1
|
Pavlov SG, Weber I, Böttger U, Schade U, Fritz J. Prediction of Olivine Composition Under Limited Calibration Inputs: Comparative Study of Mid-Infrared Reflection, Raman Scattering, and Laser-Induced Plasma Spectroscopies. APPLIED SPECTROSCOPY 2025; 79:767-783. [PMID: 39726181 DOI: 10.1177/00037028241305162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
In situ optical analytical spectroscopies offer great geochemical insights due to their capability to resolve the chemical composition of regolith surfaces of rocky celestial bodies. The use of suitable calibration targets improves the precision of mineral determination, which is of critical importance for short-living, low-mobility landers, and enables, in special cases, determination of elemental composition. We investigate the capabilities of three space-relevant optical analytical techniques used for in situ mineralogical analysis, i.e., mid-infrared reflection, Raman light scattering, and laser-induced plasma spectroscopies, to predict the chemical composition of olivine under a limited calibration input, namely using two bulk samples of natural olivine, chemically close to the end-members of the mineral group. We determine the accuracy of the forsterite numbers obtained with each technique and discuss the choice of calibration methods applicable to limited in situ calibration input, which are summarized in recommendations for space instrumentation.
Collapse
Affiliation(s)
- Sergey G Pavlov
- Institute of Optical Sensor Systems, German Aerospace Center (DLR), Berlin, Germany
| | - Iris Weber
- Institut für Planetologie, Universität Münster, Münster, Germany
| | - Ute Böttger
- Institute of Optical Sensor Systems, German Aerospace Center (DLR), Berlin, Germany
| | - Ulrich Schade
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Jörg Fritz
- Zentrum für Rieskrater und Impaktforschung, Nördlingen, Germany
- Saalbau Weltraum Projekt, Heppenheim, Germany
| |
Collapse
|
2
|
Abstract
Igneous processes were quite widespread in the small bodies of the Solar System (SBSS) and were initially fueled by short-lived radioisotopes, the proto-Sun, impact heating, and differentiation heating. Once they finished, long-lived radioisotopes continued to warm the active bodies of the Earth, (possibly) Venus, and the cryovolcanism of Enceladus. The widespread presence of olivine and pyroxenes in planets and also in SBSS suggests that they were not necessarily the product of igneous processes and they might have been recycled from previous nebular processes or entrained in comets from interstellar space. The difference in temperature between the inner and the outer Solar System has clearly favored thermal annealing of the olivine close to the proto-Sun. Transport of olivine within the Solar System probably occurred also due to protostellar jets and winds but the entrainment in SBSS from interstellar space would overcome the requirement of initial turbulent regime in the protoplanetary nebula.
Collapse
Affiliation(s)
- Giovanni Leone
- Instituto de Investigación en Astronomía y Ciencias Planetarias, Universidad de Atacama, Chile
- Virtual Muography Institute, Global, Tokyo, Japan
| | - Hiroyuki K.M. Tanaka
- Virtual Muography Institute, Global, Tokyo, Japan
- International Muography Research Organization (MUOGRAPHIX), The University of Tokyo, Japan
- Earthquake Research Institute, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| |
Collapse
|
3
|
Söderström KR. The structure and dynamics of instrument collaboration networks. Scientometrics 2023. [DOI: 10.1007/s11192-023-04658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
AbstractComplex scientific questions often require collaboration between scientists to access scientific instruments (deS. Price, Res Policy 13:3–20, 1984; Shrum et al. 2007, Structures of scientific collaboration, The MIT Press, 2007), knowledge and social capital from scientists outside of their immediate networks (Burt, Am J Sociol 110:349–399, 2004; Collins, Tacit and explicit knowledge, University of Chicago Press, https://press.uchicago.edu/ucp/books/book/chicago/T/bo8461024.html, 2012; Granovetter, Am J Sociol 78:1360–1380, 1973; Polanyi, Personal knowledge: towards a post-critical philosophy (Repr. (with corr.)). Routledge & Kegan Paul, 1962). Synchrotron radiation facilities are a unique case to explore this type of collaboration, as external scientists going to the facility to do their ordinary research work are common. These external users use complex scientific instrumentation that could require the additional accumulated knowledge of internal scientists and staff more familiar with the technical and social aspects of the instruments. These collaborations sometimes result in a co-authored publication with internal staff, employed in these facilities. However, this is not always the case. Data from the European Synchrotron Radiation Facility (ESRF) shows that most often, external scientists do not include internal staff in the co-author fields of the subsequent publication from scientific work done in one (or more) instruments in these facilities. Instrument collaboration networks are constructed and analysed over the period 2000–2018 for the different scientific instruments within the facility. A strong relationship between the level of external collaboration and the structure of the networks is found and explored. The results provide further insight into factors that shape collaboration and knowledge transfer, also relevant to policy makers and facility managers seeking to promote these activities.
Collapse
|
4
|
Nakashima D, Nakamura T, Zhang M, Kita NT, Mikouchi T, Yoshida H, Enokido Y, Morita T, Kikuiri M, Amano K, Kagawa E, Yada T, Nishimura M, Nakato A, Miyazaki A, Yogata K, Abe M, Okada T, Usui T, Yoshikawa M, Saiki T, Tanaka S, Nakazawa S, Terui F, Yurimoto H, Noguchi T, Yabuta H, Naraoka H, Okazaki R, Sakamoto K, Watanabe SI, Tachibana S, Tsuda Y. Chondrule-like objects and Ca-Al-rich inclusions in Ryugu may potentially be the oldest Solar System materials. Nat Commun 2023; 14:532. [PMID: 36797235 PMCID: PMC9935534 DOI: 10.1038/s41467-023-36268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/20/2023] [Indexed: 02/18/2023] Open
Abstract
Chondrule-like objects and Ca-Al-rich inclusions (CAIs) are discovered in the retuned samples from asteroid Ryugu. Here we report results of oxygen isotope, mineralogical, and compositional analysis of the chondrule-like objects and CAIs. Three chondrule-like objects dominated by Mg-rich olivine are 16O-rich and -poor with Δ17O (=δ17O - 0.52 × δ18O) values of ~ -23‰ and ~ -3‰, resembling what has been proposed as early generations of chondrules. The 16O-rich objects are likely to be melted amoeboid olivine aggregates that escaped from incorporation into 16O-poor chondrule precursor dust. Two CAIs composed of refractory minerals are 16O-rich with Δ17O of ~ -23‰ and possibly as old as the oldest CAIs. The discovered objects (<30 µm) are as small as those from comets, suggesting radial transport favoring smaller objects from the inner solar nebula to the formation location of the Ryugu original parent body, which is farther from the Sun and scarce in chondrules. The transported objects may have been mostly destroyed during aqueous alteration in the Ryugu parent body.
Collapse
Affiliation(s)
- Daisuke Nakashima
- Department of Earth Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan.
| | - Tomoki Nakamura
- grid.69566.3a0000 0001 2248 6943Department of Earth Science, Tohoku University, Sendai, Miyagi 980-8578 Japan
| | - Mingming Zhang
- grid.14003.360000 0001 2167 3675Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Noriko T. Kita
- grid.14003.360000 0001 2167 3675Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Takashi Mikouchi
- grid.26999.3d0000 0001 2151 536XThe University Museum, University of Tokyo, Tokyo, 113-0033 Japan
| | - Hideto Yoshida
- grid.26999.3d0000 0001 2151 536XDepartment of Earth and Planetary Science, University of Tokyo, Tokyo, 113-0033 Japan
| | - Yuma Enokido
- grid.69566.3a0000 0001 2248 6943Department of Earth Science, Tohoku University, Sendai, Miyagi 980-8578 Japan
| | - Tomoyo Morita
- grid.69566.3a0000 0001 2248 6943Department of Earth Science, Tohoku University, Sendai, Miyagi 980-8578 Japan
| | - Mizuha Kikuiri
- grid.69566.3a0000 0001 2248 6943Department of Earth Science, Tohoku University, Sendai, Miyagi 980-8578 Japan
| | - Kana Amano
- grid.69566.3a0000 0001 2248 6943Department of Earth Science, Tohoku University, Sendai, Miyagi 980-8578 Japan
| | - Eiichi Kagawa
- grid.69566.3a0000 0001 2248 6943Department of Earth Science, Tohoku University, Sendai, Miyagi 980-8578 Japan
| | - Toru Yada
- grid.62167.340000 0001 2220 7916Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 Japan
| | - Masahiro Nishimura
- grid.62167.340000 0001 2220 7916Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 Japan
| | - Aiko Nakato
- grid.62167.340000 0001 2220 7916Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 Japan
| | - Akiko Miyazaki
- grid.62167.340000 0001 2220 7916Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 Japan
| | - Kasumi Yogata
- grid.62167.340000 0001 2220 7916Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 Japan
| | - Masanao Abe
- grid.62167.340000 0001 2220 7916Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 Japan
| | - Tatsuaki Okada
- grid.62167.340000 0001 2220 7916Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 Japan
| | - Tomohiro Usui
- grid.62167.340000 0001 2220 7916Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 Japan
| | - Makoto Yoshikawa
- grid.62167.340000 0001 2220 7916Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 Japan
| | - Takanao Saiki
- grid.62167.340000 0001 2220 7916Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 Japan
| | - Satoshi Tanaka
- grid.62167.340000 0001 2220 7916Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 Japan
| | - Satoru Nakazawa
- grid.62167.340000 0001 2220 7916Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 Japan
| | - Fuyuto Terui
- grid.419709.20000 0004 0371 3508Kanagawa Institute of Technology, Atsugi, Kanagawa 243-0292 Japan
| | - Hisayoshi Yurimoto
- grid.39158.360000 0001 2173 7691Department of Natural History Sciences, Hokkaido University, Sapporo, Hokkaido 060‑0810 Japan
| | - Takaaki Noguchi
- grid.258799.80000 0004 0372 2033Division of Earth and Planetary Sciences, Kyoto University, Kyoto, 606-8502 Japan
| | - Hikaru Yabuta
- grid.257022.00000 0000 8711 3200Department of Earth and Planetary Systems Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 Japan
| | - Hiroshi Naraoka
- grid.177174.30000 0001 2242 4849Department of Earth and Planetary Sciences, Kyushu University, Fukuoka, 819-0395 Japan
| | - Ryuji Okazaki
- grid.177174.30000 0001 2242 4849Department of Earth and Planetary Sciences, Kyushu University, Fukuoka, 819-0395 Japan
| | - Kanako Sakamoto
- grid.62167.340000 0001 2220 7916Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 Japan
| | - Sei-ichiro Watanabe
- grid.27476.300000 0001 0943 978XDepartment of Earth and Environmental Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Shogo Tachibana
- grid.26999.3d0000 0001 2151 536XDepartment of Earth and Planetary Science, University of Tokyo, Tokyo, 113-0033 Japan
| | - Yuichi Tsuda
- grid.62167.340000 0001 2220 7916Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 Japan
| |
Collapse
|
5
|
Capelo HL, Kühn J, Pommerol A, Piazza D, Brändli M, Cerubini R, Jost B, Bodénan JD, Planchet T, Spadaccia S, Schräpler R, Blum J, Schönbächler M, Mayer L, Thomas N. TEMPus VoLA: The timed Epstein multi-pressure vessel at low accelerations. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:104502. [PMID: 36319368 DOI: 10.1063/5.0087030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/07/2022] [Indexed: 06/16/2023]
Abstract
The field of planetary system formation relies extensively on our understanding of the aerodynamic interaction between gas and dust in protoplanetary disks. Of particular importance are the mechanisms triggering fluid instabilities and clumping of dust particles into aggregates, and their subsequent inclusion into planetesimals. We introduce the timed Epstein multi-pressure vessel at low accelerations, which is an experimental apparatus for the study of particle dynamics and rarefied gas under micro-gravity conditions. This facility contains three experiments dedicated to studying aerodynamic processes: (i) the development of pressure gradients due to collective particle-gas interaction, (ii) the drag coefficients of dust aggregates with variable particle-gas velocity, and (iii) the effect of dust on the profile of a shear flow and resultant onset of turbulence. The approach is innovative with respect to previous experiments because we access an untouched parameter space in terms of dust particle packing fraction, and Knudsen, Stokes, and Reynolds numbers. The mechanisms investigated are also relevant for our understanding of the emission of dust from active surfaces, such as cometary nuclei, and new experimental data will help interpreting previous datasets (Rosetta) and prepare future spacecraft observations (Comet Interceptor). We report on the performance of the experiments, which has been tested over the course of multiple flight campaigns. The project is now ready to benefit from additional flight campaigns, to cover a wide parameter space. The outcome will be a comprehensive framework to test models and numerical recipes for studying collective dust particle aerodynamics under space-like conditions.
Collapse
Affiliation(s)
- H L Capelo
- Space Research and Planetary Sciences Division, Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - J Kühn
- Space Research and Planetary Sciences Division, Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - A Pommerol
- Space Research and Planetary Sciences Division, Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - D Piazza
- Space Research and Planetary Sciences Division, Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - M Brändli
- Space Research and Planetary Sciences Division, Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - R Cerubini
- Space Research and Planetary Sciences Division, Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - B Jost
- Space Research and Planetary Sciences Division, Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - J-D Bodénan
- ETH Zurich, Institute of Geochemistry and Petrology, 8092 Zurich, Switzerland
| | - T Planchet
- Space Research and Planetary Sciences Division, Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - S Spadaccia
- Space Research and Planetary Sciences Division, Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - R Schräpler
- Institut fur Geophysik und extraterrestrische Physik, Technische Universitat Braunschweig, Mendelssohnstr. 3, D-38106 Braunschweig, Germany
| | - J Blum
- Institut fur Geophysik und extraterrestrische Physik, Technische Universitat Braunschweig, Mendelssohnstr. 3, D-38106 Braunschweig, Germany
| | - M Schönbächler
- ETH Zurich, Institute of Geochemistry and Petrology, 8092 Zurich, Switzerland
| | - L Mayer
- Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - N Thomas
- Space Research and Planetary Sciences Division, Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| |
Collapse
|
6
|
Rimola A, Balucani N, Ceccarelli C, Ugliengo P. Tracing the Primordial Chemical Life of Glycine: A Review from Quantum Chemical Simulations. Int J Mol Sci 2022; 23:4252. [PMID: 35457069 PMCID: PMC9030215 DOI: 10.3390/ijms23084252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/28/2022] Open
Abstract
Glycine (Gly), NH2CH2COOH, is the simplest amino acid. Although it has not been directly detected in the interstellar gas-phase medium, it has been identified in comets and meteorites, and its synthesis in these environments has been simulated in terrestrial laboratory experiments. Likewise, condensation of Gly to form peptides in scenarios resembling those present in a primordial Earth has been demonstrated experimentally. Thus, Gly is a paradigmatic system for biomolecular building blocks to investigate how they can be synthesized in astrophysical environments, transported and delivered by fragments of asteroids (meteorites, once they land on Earth) and comets (interplanetary dust particles that land on Earth) to the primitive Earth, and there react to form biopolymers as a step towards the emergence of life. Quantum chemical investigations addressing these Gly-related events have been performed, providing fundamental atomic-scale information and quantitative energetic data. However, they are spread in the literature and difficult to harmonize in a consistent way due to different computational chemistry methodologies and model systems. This review aims to collect the work done so far to characterize, at a quantum mechanical level, the chemical life of Gly, i.e., from its synthesis in the interstellar medium up to its polymerization on Earth.
Collapse
Affiliation(s)
- Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Catalonia, Spain
| | - Nadia Balucani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy;
- Osservatorio Astrosico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
| | - Cecilia Ceccarelli
- CNRS, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), Université Grenoble Alpes, 38000 Grenoble, France;
| | - Piero Ugliengo
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy;
| |
Collapse
|
7
|
Yamagishi A, Hashimoto H, Yano H, Imai E, Tabata M, Higashide M, Okudaira K. Four-Year Operation of Tanpopo: Astrobiology Exposure and Micrometeoroid Capture Experiments on the JEM Exposed Facility of the International Space Station. ASTROBIOLOGY 2021; 21:1461-1472. [PMID: 34449271 DOI: 10.1089/ast.2020.2430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Tanpopo experiment was the first Japanese astrobiology mission on board the International Space Station. It included exposure experiments of microbes and organic compounds as well as a capture experiment of hypervelocity impacting microparticles. We deployed three Exposure Panels, each consisting of 20 Exposure Units that contained microbes, organic compounds, an alanine UV dosimeter or an ionizing radiation dosimeter. The three Exposure Panels were situated on the zenith face of the Exposed Experiment Handrail Attachment Mechanism (ExHAM) that was pointing in zenith direction toward space, which was attached on a handrail of the Japanese Experiment Module (Kibo) Exposed Facility (JEM-EF) outside the International Space Station. The three Exposure Panels were one by one retrieved and returned to the ground after approximately 1, 2, and 3 years of exposure to the space environment. Capture Panels, each of which contained one or two blocks of amorphous silica aerogel, were exposed to collect hypervelocity impact microparticles. Possible captured particles may include micrometeoroids, human-made orbital debris, and natural terrestrial particles. Each year, Capture Panels containing from 11 to 12 aerogel blocks were attached to the three faces of the ExHAM (pointing to zenith, ram, and port); they remained in place for about 1 year and were then returned to the laboratory. This process was repeated three times, in total, during 2015-2018. Additional exposure of a Capture Panel facing ram was conducted between 2018 and 2019. Once the aerogel blocks were returned to the laboratory, they were encapsulated in dedicated transparent plastic cases and optically inspected by a specially designed microscopic system. Once located and recorded, hypervelocity impact signatures were excavated one by one and distributed for further detailed analyses. The apparatus, operation, and environmental factors of all the Tanpopo experiments are summarized in this article.
Collapse
Affiliation(s)
- Akihiko Yamagishi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa, Japan
| | - Hirofumi Hashimoto
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa, Japan
| | - Hajime Yano
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa, Japan
| | - Eiichi Imai
- Department of Bioengineering, Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata, Japan
| | - Makoto Tabata
- Department of Physics, Chiba University, Chiba, Japan
| | - Masumi Higashide
- Research and Development Directorate, Japan Aerospace Exploration Agency (JAXA), Chofu, Tokyo, Japan
| | - Kyoko Okudaira
- Aizu Research Center for Space Informatics (ARC-Space), The University of Aizu, Aizuwakamatsu, Fukushima, Japan
| |
Collapse
|
8
|
Rizkallah GC, Assaf AA, Tohme SN. Molecular structure and properties of MgCa molecule. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Gaseous atomic nickel in the coma of interstellar comet 2I/Borisov. Nature 2021; 593:375-378. [PMID: 34012084 DOI: 10.1038/s41586-021-03485-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/23/2021] [Indexed: 11/08/2022]
Abstract
On 31 August 2019, an interstellar comet was discovered as it passed through the Solar System (2I/Borisov). On the basis of initial imaging observations, 2I/Borisov seemed to be similar to ordinary Solar System comets1,2-an unexpected characteristic given the multiple peculiarities of the only known previous interstellar visitor, 1I/'Oumuamua3-6. Spectroscopic investigations of 2I/Borisov identified the familiar cometary emissions from CN (refs. 7-9), C2 (ref. 10), O I (ref. 11), NH2 (ref. 12), OH (ref. 13), HCN (ref. 14) and CO (refs. 14,15), revealing a composition similar to that of carbon monoxide-rich Solar System comets. At temperatures greater than 700 kelvin, comets also show metallic vapours that are produced by the sublimation of metal-rich dust grains16. Observation of gaseous metals had until very recently17 been limited to bright sunskirting and sungrazing comets18-20 and giant star-plunging exocomets21. Here we report spectroscopic observations of atomic nickel vapour in the cold coma of 2I/Borisov at a heliocentric distance of 2.322 astronomical units-equivalent to an equilibrium temperature of 180 kelvin. Nickel in 2I/Borisov seems to originate from a short-lived nickel-containing molecule with a lifetime of [Formula: see text] seconds at 1 astronomical unit and is produced at a rate of 0.9 ± 0.3 × 1022 atoms per second, or 0.002 per cent relative to OH and 0.3 per cent relative to CN. The detection of gas-phase nickel in the coma of 2I/Borisov is in line with the recent identification of this atom-as well as iron-in the cold comae of Solar System comets17.
Collapse
|
10
|
Manfroid J, Hutsemékers D, Jehin E. Iron and nickel atoms in cometary atmospheres even far from the Sun. Nature 2021; 593:372-374. [PMID: 34012081 DOI: 10.1038/s41586-021-03435-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/09/2021] [Indexed: 02/04/2023]
Abstract
In comets, iron and nickel are found in refractory dust particles or in metallic and sulfide grains1. So far, no iron- or nickel-bearing molecules have been observed in the gaseous coma of comets2. Iron and a few other heavy atoms, such as copper and cobalt, have been observed only in two exceptional objects: the Great Comet of 18823 and, almost a century later, C/1965 S1 (Ikeya-Seki)4-9. These sungrazing comets approached the Sun so closely that refractory materials sublimated, and their relative abundance of nickel to iron was similar to that of the Sun and meteorites7. More recently, the presence of iron vapour was inferred from the properties of a faint tail in comet C/2006 P1 (McNaught) at perihelion10, but neither iron nor nickel was reported in the gaseous coma of comet 67P/Churyumov-Gerasimenko by the in situ Rosetta mission11. Here we report that neutral Fe I and Ni I emission lines are ubiquitous in cometary atmospheres, even far from the Sun, as revealed by high-resolution ultraviolet-optical spectra of a large sample of comets of various compositions and dynamical origins. The abundances of both species appear to be of the same order of magnitude, contrasting the typical Solar System abundance ratio.
Collapse
Affiliation(s)
- J Manfroid
- STAR Institute, University of Liège, Liège, Belgium.
| | | | - E Jehin
- STAR Institute, University of Liège, Liège, Belgium
| |
Collapse
|
11
|
Fukuda K, Brownlee DE, Joswiak DJ, Tenner TJ, Kimura M, Kita NT. Correlated isotopic and chemical evidence for condensation origins of olivine in comet 81P/Wild 2 and in AOAs from CV and CO chondrites. GEOCHIMICA ET COSMOCHIMICA ACTA 2021; 293:544-574. [PMID: 34866644 PMCID: PMC8637496 DOI: 10.1016/j.gca.2020.09.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Magnesium stable isotope ratios and minor element abundances of five olivine particles from comet 81P/Wild 2 were examined by secondary ion mass spectrometry (SIMS). Wild 2 olivine particles exhibit only small variations in δ25Mg values from -1.0 +0.4/-0.5 ‰ to 0.6 +0.5/- 0.6 ‰ (2σ). This variation can be simply explained by mass-dependent fractionation from Mg isotopic compositions of the Earth and bulk meteorites, suggesting that Wild 2 olivine particles formed in the chondritic reservoir with respect to Mg isotope compositions. We also determined minor element abundances, and O and Mg isotope ratios of olivine grains in amoeboid olivine aggregates (AOAs) from Kaba (CV3.1) and DOM 08006 (CO3.01) carbonaceous chondrites. Our new SIMS minor element data reveal uniform, low FeO contents of ~0.05 wt% among AOA olivines from DOM 08006, suggesting that AOAs formed at more reducing environments in the solar nebula than previously thought. Furthermore, the SIMS-derived FeO contents of the AOA olivines are consistently lower than those obtained by electron microprobe analyses (~1 wt% FeO), indicating possible fluorescence from surrounding matrix materials and/or Fe,Ni-metals in AOAs during electron microprobe analyses. For Mg isotopes, AOA olivines show more negative mass-dependent fractionation (-3.8 ± 0.5‰ ≤ δ25Mg ≤ -0.2 ± 0.3‰; 2σ) relative to Wild 2 olivines. Further, these Mg isotope variations are correlated with their host AOA textures. Large negative Mg isotope fractionations in olivine are often observed in pore-rich AOAs, while those in compact AOAs tend to have near-chondritic Mg isotopic compositions. These observations indicate that pore-rich AOAs preserved their gas-solid condensation histories, while compact AOAs experienced thermal processing in the solar nebula after their condensation and aggregation. Importantly, one 16O-rich Wild 2 LIME olivine particle (T77/F50) shows negative Mg isotope fractionation (δ25Mg = -0.8 ± 0.4‰, δ26Mg = -1.4 ± 0.9‰; 2σ) relative to bulk chondrites. Minor element abundances of T77/F50 are in excellent agreement with those of olivines from pore-rich AOAs in DOM 08006. The observed similarity in O and Mg isotopes, and minor element abundances suggest that T77/F50 formed in an environment similar to AOAs, probably near the proto-Sun, and then was transported to the Kuiper belt, where comet 81P/Wild 2 likely accreted.
Collapse
Affiliation(s)
- Kohei Fukuda
- WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Donald E. Brownlee
- Department of Astronomy, University of Washington, Seattle, WA 98195, USA
| | - David J. Joswiak
- Department of Astronomy, University of Washington, Seattle, WA 98195, USA
| | - Travis J. Tenner
- Chemistry Division, Nuclear and Radiochemistry, Los Alamos National Laboratory, MSJ514, Los Alamos, NM 87545, USA
| | - Makoto Kimura
- National Institute of Polar Research, Tokyo 190-8518, Japan
| | - Noriko T. Kita
- WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
12
|
Hu JY, Dauphas N, Tissot FLH, Yokochi R, Ireland TJ, Zhang Z, Davis AM, Ciesla FJ, Grossman L, Charlier BLA, Roskosz M, Alp EE, Hu MY, Zhao J. Heating events in the nascent solar system recorded by rare earth element isotopic fractionation in refractory inclusions. SCIENCE ADVANCES 2021; 7:7/2/eabc2962. [PMID: 33523962 PMCID: PMC7787488 DOI: 10.1126/sciadv.abc2962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/16/2020] [Indexed: 05/31/2023]
Abstract
Equilibrium condensation of solar gas is often invoked to explain the abundance of refractory elements in planets and meteorites. This is partly motivated, by the observation that the depletions in both the least and most refractory rare earth elements (REEs) in meteoritic group II calcium-aluminum-rich inclusions (CAIs) can be reproduced by thermodynamic models of solar nebula condensation. We measured the isotopic compositions of Ce, Nd, Sm, Eu, Gd, Dy, Er, and Yb in eight CAIs to test this scenario. Contrary to expectation for equilibrium condensation, we find light isotope enrichment for the most refractory REEs and more subdued isotopic variations for the least refractory REEs. This suggests that group II CAIs formed by a two-stage process involving fast evaporation of preexisting materials, followed by near-equilibrium recondensation. The calculated time scales are consistent with heating in events akin to FU Orionis- or EX Lupi-type outbursts of eruptive pre-main-sequence stars.
Collapse
Affiliation(s)
- J Y Hu
- Origins Laboratory, The University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA.
- Department of the Geophysical Sciences, Enrico Fermi Institute, Chicago Center for Cosmochemistry, The University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
| | - N Dauphas
- Origins Laboratory, The University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
- Department of the Geophysical Sciences, Enrico Fermi Institute, Chicago Center for Cosmochemistry, The University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
| | - F L H Tissot
- Origins Laboratory, The University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
- The Isotoparium, Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - R Yokochi
- Department of the Geophysical Sciences, Enrico Fermi Institute, Chicago Center for Cosmochemistry, The University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
| | - T J Ireland
- Origins Laboratory, The University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
- Department of the Geophysical Sciences, Enrico Fermi Institute, Chicago Center for Cosmochemistry, The University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
- Department of Earth and Environment, Boston University, 685 Commonwealth Avenue, Boston, MA 02215, USA
| | - Z Zhang
- Origins Laboratory, The University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
- Department of the Geophysical Sciences, Enrico Fermi Institute, Chicago Center for Cosmochemistry, The University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
| | - A M Davis
- Department of the Geophysical Sciences, Enrico Fermi Institute, Chicago Center for Cosmochemistry, The University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
| | - F J Ciesla
- Department of the Geophysical Sciences, Enrico Fermi Institute, Chicago Center for Cosmochemistry, The University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
| | - L Grossman
- Department of the Geophysical Sciences, Enrico Fermi Institute, Chicago Center for Cosmochemistry, The University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
| | - B L A Charlier
- School of Geography, Earth and Environmental Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - M Roskosz
- IMPMC, CNRS, UMR 7590, Sorbonne Universités, Université Pierre et Marie Curie, Muséum National d'Histoire Naturelle, CP 52, 57 rue Cuvier, Paris F-75231, France
| | - E E Alp
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - M Y Hu
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - J Zhao
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| |
Collapse
|
13
|
Rubin M, Engrand C, Snodgrass C, Weissman P, Altwegg K, Busemann H, Morbidelli A, Mumma M. On the Origin and Evolution of the Material in 67P/Churyumov-Gerasimenko. SPACE SCIENCE REVIEWS 2020; 216:102. [PMID: 32801398 PMCID: PMC7392949 DOI: 10.1007/s11214-020-00718-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 07/03/2020] [Indexed: 06/02/2023]
Abstract
Primitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects.
Collapse
Affiliation(s)
- Martin Rubin
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Cécile Engrand
- CNRS/IN2P3, IJCLab, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Colin Snodgrass
- Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ UK
| | | | - Kathrin Altwegg
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Henner Busemann
- Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Michael Mumma
- NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, 20771 MD USA
| |
Collapse
|
14
|
Burbine TH, Greenwood RC. Exploring the Bimodal Solar System via Sample Return from the Main Asteroid Belt: The Case for Revisiting Ceres. SPACE SCIENCE REVIEWS 2020; 216:59. [PMID: 32624627 PMCID: PMC7319314 DOI: 10.1007/s11214-020-00671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Sample return from a main-belt asteroid has not yet been attempted, but appears technologically feasible. While the cost implications are significant, the scientific case for such a mission appears overwhelming. As suggested by the "Grand Tack" model, the structure of the main belt was likely forged during the earliest stages of Solar System evolution in response to migration of the giant planets. Returning samples from the main belt has the potential to test such planet migration models and the related geochemical and isotopic concept of a bimodal Solar System. Isotopic studies demonstrate distinct compositional differences between samples believed to be derived from the outer Solar System (CC or carbonaceous chondrite group) and those that are thought to be derived from the inner Solar System (NC or non-carbonaceous group). These two groups are separated on relevant isotopic variation diagrams by a clear compositional gap. The interface between these two regions appears to be broadly coincident with the present location of the asteroid belt, which contains material derived from both groups. The Hayabusa mission to near-Earth asteroid (NEA) (25143) Itokawa has shown what can be learned from a sample-return mission to an asteroid, even with a very small amount of sample. One scenario for main-belt sample return involves a spacecraft launching a projectile that strikes an object and flying through the debris cloud, which would potentially allow multiple bodies to be sampled if a number of projectiles are used on different asteroids. Another scenario is the more traditional method of landing on an asteroid to obtain the sample. A significant range of main-belt asteroids are available as targets for a sample-return mission and such a mission would represent a first step in mineralogically and isotopically mapping the asteroid belt. We argue that a sample-return mission to the asteroid belt does not necessarily have to return material from both the NC and CC groups to viably test the bimodal Solar System paradigm, as material from the NC group is already abundantly available for study. Instead, there is overwhelming evidence that we have a very incomplete suite of CC-related samples. Based on our analysis, we advocate a dedicated sample-return mission to the dwarf planet (1) Ceres as the best means of further exploring inherent Solar System variation. Ceres is an ice-rich world that may be a displaced trans-Neptunian object. We almost certainly do not have any meteorites that closely resemble material that would be brought back from Ceres. The rich heritage of data acquired by the Dawn mission makes a sample-return mission from Ceres logistically feasible at a realistic cost. No other potential main-belt target is capable of providing as much insight into the early Solar System as Ceres. Such a mission should be given the highest priority by the international scientific community.
Collapse
Affiliation(s)
- Thomas H. Burbine
- Department of Astronomy, Mount Holyoke College, South Hadley, MA 01075 USA
| | - Richard C. Greenwood
- Planetary and Space Sciences, School of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK
| |
Collapse
|
15
|
Chan QHS, Stroud R, Martins Z, Yabuta H. Concerns of Organic Contamination for Sample Return Space Missions. SPACE SCIENCE REVIEWS 2020; 216:56. [PMID: 32624626 PMCID: PMC7319412 DOI: 10.1007/s11214-020-00678-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Analysis of organic matter has been one of the major motivations behind solar system exploration missions. It addresses questions related to the organic inventory of our solar system and its implication for the origin of life on Earth. Sample return missions aim at returning scientifically valuable samples from target celestial bodies to Earth. By analysing the samples with the use of state-of-the-art analytical techniques in laboratories here on Earth, researchers can address extremely complicated aspects of extra-terrestrial organic matter. This level of detailed sample characterisation provides the range and depth in organic analysis that are restricted in spacecraft-based exploration missions, due to the limitations of the on-board in-situ instrumentation capabilities. So far, there are four completed and in-process sample return missions with an explicit mandate to collect organic matter: Stardust and OSIRIS-REx missions of NASA, and Hayabusa and Hayabusa2 missions of JAXA. Regardless of the target body, all sample return missions dedicate to minimise terrestrial organic contamination of the returned samples, by applying various degrees or strategies of organic contamination mitigation methods. Despite the dedicated efforts in the design and execution of contamination control, it is impossible to completely eliminate sources of organic contamination. This paper aims at providing an overview of the successes and lessons learned with regards to the identification of indigenous organic matter of the returned samples vs terrestrial contamination.
Collapse
Affiliation(s)
- Queenie Hoi Shan Chan
- Planetary and Space Sciences, School of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK
- Present Address: Department of Earth Sciences, Royal Holloway University of London, Egham Surrey, TW20 0EX UK
| | - Rhonda Stroud
- Code 6360, Naval Research Laboratory, Washington, DC 20375 USA
| | - Zita Martins
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico (IST), Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Hikaru Yabuta
- Department of Earth and Planetary Systems Science, Hiroshima University, 1-3-1 Kagamiyama, Hiroshima, 739-8526 Japan
| |
Collapse
|
16
|
Rubin M, Engrand C, Snodgrass C, Weissman P, Altwegg K, Busemann H, Morbidelli A, Mumma M. On the Origin and Evolution of the Material in 67P/Churyumov-Gerasimenko. SPACE SCIENCE REVIEWS 2020. [PMID: 32801398 DOI: 10.1007/s11214-019-0625-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Primitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects.
Collapse
Affiliation(s)
- Martin Rubin
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Cécile Engrand
- CNRS/IN2P3, IJCLab, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Colin Snodgrass
- Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ UK
| | | | - Kathrin Altwegg
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Henner Busemann
- Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Michael Mumma
- NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, 20771 MD USA
| |
Collapse
|
17
|
NAKAZAWA T. Current understanding of the global cycling of carbon dioxide, methane, and nitrous oxide. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:394-419. [PMID: 33177295 PMCID: PMC7725657 DOI: 10.2183/pjab.96.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
To address the climate change caused by anthropogenic emissions of greenhouse gases into the atmosphere, it is essential to understand and quantitatively elucidate their cycling on the Earth's surface. This paper first presents an overview of the global cycling of three greenhouse gases, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), followed by a description of their variations in the atmosphere. This paper then presents the recent global budgets of these greenhouse gases estimated using two different approaches, top-down and bottom-up. Discussions on our current knowledge regarding the global cycling of the three gases are also presented.
Collapse
|
18
|
Abstract
The ultimate mechanical properties, as characterized here by the ideal strengths of Mg2SiO4 forsterite, have been calculated using first-principles calculations and generalized gradient approximation under tensile and shear loading. The ideal tensile strengths (ITS) and ideal shear strengths (ISS) are computed by applying homogeneous strain increments along high-symmetry directions ([100], [010], and [001]) and low index shear plane ((100), (010), and (001)) of the orthorhombic lattice. We show that the ultimate mechanical properties of forsterite are highly anisotropic, with ITS ranging from 12.1 GPa along [010] to 29.3 GPa along [100], and ISS ranging from 5.6 GPa for simple shear deformation along (100) to 11.5 GPa for shear along (010).
Collapse
|
19
|
COHEN BA, SZALAY JR, RIVKIN AS, RICHARDSON JA, KLIMA RL, ERNST CM, CHABOT NL, STERNOVSKY Z, HORÁNYI M. Using dust shed from asteroids as microsamples to link remote measurements with meteorite classes. METEORITICS & PLANETARY SCIENCE 2019; 54:2046-2066. [PMID: 32256026 PMCID: PMC7120990 DOI: 10.1111/maps.13348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 05/30/2019] [Indexed: 06/11/2023]
Abstract
Given the compositional diversity of asteroids, and their distribution in space, it is impossible to consider returning samples from each one to establish their origin. However, the velocity and molecular composition of primary minerals, hydrated silicates, and organic materials can be determined by in situ dust detector instruments. Such instruments could sample the cloud of micrometer-scale particles shed by asteroids to provide direct links to known meteorite groups without returning the samples to terrestrial laboratories. We extend models of the measured lunar dust cloud from LADEE to show that the abundance of detectable impact-generated microsamples around asteroids is a function of the parent body radius, heliocentric distance, flyby distance, and speed. We use Monte Carlo modeling to show that several tens to hundreds of particles, if randomly ejected and detected during a flyby, would be a sufficient number to classify the parent body as an ordinary chondrite, basaltic achondrite, or other class of meteorite. Encountering and measuring microsamples shed from near-Earth and Main Belt asteroids, coupled with complementary imaging and multispectral measurements, could accomplish a thorough characterization of small, airless bodies.
Collapse
Affiliation(s)
- B. A. COHEN
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - J. R. SZALAY
- Princeton University, Princeton, New Jersey 08544, USA
| | - A. S. RIVKIN
- Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723, USA
| | - J. A. RICHARDSON
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - R. L. KLIMA
- Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723, USA
| | - C. M. ERNST
- Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723, USA
| | - N. L. CHABOT
- Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723, USA
| | - Z. STERNOVSKY
- LASP, University of Colorado, Boulder, Colorado 80303, USA
- Smead Aerospace Sciences, University of Colorado, Boulder, Colorado 80309, USA
| | - M. HORÁNYI
- LASP, University of Colorado, Boulder, Colorado 80303, USA
- Physics Department, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
20
|
Tenner TJ, Nakashima D, Ushikubo T, Tomioka N, Kimura M, Weisberg MK, Kita NT. Extended chondrule formation intervals in distinct physicochemical environments: Evidence from Al-Mg isotope systematics of CR chondrite chondrules with unaltered plagioclase. GEOCHIMICA ET COSMOCHIMICA ACTA 2019; 260:133-160. [PMID: 32255837 PMCID: PMC7121246 DOI: 10.1016/j.gca.2019.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Al-Mg isotope systematics of twelve FeO-poor (type I) chondrules from CR chondrites Queen Alexandra Range 99177 and Meteorite Hills 00426 were investigated by secondary ion mass spectrometry (SIMS). Five chondrules with Mg#'s of 99.0 to 99.2 and Δ17O of -4.2‰ to -5.3‰ have resolvable excess 26Mg. Their inferred (26Al/27Al)0 values range from (3.5 ± 1.3) × 10‒6 to (6.0 ± 3.9) × 10‒6. This corresponds to formation times of 2.2 (-0.5/+1.1) Myr to 2.8 (‒0.3/+0.5) Myr after CAIs, using a canonical (26Al/27Al)0 of 5.23 × 10-5, and assuming homogeneously distributed 26Al that yielded a uniform initial 26Al/27Al in the Solar System. Seven chondrules lack resolvable excess 26Mg. They have lower Mg#'s (94.2 to 98.7) and generally higher Δ17O (-0.9‰ to -4.9‰) than chondrules with resolvable excess 26Mg. Their inferred (26Al/27Al)0 upper limits range from 1.3 × 10‒6 to 3.2 × 10‒6, corresponding to formation >2.9 to >3.7 Myr after CAIs. Al-Mg isochrons depend critically on chondrule plagioclase, and several characteristics indicate the chondrule plagioclase is unaltered: (1) SIMS 27Al/24Mg depth profile patterns match those from anorthite standards, and SEM/EDS of chondrule SIMS pits show no foreign inclusions; (2) transmission electron microscopy (TEM) reveals no nanometer-scale micro-inclusions and no alteration due to thermal metamorphism; (3) oxygen isotopes of chondrule plagioclase match those of coexisting olivine and pyroxene, indicating a low extent of thermal metamorphism; and (4) electron microprobe data show chondrule plagioclase is anorthite-rich, with excess structural silica and high MgO, consistent with such plagioclase from other petrologic type 3.00-3.05 chondrites. We conclude that the resolvable (26Al/27Al)0 variabilities among chondrules studied are robust, corresponding to a formation interval of at least 1.1 Myr. Using relationships between chondrule (26Al/27Al)0, Mg#, and Δ17O, we interpret spatial and temporal features of dust, gas, and H2O ice in the FeO-poor chondrule-forming environment. Mg# ≥ 99, Δ17O ~-5‰ chondrules with resolvable excess 26Mg initially formed in an environment that was relatively anhydrous, with a dust-to-gas ratio of ~100×. After these chondrules formed, we interpret a later influx of 16O-poor H2O ice into the environment, and that dust-to-gas ratios expanded (100× to 300×). This led to the later formation of more oxidized Mg# 94-99 chondrules with higher Δ17O (-5‰ to -1‰), with low (26Al/27Al)0, and hence no resolvable excess 26Mg. We refine the mean CR chondrite chondrule formation age via mass balance, by considering that Mg# ≥ 99 chondrules generally have resolved positive (26Al/27Al)0 and that Mg# < 99 chondrules generally have no resolvable excess 26Mg, implying lower (26Al/27Al)0. We obtain a mean chondrule formation age of 3.8 ± 0.3 Myr after CAIs, which is consistent with Pb-Pb and Hf-W model ages of CR chondrite chondrule aggregates. Overall, this suggests most CR chondrite chondrules formed immediately before parent body accretion.
Collapse
Affiliation(s)
- Travis J Tenner
- WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
- Chemistry Division, Nuclear and Radiochemistry, Los Alamos National Laboratory, MSJ514, Los Alamos, NM 87545, USA
| | - Daisuke Nakashima
- WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Earth and Planetary Material Sciences, Faculty of Science, Tohoku University, Aoba, Sendai, Miyagi 980-8578, Japan
| | - Takayuki Ushikubo
- WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 200 Monobe Otsu, Nankoku, Kochi 783-8502, Japan
| | - Naotaka Tomioka
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 200 Monobe Otsu, Nankoku, Kochi 783-8502, Japan
| | - Makoto Kimura
- Faculty of Science, Ibaraki University, Mito 310-8512, Japan
- National Institute of Polar Research, Tokyo 190-8518, Japan
| | - Michael K Weisberg
- Kingsborough Community College and Graduate Center, The City University of New York, 2001 Oriental Boulevard, Brooklyn, NY 11235-2398, USA
- American Museum of Natural History, Central Park West at 79 Street, New York, NY, 10024-5192, USA
| | - Noriko T Kita
- WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
21
|
Molpeceres G, Rimola A, Ceccarelli C, Kästner J, Ugliengo P, Maté B. Silicate-mediated interstellar water formation: A theoretical study. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 2019; 482:5389-5400. [PMID: 31156274 PMCID: PMC6544534 DOI: 10.1093/mnras/sty3024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Water is one of the most abundant molecules in the form of solid ice phase in the different regions of the interstellar medium (ISM). This large abundance cannot be properly explained by using only traditional low temperature gas-phase reactions. Thus, surface chemical reactions are believed to be major synthetic channels for the formation of interstellar water ice. Among the different proposals, hydrogenation of atomic O (i.e., 2H + O → H2O) is a chemically "simple" and plausible reaction toward water formation occurring on the surfaces of interstellar grains. Here, novel theoretical results concerning the formation of water adopting this mechanism on the crystalline (010) Mg2SiO4 surface (a unequivocally identified interstellar silicate) are presented. The investigated reaction aims to simulate the formation of the first water ice layer covering the silicate core of dust grains. Adsorption of the atomic O as a first step of the reaction has been computed, results indicating that a peroxo (O 2 2 - ) group is formed. The following steps involve the adsorption, diffusion and reaction of two successive H atoms with the adsorbed O atom. Results indicate that H diffusion on the surface has barriers of 4-6 kcal mol-1, while actual formation of OH and H2O present energy barriers of 22-23 kcal mol-1. Kinetic study results show that tunneling is crucial for the occurrence of the reactions and that formation of OH and H2O are the bottlenecks of the overall process. Several astrophysical implications derived from the theoretical results are provided as concluding remarks.
Collapse
Affiliation(s)
- Germán Molpeceres
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 123, E-28006, Madrid, Spain
| | - Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Cecilia Ceccarelli
- Univ. Grenoble Alpes, CNRS, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), 38000 Grenoble, France
| | - Johannes Kästner
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Piero Ugliengo
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS), Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Belén Maté
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 123, E-28006, Madrid, Spain
| |
Collapse
|
22
|
Ishii HA. Comparison of GEMS in Interplanetary Dust Particles and GEMS-like Objects in a Stardust Impact Track in Aerogel. METEORITICS & PLANETARY SCIENCE 2019; 54:202-219. [PMID: 30713419 PMCID: PMC6350812 DOI: 10.1111/maps.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/06/2018] [Indexed: 06/09/2023]
Abstract
Comet 81P/Wild 2 dust, the first comet sample of known provenance, was widely expected to resemble anhydrous chondritic porous (CP) interplanetary dust particles (IDPs). GEMS, distinctly characteristic of CP IDPs, have yet to be unambiguously identified in the Stardust mission samples despite claims of likely candidates. One such candidate is Stardust impact track 57 "Febo" in aerogel, which contains fine-grained objects texturally and compositionally similar to GEMS. Their position adjacent the terminal particle suggests that they may be indigenous, fine-grained, cometary material, like that in CP IDPs, shielded by the terminal particle from damage during deceleration from hypervelocity. Darkfield imaging and multi-detector energy-dispersive x-ray mapping were used to compare GEMS-like-objects in the Febo terminal particle with GEMS in an anhydrous, chondritic IDP. GEMS in the IDP are within 3× CI (solar) abundances for major and minor elements. In the Febo GEMS-like objects, Mg and Ca are systematically and strongly depleted relative to CI; S and Fe are somewhat enriched; and Au, a known aerogel contaminant is present, consistent with ablation, melting, abrasion and mixing of the SiOx aerogel with crystalline Fe-sulfide and minor enstatite, high-Ni sulfide and augite identified by elemental mapping in the terminal particle. Thus, GEMS-like objects in "caches" of fine-grained debris abutting terminal particles are most likely deceleration debris packed in place during particle transit through the aerogel.
Collapse
Affiliation(s)
- Hope A Ishii
- Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
23
|
|
24
|
The Effect of Jupiter's Formation on the Distribution of Refractory Elements and Inclusions in Meteorites. ACTA ACUST UNITED AC 2018. [DOI: 10.3847/1538-4365/aad95f] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
First evidence for silica condensation within the solar protoplanetary disk. Proc Natl Acad Sci U S A 2018; 115:7497-7502. [PMID: 29967181 DOI: 10.1073/pnas.1722265115] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Calcium-aluminum-rich inclusions (CAIs) and amoeboid olivine aggregates (AOAs), a refractory component of chondritic meteorites, formed in a high-temperature region of the protoplanetary disk characterized by approximately solar chemical and oxygen isotopic (Δ17O ∼ -24‰) compositions, most likely near the protosun. Here we describe a 16O-rich (Δ17O ∼ -22 ± 2‰) AOA from the carbonaceous Renazzo-type (CR) chondrite Yamato-793261 containing both (i) an ultrarefractory CAI and (ii) forsterite, low-Ca pyroxene, and silica, indicating formation by gas-solid reactions over a wide temperature range from ∼1,800 to ∼1,150 K. This AOA provides direct evidence for gas-solid condensation of silica in a CAI/AOA-forming region. In a gas of solar composition, the Mg/Si ratio exceeds 1, and, therefore, silica is not predicted to condense under equilibrium conditions, suggesting that the AOA formed in a parcel of gas with fractionated Mg/Si ratio, most likely due to condensation of forsterite grains. Thermodynamic modeling suggests that silica formed by condensation of nebular gas depleted by ∼10× in H and He that cooled at 50 K/hour at total pressure of 10-4 bar. Condensation of silica from a hot, chemically fractionated gas could explain the origin of silica identified from infrared spectroscopy of remote protostellar disks.
Collapse
|
26
|
Levasseur-Regourd AC, Agarwal J, Cottin H, Engrand C, Flynn G, Fulle M, Gombosi T, Langevin Y, Lasue J, Mannel T, Merouane S, Poch O, Thomas N, Westphal A. Cometary Dust. SPACE SCIENCE REVIEWS 2018; 214:64. [PMID: 35095119 PMCID: PMC8793767 DOI: 10.1007/s11214-018-0496-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/16/2018] [Indexed: 05/15/2023]
Abstract
This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth's orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.
Collapse
Affiliation(s)
- Anny-Chantal Levasseur-Regourd
- Sorbonne Université; UVSQ; CNRS/INSU; Campus Pierre et Marie Curie, BC 102, 4 place Jussieu, F-75005 Paris, France, Tel.: + 33 144274875,
| | - Jessica Agarwal
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg, 3, D-37077, Göttingen, Germany
| | - Hervé Cottin
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris-Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, 94000 Créteil, France
| | - Cécile Engrand
- Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS/IN2P3 Université Paris Sud - UMR 8609, Université Paris-Saclay, Bâtiment 104, 91405 Orsay Campus, France
| | - George Flynn
- SUNY-Plattsburgh, 101 Broad St, Plattsburgh, NY 12901, United States
| | - Marco Fulle
- INAF - Osservatorio Astronomico, Via Tiepolo 11, 34143 Trieste Italy
| | - Tamas Gombosi
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yves Langevin
- Institut dAstrophysique Spatiale (IAS), CNRS/Université Paris Sud, Bâtiment 121, 91405 Orsay France
| | - Jérémie Lasue
- IRAP, Université de Toulouse, CNRS, UPS, CNES, Toulouse, France
| | - Thurid Mannel
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, 8042 Graz, Austria; Physics Institute, University of Graz, Universitätsplatz 5, 8010 Graz, Austria
| | - Sihane Merouane
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg, 3, D-37077, Göttingen, Germany
| | - Olivier Poch
- Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France
| | - Nicolas Thomas
- Physikalisches Institut, Universität Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - Andrew Westphal
- Space Sciences Laboratory, U.C. Berkeley, Berkeley, California 94720-7450 USA
| |
Collapse
|
27
|
O'D Alexander CM, McKeegan KD, Altwegg K. Water Reservoirs in Small Planetary Bodies: Meteorites, Asteroids, and Comets. SPACE SCIENCE REVIEWS 2018; 214:36. [PMID: 30842688 PMCID: PMC6398961 DOI: 10.1007/s11214-018-0474-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 06/09/2023]
Abstract
Asteroids and comets are the remnants of the swarm of planetesimals from which the planets ultimately formed, and they retain records of processes that operated prior to and during planet formation. They are also likely the sources of most of the water and other volatiles accreted by Earth. In this review, we discuss the nature and probable origins of asteroids and comets based on data from remote observations, in situ measurements by spacecraft, and laboratory analyses of meteorites derived from asteroids. The asteroidal parent bodies of meteorites formed ≤4 Ma after Solar System formation while there was still a gas disk present. It seems increasingly likely that the parent bodies of meteorites spectroscopically linked with the E-, S-, M- and V-type asteroids formed sunward of Jupiter's orbit, while those associated with C- and, possibly, D-type asteroids formed further out, beyond Jupiter but probably not beyond Saturn's orbit. Comets formed further from the Sun than any of the meteorite parent bodies, and retain much higher abundances of interstellar material. CI and CM group meteorites are probably related to the most common C-type asteroids, and based on isotopic evidence they, rather than comets, are the most likely sources of the H and N accreted by the terrestrial planets. However, comets may have been major sources of the noble gases accreted by Earth and Venus. Possible constraints that these observations can place on models of giant planet formation and migration are explored.
Collapse
Affiliation(s)
- Conel M O'D Alexander
- Dept. Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Road NW, Washington, DC 20015, USA. . Tel. (202) 478 8478
| | - Kevin D McKeegan
- Department of Earth, Planetary, and Space Sciences, University of California-Los Angeles, Los Angeles, CA 90095-1567, USA.
| | - Kathrin Altwegg
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland.
| |
Collapse
|
28
|
Bermingham K, Walker R. The ruthenium isotopic composition of the oceanic mantle. EARTH AND PLANETARY SCIENCE LETTERS 2017; 474:466-473. [PMID: 30956285 PMCID: PMC6448151 DOI: 10.1016/j.epsl.2017.06.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The approximately chondritic relative, and comparatively high absolute m antle abundances of the highly siderophile elem ents (HSE), suggest that their concentrations in the bulk silicate Earth were primarily established during a final ~0.5 to 1% of "late accretion" to the mantle, following the cessation of core segregation. Consequently, the isotopic composition of the HSE Ru in the mantle reflects an amalgamation of the isotopic compositions of late accretionary contributions to the silicate portion of the Earth. Among cosm ochem ical materials, Ru is characterized by considerable mass-independent isotopic variability, making it a powerful genetic tracer of Earth's late accretionary building blocks. To define the Ru isotopic composition of the oceanic mantle, the largest portion of the accessible mantle, we report Ru isotopic data for materials from one Archean and seven Phanerozoic oceanic m antle domains. A sample from a continental lithospheric mantle domain is also examined. All samples have identical Ru isotopic compositions, within analytical uncertainties, indicating that Ru isotopes are well mixed in the oceanic mantle, defining a μ 100Ru value of 1.2 ± 7.2 (2SD). The only known meteorites with the same Ru isotopic composition are enstatite chondrites and, when corrected for the effects of cosmic ray exposure, mem bers of the Main Group and sLL subgroup of the lAB iron meteorite complex which have a collective CRE corrected μ 100Ru value of 0.9 ± 3.0. This suggests that materials from the region(s) of the solar nebula sampled by these m eteorites likely contributed the dominant portion of late accreted materials to Earth's mantle.
Collapse
|
29
|
Wooden DH, Ishii HA, Zolensky ME. Cometary dust: the diversity of primitive refractory grains. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:20160260. [PMID: 28554979 PMCID: PMC5454228 DOI: 10.1098/rsta.2016.0260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/13/2017] [Indexed: 05/07/2023]
Abstract
Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive cometary particles has expanded significantly through microscale investigations of cosmic dust samples (anhydrous interplanetary dust particles (IDPs), chondritic porous (CP) IDPs and UltraCarbonaceous Antarctic micrometeorites, Stardust and Rosetta), as well as through remote sensing (Spitzer IR spectroscopy). Comet dust are aggregate particles of materials unequilibrated at submicrometre scales. We discuss the properties and processes experienced by primitive matter in comets. Primitive particles exhibit a diverse range of: structure and typology; distribution of constituents; concentration and form of carbonaceous and refractory organic matter; Mg- and Fe-contents of the silicate minerals; sulfides; existence/abundance of type II chondrule fragments; high-temperature calcium-aluminium inclusions and ameboid-olivine aggregates; and rarely occurring Mg-carbonates and magnetite, whose explanation requires aqueous alteration on parent bodies. The properties of refractory materials imply there were disc processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disc present at the time and in the region where the comets formed.This article is part of the themed issue 'Cometary science after Rosetta'.
Collapse
Affiliation(s)
- D H Wooden
- NASA Ames Research Center, Moffett Field, CA 94035-0001, USA
| | - H A Ishii
- University of Hawaii, Hawai'i Institute of Geophysics and Planetology, Honolulu, HI 96822, USA
| | - M E Zolensky
- NASA Johnson Space Center, ARES, X12 2010 NASA Parkway, Houston, TX 77058-3607, USA
| |
Collapse
|
30
|
|
31
|
Defouilloy C, Nakashima D, Joswiak DJ, Brownlee DE, Tenner TJ, Kita NT. Origin of crystalline silicates from Comet 81P/Wild 2: Combined study on their oxygen isotopes and mineral chemistry. EARTH AND PLANETARY SCIENCE LETTERS 2017; 465:145-154. [PMID: 30705461 PMCID: PMC6350803 DOI: 10.1016/j.epsl.2017.02.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In order to explore the link between comet 81P/Wild 2 and materials in primitive meteorites, seven particles 5 to 15 μm in diameter from comet 81P/Wild 2 have been analyzed for their oxygen isotope ratios using a secondary ion mass spectrometer. Most particles are single minerals consisting of olivine or pyroxene with Mg# higher than 85, which are relatively minor in 81P/Wild 2 particles (~1/3 of the 16O-poor cluster). Four particles extracted from Track 149 are 16O-poor and show Δ17O (= δ17O - 0.52 × δ18O) values from -2%0 to +1%0, similar to previous studies, while one enstatite (En99) particle shows lower Δ17O value of -7±4%o (2σ). This compositional range has not been reported among 16O-poor particles in 81P/Wild 2, but is commonly observed among chondrules in carbonaceous chondrites and in particular in CR chondrites. The distribution in Δ17O indicates that 16O-poor 81P/Wild 2 particles are most similar to chondrules (and their fragments) in the CR chondrites and Tagish Lake-like WIS91600 chondrite chondrule silicate grains, which indicates that they likely come from a reservoir with similar dust/ice ratios as CR chondrites and WIS91600. However, differences in the Mg# distribution imply that the 81P/Wild 2 reservoir was comparatively more oxidized, with a higher dust enrichment. Two nearly pure enstatite grains from track 172 are significantly enriched in 16O, with δ18O values of -51.2 ± 1.5%0 (2σ) and -43.0 ± 1.3% (2σ), respectively, and Δ17O values of -22.3 ± 1.9% (2σ) and -21.3 ± 2.3%0 (2σ), respectively. They are the first 16O-rich pyroxenes found among 81P/Wild 2 particles, with similar Δ17O values to those of 16O-rich low-iron, manganese-enriched (LIME) olivine and CAI (calcium and aluminum-rich inclusions) -like particles from 81P/Wild 2. The major element and oxygen isotopic compositions of the pyroxenes are similar to those of enstatite in amoeboid olivine aggregates (AOAs) in primitive chondrites, in which 16O-rich pyroxenes have previously been found, and thus suggest a condensation origin.
Collapse
Affiliation(s)
- Céline Defouilloy
- WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daisuke Nakashima
- Division of Earth and Planetary Materials Science, Tohoku University, Miyagi 980-8578, Japan
| | - David J. Joswiak
- Department of Astronomy, University of Washington, Seattle, WA 98195, USA
| | - Donald E. Brownlee
- Department of Astronomy, University of Washington, Seattle, WA 98195, USA
| | - Travis J. Tenner
- WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Noriko T. Kita
- WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
32
|
Waite JH, Glein CR, Perryman RS, Teolis BD, Magee BA, Miller G, Grimes J, Perry ME, Miller KE, Bouquet A, Lunine JI, Brockwell T, Bolton SJ. Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes. Science 2017; 356:155-159. [DOI: 10.1126/science.aai8703] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/20/2017] [Indexed: 11/02/2022]
|
33
|
|
34
|
Bones DL, Gómez Martín JC, Empson CJ, Carrillo Sánchez JD, James AD, Conroy TP, Plane JMC. A novel instrument to measure differential ablation of meteorite samples and proxies: The Meteoric Ablation Simulator (MASI). THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:094504. [PMID: 27782588 DOI: 10.1063/1.4962751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
On entering the Earth's atmosphere, micrometeoroids partially or completely ablate, leaving behind layers of metallic atoms and ions. The relative concentration of the various metal layers is not well explained by current models of ablation. Furthermore, estimates of the total flux of cosmic dust and meteoroids entering the Earth's atmosphere vary over two orders of magnitude. To better constrain these estimates and to better model the metal layers in the mesosphere, an experimental Meteoric Ablation Simulator (MASI) has been developed. Interplanetary Dust Particle (IDP) analogs are subjected to temperature profiles simulating realistic entry heating, to ascertain the differential ablation of relevant metal species. MASI is the first ablation experiment capable of simulating detailed mass, velocity, and entry angle-specific temperature profiles whilst simultaneously tracking the resulting gas-phase ablation products in a time resolved manner. This enables the determination of elemental atmospheric entry yields which consider the mass and size distribution of IDPs. The instrument has also enabled the first direct measurements of differential ablation in a laboratory setting.
Collapse
Affiliation(s)
- D L Bones
- School of Chemistry, University of Leeds, Woodhouse Lane, LS2 9JT Leeds, United Kingdom
| | - J C Gómez Martín
- School of Chemistry, University of Leeds, Woodhouse Lane, LS2 9JT Leeds, United Kingdom
| | - C J Empson
- School of Chemistry, University of Leeds, Woodhouse Lane, LS2 9JT Leeds, United Kingdom
| | - J D Carrillo Sánchez
- School of Chemistry, University of Leeds, Woodhouse Lane, LS2 9JT Leeds, United Kingdom
| | - A D James
- School of Chemistry, University of Leeds, Woodhouse Lane, LS2 9JT Leeds, United Kingdom
| | - T P Conroy
- School of Chemistry, University of Leeds, Woodhouse Lane, LS2 9JT Leeds, United Kingdom
| | - J M C Plane
- School of Chemistry, University of Leeds, Woodhouse Lane, LS2 9JT Leeds, United Kingdom
| |
Collapse
|
35
|
Meech KJ, Yang B, Kleyna J, Hainaut OR, Berdyugina S, Keane JV, Micheli M, Morbidelli A, Wainscoat RJ. Inner solar system material discovered in the Oort cloud. SCIENCE ADVANCES 2016; 2:e1600038. [PMID: 27386512 PMCID: PMC4928888 DOI: 10.1126/sciadv.1600038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/30/2016] [Indexed: 05/31/2023]
Abstract
We have observed C/2014 S3 (PANSTARRS), a recently discovered object on a cometary orbit coming from the Oort cloud that is physically similar to an inner main belt rocky S-type asteroid. Recent dynamical models successfully reproduce the key characteristics of our current solar system; some of these models require significant migration of the giant planets, whereas others do not. These models provide different predictions on the presence of rocky material expelled from the inner solar system in the Oort cloud. C/2014 S3 could be the key to verifying these predictions of the migration-based dynamical models. Furthermore, this object displays a very faint, weak level of comet-like activity, five to six orders of magnitude less than that of typical ice-rich comets on similar Orbits coming from the Oort cloud. For the nearly tailless appearance, we are calling C/2014 S3 a Manx object. Various arguments convince us that this activity is produced by sublimation of volatile ice, that is, normal cometary activity. The activity implies that C/2014 S3 has retained a tiny fraction of the water that is expected to be present at its formation distance in the inner solar system. We may be looking at fresh inner solar system Earth-forming material that was ejected from the inner solar system and preserved for billions of years in the Oort cloud.
Collapse
Affiliation(s)
- Karen J. Meech
- Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Drive, Honolulu, HI 96822–1839, USA
| | - Bin Yang
- European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago, Chile
| | - Jan Kleyna
- Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Drive, Honolulu, HI 96822–1839, USA
| | - Olivier R. Hainaut
- European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei München, Germany
| | - Svetlana Berdyugina
- Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Drive, Honolulu, HI 96822–1839, USA
- Kiepenheuer Institut fuer Sonnenphysik, Schoeneckstrasse 6, 79104 Freiburg, Germany
| | - Jacqueline V. Keane
- Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Drive, Honolulu, HI 96822–1839, USA
| | - Marco Micheli
- Space Situational Awareness (SSA)–Near Earth Objects (NEO) Coordination Centre, European Space Agency, 00044 Frascati (RM), Italy
- SpaceDyS s.r.l., 56023 Cascina (Pl), Italy
- Istituto Nazionale di Astrofisica (INAF)–Istituto di Astrofisica e Planetologia Spaziali (IAPS), 00133 Roma (RM), Italy
| | - Alessandro Morbidelli
- Laboratoire Lagrange, UMR 7293, Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Cöte d’Azur, Boulevard de l’Observatoire, 06304 Nice Cedex 4, France
| | - Richard J. Wainscoat
- Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Drive, Honolulu, HI 96822–1839, USA
| |
Collapse
|
36
|
Bosiek K, Hausmann M, Hildenbrand G. Perspectives on Comets, Comet-like Asteroids, and Their Predisposition to Provide an Environment That Is Friendly to Life. ASTROBIOLOGY 2016; 16:311-323. [PMID: 26990270 DOI: 10.1089/ast.2015.1354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In recent years, studies have shown that there are many similarities between comets and asteroids. In some cases, it cannot even be determined to which of these groups an object belongs. This is especially true for objects found beyond the main asteroid belt. Because of the lack of comet fragments, more progress has been made concerning the chemical composition of asteroids. In particular, the SMASSII classification establishes a link between the reflecting spectra and chemical composition of asteroids and meteorites. To find clues for the chemical structure of comets, the parameters of all known asteroids of the SMASSII classification were compared to those of comet groups like the Encke-type comets, the Jupiter-family comets, and the Halley-type comets, as well as comet-like objects like the damocloids and the centaurs. Fifty-six SMASSII objects similar to comets were found and are categorized as comet-like asteroids in this work. Aside from the chemistry, it is assumed that the available energy on these celestial bodies plays an important role concerning habitability. For the determination of the available energy, the effective temperature was calculated. Additionally, the size of these objects was considered in order to evaluate the possibility of a liquid water core, which provides an environment that is more likely to support processes necessary to create the building blocks of life. Further study of such objects could be notable for the period of the Late Heavy Bombardment and could therefore provide important implications for our understanding of the inner workings of the prebiotic evolution within the Solar System since the beginning.
Collapse
Affiliation(s)
- Katharina Bosiek
- 1 Department of Physics and Astronomy, Kirchhoff Institute for Physics, University of Heidelberg , Heidelberg, Germany
| | - Michael Hausmann
- 1 Department of Physics and Astronomy, Kirchhoff Institute for Physics, University of Heidelberg , Heidelberg, Germany
| | - Georg Hildenbrand
- 1 Department of Physics and Astronomy, Kirchhoff Institute for Physics, University of Heidelberg , Heidelberg, Germany
- 2 Department of Radiooncology, University Medical Center Mannheim, Medical Faculty Mannheim, University Clinic Mannheim , Mannheim, Germany
| |
Collapse
|
37
|
|
38
|
Gainsforth Z, Butterworth AL, Stodolna J, Westphal AJ, Huss GR, Nagashima K, Ogliore R, Brownlee DE, Joswiak D, Tyliszczak T, Simionovici AS. Constraints on the formation environment of two chondrule-like igneous particles from Comet 81P/Wild 2. METEORITICS & PLANETARY SCIENCE 2015; 50:976-1004. [PMID: 31031558 PMCID: PMC6480418 DOI: 10.1111/maps.12445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Using chemical and petrologic evidence and modeling, we deduce that two chondrule-like particles named Iris and Callie, from Stardust cometary track C2052,12,74, formed in an environment very similar to that seen for type II chondrules in meteorites. Iris was heated near liquidus, equilibrated, and cooled at ≤ 100 °C/hr and within ≈ 2 log units of the IW buffer with a high partial pressure of Na such as would be present with dust enrichments of ≈ 103. There was no detectable metamorphic, nebular or aqueous alteration. In previous work Ogliore et al. (2012) reported that Iris formed late, > 3 Myr after CAIs, assuming 26Al was homogenously distributed, and was rich in heavy oxygen. Iris may be similar to assemblages found only in interplanetary dust particles and Stardust cometary samples called Kool particles. Callie is chemically and isotopically very similar but not identical to Iris.
Collapse
Affiliation(s)
- Zack Gainsforth
- Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA 94720 USA
| | - Anna L. Butterworth
- Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA 94720 USA
| | - Julien Stodolna
- Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA 94720 USA
| | - Andrew J. Westphal
- Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA 94720 USA
| | - Gary R. Huss
- Hawai’i Institute of Geophysics and Planetology, University of Hawai’i at Mānoa, Honolulu, HI 96822 USA
| | - Kazu Nagashima
- Hawai’i Institute of Geophysics and Planetology, University of Hawai’i at Mānoa, Honolulu, HI 96822 USA
| | - Ryan Ogliore
- Hawai’i Institute of Geophysics and Planetology, University of Hawai’i at Mānoa, Honolulu, HI 96822 USA
| | - Donald E. Brownlee
- Department of Astronomy, University of Washington, Seattle, WA 98195 USA
| | - David Joswiak
- Department of Astronomy, University of Washington, Seattle, WA 98195 USA
| | - Tolek Tyliszczak
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Alexandre S. Simionovici
- Institut des Sciences de la Terre, Observatoire des Sciences de l’Univers de Grenoble, Grenoble, France
| |
Collapse
|
39
|
Roskosz M, Leroux H. A SIGNIFICANT AMOUNT OF CRYSTALLINE SILICA IN RETURNED COMETARY SAMPLES: BRIDGING THE GAP BETWEEN ASTROPHYSICAL AND METEORITICAL OBSERVATIONS. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/2041-8205/801/1/l7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Capaccioni F, Coradini A, Filacchione G, Erard S, Arnold G, Drossart P, De Sanctis MC, Bockelee-Morvan D, Capria MT, Tosi F, Leyrat C, Schmitt B, Quirico E, Cerroni P, Mennella V, Raponi A, Ciarniello M, McCord T, Moroz L, Palomba E, Ammannito E, Barucci MA, Bellucci G, Benkhoff J, Bibring JP, Blanco A, Blecka M, Carlson R, Carsenty U, Colangeli L, Combes M, Combi M, Crovisier J, Encrenaz T, Federico C, Fink U, Fonti S, Ip WH, Irwin P, Jaumann R, Kuehrt E, Langevin Y, Magni G, Mottola S, Orofino V, Palumbo P, Piccioni G, Schade U, Taylor F, Tiphene D, Tozzi GP, Beck P, Biver N, Bonal L, Combe JP, Despan D, Flamini E, Fornasier S, Frigeri A, Grassi D, Gudipati M, Longobardo A, Markus K, Merlin F, Orosei R, Rinaldi G, Stephan K, Cartacci M, Cicchetti A, Giuppi S, Hello Y, Henry F, Jacquinod S, Noschese R, Peter G, Politi R, Reess JM, Semery A. Cometary science. The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta. Science 2015; 347:aaa0628. [PMID: 25613895 DOI: 10.1126/science.aaa0628] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) instrument on board the Rosetta spacecraft has provided evidence of carbon-bearing compounds on the nucleus of the comet 67P/Churyumov-Gerasimenko. The very low reflectance of the nucleus (normal albedo of 0.060 ± 0.003 at 0.55 micrometers), the spectral slopes in visible and infrared ranges (5 to 25 and 1.5 to 5% kÅ(-1)), and the broad absorption feature in the 2.9-to-3.6-micrometer range present across the entire illuminated surface are compatible with opaque minerals associated with nonvolatile organic macromolecular materials: a complex mixture of various types of carbon-hydrogen and/or oxygen-hydrogen chemical groups, with little contribution of nitrogen-hydrogen groups. In active areas, the changes in spectral slope and absorption feature width may suggest small amounts of water-ice. However, no ice-rich patches are observed, indicating a generally dehydrated nature for the surface currently illuminated by the Sun.
Collapse
Affiliation(s)
- F Capaccioni
- Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF), Rome, Italy.
| | - A Coradini
- Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF), Rome, Italy
| | - G Filacchione
- Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF), Rome, Italy
| | - S Erard
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris/CNRS/Université Pierre et Marie Curie[acute accent over last letter in "Université"]/Université Paris-Diderot, Meudon, France
| | - G Arnold
- Institute for Planetary Research, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - P Drossart
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris/CNRS/Université Pierre et Marie Curie[acute accent over last letter in "Université"]/Université Paris-Diderot, Meudon, France
| | - M C De Sanctis
- Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF), Rome, Italy
| | - D Bockelee-Morvan
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris/CNRS/Université Pierre et Marie Curie[acute accent over last letter in "Université"]/Université Paris-Diderot, Meudon, France
| | - M T Capria
- Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF), Rome, Italy
| | - F Tosi
- Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF), Rome, Italy
| | - C Leyrat
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris/CNRS/Université Pierre et Marie Curie[acute accent over last letter in "Université"]/Université Paris-Diderot, Meudon, France
| | - B Schmitt
- Université Grenoble Alpes, CNRS, Institut de Planétologie et d'Astrophysique de Grenoble, Grenoble, France
| | - E Quirico
- Université Grenoble Alpes, CNRS, Institut de Planétologie et d'Astrophysique de Grenoble, Grenoble, France
| | - P Cerroni
- Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF), Rome, Italy
| | - V Mennella
- Osservatorio di Capodimonte, INAF, Napoli, Italy
| | - A Raponi
- Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF), Rome, Italy
| | - M Ciarniello
- Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF), Rome, Italy
| | - T McCord
- Bear Fight Institute, Winthrop, WA 98862, USA
| | - L Moroz
- Institute for Planetary Research, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - E Palomba
- Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF), Rome, Italy
| | - E Ammannito
- University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - M A Barucci
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris/CNRS/Université Pierre et Marie Curie[acute accent over last letter in "Université"]/Université Paris-Diderot, Meudon, France
| | - G Bellucci
- Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF), Rome, Italy
| | - J Benkhoff
- European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands
| | - J P Bibring
- Institut d'Astrophysique Spatial, CNRS, Orsay, France
| | - A Blanco
- Dipartimento di Matematica e Fisica "Ennio De Giorgi," Università del Salento, Italy
| | - M Blecka
- Space Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - R Carlson
- NASA Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - U Carsenty
- Institute for Planetary Research, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - L Colangeli
- European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands
| | - M Combes
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris/CNRS/Université Pierre et Marie Curie[acute accent over last letter in "Université"]/Université Paris-Diderot, Meudon, France
| | - M Combi
- Space Physics Research Laboratory, The University of Michigan, Ann Arbor, MI 48109, USA
| | - J Crovisier
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris/CNRS/Université Pierre et Marie Curie[acute accent over last letter in "Université"]/Université Paris-Diderot, Meudon, France
| | - T Encrenaz
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris/CNRS/Université Pierre et Marie Curie[acute accent over last letter in "Université"]/Université Paris-Diderot, Meudon, France
| | | | - U Fink
- Lunar Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA
| | - S Fonti
- Dipartimento di Matematica e Fisica "Ennio De Giorgi," Università del Salento, Italy
| | - W H Ip
- National Central University, Taipei, Taiwan
| | - P Irwin
- Departement of Physics, Oxford University, Oxford, UK
| | - R Jaumann
- Institute for Planetary Research, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany. Free University of Berlin, Institute of Geosciences, Malteserstraße 74-100, Building Haus A, 12249 Berlin, Germany
| | - E Kuehrt
- Institute for Planetary Research, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - Y Langevin
- Institut d'Astrophysique Spatial, CNRS, Orsay, France
| | - G Magni
- Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF), Rome, Italy
| | - S Mottola
- Institute for Planetary Research, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - V Orofino
- Dipartimento di Matematica e Fisica "Ennio De Giorgi," Università del Salento, Italy
| | - P Palumbo
- Università "Parthenope," Napoli, Italy
| | - G Piccioni
- Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF), Rome, Italy
| | - U Schade
- Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - F Taylor
- Departement of Physics, Oxford University, Oxford, UK
| | - D Tiphene
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris/CNRS/Université Pierre et Marie Curie[acute accent over last letter in "Université"]/Université Paris-Diderot, Meudon, France
| | - G P Tozzi
- Osservatorio Astrofisico di Arcetri, INAF, Firenze, Italy
| | - P Beck
- Université Grenoble Alpes, CNRS, Institut de Planétologie et d'Astrophysique de Grenoble, Grenoble, France
| | - N Biver
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris/CNRS/Université Pierre et Marie Curie[acute accent over last letter in "Université"]/Université Paris-Diderot, Meudon, France
| | - L Bonal
- Université Grenoble Alpes, CNRS, Institut de Planétologie et d'Astrophysique de Grenoble, Grenoble, France
| | - J-Ph Combe
- Bear Fight Institute, Winthrop, WA 98862, USA
| | - D Despan
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris/CNRS/Université Pierre et Marie Curie[acute accent over last letter in "Université"]/Université Paris-Diderot, Meudon, France
| | - E Flamini
- Agenzia Spaziale Italiana, Rome, Italy
| | - S Fornasier
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris/CNRS/Université Pierre et Marie Curie[acute accent over last letter in "Université"]/Université Paris-Diderot, Meudon, France
| | - A Frigeri
- Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF), Rome, Italy
| | - D Grassi
- Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF), Rome, Italy
| | - M Gudipati
- NASA Jet Propulsion Laboratory, Pasadena, CA 91109, USA. Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - A Longobardo
- Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF), Rome, Italy
| | - K Markus
- Institute for Planetary Research, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - F Merlin
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris/CNRS/Université Pierre et Marie Curie[acute accent over last letter in "Université"]/Université Paris-Diderot, Meudon, France
| | - R Orosei
- Istituto di Radioastronomia, INAF, Bologna, Italy
| | - G Rinaldi
- Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF), Rome, Italy
| | - K Stephan
- Institute for Planetary Research, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - M Cartacci
- Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF), Rome, Italy
| | - A Cicchetti
- Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF), Rome, Italy
| | - S Giuppi
- Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF), Rome, Italy
| | - Y Hello
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris/CNRS/Université Pierre et Marie Curie[acute accent over last letter in "Université"]/Université Paris-Diderot, Meudon, France
| | - F Henry
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris/CNRS/Université Pierre et Marie Curie[acute accent over last letter in "Université"]/Université Paris-Diderot, Meudon, France
| | - S Jacquinod
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris/CNRS/Université Pierre et Marie Curie[acute accent over last letter in "Université"]/Université Paris-Diderot, Meudon, France
| | - R Noschese
- Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF), Rome, Italy
| | - G Peter
- Institut für Optische Sensorsysteme, DLR, Berlin, Germany
| | - R Politi
- Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF), Rome, Italy
| | - J M Reess
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris/CNRS/Université Pierre et Marie Curie[acute accent over last letter in "Université"]/Université Paris-Diderot, Meudon, France
| | - A Semery
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris/CNRS/Université Pierre et Marie Curie[acute accent over last letter in "Université"]/Université Paris-Diderot, Meudon, France
| |
Collapse
|
41
|
Fielding LA, Hillier JK, Burchell MJ, Armes SP. Space science applications for conducting polymer particles: synthetic mimics for cosmic dust and micrometeorites. Chem Commun (Camb) 2015; 51:16886-99. [DOI: 10.1039/c5cc07405c] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of conducting polymer-based particles as synthetic mimics for understanding the behaviour of micro-meteorites (a.k.a. cosmic dust) is reviewed and the implications for various space science applications is discussed.
Collapse
Affiliation(s)
| | - Jon K. Hillier
- Department of Space Science
- School of Physical Sciences
- University of Kent
- Canterbury
- UK
| | - Mark J. Burchell
- Department of Space Science
- School of Physical Sciences
- University of Kent
- Canterbury
- UK
| | | |
Collapse
|
42
|
Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples. Nat Commun 2014; 5:5445. [PMID: 25487365 DOI: 10.1038/ncomms6445] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 10/02/2014] [Indexed: 11/08/2022] Open
Abstract
Advances in the spatial resolution of modern analytical techniques have tremendously augmented the scientific insight gained from the analysis of natural samples. Yet, while techniques for the elemental and structural characterization of samples have achieved sub-nanometre spatial resolution, infrared spectral mapping of geochemical samples at vibrational 'fingerprint' wavelengths has remained restricted to spatial scales >10 μm. Nevertheless, infrared spectroscopy remains an invaluable contactless probe of chemical structure, details of which offer clues to the formation history of minerals. Here we report on the successful implementation of infrared near-field imaging, spectroscopy and analysis techniques capable of sub-micron scale mineral identification within natural samples, including a chondrule from the Murchison meteorite and a cometary dust grain (Iris) from NASA's Stardust mission. Complementary to scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy probes, this work evidences a similarity between chondritic and cometary materials, and inaugurates a new era of infrared nano-spectroscopy applied to small and invaluable extraterrestrial samples.
Collapse
|
43
|
Elsaesser A, Quinn RC, Ehrenfreund P, Mattioda AL, Ricco AJ, Alonzo J, Breitenbach A, Chan YK, Fresneau A, Salama F, Santos O. Organics Exposure in Orbit (OREOcube): A next-generation space exposure platform. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13217-13227. [PMID: 24851720 DOI: 10.1021/la501203g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The OREOcube (ORganics Exposure in Orbit cube) experiment on the International Space Station (ISS) will investigate the effects of solar and cosmic radiation on organic thin films supported on inorganic substrates. Probing the kinetics of structural changes and photomodulated organic-inorganic interactions with real-time in situ UV-visible spectroscopy, this experiment will investigate the role played by solid mineral surfaces in the (photo)chemical evolution, transport, and distribution of organics in our solar system and beyond. In preparation for the OREOcube ISS experiment, we report here laboratory measurements of the photostability of thin films of the 9,10-anthraquinone derivative anthrarufin (51 nm thick) layered upon ultrathin films of iron oxides magnetite and hematite (4 nm thick), as well as supported directly on fused silica. During irradiation with UV and visible light simulating the photon flux and spectral distribution on the surface of Mars, anthrarufin/iron oxide bilayer thin films were exposed to CO2 (800 Pa), the main constituent (and pressure) of the martian atmosphere. The time-dependent photodegradation of anthrarufin thin films revealed the inhibition of degradation by both types of underlying iron oxides relative to anthrarufin on bare fused silica. Interactions between the organic and inorganic thin films, apparent in spectral shifts of the anthrarufin bands, are consistent with presumed free-electron quenching of semiquinone anion radicals by the iron oxide layers, effectively protecting the organic compound from photodegradation. Combining such in situ real-time kinetic measurements of thin films in future space exposure experiments on the ISS with postflight sample return and analysis will provide time-course studies complemented by in-depth chemical analysis. This will facilitate the characterization and modeling of the chemistry of organic species associated with mineral surfaces in astrobiological contexts.
Collapse
Affiliation(s)
- Andreas Elsaesser
- Leiden Institute of Chemistry, Leiden University , Leiden 2333CC, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Duvernay F, Rimola A, Theule P, Danger G, Sanchez T, Chiavassa T. Formaldehyde chemistry in cometary ices: the case of HOCH2OH formation. Phys Chem Chem Phys 2014; 16:24200-8. [DOI: 10.1039/c4cp03031a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Laboratory experiments devoted to simulate the chemistry occurring in interstellar and cometary ice analogues are of paramount importance to understand the formation of complex organic molecules that are detected throughout the universe.
Collapse
Affiliation(s)
- F. Duvernay
- Aix-Marseille Université
- CNRS
- PIIM UMR 7345
- F-13397 Marseille, France
| | - A. Rimola
- Universitat Autònoma de Barcelona (UAB)
- Departament de Química
- Bellaterra, Spain
| | - P. Theule
- Aix-Marseille Université
- CNRS
- PIIM UMR 7345
- F-13397 Marseille, France
| | - G. Danger
- Aix-Marseille Université
- CNRS
- PIIM UMR 7345
- F-13397 Marseille, France
| | - T. Sanchez
- Aix-Marseille Université
- CNRS
- PIIM UMR 7345
- F-13397 Marseille, France
| | - T. Chiavassa
- Aix-Marseille Université
- CNRS
- PIIM UMR 7345
- F-13397 Marseille, France
| |
Collapse
|
45
|
Goumans TPM, Bromley ST. Stardust silicate nucleation kick-started by SiO+TiO₂. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2013; 371:20110580. [PMID: 23734047 DOI: 10.1098/rsta.2011.0580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Dust particles are quintessential for the chemical evolution of the Universe. Dust nucleates in stellar outflows of dying stars and subsequently travels through the interstellar medium, continuously evolving via energetic processing, collisions and condensation. Finally, dust particles are incorporated in the next-generation star or its surrounding planetary system. In oxygen-rich stellar outflows, silicates are observed in the condensation zone (1200-1000 K), but, in spite of several decades of experimental and theoretical study, the stardust nucleation process remains poorly understood. We have previously shown that under these conditions ternary Mg-Si-O clusters may start forming at high enough rates from SiO, Mg and H₂O through heteromolecular association processes. In this reaction scheme, none of the possible initial association reactions was thermodynamically favourable owing to the large entropy loss at these temperatures. Here, we follow a previous idea that the incorporation of TiO₂ could help to initiate stardust nucleation. In contrast to these studies, we find that there is no need for TiO₂ cluster seeds-instead, one molecule of TiO₂ is sufficient to kick-start the subsequent nucleation of a silicate dust particle.
Collapse
Affiliation(s)
- T P M Goumans
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, PO Box 9502, Leiden 2300 RA, The Netherlands.
| | | |
Collapse
|
46
|
|
47
|
Bheekhun N, Abu Talib AR, Hassan MR. Aerogels in Aerospace: An Overview. ADVANCES IN MATERIALS SCIENCE AND ENGINEERING 2013; 2013:1-18. [DOI: 10.1155/2013/406065] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Aerogels are highly porous structures prepared via a sol-gel process and supercritical drying technology. Among the classes of aerogels, silica aerogel exhibits the most remarkable physical properties, possessing lower density, thermal conductivity, refractive index, and dielectric constant than any solids. Its acoustical property is such that it can absorb the sound waves reducing speed to 100 m/s compared to 332 m/s for air. However, when it comes to commercialization, the result is not as expected. It seems that mass production, particularly in the aerospace industry, has dawdled behind. This paper highlights the evolution of aerogels in general and discusses the functions and significances of silica aerogel in previous astronautical applications. Future outer-space applications have been proposed as per the current research trend. Finally, the implementation of conventional silica aerogel in aeronautics is argued with an alternative known as Maerogel.
Collapse
Affiliation(s)
- Nadiir Bheekhun
- Department of Aerospace Engineering, Propulsion and Thermofluids Group, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Abd. Rahim Abu Talib
- Department of Aerospace Engineering, Propulsion and Thermofluids Group, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Mohd Roshdi Hassan
- Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
48
|
de Vries BL, Acke B, Blommaert JADL, Waelkens C, Waters LBFM, Vandenbussche B, Min M, Olofsson G, Dominik C, Decin L, Barlow MJ, Brandeker A, Di Francesco J, Glauser AM, Greaves J, Harvey PM, Holland WS, Ivison RJ, Liseau R, Pantin EE, Pilbratt GL, Royer P, Sibthorpe B. Comet-like mineralogy of olivine crystals in an extrasolar proto-Kuiper belt. Nature 2012; 490:74-6. [PMID: 23038467 DOI: 10.1038/nature11469] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 08/06/2012] [Indexed: 11/09/2022]
Abstract
Some planetary systems harbour debris disks containing planetesimals such as asteroids and comets. Collisions between such bodies produce small dust particles, the spectral features of which reveal their composition and, hence, that of their parent bodies. A measurement of the composition of olivine crystals (Mg(2-2x)Fe(2x)SiO(4)) has been done for the protoplanetary disk HD 100546 (refs 3, 4) and for olivine crystals in the warm inner parts of planetary systems. The latter compares well with the iron-rich olivine in asteroids (x ≈ 0.29). In the cold outskirts of the β Pictoris system, an analogue to the young Solar System, olivine crystals were detected but their composition remained undetermined, leaving unknown how the composition of the bulk of Solar System cometary olivine grains compares with that of extrasolar comets. Here we report the detection of the 69-micrometre-wavelength band of olivine crystals in the spectrum of β Pictoris. Because the disk is optically thin, we can associate the crystals with an extrasolar proto-Kuiper belt a distance of 15-45 astronomical units from the star (one astronomical unit is the Sun-Earth distance), determine their magnesium-rich composition (x = 0.01 ± 0.001) and show that they make up 3.6 ± 1.0 per cent of the total dust mass. These values are strikingly similar to those for the dust emitted by the most primitive comets in the Solar System, even though β Pictoris is more massive and more luminous and has a different planetary system architecture.
Collapse
Affiliation(s)
- B L de Vries
- Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hillier JK, Postberg F, Sestak S, Srama R, Kempf S, Trieloff M, Sternovsky Z, Green SF. Impact ionization mass spectra of anorthite cosmic dust analogue particles. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012je004077] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Tsou P, Brownlee DE, McKay CP, Anbar AD, Yano H, Altwegg K, Beegle LW, Dissly R, Strange NJ, Kanik I. LIFE: Life Investigation For Enceladus A Sample Return Mission Concept in Search for Evidence of Life. ASTROBIOLOGY 2012; 12:730-742. [PMID: 22970863 DOI: 10.1089/ast.2011.0813] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Life Investigation For Enceladus (LIFE) presents a low-cost sample return mission to Enceladus, a body with high astrobiological potential. There is ample evidence that liquid water exists under ice coverage in the form of active geysers in the "tiger stripes" area of the southern Enceladus hemisphere. This active plume consists of gas and ice particles and enables the sampling of fresh materials from the interior that may originate from a liquid water source. The particles consist mostly of water ice and are 1-10 μ in diameter. The plume composition shows H(2)O, CO(2), CH(4), NH(3), Ar, and evidence that more complex organic species might be present. Since life on Earth exists whenever liquid water, organics, and energy coexist, understanding the chemical components of the emanating ice particles could indicate whether life is potentially present on Enceladus. The icy worlds of the outer planets are testing grounds for some of the theories for the origin of life on Earth. The LIFE mission concept is envisioned in two parts: first, to orbit Saturn (in order to achieve lower sampling speeds, approaching 2 km/s, and thus enable a softer sample collection impact than Stardust, and to make possible multiple flybys of Enceladus); second, to sample Enceladus' plume, the E ring of Saturn, and the Titan upper atmosphere. With new findings from these samples, NASA could provide detailed chemical and isotopic and, potentially, biological compositional context of the plume. Since the duration of the Enceladus plume is unpredictable, it is imperative that these samples are captured at the earliest flight opportunity. If LIFE is launched before 2019, it could take advantage of a Jupiter gravity assist, which would thus reduce mission lifetimes and launch vehicle costs. The LIFE concept offers science returns comparable to those of a Flagship mission but at the measurably lower sample return costs of a Discovery-class mission.
Collapse
Affiliation(s)
- Peter Tsou
- Sample Exploration Systems La Cañada, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|