional accelerometer. With this method, even if the carriers remain in a maneuvering state, the motion acceleration of the vehicle will have less impact on the accuracy of attitude measurement. To evaluate the performance of our method, the outdoor experiment was carried out to compare our method with existing traditional methods. Comparison results show that our method has higher measurement accuracy than others and is still applicable in the case of carriers maneuvering in practice under a clear sky.
Collapse
|
35
|
Nyqvist D, Durif C, Johnsen MG, De Jong K, Forland TN, Sivle LD. Electric and magnetic senses in marine animals, and potential behavioral effects of electromagnetic surveys. MARINE ENVIRONMENTAL RESEARCH 2020; 155:104888. [PMID: 32072990 DOI: 10.1016/j.marenvres.2020.104888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
Electromagnetic surveys generate electromagnetic fields to map petroleum deposits under the seabed with unknown consequences for marine animals. The electric and magnetic fields induced by electromagnetic surveys can be detected by many marine animals, and the generated fields may potentially affect the behavior of perceptive animals. Animals using magnetic cues for migration or local orientation, especially during a restricted time-window, risk being affected by electromagnetic surveys. In electrosensitive animals, anthropogenic electric fields could disrupt a range of behaviors. The lack of studies on effects of the electromagnetic fields induced by electromagnetic surveys on the behavior of magneto- and electrosensitive animals is a reason for concern. Here, we review the use of electric and magnetic fields among marine animals, present data on survey generated and natural electromagnetic fields, and discuss potential effects of electromagnetic surveys on the behavior of marine animals.
Collapse
Affiliation(s)
- Daniel Nyqvist
- Institute of Marine Research Bergen, Nordnesgaten 50, 5005, Bergen, Norway.
| | - Caroline Durif
- Institute of Marine Research, Austevoll Research Station, Sauganeset 16, 5392, Storebø, Norway
| | | | - Karen De Jong
- Institute of Marine Research Bergen, Nordnesgaten 50, 5005, Bergen, Norway
| | | | | |
Collapse
|
36
|
Eng ML, Stutchbury BJM, Morrissey CA. A neonicotinoid insecticide reduces fueling and delays migration in songbirds. Science 2019; 365:1177-1180. [DOI: 10.1126/science.aaw9419] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/12/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022]
Abstract
Neonicotinoids are neurotoxic insecticides widely used as seed treatments, but little is known of their effects on migrating birds that forage in agricultural areas. We tracked the migratory movements of imidacloprid-exposed songbirds at a landscape scale using a combination of experimental dosing and automated radio telemetry. Ingestion of field-realistic quantities of imidacloprid (1.2 or 3.9 milligrams per kilogram body mass) by white-crowned sparrows (Zonotrichia leucophrys) during migratory stopover caused a rapid reduction in food consumption, mass, and fat and significantly affected their probability of departure. Birds in the high-dose treatment stayed a median of 3.5 days longer at the site of capture after exposure as compared with controls, likely to regain fuel stores or recover from intoxication. Migration delays can carry over to affect survival and reproduction; thus, these results confirm a link between sublethal pesticide exposure and adverse outcomes for migratory bird populations.
Collapse
|
37
|
Wang Y, Chu J, Zhang R, Li J, Guo X, Lin M. A Bio-Inspired Polarization Sensor with High Outdoor Accuracy and Central-Symmetry Calibration Method with Integrating Sphere. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3448. [PMID: 31394764 PMCID: PMC6721297 DOI: 10.3390/s19163448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 11/28/2022]
Abstract
A bio-inspired polarization sensor with lenses for navigation was evaluated in this study. Two new calibration methods are introduced, referred to as "central-symmetry calibration" (with an integrating sphere) and "noncontinuous calibration". A comparison between the indoor calibration results obtained from different calibration methods shows that the two proposed calibration methods are more effective. The central-symmetry calibration method optimized the nonconstant calibration voltage deviations, caused by the off-axis feature of the integrating sphere, to be constant values which can be calibrated easily. The section algorithm proposed previously showed no experimental advantages until the central-symmetry calibration method was proposed. The outdoor experimental results indicated that the indoor calibration parameters did not perform very well in practice outdoor conditions. To establish the reason, four types of calibration parameters were analyzed using the replacement method. It can be concluded that three types can be easily calibrated or affect the sensor accuracy slightly. However, before the sensor is used outdoors every time, the last type must be replaced with the corresponding outdoor parameter, and the calculation needs a precise rotary table. This parameter, which is mainly affected by the spectrum of incident light, is the main factor determining the sensor accuracy. After calibration, the sensor reaches an indoor accuracy of ±0.009° and a static outdoor accuracy of ±0.05° under clear sky conditions. The dynamic outdoor experiment shows a ±0.5° heading deviation between the polarization sensor and the inertial navigation system with a ±0.06° angular accuracy.
Collapse
Affiliation(s)
- Yinlong Wang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Jinkui Chu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China.
| | - Ran Zhang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Jinshan Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Xiaoqing Guo
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Muyin Lin
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
38
|
Lindecke O, Elksne A, Holland RA, Pētersons G, Voigt CC. Experienced Migratory Bats Integrate the Sun's Position at Dusk for Navigation at Night. Curr Biol 2019; 29:1369-1373.e3. [PMID: 30955934 DOI: 10.1016/j.cub.2019.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/30/2019] [Accepted: 03/01/2019] [Indexed: 11/19/2022]
Abstract
From bats to whales, millions of mammals migrate every year. However, their navigation capacity for accomplishing long-distance movements remains remarkably understudied and lags behind by five decades compared to other animals [1, 2]-partly because, unlike for other taxa, such as birds and sea turtles, no small-scale orientation assay has so far been developed. Yet recently, bats became a model to investigate which cues mammals use for long-range navigation, and, surprisingly for nocturnal animals, sunset cues, and particularly polarized-light cues, appear to be crucial for calibration of the magnetic-compass system in non-migratory bats [3-5]. This does not appear to hold for a species of migratory bat, however [6], and thus the nature of the information used by migratory bats for navigation remains unclear. Here, we asked whether the position of the solar disk per se is relevant for compass orientation in a migratory bat, Pipistrellus pygmaeus. Using a new experimental assay that measures takeoff orientation, we tested the orientation of bats exposed to a shifted sunset azimuth using a mirror at dusk. Bats exposed to a 180°-rotated azimuth of the setting sun and released after translocation during the same night shifted their heading direction by ∼180° compared to control bats. However, first-year migrants had no clear orientation either as controls or after the same treatment. This suggests that learning the migratory direction is a key component in the navigational system of naive bats in this species. Our study provides rare evidence for the specific cues and mechanisms that migratory mammals use for navigation.
Collapse
Affiliation(s)
- Oliver Lindecke
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany; AG Verhaltensbiologie, Institute of Biology, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany.
| | - Alise Elksne
- Institute of Biology, University of Latvia, Miera Street 3, 2169 Salaspils, Latvia
| | - Richard A Holland
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Gunārs Pētersons
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, K. Helmana Street 8, 3004 Jelgava, Latvia
| | - Christian C Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany; AG Verhaltensbiologie, Institute of Biology, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| |
Collapse
|
39
|
Bianco G, Köhler RC, Ilieva M, Åkesson S. Magnetic body alignment in migratory songbirds: a computer vision approach. ACTA ACUST UNITED AC 2019; 222:jeb.196469. [PMID: 30728159 DOI: 10.1242/jeb.196469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/31/2019] [Indexed: 11/20/2022]
Abstract
Several invertebrate and vertebrate species have been shown to align their body relative to the geomagnetic field. Many hypotheses have been proposed to explain the adaptive significance of magnetic body alignment outside the context of navigation. However, experimental evidence to investigate alternative hypotheses is still limited. We present a new setup to track the preferential body alignment relative to the geomagnetic field in captive animals using computer vision. We tested our method on three species of migratory songbirds and provide evidence that they align their body with the geomagnetic field. We suggest that this behaviour is involved in the underlying mechanism for compass orientation and calibration, which may occur near to sunrise and sunset periods. Our method could easily be extended to other species and used to test a large set of hypotheses to explain the mechanisms behind the magnetic body alignment and the magnetic sense in general.
Collapse
Affiliation(s)
- Giuseppe Bianco
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, SE 223 62 Lund, Sweden
| | - Robin Clemens Köhler
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, SE 223 62 Lund, Sweden
| | - Mihaela Ilieva
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, SE 223 62 Lund, Sweden.,Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin str., 1113 Sofia, Bulgaria
| | - Susanne Åkesson
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, SE 223 62 Lund, Sweden
| |
Collapse
|
40
|
Hagstrum JT. A reinterpretation of “Homing pigeons’ flight over and under low stratus” based on atmospheric propagation modeling of infrasonic navigational cues. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 205:67-78. [DOI: 10.1007/s00359-018-1304-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/26/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
|
41
|
Sokolovskis K, Bianco G, Willemoes M, Solovyeva D, Bensch S, Åkesson S. Ten grams and 13,000 km on the wing - route choice in willow warblers Phylloscopus trochilus yakutensis migrating from Far East Russia to East Africa. MOVEMENT ECOLOGY 2018; 6:20. [PMID: 30349724 PMCID: PMC6191995 DOI: 10.1186/s40462-018-0138-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND High-latitude bird migration has evolved after the last glaciation, in less than 10,000-15,000 years. Migrating songbirds rely on an endogenous migratory program, encoding timing, fueling, and routes, but it is still unknown which compass mechanism they use on migration. We used geolocators to track the migration of willow warblers (Phylloscopus trochilus yakutensis) from their eastern part of the range in Russia to wintering areas in sub-Saharan Africa. Our aim was to investigate if the autumn migration route can be explained by a simple compass mechanism, based on celestial or geomagnetic information, or whether migration is undertaken as a sequence of differential migratory paths possibly involving a map sense. We compared the recorded migratory routes for our tracked birds with simulated routes obtained from different compass mechanisms. RESULTS The three tracked males were very similar in the routes they took to their final wintering sites in southern Tanzania or northern Mozambique, in their use of stopover sites and in the overall timing of migration. None of the tested compass mechanisms could explain the birds' routes to the first stopover area in southwest Asia or to the destination in Southeast Africa without modifications. Our compass mechanism simulations suggest that the simplest scenarios congruent with the observed routes are based on either an inclination or a sun compass, assuming two sequential steps. CONCLUSIONS The birds may follow a magnetoclinic route coinciding closely with the tracks by first moving west, i.e. closer to the goal, and thereafter follow a constant apparent angle of inclination to the stopover site. An alternative would be to use the sun compass, but with time-adjustments along the initial part of the migration to the first stopover, and thereafter depart along a new course to the winter destination. A combination of the two mechanisms cannot be ruled out, but needs to be confirmed in future studies.
Collapse
Affiliation(s)
- Kristaps Sokolovskis
- Department of Biology, Center for Animal Movement Research, Lund University, Ecology Building, 223 62 Lund, SE Sweden
- Department of Biology, Molecular Ecology and Evolution Laboratory, Lund University, Ecology Building, 223 62 Lund, SE Sweden
| | - Giuseppe Bianco
- Department of Biology, Center for Animal Movement Research, Lund University, Ecology Building, 223 62 Lund, SE Sweden
| | - Mikkel Willemoes
- Department of Biology, Center for Animal Movement Research, Lund University, Ecology Building, 223 62 Lund, SE Sweden
- Department of Biology, Molecular Ecology and Evolution Laboratory, Lund University, Ecology Building, 223 62 Lund, SE Sweden
| | - Diana Solovyeva
- Institute of Biological Problems in the North, Magadan, Russia
| | - Staffan Bensch
- Department of Biology, Center for Animal Movement Research, Lund University, Ecology Building, 223 62 Lund, SE Sweden
- Department of Biology, Molecular Ecology and Evolution Laboratory, Lund University, Ecology Building, 223 62 Lund, SE Sweden
| | - Susanne Åkesson
- Department of Biology, Center for Animal Movement Research, Lund University, Ecology Building, 223 62 Lund, SE Sweden
- Department of Biology, Evolutionary Ecology Unit, Lund University, Ecology Building, 223 62 Lund, SE Sweden
| |
Collapse
|
42
|
Dreyer D, Frost B, Mouritsen H, Günther A, Green K, Whitehouse M, Johnsen S, Heinze S, Warrant E. The Earth's Magnetic Field and Visual Landmarks Steer Migratory Flight Behavior in the Nocturnal Australian Bogong Moth. Curr Biol 2018; 28:2160-2166.e5. [PMID: 29937347 DOI: 10.1016/j.cub.2018.05.030] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/20/2018] [Accepted: 05/14/2018] [Indexed: 11/19/2022]
Abstract
Like many birds [1], numerous species of nocturnal moths undertake spectacular long-distance migrations at night [2]. Each spring, billions of Bogong moths (Agrotis infusa) escape hot conditions in different regions of southeast Australia by making a highly directed migration of over 1,000 km to a limited number of cool caves in the Australian Alps, historically used for aestivating over the summer [3, 4]. How moths determine the direction of inherited migratory trajectories at night and locate their destination (i.e., navigate) is currently unknown [5-7]. Here we show that Bogong moths can sense the Earth's magnetic field and use it in conjunction with visual landmarks to steer migratory flight behavior. By tethering migrating moths in an outdoor flight simulator [8], we found that their flight direction turned predictably when dominant visual landmarks and a natural Earth-strength magnetic field were turned together, but that the moths became disoriented within a few minutes when these cues were set in conflict. We thus conclude that Bogong moths, like nocturnally migrating birds [9], can use a magnetic sense. Our results represent the first reliable demonstration of the use of the Earth's magnetic field to steer flight behavior in a nocturnal migratory insect.
Collapse
Affiliation(s)
- David Dreyer
- Lund Vision Group, Department of Biology, University of Lund, Sölvegatan 35, 22362 Lund, Sweden.
| | - Barrie Frost
- Department of Psychology, Queens University, 62 Arch Street, Kingston, ON K7L 3N6, Canada
| | - Henrik Mouritsen
- Institute for Biology and Environmental Sciences, University of Oldenburg, Carl-von-Ossietzky-Strasse 9-11, 26129 Oldenburg, Germany
| | - Anja Günther
- Institute for Biology and Environmental Sciences, University of Oldenburg, Carl-von-Ossietzky-Strasse 9-11, 26129 Oldenburg, Germany
| | - Ken Green
- New South Wales National Parks and Wildlife Service, 49 Kosciuszko Road, Jindabyne, NSW 2627, Australia
| | - Mary Whitehouse
- CSIRO, Australian Cotton Research Institute, Wee Waa Road, Narrabri, NSW 2390, Australia
| | - Sönke Johnsen
- Department of Biology, Duke University, 130 Science Drive, Durham, NC 27708, USA
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, University of Lund, Sölvegatan 35, 22362 Lund, Sweden
| | - Eric Warrant
- Lund Vision Group, Department of Biology, University of Lund, Sölvegatan 35, 22362 Lund, Sweden.
| |
Collapse
|
43
|
Muheim R, Schmaljohann H, Alerstam T. Feasibility of sun and magnetic compass mechanisms in avian long-distance migration. MOVEMENT ECOLOGY 2018; 6:8. [PMID: 29992024 PMCID: PMC5989362 DOI: 10.1186/s40462-018-0126-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Birds use different compass mechanisms based on celestial (stars, sun, skylight polarization pattern) and geomagnetic cues for orientation. Yet, much remains to be understood how birds actually use these compass mechanisms on their long-distance migratory journeys. Here, we assess in more detail the consequences of using different sun and magnetic compass mechanisms for the resulting bird migration routes during both autumn and spring migration. First, we calculated predicted flight routes to determine which of the compasses mechanisms lead to realistic and feasible migration routes starting at different latitudes during autumn and spring migration. We then compared the adaptive values of the different compass mechanisms by calculating distance ratios in relation to the shortest possible trajectory for three populations of nocturnal passerine migrants: northern wheatear Oenanthe oenanthe, pied flycatcher Ficedula hypoleuca, and willow warbler Phylloscopus trochilus. Finally, we compared the predicted trajectories for different compass strategies with observed routes based on recent light-level geolocation tracking results for five individuals of northern wheatears migrating between Alaska and tropical Africa. We conclude that the feasibility of different compass routes varies greatly with latitude, migratory direction, migration season, and geographic location. Routes following a single compass course throughout the migratory journey are feasible for many bird populations, but the underlying compass mechanisms likely differ between populations. In many cases, however, the birds likely have to reorient once to a few times along the migration route and/or use map information to successfully reach their migratory destination.
Collapse
Affiliation(s)
- Rachel Muheim
- Department of Biology, Lund University, Biology Building B, 223 62 Lund, Sweden
| | - Heiko Schmaljohann
- Institute for Biology und Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
- Institute of Avian Research, Vogelwarte Helgoland, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Thomas Alerstam
- Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| |
Collapse
|
44
|
Worster S, Mouritsen H, Hore PJ. A light-dependent magnetoreception mechanism insensitive to light intensity and polarization. J R Soc Interface 2018; 14:rsif.2017.0405. [PMID: 28878033 DOI: 10.1098/rsif.2017.0405] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/11/2017] [Indexed: 11/12/2022] Open
Abstract
Billions of migratory birds navigate thousands of kilometres every year aided by a magnetic compass sense, the biophysical mechanism of which is unclear. One leading hypothesis is that absorption of light by specialized photoreceptors in the retina produces short-lived chemical intermediates known as radical pairs whose chemistry is sensitive to tiny magnetic interactions. A potentially serious but largely ignored obstacle to this theory is how directional information derived from the Earth's magnetic field can be separated from the much stronger variations in the intensity and polarization of the incident light. Here we propose a simple solution in which these extraneous effects are cancelled by taking the ratio of the signals from two neighbouring populations of magnetoreceptors. Geometric and biological arguments are used to derive a set of conditions that make this possible. We argue that one likely location of the magnetoreceptor molecules would be in association with ordered opsin dimers in the membrane discs of the outer segments of double-cone photoreceptor cells.
Collapse
Affiliation(s)
- Susannah Worster
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Henrik Mouritsen
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany.,Research Centre for Neurosensory Sciences, University of Oldenburg, 26111 Oldenburg, Germany
| | - P J Hore
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
45
|
Meier CM, Karaardıç H, Aymí R, Peev SG, Bächler E, Weber R, Witvliet W, Liechti F. What makes Alpine swift ascend at twilight? Novel geolocators reveal year-round flight behaviour. Behav Ecol Sociobiol 2018; 72:45. [PMID: 29568149 PMCID: PMC5847200 DOI: 10.1007/s00265-017-2438-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 11/27/2022]
Abstract
Abstract Studying individual flight behaviour throughout the year is indispensable to understand the ecology of a bird species. Recent development in technology allows now to track flight behaviour of small long-distance bird migrants throughout its annual cycle. The specific flight behaviour of twilight ascents in birds has been documented in a few studies, but only during a short period of the year, and never quantified on the individual level. It has been suggested that twilight ascents might be a role in orientation and navigation. Previous studies had reported the behaviour only near the breeding site and during migration. We investigated year-round flight behaviour of 34 individual Alpine swifts (Apus melba) of four different populations in relation to twilight ascents. We recorded twilight ascents all around the year and found a twofold higher frequency in ascents during the non-breeding residence phase in Africa compared to all other phases of the year. Dawn ascents were twice as common as dusk ascents and occurred mainly when atmospheric conditions remained stable over a 24-h period. We found no conclusive support that twilight ascents are essential for recalibration of compass cues and landmarks. Data on the wing flapping intensity revealed that high activity at twilight occurred more regularly than the ascents. We therefore conclude that alpine swift generally increase flight activity—also horizontal flight—during the twilight period and we suppose that this increased flight activity, including ascents, might be part of social interactions between individuals. Significance statement Year-round flight altitude tracking with a light-weight multi-sensor tag reveals that Alpine swifts ascend several hundred meters high at twilight regularly. The reason for this behaviour remains unclear and the low-light conditions at this time of the day preclude foraging as a possibility. The frequency and altitude of twilight ascents were highest during the non-breeding period, intermediate during migration and low for active breeders during the breeding phase. We discuss our findings in the context of existing hypotheses on twilight ascent and we propose an additional hypothesis which links twilight ascent with social interaction between flock members. Our study highlights how flight behaviour of individuals of a migratory bird species can be studied even during the sparsely documented non-breeding period. Electronic supplementary material The online version of this article (10.1007/s00265-017-2438-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christoph M Meier
- 1Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
| | - Hakan Karaardıç
- Elementary Science Education Department, Education Faculty, Alanya Alaaddin Keykubat University, 07400 Alanya, Turkey
| | - Raül Aymí
- Catalan Ornithological Institute, Museu de Ciències Naturals de Barcelona, Pl. Leonardo da Vinci, 4-5, 08019 Barcelona, Spain
| | - Strahil G Peev
- 4Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2, Gagarin Street, 1113 Sofia, Bulgaria
| | - Erich Bächler
- 1Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
| | - Roger Weber
- 5Bern University of Applied Sciences Engineering and Information Technology, Jlcoweg 1, 3400 Burgdorf, Switzerland
| | - Willem Witvliet
- Willem Witvliet, Zuidersloot 16, 1741 Broek op Langedijk, HL Netherlands
| | - Felix Liechti
- 1Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
| |
Collapse
|
46
|
Wang Y, Chu J, Zhang R, Shi C. Orthogonal vector algorithm to obtain the solar vector using the single-scattering Rayleigh model. APPLIED OPTICS 2018; 57:594-601. [PMID: 29400721 DOI: 10.1364/ao.57.000594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/30/2017] [Indexed: 06/07/2023]
Abstract
Information obtained from a polarization pattern in the sky provides many animals like insects and birds with vital long-distance navigation cues. The solar vector can be derived from the polarization pattern using the single-scattering Rayleigh model. In this paper, an orthogonal vector algorithm, which utilizes the redundancy of the single-scattering Rayleigh model, is proposed. We use the intersection angles between the polarization vectors as the main criteria in our algorithm. The assumption that all polarization vectors can be considered coplanar is used to simplify the three-dimensional (3D) problem with respect to the polarization vectors in our simulation. The surface-normal vector of the plane, which is determined by the polarization vectors after translation, represents the solar vector. Unfortunately, the two-directionality of the polarization vectors makes the resulting solar vector ambiguous. One important result of this study is, however, that this apparent disadvantage has no effect on the complexity of the algorithm. Furthermore, two other universal least-squares algorithms were investigated and compared. A device was then constructed, which consists of five polarized-light sensors as well as a 3D attitude sensor. Both the simulation and experimental data indicate that the orthogonal vector algorithms, if used with a suitable threshold, perform equally well or better than the other two algorithms. Our experimental data reveal that if the intersection angles between the polarization vectors are close to 90°, the solar-vector angle deviations are small. The data also support the assumption of coplanarity. During the 51 min experiment, the mean of the measured solar-vector angle deviations was about 0.242°, as predicted by our theoretical model.
Collapse
|
47
|
Åkesson S, Ilieva M, Karagicheva J, Rakhimberdiev E, Tomotani B, Helm B. Timing avian long-distance migration: from internal clock mechanisms to global flights. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160252. [PMID: 28993496 PMCID: PMC5647279 DOI: 10.1098/rstb.2016.0252] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2017] [Indexed: 11/12/2022] Open
Abstract
Migratory birds regularly perform impressive long-distance flights, which are timed relative to the anticipated environmental resources at destination areas that can be several thousand kilometres away. Timely migration requires diverse strategies and adaptations that involve an intricate interplay between internal clock mechanisms and environmental conditions across the annual cycle. Here we review what challenges birds face during long migrations to keep track of time as they exploit geographically distant resources that may vary in availability and predictability, and summarize the clock mechanisms that enable them to succeed. We examine the following challenges: departing in time for spring and autumn migration, in anticipation of future environmental conditions; using clocks on the move, for example for orientation, navigation and stopover; strategies of adhering to, or adjusting, the time programme while fitting their activities into an annual cycle; and keeping pace with a world of rapidly changing environments. We then elaborate these themes by case studies representing long-distance migrating birds with different annual movement patterns and associated adaptations of their circannual programmes. We discuss the current knowledge on how endogenous migration programmes interact with external information across the annual cycle, how components of annual cycle programmes encode topography and range expansions, and how fitness may be affected when mismatches between timing and environmental conditions occur. Lastly, we outline open questions and propose future research directions.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Collapse
Affiliation(s)
- Susanne Åkesson
- Centre for Animal Movement Research, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Mihaela Ilieva
- Centre for Animal Movement Research, Department of Biology, Lund University, 223 62 Lund, Sweden
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Julia Karagicheva
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, 1790 AB Den Burg, Texel, The Netherlands
| | - Eldar Rakhimberdiev
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, 1790 AB Den Burg, Texel, The Netherlands
- Department of Vertebrate Zoology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Barbara Tomotani
- Netherlands Institute of Ecology, 6700 AB Wageningen, The Netherlands
| | - Barbara Helm
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G128QQ, UK
| |
Collapse
|
48
|
Han G, Hu X, Lian J, He X, Zhang L, Wang Y, Dong F. Design and Calibration of a Novel Bio-Inspired Pixelated Polarized Light Compass. SENSORS 2017; 17:s17112623. [PMID: 29135927 PMCID: PMC5713120 DOI: 10.3390/s17112623] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/19/2017] [Accepted: 11/11/2017] [Indexed: 11/30/2022]
Abstract
Animals, such as Savannah sparrows and North American monarch butterflies, are able to obtain compass information from skylight polarization patterns to help them navigate effectively and robustly. Inspired by excellent navigation ability of animals, this paper proposes a novel image-based polarized light compass, which has the advantages of having a small size and being light weight. Firstly, the polarized light compass, which is composed of a Charge Coupled Device (CCD) camera, a pixelated polarizer array and a wide-angle lens, is introduced. Secondly, the measurement method of a skylight polarization pattern and the orientation method based on a single scattering Rayleigh model are presented. Thirdly, the error model of the sensor, mainly including the response error of CCD pixels and the installation error of the pixelated polarizer, is established. A calibration method based on iterative least squares estimation is proposed. In the outdoor environment, the skylight polarization pattern can be measured in real time by our sensor. The orientation accuracy of the sensor increases with the decrease of the solar elevation angle, and the standard deviation of orientation error is 0.15∘ at sunset. Results of outdoor experiments show that the proposed polarization navigation sensor can be used for outdoor autonomous navigation.
Collapse
Affiliation(s)
- Guoliang Han
- College of Mechatronics and Automation, National University of Defense Technology, Changsha 410073, China.
| | - Xiaoping Hu
- College of Mechatronics and Automation, National University of Defense Technology, Changsha 410073, China.
| | - Junxiang Lian
- College of Mechatronics and Automation, National University of Defense Technology, Changsha 410073, China.
| | - Xiaofeng He
- College of Mechatronics and Automation, National University of Defense Technology, Changsha 410073, China.
| | - Lilian Zhang
- College of Mechatronics and Automation, National University of Defense Technology, Changsha 410073, China.
| | - Yujie Wang
- College of Mechatronics and Automation, National University of Defense Technology, Changsha 410073, China.
| | - Fengliang Dong
- Nanofabrication Laboratory, Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| |
Collapse
|
49
|
Bianco G, Ilieva M, Veibäck C, Öfjäll K, Gadomska A, Hendeby G, Felsberg M, Gustafsson F, Åkesson S. Emlen funnel experiments revisited: methods update for studying compass orientation in songbirds. Ecol Evol 2017; 6:6930-6942. [PMID: 28725370 PMCID: PMC5513225 DOI: 10.1002/ece3.2383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 07/14/2016] [Accepted: 07/21/2016] [Indexed: 12/01/2022] Open
Abstract
Migratory songbirds carry an inherited capacity to migrate several thousand kilometers each year crossing continental landmasses and barriers between distant breeding sites and wintering areas. How individual songbirds manage with extreme precision to find their way is still largely unknown. The functional characteristics of biological compasses used by songbird migrants has mainly been investigated by recording the birds directed migratory activity in circular cages, so‐called Emlen funnels. This method is 50 years old and has not received major updates over the past decades. The aim of this work was to compare the results from newly developed digital methods with the established manual methods to evaluate songbird migratory activity and orientation in circular cages. We performed orientation experiments using the European robin (Erithacus rubecula) using modified Emlen funnels equipped with thermal paper and simultaneously recorded the songbird movements from above. We evaluated and compared the results obtained with five different methods. Two methods have been commonly used in songbirds’ orientation experiments; the other three methods were developed for this study and were based either on evaluation of the thermal paper using automated image analysis, or on the analysis of videos recorded during the experiment. The methods used to evaluate scratches produced by the claws of birds on the thermal papers presented some differences compared with the video analyses. These differences were caused mainly by differences in scatter, as any movement of the bird along the sloping walls of the funnel was recorded on the thermal paper, whereas video evaluations allowed us to detect single takeoff attempts by the birds and to consider only this behavior in the orientation analyses. Using computer vision, we were also able to identify and separately evaluate different behaviors that were impossible to record by the thermal paper. The traditional Emlen funnel is still the most used method to investigate compass orientation in songbirds under controlled conditions. However, new numerical image analysis techniques provide a much higher level of detail of songbirds’ migratory behavior and will provide an increasing number of possibilities to evaluate and quantify specific behaviors as new algorithms will be developed.
Collapse
Affiliation(s)
- Giuseppe Bianco
- Centre for Animal Movement Research Department of Biology Lund University Ecology Building SE-223 62 Lund Sweden
| | - Mihaela Ilieva
- Centre for Animal Movement Research Department of Biology Lund University Ecology Building SE-223 62 Lund Sweden.,Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences 2 Gagarin street 1113 Sofia Bulgaria
| | - Clas Veibäck
- Division of Automatic Control Department of Electrical Engineering Linköping University SE-581 83 Linköping Sweden
| | - Kristoffer Öfjäll
- Computer Vision Laboratory Department of Electrical Engineering Linköping University SE-581 83 Linköping Sweden
| | - Alicja Gadomska
- Centre for Animal Movement Research Department of Biology Lund University Ecology Building SE-223 62 Lund Sweden
| | - Gustaf Hendeby
- Division of Automatic Control Department of Electrical Engineering Linköping University SE-581 83 Linköping Sweden
| | - Michael Felsberg
- Computer Vision Laboratory Department of Electrical Engineering Linköping University SE-581 83 Linköping Sweden
| | - Fredrik Gustafsson
- Division of Automatic Control Department of Electrical Engineering Linköping University SE-581 83 Linköping Sweden
| | - Susanne Åkesson
- Centre for Animal Movement Research Department of Biology Lund University Ecology Building SE-223 62 Lund Sweden
| |
Collapse
|
50
|
Åkesson S, Bianco G. Route simulations, compass mechanisms and long-distance migration flights in birds. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:475-490. [PMID: 28500441 PMCID: PMC5522512 DOI: 10.1007/s00359-017-1171-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 11/29/2022]
Abstract
Bird migration has fascinated humans for centuries and routes crossing the globe are now starting to be revealed by advanced tracking technology. A central question is what compass mechanism, celestial or geomagnetic, is activated during these long flights. Different approaches based on the geometry of flight routes across the globe and route simulations based on predictions from compass mechanisms with or without including the effect of winds have been used to try to answer this question with varying results. A major focus has been use of orthodromic (great circle) and loxodromic (rhumbline) routes using celestial information, while geomagnetic information has been proposed for both a magnetic loxodromic route and a magnetoclinic route. Here, we review previous results and evaluate if one or several alternative compass mechanisms can explain migration routes in birds. We found that most cases could be explained by magnetoclinic routes (up to 73% of the cases), while the sun compas s could explain only 50%. Both magnetic and geographic loxodromes could explain <25% of the routes. The magnetoclinic route functioned across latitudes (1°S-74°N), while the sun compass only worked in the high Arctic (61-69°N). We discuss the results with respect to orientation challenges and availability of orientation cues.
Collapse
Affiliation(s)
- Susanne Åkesson
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden.
| | - Giuseppe Bianco
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
| |
Collapse
|