1
|
Kong X, Wang W, Xia S, Zhi Y, Cai Y, Zhang H, Shen X. Molecular and functional characterization of short peptidoglycan recognition proteins in Vesicomyidae clam. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105284. [PMID: 39489409 DOI: 10.1016/j.dci.2024.105284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Within cold seep environments, the Vesicomyidae clam emerges as a prevalent species, distinguished by its symbiotic relationship with microorganisms housed within its organ gill. Given the extreme conditions and the symbiotic nature of this association, investigating the host's immune genes, particularly immune recognition receptors, is essential for understanding their role in facilitating host-symbiotic interactions. Three short peptidoglycan recognition proteins (PGRPs) were identified in the clam. AmPGRP-S1, -S2, and -S3 were found to possess conserved amidase binding sites and Zn2+ binding sites. Quantitative Real-time PCR (qRT-PCR) analysis revealed differential expression patterns among the PGRPs. AmPGRP-S1 and AmPGRP-S2 exhibited elevated expression levels in the gill, while AmPGRP-S3 displayed the highest expression in the adductor muscle. Functional experiments demonstrated that recombinant AmPGRP-S1, -S2, and -S3 (rAmPGRPs) exhibited binding capabilities to both L-PGN and D-PGN (peptidoglycan). Notably, rAmPGRP-S1 and -S2 possessed Zn2+-independent amidase activity, while rAmPGRP-S3 lacked this enzymatic function. rAmPGRPs were shown to bind to five different bacterial species. Among these, rAmPGRP-S1 inhibited Escherichia coli and Bacillus subtilis, while rAmPGRP-S2 and -S3 inhibited Bacillus subtilis in the absence of Zn2+. In the presence of Zn2+, rAmPGRP-S1 and -S2 exhibited enhanced inhibitory activity against Staphylococcus aureus or Bacillus subtilis. These findings suggest that AmPGRPs may play a pivotal role in mediating the interaction between the host and endosymbiotic bacteria, functioning as PGN and microbe receptors, antibacterial effectors, and regulators of host-microbe symbiosis. These results contribute to our understanding of the adaptive mechanisms of deep-sea organisms to the challenging cold seep environments.
Collapse
Affiliation(s)
- Xue Kong
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Wei Wang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Sunan Xia
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Ying Zhi
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Yuefeng Cai
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Xin Shen
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China.
| |
Collapse
|
2
|
Pathak A, Marquez M, Stothard P, Chukwujindu C, Su JQ, Zhou Y, Zhou XY, Jagoe CH, Chauhan A. A seasonal study on the microbiomes of Diploid vs. Triploid eastern oysters and their denitrification potential. iScience 2024; 27:110193. [PMID: 38984199 PMCID: PMC11231605 DOI: 10.1016/j.isci.2024.110193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/09/2024] [Accepted: 06/03/2024] [Indexed: 07/11/2024] Open
Abstract
Oyster reefs are hotspots of denitrification mediated removal of dissolved nitrogen (N), however, information on their denitrifier microbiota is scarce. Furthermore, in oyster aquaculture, triploids are often preferred over diploids, yet again, microbiome differences between oyster ploidies are unknown. To address these knowledge gaps, farmed diploid and triploid oysters were collected over an annual growth cycle and analyzed using shotgun metagenomics and quantitative microbial elemental cycling (QMEC) techniques. Regardless of ploidy, Psychrobacter genus was abundant, with positive correlations found for genes of central metabolism, DNA metabolism, and carbohydrate metabolism. MAGs (metagenome-assembled genomes) yielded multiple Psychrobacter genomes harboring norB, narH, narI, and nirK denitrification genes, indicating their functional relevance within the eastern oysters. QMEC analysis indicated the predominance of carbon (C) and nitrogen (N) cycling genes, with no discernable patterns between ploidies. Among the N-cycling genes, the nosZII clade was overrepresented, suggesting its role in the eastern oyster's N removal processes.
Collapse
Affiliation(s)
- Ashish Pathak
- School of the Environment, Florida A&M University, 1515 S. Martin Luther King Boulevard, Tallahassee, FL 32307, USA
| | - Mario Marquez
- Texas Sea Grant College Program, 4115 TAMU Eller O&M 306, Texas A&M University, College Station, TX 77843, USA
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, General Services Bldg, Edmonton, AB 2-31 T6G 2H1, Canada
| | - Christian Chukwujindu
- Material & Energy Technology Department, Projects Development Institute, Emene Industrial Layout, Enugu-Nigeria 400104
| | - Jian-Qiang Su
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yanyan Zhou
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xin-Yuan Zhou
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Charles H. Jagoe
- School of the Environment, Florida A&M University, 1515 S. Martin Luther King Boulevard, Tallahassee, FL 32307, USA
| | - Ashvini Chauhan
- School of the Environment, Florida A&M University, 1515 S. Martin Luther King Boulevard, Tallahassee, FL 32307, USA
| |
Collapse
|
3
|
Yang X, Liu P, Yu H, Ling M, Ma M, Wang Q, Tang X, Shen Z, Zhang Y. Comparative analysis of the intestinal flora of BmNPV-resistant and BmNPV-sensitive silkworm varieties. Microb Pathog 2024; 191:106649. [PMID: 38636568 DOI: 10.1016/j.micpath.2024.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a very common and infectious virus that affects silkworms and hinders silk production. To investigate the intestinal flora of BmNPV-resistant and BmNPV-sensitive silkworm varieties, 16 S rDNA high-throughput sequencing was performed. The results of the cluster analysis showed that the intestinal flora of the resistant silkworm variety was more abundant than that of the sensitive silkworm variety. This was found even when infection with BmNPV caused a sharp decline in the number of intestinal floral species in both resistant and sensitive silkworm varieties. The abundances of the intestinal flora, including Aureimonas, Ileibacterium, Peptostreptococcus, Pseudomonas, Enterococcus, and Halomonas, in the resistant variety were considerably greater after infection with BmNPV than those in the sensitive variety. After infection with BmNPV, four kinds of important intestinal bacteria, namely, f_Saccharimonadaceae, Peptostreptococcus, Aureirmonas, and f_Rhizobiaceae, were found in the resistant silkworm variety. In the sensitive silkworm variety, only Faecalibaculum was an important intestinal bacterium. The differential or important bacteria mentioned above might be involved in immunoreaction or antiviral activities, especially in the intestines of BmNPV-resistant silkworms. By conducting a functional enrichment analysis, we found that BmNPV infection did not change the abundance of important functional components of the intestinal flora in resistant or sensitive silkworm varieties. However, some functional factors, such as the biosynthesis, transport, and catabolism of secondary metabolites (e.g., terpenoids and polyketides) and lipid transport and metabolism, were more important in the resistant silkworm variety than in the sensitive variety; thus, these factors may increase the resistance of the host to BmNPV. To summarize, we found significant differences in the composition, abundance, and function of the intestinal flora between resistant and sensitive silkworm varieties, especially after infection with BmNPV, which might be closely related to the resistance of resistant silkworm varieties to BmNPV.
Collapse
Affiliation(s)
- Xu Yang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China.
| | - Pai Liu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China.
| | - Haodong Yu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China.
| | - Min Ling
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China.
| | - Mingzhen Ma
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China.
| | - Qiang Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China.
| | - Xudong Tang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China.
| | - Zhongyuan Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China.
| | - Yiling Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China.
| |
Collapse
|
4
|
Cyphert EL, Nand S, Franco G, Hajkowski M, Soto L, Lee DM, Ferner M, Zabin C, Blumenthal J, Deck A, Boyer K, Burrus K, Hernandez CJ, Anand A. Combinatorial characterization of bacterial taxa-driven differences in the microbiome of oyster reefs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594453. [PMID: 38798377 PMCID: PMC11118425 DOI: 10.1101/2024.05.15.594453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Oyster reefs are invaluable ecosystems that provide a wide array of critical ecosystem services, including water filtration, coastal protection, and habitat provision for various marine species. However, these essential habitats face escalating threats from climate change and anthropogenic stressors. To combat these challenges, numerous oyster restoration initiatives have been undertaken, representing a global effort to preserve and restore these vital ecosystems. A significant, yet poorly understood, component of oyster reefs is the microbial communities. These communities account for a substantial proportion of marine reefs and are pivotal in driving key biogeochemical processes. Particularly, the environmental microbiome plays a crucial role in supporting the health and resilience of oyster populations. In our study, we sought to shed light on the microbiome within oyster reef ecosystems by characterizing the abundance, and diversity of microorganisms in the soil, biofilm, and oysters in 4 sites using a combinatorial approach to identify differentially abundant microbes by sample type and by sampling location. Our investigation revealed distinct microbial taxa in oysters, sediment and biofilm. The maximum Shannon Index indicated a slightly increased diversity in Heron's Head (5.47), followed by Brickyard park (5.35), Dunphy Park (5.17) and Point Pinole (4.85). This is likely to be driven by significantly higher oyster mortality observed at Point Pinole during routine monitoring and restoration efforts. Interestingly Ruminococcus, Streptococcus, Staphylococcus, Prevotella, Porphyromonas, Parvimonas, Neisseria, Lactococcus, Haemophilus, Fusobacterium, Dorea, Clostridium, Campylobacter, Bacteroides, and Akkermansia were positively associated with the biofilm. Yet we have limited understanding of their beneficial and/or detrimental implications to oyster growth and survival. By unraveling the intricate relationships in microbial composition across an oyster reef, our study contributes to advancing the knowledge needed to support effective oyster reef conservation and restoration efforts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matt Ferner
- San Francisco Bay National Estuarine Research Reserve
| | | | | | - Anna Deck
- San Francisco Bay National Estuarine Research Reserve
| | | | | | | | | |
Collapse
|
5
|
Espada‐Hinojosa S, Karthäuser C, Srivastava A, Schuster L, Winter T, de Oliveira AL, Schulz F, Horn M, Sievert S, Bright M. Comparative genomics of a vertically transmitted thiotrophic bacterial ectosymbiont and its close free-living relative. Mol Ecol Resour 2024; 24:e13889. [PMID: 38010882 PMCID: PMC10952691 DOI: 10.1111/1755-0998.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/31/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023]
Abstract
Thiotrophic symbioses between sulphur-oxidizing bacteria and various unicellular and metazoan eukaryotes are widespread in reducing marine environments. The giant colonial ciliate Zoothamnium niveum, however, is the only host of thioautotrophic symbionts that has been cultivated along with its symbiont, the vertically transmitted ectosymbiont Candidatus Thiobius zoothamnicola (short Thiobius). Because theoretical predictions posit a smaller genome in vertically transmitted endosymbionts compared to free-living relatives, we investigated whether this is true also for an ectosymbiont. We used metagenomics to recover the high-quality draft genome of this bacterial symbiont. For comparison we have also sequenced a closely related free-living cultured but not formally described strain Milos ODIII6 (short ODIII6). We then performed comparative genomics to assess the functional capabilities at gene, metabolic pathway and trait level. 16S rRNA gene trees and average amino acid identity confirmed the close phylogenetic relationship of both bacteria. Indeed, Thiobius has about a third smaller genome than its free-living relative ODIII6, with reduced metabolic capabilities and fewer functional traits. The functional capabilities of Thiobius were a subset of those of the more versatile ODIII6, which possessed additional genes for oxygen, sulphur and hydrogen utilization and for the acquisition of phosphorus illustrating features that may be adaptive for the unstable environmental conditions at hydrothermal vents. In contrast, Thiobius possesses genes potentially enabling it to utilize lactate and acetate heterotrophically, compounds that may be provided as byproducts by the host. The present study illustrates the effect of strict host-dependence of a bacterial ectosymbiont on genome evolution and host adaptation.
Collapse
Affiliation(s)
| | - Clarissa Karthäuser
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Abhishek Srivastava
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | - Lukas Schuster
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
- Present address:
Deakin UniversityBurwoodAustralia
| | - Teresa Winter
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | - André Luiz de Oliveira
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
- Present address:
Max Planck Institute for Marine MicrobiologyBremenGermany
| | - Frederik Schulz
- Center for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
- Present address:
DOE Joint Genome InstituteBerkeleyCaliforniaUSA
| | - Matthias Horn
- Center for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
| | - Stefan Sievert
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Monika Bright
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| |
Collapse
|
6
|
Li Y, He X, Lin Y, Li YX, Kamenev GM, Li J, Qiu JW, Sun J. Reduced chemosymbiont genome in the methane seep thyasirid and the cooperated metabolisms in the holobiont under anaerobic sediment. Mol Ecol Resour 2023; 23:1853-1867. [PMID: 37486074 DOI: 10.1111/1755-0998.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/16/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Previous studies have deciphered the genomic basis of host-symbiont metabolic complementarity in vestimentiferans, bathymodioline mussels, vesicomyid clams and Alviniconcha snails, yet little is known about the chemosynthetic symbiosis in Thyasiridae-a family of Bivalvia regarded as an excellent model in chemosymbiosis research due to their wide distribution in both deep-sea and shallow-water habitats. We report the first circular thyasirid symbiont genome, named Candidatus Ruthturnera sp. Tsphm01, with a size of 1.53 Mb, 1521 coding genes and 100% completeness. Compared to its free-living relatives, Ca. Ruthturnera sp. Tsphm01 genome is reduced, lacking components for chemotaxis, citric acid cycle and de novo biosynthesis of small molecules (e.g. amino acids and cofactors), indicating it is likely an obligate intracellular symbiont. Nevertheless, the symbiont retains complete genomic components of sulphur oxidation and assimilation of inorganic carbon, and these systems were highly and actively expressed. Moreover, the symbiont appears well-adapted to anoxic environment, including capable of anaerobic respiration (i.e. reductions of DMSO and nitrate) and possession of a low oxygen-adapted type of cytochrome c oxidase. Analysis of the host transcriptome revealed its metabolic complementarity to the incomplete metabolic pathways of the symbiont and the acquisition of nutrients from the symbiont via phagocytosis and exosome. By providing the first complete genome of reduced size in a thyasirid symbiont, this study enhances our understanding of the diversity of symbiosis that has enabled bivalves to thrive in chemosynthetic habitats. The resources will be widely used in phylogenetic, geographic and evolutionary studies of chemosynthetic bacteria and bivalves.
Collapse
Affiliation(s)
- Yunlong Li
- Institute of Evolution & Marine Biodiversity, Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Laoshan Laboratory, Qingdao, China
| | - Xing He
- Institute of Evolution & Marine Biodiversity, Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Laoshan Laboratory, Qingdao, China
| | - Yuxuan Lin
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yi-Xuan Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Gennady M Kamenev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Jiying Li
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jin Sun
- Institute of Evolution & Marine Biodiversity, Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Laoshan Laboratory, Qingdao, China
| |
Collapse
|
7
|
Gheibzadeh MS, Manyumwa CV, Tastan Bishop Ö, Shahbani Zahiri H, Parkkila S, Zolfaghari Emameh R. Genome Study of α-, β-, and γ-Carbonic Anhydrases from the Thermophilic Microbiome of Marine Hydrothermal Vent Ecosystems. BIOLOGY 2023; 12:770. [PMID: 37372055 DOI: 10.3390/biology12060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
Carbonic anhydrases (CAs) are metalloenzymes that can help organisms survive in hydrothermal vents by hydrating carbon dioxide (CO2). In this study, we focus on alpha (α), beta (β), and gamma (γ) CAs, which are present in the thermophilic microbiome of marine hydrothermal vents. The coding genes of these enzymes can be transferred between hydrothermal-vent organisms via horizontal gene transfer (HGT), which is an important tool in natural biodiversity. We performed big data mining and bioinformatics studies on α-, β-, and γ-CA coding genes from the thermophilic microbiome of marine hydrothermal vents. The results showed a reasonable association between thermostable α-, β-, and γ-CAs in the microbial population of the hydrothermal vents. This relationship could be due to HGT. We found evidence of HGT of α- and β-CAs between Cycloclasticus sp., a symbiont of Bathymodiolus heckerae, and an endosymbiont of Riftia pachyptila via Integrons. Conversely, HGT of β-CA genes from the endosymbiont Tevnia jerichonana to the endosymbiont Riftia pachyptila was detected. In addition, Hydrogenovibrio crunogenus SP-41 contains a β-CA gene on genomic islands (GIs). This gene can be transferred by HGT to Hydrogenovibrio sp. MA2-6, a methanotrophic endosymbiont of Bathymodiolus azoricus, and a methanotrophic endosymbiont of Bathymodiolus puteoserpentis. The endosymbiont of R. pachyptila has a γ-CA gene in the genome. If α- and β-CA coding genes have been derived from other microorganisms, such as endosymbionts of T. jerichonana and Cycloclasticus sp. as the endosymbiont of B. heckerae, through HGT, the theory of the necessity of thermostable CA enzymes for survival in the extreme ecosystem of hydrothermal vents is suggested and helps the conservation of microbiome natural diversity in hydrothermal vents. These harsh ecosystems, with their integral players, such as HGT and endosymbionts, significantly impact the enrichment of life on Earth and the carbon cycle in the ocean.
Collapse
Affiliation(s)
- Mohammad Sadegh Gheibzadeh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Colleen Varaidzo Manyumwa
- Research Unit in Bioinformatics (Rubi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (Rubi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Hossein Shahbani Zahiri
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, 33520 Tampere, Finland
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| |
Collapse
|
8
|
Lin YT, Xu T, Ip JCH, Sun Y, Fang L, Luan T, Zhang Y, Qian PY, Qiu JW, Qian PY, Qiu JW. Interactions among deep-sea mussels and their epibiotic and endosymbiotic chemoautotrophic bacteria: Insights from multi-omics analysis. Zool Res 2023; 44:106-125. [PMID: 36419378 PMCID: PMC9841196 DOI: 10.24272/j.issn.2095-8137.2022.279] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Endosymbiosis with Gammaproteobacteria is fundamental for the success of bathymodioline mussels in deep-sea chemosynthesis-based ecosystems. However, the recent discovery of Campylobacteria on the gill surfaces of these mussels suggests that these host-bacterial relationships may be more complex than previously thought. Using the cold-seep mussel ( Gigantidas haimaensis) as a model, we explored this host-bacterial system by assembling the host transcriptome and genomes of its epibiotic Campylobacteria and endosymbiotic Gammaproteobacteria and quantifying their gene and protein expression levels. We found that the epibiont applies a sulfur oxidizing (SOX) multienzyme complex with the acquisition of soxB from Gammaproteobacteria for energy production and switched from a reductive tricarboxylic acid (rTCA) cycle to a Calvin-Benson-Bassham (CBB) cycle for carbon assimilation. The host provides metabolic intermediates, inorganic carbon, and thiosulfate to satisfy the materials and energy requirements of the epibiont, but whether the epibiont benefits the host is unclear. The endosymbiont adopts methane oxidation and the ribulose monophosphate pathway (RuMP) for energy production, providing the major source of energy for itself and the host. The host obtains most of its nutrients, such as lysine, glutamine, valine, isoleucine, leucine, histidine, and folate, from the endosymbiont. In addition, host pattern recognition receptors, including toll-like receptors, peptidoglycan recognition proteins, and C-type lectins, may participate in bacterial infection, maintenance, and population regulation. Overall, this study provides insights into the complex host-bacterial relationships that have enabled mussels and bacteria to thrive in deep-sea chemosynthetic ecosystems.
Collapse
Affiliation(s)
- Yi-Tao Lin
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Ting Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China,Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jack Chi-Ho Ip
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Yanan Sun
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Ling Fang
- Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou, Guangdong 510875, China
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510875, China,Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yu Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China,E-mail:
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China,Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China,
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lo Giudice A, Rizzo C. Bacteria Associated with Benthic Invertebrates from Extreme Marine Environments: Promising but Underexplored Sources of Biotechnologically Relevant Molecules. Mar Drugs 2022; 20:617. [PMID: 36286440 PMCID: PMC9605250 DOI: 10.3390/md20100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 09/07/2024] Open
Abstract
Microbe-invertebrate associations, commonly occurring in nature, play a fundamental role in the life of symbionts, even in hostile habitats, assuming a key importance for both ecological and evolutionary studies and relevance in biotechnology. Extreme environments have emerged as a new frontier in natural product chemistry in the search for novel chemotypes of microbial origin with significant biological activities. However, to date, the main focus has been microbes from sediment and seawater, whereas those associated with biota have received significantly less attention. This review has been therefore conceived to summarize the main information on invertebrate-bacteria associations that are established in extreme marine environments. After a brief overview of currently known extreme marine environments and their main characteristics, a report on the associations between extremophilic microorganisms and macrobenthic organisms in such hostile habitats is provided. The second part of the review deals with biotechnologically relevant bioactive molecules involved in establishing and maintaining symbiotic associations.
Collapse
Affiliation(s)
- Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (CNR.ISP), Spianata S. Raineri 86, 98122 Messina, Italy
| | - Carmen Rizzo
- Institute of Polar Sciences, National Research Council (CNR.ISP), Spianata S. Raineri 86, 98122 Messina, Italy
- Stazione Zoologica Anton Dohrn, National Institute of Biology, Sicily Marine Centre, Department Ecosustainable Marine Biotechnology, Villa Pace, Contrada Porticatello 29, 98167 Messina, Italy
| |
Collapse
|
10
|
Perez M, Breusing C, Angers B, Beinart RA, Won YJ, Young CR. Divergent paths in the evolutionary history of maternally transmitted clam symbionts. Proc Biol Sci 2022; 289:20212137. [PMID: 35259985 PMCID: PMC8905170 DOI: 10.1098/rspb.2021.2137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Vertical transmission of bacterial endosymbionts is accompanied by virtually irreversible gene loss that results in a progressive reduction in genome size. While the evolutionary processes of genome reduction have been well described in some terrestrial symbioses, they are less understood in marine systems where vertical transmission is rarely observed. The association between deep-sea vesicomyid clams and chemosynthetic Gammaproteobacteria is one example of maternally inherited symbioses in the ocean. Here, we assessed the contributions of drift, recombination and selection to genome evolution in two extant vesicomyid symbiont clades by comparing 15 representative symbiont genomes (1.017-1.586 Mb) to those of closely related bacteria and the hosts' mitochondria. Our analyses suggest that drift is a significant force driving genome evolution in vesicomyid symbionts, though selection and interspecific recombination appear to be critical for maintaining symbiont functional integrity and creating divergent patterns of gene conservation. Notably, the two symbiont clades possess putative functional differences in sulfide physiology, anaerobic respiration and dependency on environmental vitamin B12, which probably reflect adaptations to different ecological habitats available to each symbiont group. Overall, these results contribute to our understanding of the eco-evolutionary processes shaping reductive genome evolution in vertically transmitted symbioses.
Collapse
Affiliation(s)
- Maëva Perez
- Department of Biological Sciences, Université de Montréal, Montreal, Canada
| | - Corinna Breusing
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Bernard Angers
- Department of Biological Sciences, Université de Montréal, Montreal, Canada
| | - Roxanne A Beinart
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Yong-Jin Won
- Division of EcoScience, Ewha Womans University, Seoul, South Korea
| | | |
Collapse
|
11
|
Abstract
The SUP05 clade of gammaproteobacteria (Thioglobaceae) comprises both primary producers and primary consumers of organic carbon in the oceans. Host-associated autotrophs are a principal source of carbon and other nutrients for deep-sea eukaryotes at hydrothermal vents, and their free-living relatives are a primary source of organic matter in seawater at vents and in marine oxygen minimum zones. Similar to other abundant marine heterotrophs, such as SAR11 and Roseobacter, heterotrophic Thioglobaceae use the dilute pool of osmolytes produced by phytoplankton for growth, including methylated amines and sulfonates. Heterotrophic members are common throughout the ocean, and autotrophic members are abundant at hydrothermal vents and in anoxic waters; combined, they can account for more than 50% of the total bacterial community. Studies of both cultured and uncultured representatives from this diverse family are providing novel insights into the shifting biogeochemical roles of autotrophic and heterotrophic bacteria that cross oxic-anoxic boundary layers in the ocean.
Collapse
Affiliation(s)
- Robert M Morris
- School of Oceanography, University of Washington, Seattle, Washington 98195, USA;
| | - Rachel L Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, USA;
| |
Collapse
|
12
|
Yang Y, Sun J, Chen C, Zhou Y, Van Dover CL, Wang C, Qiu JW, Qian PY. Metagenomic and metatranscriptomic analyses reveal minor-yet-crucial roles of gut microbiome in deep-sea hydrothermal vent snail. Anim Microbiome 2022; 4:3. [PMID: 34980289 PMCID: PMC8722025 DOI: 10.1186/s42523-021-00150-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Marine animals often exhibit complex symbiotic relationship with gut microbes to attain better use of the available resources. Many animals endemic to deep-sea chemosynthetic ecosystems host chemoautotrophic bacteria endocellularly, and they are thought to rely entirely on these symbionts for energy and nutrition. Numerous investigations have been conducted on the interdependence between these animal hosts and their chemoautotrophic symbionts. The provannid snail Alviniconcha marisindica from the Indian Ocean hydrothermal vent fields hosts a Campylobacterial endosymbiont in its gill. Unlike many other chemosymbiotic animals, the gut of A. marisindica is reduced but remains functional; yet the contribution of gut microbiomes and their interactions with the host remain poorly characterised. RESULTS Metagenomic and metatranscriptomic analyses showed that the gut microbiome of A. marisindica plays key nutritional and metabolic roles. The composition and relative abundance of gut microbiota of A. marisindica were different from those of snails that do not depend on endosymbiosis. The relative abundance of microbial taxa was similar amongst three individuals of A. marisindica with significant inter-taxa correlations. These correlations suggest the potential for interactions between taxa that may influence community assembly and stability. Functional profiles of the gut microbiome revealed thousands of additional genes that assist in the use of vent-supplied inorganic compounds (autotrophic energy source), digest host-ingested organics (carbon source), and recycle the metabolic waste of the host. In addition, members of five taxonomic classes have the potential to form slime capsules to protect themselves from the host immune system, thereby contributing to homeostasis. Gut microbial ecology and its interplay with the host thus contribute to the nutritional and metabolic demands of A. marisindica. CONCLUSIONS The findings advance the understanding of how deep-sea chemosymbiotic animals use available resources through contributions from gut microbiota. Gut microbiota may be critical in the survival of invertebrate hosts with autotrophic endosymbionts in extreme environments.
Collapse
Affiliation(s)
- Yi Yang
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jin Sun
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Yadong Zhou
- Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Cindy Lee Van Dover
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | - Chunsheng Wang
- Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China.,State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Jian-Wen Qiu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| |
Collapse
|
13
|
Garber AI, Zehnpfennig JR, Sheik CS, Henson MW, Ramírez GA, Mahon AR, Halanych KM, Learman DR. Metagenomics of Antarctic Marine Sediment Reveals Potential for Diverse Chemolithoautotrophy. mSphere 2021; 6:e0077021. [PMID: 34817234 PMCID: PMC8612310 DOI: 10.1128/msphere.00770-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
The microbial biogeochemical processes occurring in marine sediment in Antarctica remain underexplored due to limited access. Further, these polar habitats are unique, as they are being exposed to significant changes in their climate. To explore how microbes drive biogeochemistry in these sediments, we performed a shotgun metagenomic survey of marine surficial sediment (0 to 3 cm of the seafloor) collected from 13 locations in western Antarctica and assembled 16 high-quality metagenome assembled genomes for focused interrogation of the lifestyles of some abundant lineages. We observe an abundance of genes from pathways for the utilization of reduced carbon, sulfur, and nitrogen sources. Although organotrophy is pervasive, nitrification and sulfide oxidation are the dominant lithotrophic pathways and likely fuel carbon fixation via the reverse tricarboxylic acid and Calvin cycles. Oxygen-dependent terminal oxidases are common, and genes for reduction of oxidized nitrogen are sporadically present in our samples. Our results suggest that the underlying benthic communities are well primed for the utilization of settling organic matter, which is consistent with findings from highly productive surface water. Despite the genetic potential for nitrate reduction, the net catabolic pathway in our samples remains aerobic respiration, likely coupled to the oxidation of sulfur and nitrogen imported from the highly productive Antarctic water column above. IMPORTANCE The impacts of climate change in polar regions, like Antarctica, have the potential to alter numerous ecosystems and biogeochemical cycles. Increasing temperature and freshwater runoff from melting ice can have profound impacts on the cycling of organic and inorganic nutrients between the pelagic and benthic ecosystems. Within the benthos, sediment microbial communities play a critical role in carbon mineralization and the cycles of essential nutrients like nitrogen and sulfur. Metagenomic data collected from sediment samples from the continental shelf of western Antarctica help to examine this unique system and document the metagenomic potential for lithotrophic metabolisms and the cycles of both nitrogen and sulfur, which support not only benthic microbes but also life in the pelagic zone.
Collapse
Affiliation(s)
- Arkadiy I. Garber
- Biodesign Center for Mechanisms for Evolution, Arizona State University, Tempe, Arizona, USA
| | | | - Cody S. Sheik
- Biology Department and Large Lakes Observatory, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Michael W. Henson
- Department of Biology, Central Michigan University, Mt. Pleasant, Michigan, USA
| | - Gustavo A. Ramírez
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
- Department of Marine Biology, Haifa University, Haifa, Israel
| | - Andrew R. Mahon
- Department of Biology, Central Michigan University, Mt. Pleasant, Michigan, USA
| | - Kenneth M. Halanych
- Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Deric R. Learman
- Department of Biology, Central Michigan University, Mt. Pleasant, Michigan, USA
| |
Collapse
|
14
|
Sogin EM, Kleiner M, Borowski C, Gruber-Vodicka HR, Dubilier N. Life in the Dark: Phylogenetic and Physiological Diversity of Chemosynthetic Symbioses. Annu Rev Microbiol 2021; 75:695-718. [PMID: 34351792 DOI: 10.1146/annurev-micro-051021-123130] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Possibly the last discovery of a previously unknown major ecosystem on Earth was made just over half a century ago, when researchers found teaming communities of animals flourishing two and a half kilometers below the ocean surface at hydrothermal vents. We now know that these highly productive ecosystems are based on nutritional symbioses between chemosynthetic bacteria and eukaryotes and that these chemosymbioses are ubiquitous in both deep-sea and shallow-water environments. The symbionts are primary producers that gain energy from the oxidation of reduced compounds, such as sulfide and methane, to fix carbon dioxide or methane into biomass to feed their hosts. This review outlines how the symbiotic partners have adapted to living together. We first focus on the phylogenetic and metabolic diversity of these symbioses and then highlight selected research directions that could advance our understanding of the processes that shaped the evolutionary and ecological success of these associations. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- E Maggie Sogin
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany; ,
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Christian Borowski
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany; , .,MARUM-Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
| | | | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany; , .,MARUM-Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
| |
Collapse
|
15
|
Ip JCH, Xu T, Sun J, Li R, Chen C, Lan Y, Han Z, Zhang H, Wei J, Wang H, Tao J, Cai Z, Qian PY, Qiu JW. Host-Endosymbiont Genome Integration in a Deep-Sea Chemosymbiotic Clam. Mol Biol Evol 2021; 38:502-518. [PMID: 32956455 PMCID: PMC7826175 DOI: 10.1093/molbev/msaa241] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Endosymbiosis with chemosynthetic bacteria has enabled many deep-sea invertebrates to thrive at hydrothermal vents and cold seeps, but most previous studies on this mutualism have focused on the bacteria only. Vesicomyid clams dominate global deep-sea chemosynthesis-based ecosystems. They differ from most deep-sea symbiotic animals in passing their symbionts from parent to offspring, enabling intricate coevolution between the host and the symbiont. Here, we sequenced the genomes of the clam Archivesica marissinica (Bivalvia: Vesicomyidae) and its bacterial symbiont to understand the genomic/metabolic integration behind this symbiosis. At 1.52 Gb, the clam genome encodes 28 genes horizontally transferred from bacteria, a large number of pseudogenes and transposable elements whose massive expansion corresponded to the timing of the rise and subsequent divergence of symbiont-bearing vesicomyids. The genome exhibits gene family expansion in cellular processes that likely facilitate chemoautotrophy, including gas delivery to support energy and carbon production, metabolite exchange with the symbiont, and regulation of the bacteriocyte population. Contraction in cellulase genes is likely adaptive to the shift from phytoplankton-derived to bacteria-based food. It also shows contraction in bacterial recognition gene families, indicative of suppressed immune response to the endosymbiont. The gammaproteobacterium endosymbiont has a reduced genome of 1.03 Mb but retains complete pathways for sulfur oxidation, carbon fixation, and biosynthesis of 20 common amino acids, indicating the host’s high dependence on the symbiont for nutrition. Overall, the host–symbiont genomes show not only tight metabolic complementarity but also distinct signatures of coevolution allowing the vesicomyids to thrive in chemosynthesis-based ecosystems.
Collapse
Affiliation(s)
- Jack Chi-Ho Ip
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.,HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China.,Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ting Xu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.,HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China.,Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jin Sun
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.,Division of Life Science, Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa Prefecture, Japan
| | - Yi Lan
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.,Division of Life Science, Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhuang Han
- Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Science, Sanya, Hainan, China
| | - Haibin Zhang
- Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Science, Sanya, Hainan, China
| | - Jiangong Wei
- MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Hongbin Wang
- MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Jun Tao
- MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Pei-Yuan Qian
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.,Division of Life Science, Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.,HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China.,Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
16
|
Chalifour B, Li J. A Review of the Molluscan Microbiome: Ecology, Methodology and Future. MALACOLOGIA 2021. [DOI: 10.4002/040.063.0208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Bridget Chalifour
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 334 UCB, Boulder, Colorado, 80309, U.S.A
| | - Jingchun Li
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 334 UCB, Boulder, Colorado, 80309, U.S.A
| |
Collapse
|
17
|
Petersen JM, Yuen B. The symbiotic 'all-rounders': Partnerships between marine animals and chemosynthetic nitrogen-fixing bacteria. Appl Environ Microbiol 2021; 87:AEM.02129-20. [PMID: 33355107 PMCID: PMC8090883 DOI: 10.1128/aem.02129-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogen fixation is a widespread metabolic trait in certain types of microorganisms called diazotrophs. Bioavailable nitrogen is limited in various habitats on land and in the sea, and accordingly, a range of plant, animal, and single-celled eukaryotes have evolved symbioses with diverse diazotrophic bacteria, with enormous economic and ecological benefits. Until recently, all known nitrogen-fixing symbionts were heterotrophs such as nodulating rhizobia, or photoautotrophs such as cyanobacteria. In 2016, the first chemoautotrophic nitrogen-fixing symbionts were discovered in a common family of marine clams, the Lucinidae. Chemosynthetic nitrogen-fixing symbionts use the chemical energy stored in reduced sulfur compounds to power carbon and nitrogen fixation, making them metabolic 'all-rounders' with multiple functions in the symbiosis. This distinguishes them from heterotrophic symbionts that require a source of carbon from their host, and their chemosynthetic metabolism distinguishes them from photoautotrophic symbionts that produce oxygen, a potent inhibitor of nitrogenase. In this review, we consider evolutionary aspects of this discovery, by comparing strategies that have evolved for hosting intracellular nitrogen-fixing symbionts in plants and animals. The symbiosis between lucinid clams and chemosynthetic nitrogen-fixing bacteria also has important ecological impacts, as they form a nested symbiosis with endangered marine seagrasses. Notably, nitrogen fixation by lucinid symbionts may help support seagrass health by providing a source of nitrogen in seagrass habitats. These discoveries were enabled by new techniques for understanding the activity of microbial populations in natural environments. However, an animal (or plant) host represents a diverse landscape of microbial niches due to its structural, chemical, immune and behavioural properties. In future, methods that resolve microbial activity at the single cell level will provide radical new insights into the regulation of nitrogen fixation in chemosynthetic symbionts, shedding new light on the evolution of nitrogen-fixing symbioses in contrasting hosts and environments.
Collapse
Affiliation(s)
- Jillian M Petersen
- Centre for Microbiology and Environmental Systems Science, University of Vienna
| | - Benedict Yuen
- Centre for Microbiology and Environmental Systems Science, University of Vienna
| |
Collapse
|
18
|
Pathak A, Stothard P, Chauhan A. Comparative Genomic Analysis of Three Pseudomonas Species Isolated from the Eastern Oyster ( Crassostrea virginica) Tissues, Mantle Fluid, and the Overlying Estuarine Water Column. Microorganisms 2021; 9:490. [PMID: 33673397 PMCID: PMC7996774 DOI: 10.3390/microorganisms9030490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 01/10/2023] Open
Abstract
The eastern oysters serve as important keystone species in the United States, especially in the Gulf of Mexico estuarine waters, and at the same time, provide unparalleled economic, ecological, environmental, and cultural services. One ecosystem service that has garnered recent attention is the ability of oysters to sequester impurities and nutrients, such as nitrogen (N), from the estuarine water that feeds them, via their exceptional filtration mechanism coupled with microbially-mediated denitrification processes. It is the oyster-associated microbiomes that essentially provide these myriads of ecological functions, yet not much is known on these microbiota at the genomic scale, especially from warm temperate and tropical water habitats. Among the suite of bacterial genera that appear to interplay with the oyster host species, pseudomonads deserve further assessment because of their immense metabolic and ecological potential. To obtain a comprehensive understanding on this aspect, we previously reported on the isolation and preliminary genomic characterization of three Pseudomonas species isolated from minced oyster tissue (P. alcaligenes strain OT69); oyster mantle fluid (P. stutzeri strain MF28) and the water collected from top of the oyster reef (P. aeruginosa strain WC55), respectively. In this comparative genomic analysis study conducted on these three targeted pseudomonads, native to the eastern oyster and its surrounding environment, provided further insights into their unique functional traits, conserved gene pools between the selected pseudomonads, as well as genes that render unique characteristics in context to metabolic traits recruited during their evolutionary history via horizontal gene transfer events as well as phage-mediated incorporation of genes. Moreover, the strains also supported extensively developed resistomes, which suggests that environmental microorganisms native to relatively pristine environments, such as Apalachicola Bay, Florida, have also recruited an arsenal of antibiotic resistant gene determinants, thus posing an emerging public health concern.
Collapse
Affiliation(s)
- Ashish Pathak
- Environmental Biotechnology Laboratory, School of the Environment, 1515 S. Martin Luther King Jr. Blvd., Suite 305B, FSH Science Research Center, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada;
| | - Ashvini Chauhan
- Environmental Biotechnology Laboratory, School of the Environment, 1515 S. Martin Luther King Jr. Blvd., Suite 305B, FSH Science Research Center, Florida A&M University, Tallahassee, FL 32307, USA;
| |
Collapse
|
19
|
Lan Y, Sun J, Chen C, Sun Y, Zhou Y, Yang Y, Zhang W, Li R, Zhou K, Wong WC, Kwan YH, Cheng A, Bougouffa S, Van Dover CL, Qiu JW, Qian PY. Hologenome analysis reveals dual symbiosis in the deep-sea hydrothermal vent snail Gigantopelta aegis. Nat Commun 2021; 12:1165. [PMID: 33608555 PMCID: PMC7895826 DOI: 10.1038/s41467-021-21450-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/07/2021] [Indexed: 01/31/2023] Open
Abstract
Animals endemic to deep-sea hydrothermal vents often form obligatory symbioses with bacteria, maintained by intricate host-symbiont interactions. Most genomic studies on holobionts have not investigated both sides to similar depths. Here, we report dual symbiosis in the peltospirid snail Gigantopelta aegis with two gammaproteobacterial endosymbionts: a sulfur oxidiser and a methane oxidiser. We assemble high-quality genomes for all three parties, including a chromosome-level host genome. Hologenomic analyses reveal mutualism with nutritional complementarity and metabolic co-dependency, highly versatile in transporting and using chemical energy. Gigantopelta aegis likely remodels its immune system to facilitate dual symbiosis. Comparisons with Chrysomallon squamiferum, a confamilial snail with a single sulfur-oxidising gammaproteobacterial endosymbiont, show that their sulfur-oxidising endosymbionts are phylogenetically distant. This is consistent with previous findings that they evolved endosymbiosis convergently. Notably, the two sulfur-oxidisers share the same capabilities in biosynthesising nutrients lacking in the host genomes, potentially a key criterion in symbiont selection.
Collapse
Affiliation(s)
- Yi Lan
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jin Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa Prefecture, Japan
| | - Yanan Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yadong Zhou
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Yi Yang
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Weipeng Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Kun Zhou
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wai Chuen Wong
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yick Hang Kwan
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Aifang Cheng
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Salim Bougouffa
- Computational Bioscience Research Centre, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Cindy Lee Van Dover
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC, United States
| | - Jian-Wen Qiu
- Department of Biology and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong, China
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| |
Collapse
|
20
|
Song H, Hewitt OH, Degnan SM. Arginine Biosynthesis by a Bacterial Symbiont Enables Nitric Oxide Production and Facilitates Larval Settlement in the Marine-Sponge Host. Curr Biol 2020; 31:433-437.e3. [PMID: 33220182 DOI: 10.1016/j.cub.2020.10.051] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/10/2020] [Accepted: 10/16/2020] [Indexed: 01/05/2023]
Abstract
Larval settlement and metamorphosis are regulated by nitric oxide (NO) signaling in a wide diversity of marine invertebrates.1-10 It is thus surprising that, in most invertebrates, the substrate for NO synthesis-arginine-cannot be biosynthesized but instead must be exogenously sourced.11 In the sponge Amphimedon queenslandica, vertically inherited proteobacterial symbionts in the larva are able to biosynthesize arginine.12,13 Here, we test the hypothesis that symbionts provide arginine to the sponge host so that nitric oxide synthase expressed in the larva can produce NO, which regulates metamorphosis,8 and the byproduct citrulline (Figure 1). First, we find support for an arginine-citrulline biosynthetic loop in this sponge larval holobiont by using stable isotope tracing. In symbionts, incorporated 13C-citrulline decreases as 13C-arginine increases, consistent with the use of exogenous citrulline for arginine synthesis. In contrast, 13C-citrulline accumulates in larvae as 13C-arginine decreases, demonstrating the uptake of exogenous arginine and its conversion to NO and citrulline. Second, we show that, although Amphimedon larvae can derive arginine directly from seawater, normal settlement and metamorphosis can occur in artificial sea water lacking arginine. Together, these results support holobiont complementation of the arginine-citrulline loop and NO biosynthesis in Amphimedon larvae, suggesting a critical role for bacterial symbionts in the development of this marine sponge. Given that NO regulates settlement and metamorphosis in diverse animal phyla1-10 and arginine is procured externally in most animals,11 we propose that symbionts might play an equally critical regulatory role in this essential life cycle transition in other metazoans.
Collapse
Affiliation(s)
- Hao Song
- School of Biological Sciences, The University of Queensland, Brisbane, 4072 QLD, Australia; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Olivia H Hewitt
- School of Biological Sciences, The University of Queensland, Brisbane, 4072 QLD, Australia
| | - Sandie M Degnan
- School of Biological Sciences, The University of Queensland, Brisbane, 4072 QLD, Australia.
| |
Collapse
|
21
|
Russell SL, Pepper-Tunick E, Svedberg J, Byrne A, Ruelas Castillo J, Vollmers C, Beinart RA, Corbett-Detig R. Horizontal transmission and recombination maintain forever young bacterial symbiont genomes. PLoS Genet 2020; 16:e1008935. [PMID: 32841233 PMCID: PMC7473567 DOI: 10.1371/journal.pgen.1008935] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 09/04/2020] [Accepted: 06/16/2020] [Indexed: 12/30/2022] Open
Abstract
Bacterial symbionts bring a wealth of functions to the associations they participate in, but by doing so, they endanger the genes and genomes underlying these abilities. When bacterial symbionts become obligately associated with their hosts, their genomes are thought to decay towards an organelle-like fate due to decreased homologous recombination and inefficient selection. However, numerous associations exist that counter these expectations, especially in marine environments, possibly due to ongoing horizontal gene flow. Despite extensive theoretical treatment, no empirical study thus far has connected these underlying population genetic processes with long-term evolutionary outcomes. By sampling marine chemosynthetic bacterial-bivalve endosymbioses that range from primarily vertical to strictly horizontal transmission, we tested this canonical theory. We found that transmission mode strongly predicts homologous recombination rates, and that exceedingly low recombination rates are associated with moderate genome degradation in the marine symbionts with nearly strict vertical transmission. Nonetheless, even the most degraded marine endosymbiont genomes are occasionally horizontally transmitted and are much larger than their terrestrial insect symbiont counterparts. Therefore, horizontal transmission and recombination enable efficient natural selection to maintain intermediate symbiont genome sizes and substantial functional genetic variation.
Collapse
Affiliation(s)
- Shelbi L. Russell
- Department of Molecular Cellular and Developmental Biology. University of California Santa Cruz, Santa Cruz, California, United States of America
- Department of Biomolecular Engineering. University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Evan Pepper-Tunick
- Department of Biomolecular Engineering. University of California Santa Cruz, Santa Cruz, California, United States of America
- Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - Jesper Svedberg
- Department of Biomolecular Engineering. University of California Santa Cruz, Santa Cruz, California, United States of America
- Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - Ashley Byrne
- Department of Molecular Cellular and Developmental Biology. University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jennie Ruelas Castillo
- Department of Molecular Cellular and Developmental Biology. University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Christopher Vollmers
- Department of Biomolecular Engineering. University of California Santa Cruz, Santa Cruz, California, United States of America
- Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - Roxanne A. Beinart
- Graduate School of Oceanography. University of Rhode Island, Narragansett, Rhode Island, United States of America
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering. University of California Santa Cruz, Santa Cruz, California, United States of America
- Genomics Institute, University of California, Santa Cruz, California, United States of America
| |
Collapse
|
22
|
Oren A, Garrity GM, Parker CT, Chuvochina M, Trujillo ME. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2020; 70:3956-4042. [DOI: 10.1099/ijsem.0.003789] [Citation(s) in RCA: 782] [Impact Index Per Article: 156.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, proposed between the mid-1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evolutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current proposals to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M. Garrity
- NamesforLife, LLC, PO Box 769, Okemos MI 48805-0769, USA
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| | | | - Maria Chuvochina
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia QLD 4072, Brisbane, Australia
| | - Martha E. Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, 37007, Salamanca, Spain
| |
Collapse
|
23
|
McCuaig B, Peña-Castillo L, Dufour SC. Metagenomic analysis suggests broad metabolic potential in extracellular symbionts of the bivalve Thyasira cf. gouldi. Anim Microbiome 2020; 2:7. [PMID: 33499960 PMCID: PMC7807488 DOI: 10.1186/s42523-020-00025-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/20/2020] [Indexed: 11/26/2022] Open
Abstract
Background Next-generation sequencing has opened new avenues for studying metabolic capabilities of bacteria that cannot be cultured. Here, we provide a metagenomic description of chemoautotrophic gammaproteobacterial symbionts associated with Thyasira cf. gouldi, a sediment-dwelling bivalve from the family Thyasiridae. Thyasirid symbionts differ from those of other bivalves by being extracellular, and recent work suggests that they are capable of living freely in the environment. Results Thyasira cf. gouldi symbionts appear to form mixed, non-clonal populations in the host, show no signs of genomic reduction and contain many genes that would only be useful outside the host, including flagellar and chemotaxis genes. The thyasirid symbionts may be capable of sulfur oxidation via both the sulfur oxidation and reverse dissimilatory sulfate reduction pathways, as observed in other bivalve symbionts. In addition, genes for hydrogen oxidation and dissimilatory nitrate reduction were found, suggesting varied metabolic capabilities under a range of redox conditions. The genes of the tricarboxylic acid cycle are also present, along with membrane bound sugar importer channels, suggesting that the bacteria may be mixotrophic. Conclusions In this study, we have generated the first thyasirid symbiont genomic resources. In Thyasira cf. gouldi, symbiont populations appear non-clonal and encode genes for a plethora of metabolic capabilities; future work should examine whether symbiont heterogeneity and metabolic breadth, which have been shown in some intracellular chemosymbionts, are signatures of extracellular chemosymbionts in bivalves.
Collapse
Affiliation(s)
- Bonita McCuaig
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Lourdes Peña-Castillo
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada.,Department of Computer Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Suzanne C Dufour
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
24
|
Yang Y, Sun J, Sun Y, Kwan YH, Wong WC, Zhang Y, Xu T, Feng D, Zhang Y, Qiu JW, Qian PY. Genomic, transcriptomic, and proteomic insights into the symbiosis of deep-sea tubeworm holobionts. THE ISME JOURNAL 2020; 14:135-150. [PMID: 31595051 PMCID: PMC6908572 DOI: 10.1038/s41396-019-0520-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/11/2019] [Accepted: 08/25/2019] [Indexed: 12/22/2022]
Abstract
Deep-sea hydrothermal vents and methane seeps are often densely populated by animals that host chemosynthetic symbiotic bacteria, but the molecular mechanisms of such host-symbiont relationship remain largely unclear. We characterized the symbiont genome of the seep-living siboglinid Paraescarpia echinospica and compared seven siboglinid-symbiont genomes. Our comparative analyses indicate that seep-living siboglinid endosymbionts have more virulence traits for establishing infections and modulating host-bacterium interaction than the vent-dwelling species, and have a high potential to resist environmental hazards. Metatranscriptome and metaproteome analyses of the Paraescarpia holobiont reveal that the symbiont is highly versatile in its energy use and efficient in carbon fixation. There is close cooperation within the holobiont in production and supply of nutrients, and the symbiont may be able to obtain nutrients from host cells using virulence factors. Moreover, the symbiont is speculated to have evolved strategies to mediate host protective immunity, resulting in weak expression of host innate immunity genes in the trophosome. Overall, our results reveal the interdependence of the tubeworm holobiont through mutual nutrient supply, a pathogen-type regulatory mechanism, and host-symbiont cooperation in energy utilization and nutrient production, which is a key adaptation allowing the tubeworm to thrive in deep-sea chemosynthetic environments.
Collapse
Affiliation(s)
- Yi Yang
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of The Southern Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jin Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of The Southern Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanan Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of The Southern Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yick Hang Kwan
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of The Southern Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wai Chuen Wong
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of The Southern Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanjie Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Ting Xu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Dong Feng
- CAS Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, 266061, Qingdao, China
| | - Yu Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of The Southern Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
25
|
Potential Interactions between Clade SUP05 Sulfur-Oxidizing Bacteria and Phages in Hydrothermal Vent Sponges. Appl Environ Microbiol 2019; 85:AEM.00992-19. [PMID: 31492669 DOI: 10.1128/aem.00992-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/03/2019] [Indexed: 01/27/2023] Open
Abstract
In deep-sea hydrothermal vent environments, sulfur-oxidizing bacteria belonging to the clade SUP05 are crucial symbionts of invertebrate animals. Marine viruses, as the most abundant biological entities in the ocean, play essential roles in regulating the sulfur metabolism of the SUP05 bacteria. To date, vent sponge-associated SUP05 and their phages have not been well documented. The current study analyzed microbiomes of Haplosclerida sponges from hydrothermal vents in the Okinawa Trough and recovered the dominant SUP05 genome, designated VS-SUP05. Phylogenetic analysis showed that VS-SUP05 was closely related to endosymbiotic SUP05 strains from mussels living in deep-sea hydrothermal vent fields. Homology and metabolic pathway comparisons against free-living and symbiotic SUP05 strains revealed that the VS-SUP05 genome shared many features with the deep-sea mussel symbionts. Supporting a potentially symbiotic lifestyle, the VS-SUP05 genome contained genes involved in the synthesis of essential amino acids and cofactors that are desired by the host. Analysis of sponge-associated viral sequences revealed putative VS-SUP05 phages, all of which were double-stranded viruses belonging to the families Myoviridae, Siphoviridae, Podoviridae, and Microviridae Among the phage sequences, one contig contained metabolic genes (iscR, iscS, and iscU) involved in iron-sulfur cluster formation. Interestingly, genome sequence comparison revealed horizontal transfer of the iscS gene among phages, VS-SUP05, and other symbiotic SUP05 strains, indicating an interaction between marine phages and SUP05 symbionts. Overall, our findings confirm the presence of SUP05 bacteria and their phages in sponges from deep-sea vents and imply a beneficial interaction that allows adaptation of the host sponge to the hydrothermal vent environment.IMPORTANCE Chemosynthetic SUP05 bacteria dominate the microbial communities of deep-sea hydrothermal vents around the world, SUP05 bacteria utilize reduced chemical compounds in vent fluids and commonly form symbioses with invertebrate organisms. This symbiotic relationship could be key to adapting to such unique and extreme environments. Viruses are the most abundant biological entities on the planet and have been identified in hydrothermal vent environments. However, their interactions with the symbiotic microbes of the SUP05 clade, along with their role in the symbiotic system, remain unclear. Here, using metagenomic sequence-based analyses, we determined that bacteriophages may support metabolism in SUP05 bacteria and play a role in the sponge-associated symbiosis system in hydrothermal vent environments.
Collapse
|
26
|
Wilkins LGE. Can interspecies affairs in the dark lead to evolutionary innovation? Mol Ecol 2019; 28:4693-4696. [PMID: 31659841 DOI: 10.1111/mec.15262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 11/28/2022]
Abstract
Evolutionary adaptation is the adjustment of species to a new or changing environment. Engaging in mutualistic microbial symbioses has been put forward as a key trait that promotes the differential, evolutionary success of many animal and plant lineages (McFall-Ngai, 2008). Microbial mutualists allow these organisms to occupy new ecological niches where they could not have persisted on their own or would have been constrained by competitors. Vertical transmission of beneficial microbial symbionts from parents to the offspring is expected to link the adaptive association between a given host and microbe, and it can lead to coevolution and sometimes even cospeciation (Fisher, Henry, Cornwallis, Kiers, & West, 2017). Vertical transmission also causes bottlenecks that strongly reduce the effective population size and genetic diversity of the symbiont population. Moreover, vertically transmitted symbionts are assumed to have fewer opportunities to exchange genes with relatives in the environment. In a "From the Cover" article in this issue of Molecular Ecology, Breusing, Johnson, Vrijenhoek, and Young (2019) investigated whether hybridization among different host species could lead to interspecies exchange of otherwise strictly vertically transmitted symbionts. Hybridization of divergent lineages can potentially cause intrinsic and extrinsic incompatibilities, swamp rare alleles, and lead to population extinctions. In some cases, however, it might also create novel trait combinations that lead to evolutionary innovation (Marques, Meier, & Seehausen, 2019). Breusing et al. (2019) linked the concept of hybridization to symbiont transmission, and their findings have significant implications for the study of evolution of vertically transmitted symbionts and their hosts.
Collapse
Affiliation(s)
- Laetitia G E Wilkins
- Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, USA
| |
Collapse
|
27
|
Baker LJ, Freed LL, Easson CG, Lopez JV, Fenolio D, Sutton TT, Nyholm SV, Hendry TA. Diverse deep-sea anglerfishes share a genetically reduced luminous symbiont that is acquired from the environment. eLife 2019; 8:47606. [PMID: 31571583 PMCID: PMC6773444 DOI: 10.7554/elife.47606] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/21/2019] [Indexed: 11/13/2022] Open
Abstract
Deep-sea anglerfishes are relatively abundant and diverse, but their luminescent bacterial symbionts remain enigmatic. The genomes of two symbiont species have qualities common to vertically transmitted, host-dependent bacteria. However, a number of traits suggest that these symbionts may be environmentally acquired. To determine how anglerfish symbionts are transmitted, we analyzed bacteria-host codivergence across six diverse anglerfish genera. Most of the anglerfish species surveyed shared a common species of symbiont. Only one other symbiont species was found, which had a specific relationship with one anglerfish species, Cryptopsaras couesii. Host and symbiont phylogenies lacked congruence, and there was no statistical support for codivergence broadly. We also recovered symbiont-specific gene sequences from water collected near hosts, suggesting environmental persistence of symbionts. Based on these results we conclude that diverse anglerfishes share symbionts that are acquired from the environment, and that these bacteria have undergone extreme genome reduction although they are not vertically transmitted. The deep sea is home to many different species of anglerfish, a group of animals in which females often display a dangling lure on the top of their heads. This organ shelters bacteria that make light, a partnership (known as symbiosis) that benefits both parties. The bacteria get a safe environment in which to grow, while the animal may use the light to confuse predators as well as attract prey and mates. The genetic information of these bacteria has changed since they became associated with their host. Their genomes have become smaller and more specialized, limiting their ability to survive outside of the fish. This phenomenon is also observed in other symbiotic bacteria, but mostly in microorganisms that are directly transmitted from parent to offspring, never having to live on their own. Yet, some evidence suggests that the bacteria in the lure of anglerfish may be spending time in the water until they find a new host, crossing thousands of meters of ocean in the process. To explore this paradox, Baker et al. looked into the type of bacteria carried by different groups of anglerfish. If each type of fish has its own kind of bacteria, this would suggest that the microorganisms are passed from one generation to the next, and are evolving with their hosts. On the other hand, if the same sort of bacteria can be found in different anglerfish species, this would imply that the bacteria pass from host to host and evolve independently from the fish. Genetic data analysis showed that amongst six groups of anglerfishes, one species of bacteria is shared across five groups while another is specific to one type of fish. The analyses also revealed that anglerfish and their bacteria are most likely not evolving together. This means that the bacteria must make the difficult journey from host to host by persisting in the deep sea, which was confirmed by finding the genetic information of these bacteria in the water near the fish. Anglerfish and the bacteria that light up their lure are hard to study, as they live so deep in the ocean. In fact, many symbiotic relationships are equally difficult to investigate. Examining genetic information can help to give an insight into how hosts and bacteria interact across the tree of life.
Collapse
Affiliation(s)
- Lydia J Baker
- Department of Microbiology, Cornell University, New York, United States
| | - Lindsay L Freed
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, United States
| | - Cole G Easson
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, United States.,Department of Biology, Middle Tennessee State University, Murfreesboro, United States
| | - Jose V Lopez
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, United States
| | - Danté Fenolio
- Center for Conservation and Research, San Antonio Zoo, San Antonio, United States
| | - Tracey T Sutton
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, United States
| | - Spencer V Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States
| | - Tory A Hendry
- Department of Microbiology, Cornell University, New York, United States
| |
Collapse
|
28
|
Gavelis GS, Gile GH. How did cyanobacteria first embark on the path to becoming plastids?: lessons from protist symbioses. FEMS Microbiol Lett 2019; 365:5079637. [PMID: 30165400 DOI: 10.1093/femsle/fny209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
Symbioses between phototrophs and heterotrophs (a.k.a 'photosymbioses') are extremely common, and range from loose and temporary associations to obligate and highly specialized forms. In the history of life, the most transformative was the 'primary endosymbiosis,' wherein a cyanobacterium was engulfed by a eukaryote and became genetically integrated as a heritable photosynthetic organelle, or plastid. By allowing the rise of algae and plants, this event dramatically altered the biosphere, but its remote origin over one billion years ago has obscured the sequence of events leading to its establishment. Here, we review the genetic, physiological and developmental hurdles involved in early primary endosymbiosis. Since we cannot travel back in time to witness these evolutionary junctures, we will draw on examples of unicellular eukaryotes (protists) spanning diverse modes of photosymbiosis. We also review experimental approaches that could be used to recreate aspects of early primary endosymbiosis on a human timescale.
Collapse
Affiliation(s)
- Gregory S Gavelis
- School of Life Sciences, Arizona State University, Room 611, Life Science Tower E, 427 E, Tyler Mall, Tempe, AZ 85287, USA
| | - Gillian H Gile
- School of Life Sciences, Arizona State University, Room 611, Life Science Tower E, 427 E, Tyler Mall, Tempe, AZ 85287, USA
| |
Collapse
|
29
|
Seah BKB, Antony CP, Huettel B, Zarzycki J, Schada von Borzyskowski L, Erb TJ, Kouris A, Kleiner M, Liebeke M, Dubilier N, Gruber-Vodicka HR. Sulfur-Oxidizing Symbionts without Canonical Genes for Autotrophic CO 2 Fixation. mBio 2019; 10:e01112-19. [PMID: 31239380 PMCID: PMC6593406 DOI: 10.1128/mbio.01112-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/23/2019] [Indexed: 01/25/2023] Open
Abstract
Since the discovery of symbioses between sulfur-oxidizing (thiotrophic) bacteria and invertebrates at hydrothermal vents over 40 years ago, it has been assumed that autotrophic fixation of CO2 by the symbionts drives these nutritional associations. In this study, we investigated "Candidatus Kentron," the clade of symbionts hosted by Kentrophoros, a diverse genus of ciliates which are found in marine coastal sediments around the world. Despite being the main food source for their hosts, Kentron bacteria lack the key canonical genes for any of the known pathways for autotrophic carbon fixation and have a carbon stable isotope fingerprint that is unlike other thiotrophic symbionts from similar habitats. Our genomic and transcriptomic analyses instead found metabolic features consistent with growth on organic carbon, especially organic and amino acids, for which they have abundant uptake transporters. All known thiotrophic symbionts have converged on using reduced sulfur to gain energy lithotrophically, but they are diverse in their carbon sources. Some clades are obligate autotrophs, while many are mixotrophs that can supplement autotrophic carbon fixation with heterotrophic capabilities similar to those in Kentron. Here we show that Kentron bacteria are the only thiotrophic symbionts that appear to be entirely heterotrophic, unlike all other thiotrophic symbionts studied to date, which possess either the Calvin-Benson-Bassham or the reverse tricarboxylic acid cycle for autotrophy.IMPORTANCE Many animals and protists depend on symbiotic sulfur-oxidizing bacteria as their main food source. These bacteria use energy from oxidizing inorganic sulfur compounds to make biomass autotrophically from CO2, serving as primary producers for their hosts. Here we describe a clade of nonautotrophic sulfur-oxidizing symbionts, "Candidatus Kentron," associated with marine ciliates. They lack genes for known autotrophic pathways and have a carbon stable isotope fingerprint heavier than other symbionts from similar habitats. Instead, they have the potential to oxidize sulfur to fuel the uptake of organic compounds for heterotrophic growth, a metabolic mode called chemolithoheterotrophy that is not found in other symbioses. Although several symbionts have heterotrophic features to supplement primary production, in Kentron they appear to supplant it entirely.
Collapse
Affiliation(s)
| | | | - Bruno Huettel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jan Zarzycki
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Angela Kouris
- Energy Bioengineering and Geomicrobiology Group, University of Calgary, Calgary, Alberta, Canada
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | | |
Collapse
|
30
|
Morphological Plasticity in a Sulfur-Oxidizing Marine Bacterium from the SUP05 Clade Enhances Dark Carbon Fixation. mBio 2019; 10:mBio.00216-19. [PMID: 31064824 PMCID: PMC6509183 DOI: 10.1128/mbio.00216-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Identifying shifts in microbial metabolism across redox gradients will improve efforts to model marine oxygen minimum zone (OMZ) ecosystems. Here, we show that aerobic morphology and metabolism increase cell size, sulfur storage capacity, and carbon fixation rates in “Ca. Thioglobus autotrophicus,” a chemosynthetic bacterium from the SUP05 clade that crosses oxic-anoxic boundaries. Sulfur-oxidizing bacteria from the SUP05 clade are abundant in anoxic and oxygenated marine waters that appear to lack reduced sources of sulfur for cell growth. This raises questions about how these chemosynthetic bacteria survive across oxygen and sulfur gradients and how their mode of survival impacts the environment. Here, we use growth experiments, proteomics, and cryo-electron tomography to show that a SUP05 isolate, “Candidatus Thioglobus autotrophicus,” is amorphous in shape and several times larger and stores considerably more intracellular sulfur when it respires oxygen. We also show that these cells can use diverse sources of reduced organic and inorganic sulfur at submicromolar concentrations. Enhanced cell size, carbon content, and metabolic activity of the aerobic phenotype are likely facilitated by a stabilizing surface-layer (S-layer) and an uncharacterized form of FtsZ-less cell division that supports morphological plasticity. The additional sulfur storage provides an energy source that allows cells to continue metabolic activity when exogenous sulfur sources are not available. This metabolic flexibility leads to the production of more organic carbon in the ocean than is estimated based solely on their anaerobic phenotype.
Collapse
|
31
|
Spietz RL, Lundeen RA, Zhao X, Nicastro D, Ingalls AE, Morris RM. Heterotrophic carbon metabolism and energy acquisition in Candidatus Thioglobus singularis strain PS1, a member of the SUP05 clade of marine Gammaproteobacteria. Environ Microbiol 2019; 21:2391-2401. [PMID: 30951247 DOI: 10.1111/1462-2920.14623] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/30/2022]
Abstract
A hallmark of the SUP05 clade of marine Gammaproteobacteria is the ability to use energy obtained from reduced inorganic sulfur to fuel autotrophic fixation of carbon using RuBisCo. However, some SUP05 also have the genetic potential for heterotrophic growth, raising questions about the roles of SUP05 in the marine carbon cycle. We used genomic reconstructions, physiological growth experiments and proteomics to characterize central carbon and energy metabolism in Candidatus Thioglobus singularis strain PS1, a representative from the SUP05 clade that has the genetic potential for autotrophy and heterotrophy. Here, we show that the addition of individual organic compounds and 0.2 μm filtered diatom lysate significantly enhanced the growth of this bacterium. This positive growth response to organic substrates, combined with expression of a complete TCA cycle, heterotrophic pathways for carbon assimilation, and methylotrophic pathways for energy conversion demonstrate strain PS1's capacity for heterotrophic growth. Further, our inability to verify the expression of RuBisCO suggests that carbon fixation was not critical for growth. These results highlight the metabolic diversity of the SUP05 clade that harbours both primary producers and consumers of organic carbon in the oceans and expand our understanding of specific pathways of organic matter oxidation by the heterotrophic SUP05.
Collapse
Affiliation(s)
- Rachel L Spietz
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Rachel A Lundeen
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Xiaowei Zhao
- Department of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniela Nicastro
- Department of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Anitra E Ingalls
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Robert M Morris
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
32
|
Chemosynthetic symbiont with a drastically reduced genome serves as primary energy storage in the marine flatworm Paracatenula. Proc Natl Acad Sci U S A 2019; 116:8505-8514. [PMID: 30962361 PMCID: PMC6486704 DOI: 10.1073/pnas.1818995116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Animals typically store their primary energy reserves in specialized cells. Here, we show that in the small marine flatworm Paracatenula, this function is performed by its bacterial chemosynthetic symbiont. The intracellular symbiont occupies half of the biomass in the symbiosis and has a highly reduced genome but efficiently stocks up and maintains carbon and energy, particularly sugars. The host rarely digests the symbiont cells to access these stocks. Instead, the symbionts appear to provide the bulk nutrition by secreting outer-membrane vesicles. This is in contrast to all other described chemosynthetic symbioses, where the hosts continuously digest full cells of a small and ideally growing symbiont population that cannot provide a long-term buffering capacity during nutrient limitation. Hosts of chemoautotrophic bacteria typically have much higher biomass than their symbionts and consume symbiont cells for nutrition. In contrast to this, chemoautotrophic Candidatus Riegeria symbionts in mouthless Paracatenula flatworms comprise up to half of the biomass of the consortium. Each species of Paracatenula harbors a specific Ca. Riegeria, and the endosymbionts have been vertically transmitted for at least 500 million years. Such prolonged strict vertical transmission leads to streamlining of symbiont genomes, and the retained physiological capacities reveal the functions the symbionts provide to their hosts. Here, we studied a species of Paracatenula from Sant’Andrea, Elba, Italy, using genomics, gene expression, imaging analyses, as well as targeted and untargeted MS. We show that its symbiont, Ca. R. santandreae has a drastically smaller genome (1.34 Mb) than the symbiont´s free-living relatives (4.29–4.97 Mb) but retains a versatile and energy-efficient metabolism. It encodes and expresses a complete intermediary carbon metabolism and enhanced carbon fixation through anaplerosis and accumulates massive intracellular inclusions such as sulfur, polyhydroxyalkanoates, and carbohydrates. Compared with symbiotic and free-living chemoautotrophs, Ca. R. santandreae’s versatility in energy storage is unparalleled in chemoautotrophs with such compact genomes. Transmission EM as well as host and symbiont expression data suggest that Ca. R. santandreae largely provisions its host via outer-membrane vesicle secretion. With its high share of biomass in the symbiosis and large standing stocks of carbon and energy reserves, it has a unique role for bacterial symbionts—serving as the primary energy storage for its animal host.
Collapse
|
33
|
Russell SL. Transmission mode is associated with environment type and taxa across bacteria-eukaryote symbioses: a systematic review and meta-analysis. FEMS Microbiol Lett 2019; 366:5289862. [DOI: 10.1093/femsle/fnz013] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Shelbi L Russell
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95060; USA
| |
Collapse
|
34
|
Decrypting the sulfur cycle in oceanic oxygen minimum zones. ISME JOURNAL 2018; 12:2322-2329. [PMID: 29884830 DOI: 10.1038/s41396-018-0149-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 01/30/2018] [Accepted: 02/28/2018] [Indexed: 11/08/2022]
Abstract
Here we present ecophysiological studies of the anaerobic sulfide oxidizers considered critical to cryptic sulfur cycling in oceanic oxygen minimum zones (OMZs). We find that HS- oxidation rates by microorganisms in the Chilean OMZ offshore from Dichato are sufficiently rapid (18 nM h-1), even at HS- concentrations well below 100 nM, to oxidize all sulfide produced during sulfate reduction in OMZs. Even at 100 nM, HS- is well below published half-saturation concentrations and we conclude that the sulfide-oxidizing bacteria in OMZs (likely the SUP05/ARTIC96BD lineage of the gammaproteobacteria) have high-affinity (>105 g-1 wet cells h-1) sulfur uptake systems. These specific affinities for sulfide are higher than those recorded for any other organism on any other substrate. Such high affinities likely allow anaerobic sulfide oxidizers to maintain vanishingly low sulfide concentrations in OMZs driving marine cryptic sulfur cycling. If more broadly distributed, such high-affinity sulfur biochemistry could facilitate sulfide-based metabolisms and prominent S-cycles in many other ostensibly sulfide-free environments.
Collapse
|
35
|
Callbeck CM, Lavik G, Ferdelman TG, Fuchs B, Gruber-Vodicka HR, Hach PF, Littmann S, Schoffelen NJ, Kalvelage T, Thomsen S, Schunck H, Löscher CR, Schmitz RA, Kuypers MMM. Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria. Nat Commun 2018; 9:1729. [PMID: 29712903 PMCID: PMC5928099 DOI: 10.1038/s41467-018-04041-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 03/28/2018] [Indexed: 11/13/2022] Open
Abstract
Members of the gammaproteobacterial clade SUP05 couple water column sulfide oxidation to nitrate reduction in sulfidic oxygen minimum zones (OMZs). Their abundance in offshore OMZ waters devoid of detectable sulfide has led to the suggestion that local sulfate reduction fuels SUP05-mediated sulfide oxidation in a so-called “cryptic sulfur cycle”. We examined the distribution and metabolic capacity of SUP05 in Peru Upwelling waters, using a combination of oceanographic, molecular, biogeochemical and single-cell techniques. A single SUP05 species, UThioglobus perditus, was found to be abundant and active in both sulfidic shelf and sulfide-free offshore OMZ waters. Our combined data indicated that mesoscale eddy-driven transport led to the dispersal of UT. perditus and elemental sulfur from the sulfidic shelf waters into the offshore OMZ region. This offshore transport of shelf waters provides an alternative explanation for the abundance and activity of sulfide-oxidizing denitrifying bacteria in sulfide-poor offshore OMZ waters. The presence and activity of sulfide-oxidizing denitrifying bacteria in sulfide-poor offshore oxygen minimum zone waters remains unclear. Here, the authors combine oceanography, molecular, biogeochemical and single-cell techniques to examine their distribution, metabolic capacity, and origins.
Collapse
Affiliation(s)
- Cameron M Callbeck
- Max Planck Institute for Marine Microbiology, Bremen, D-28359, Germany.,Swiss Federal Institute of Aquatic Science and Technology (Eawag), Kastanienbaum, 6047, Switzerland
| | - Gaute Lavik
- Max Planck Institute for Marine Microbiology, Bremen, D-28359, Germany
| | | | - Bernhard Fuchs
- Max Planck Institute for Marine Microbiology, Bremen, D-28359, Germany
| | | | - Philipp F Hach
- Max Planck Institute for Marine Microbiology, Bremen, D-28359, Germany
| | - Sten Littmann
- Max Planck Institute for Marine Microbiology, Bremen, D-28359, Germany
| | | | - Tim Kalvelage
- Max Planck Institute for Marine Microbiology, Bremen, D-28359, Germany
| | - Sören Thomsen
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, D-24148, Germany
| | - Harald Schunck
- Institute for General Microbiology, University of Kiel, Kiel, D-24418, Germany
| | - Carolin R Löscher
- Institute for General Microbiology, University of Kiel, Kiel, D-24418, Germany.,Nordcee and Danish Institute for Advanced Study, Dept. of Biology, University of Southern Denmark, Odense, DK-5230, Denmark
| | - Ruth A Schmitz
- Institute for General Microbiology, University of Kiel, Kiel, D-24418, Germany
| | | |
Collapse
|
36
|
Scott KM, Williams J, Porter CMB, Russel S, Harmer TL, Paul JH, Antonen KM, Bridges MK, Camper GJ, Campla CK, Casella LG, Chase E, Conrad JW, Cruz MC, Dunlap DS, Duran L, Fahsbender EM, Goldsmith DB, Keeley RF, Kondoff MR, Kussy BI, Lane MK, Lawler S, Leigh BA, Lewis C, Lostal LM, Marking D, Mancera PA, McClenthan EC, McIntyre EA, Mine JA, Modi S, Moore BD, Morgan WA, Nelson KM, Nguyen KN, Ogburn N, Parrino DG, Pedapudi AD, Pelham RP, Preece AM, Rampersad EA, Richardson JC, Rodgers CM, Schaffer BL, Sheridan NE, Solone MR, Staley ZR, Tabuchi M, Waide RJ, Wanjugi PW, Young S, Clum A, Daum C, Huntemann M, Ivanova N, Kyrpides N, Mikhailova N, Palaniappan K, Pillay M, Reddy TBK, Shapiro N, Stamatis D, Varghese N, Woyke T, Boden R, Freyermuth SK, Kerfeld CA. Genomes of ubiquitous marine and hypersaline Hydrogenovibrio, Thiomicrorhabdus and Thiomicrospira spp. encode a diversity of mechanisms to sustain chemolithoautotrophy in heterogeneous environments. Environ Microbiol 2018. [PMID: 29521452 DOI: 10.1111/1462-2920.14090] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemolithoautotrophic bacteria from the genera Hydrogenovibrio, Thiomicrorhabdus and Thiomicrospira are common, sometimes dominant, isolates from sulfidic habitats including hydrothermal vents, soda and salt lakes and marine sediments. Their genome sequences confirm their membership in a deeply branching clade of the Gammaproteobacteria. Several adaptations to heterogeneous habitats are apparent. Their genomes include large numbers of genes for sensing and responding to their environment (EAL- and GGDEF-domain proteins and methyl-accepting chemotaxis proteins) despite their small sizes (2.1-3.1 Mbp). An array of sulfur-oxidizing complexes are encoded, likely to facilitate these organisms' use of multiple forms of reduced sulfur as electron donors. Hydrogenase genes are present in some taxa, including group 1d and 2b hydrogenases in Hydrogenovibrio marinus and H. thermophilus MA2-6, acquired via horizontal gene transfer. In addition to high-affinity cbb3 cytochrome c oxidase, some also encode cytochrome bd-type quinol oxidase or ba3 -type cytochrome c oxidase, which could facilitate growth under different oxygen tensions, or maintain redox balance. Carboxysome operons are present in most, with genes downstream encoding transporters from four evolutionarily distinct families, which may act with the carboxysomes to form CO2 concentrating mechanisms. These adaptations to habitat variability likely contribute to the cosmopolitan distribution of these organisms.
Collapse
Affiliation(s)
- Kathleen M Scott
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - John Williams
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Cody M B Porter
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Sydney Russel
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Tara L Harmer
- Biology Program, Stockton University, Galloway, NJ, USA
| | - John H Paul
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Kirsten M Antonen
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Megan K Bridges
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Gary J Camper
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Christie K Campla
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Leila G Casella
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Eva Chase
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - James W Conrad
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Mercedez C Cruz
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Darren S Dunlap
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Laura Duran
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Elizabeth M Fahsbender
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Dawn B Goldsmith
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Ryan F Keeley
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Matthew R Kondoff
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Breanna I Kussy
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Marannda K Lane
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Stephanie Lawler
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Brittany A Leigh
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Courtney Lewis
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Lygia M Lostal
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Devon Marking
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Paola A Mancera
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Evan C McClenthan
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Emily A McIntyre
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Jessica A Mine
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Swapnil Modi
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Brittney D Moore
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - William A Morgan
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Kaleigh M Nelson
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Kimmy N Nguyen
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Nicholas Ogburn
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - David G Parrino
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Anangamanjari D Pedapudi
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Rebecca P Pelham
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Amanda M Preece
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Elizabeth A Rampersad
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Jason C Richardson
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Christina M Rodgers
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Brent L Schaffer
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Nancy E Sheridan
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Michael R Solone
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Zachery R Staley
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Maki Tabuchi
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Ramond J Waide
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Pauline W Wanjugi
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Suzanne Young
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Alicia Clum
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Chris Daum
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Marcel Huntemann
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Nikos Kyrpides
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | | | | | - Manoj Pillay
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - T B K Reddy
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Nicole Shapiro
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | | | - Neha Varghese
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Rich Boden
- School of Biological & Marine Sciences, University of Plymouth, Drake Circus, Plymouth, UK.,Sustainable Earth Institute, University of Plymouth, Drake Circus, Plymouth, UK
| | | | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
37
|
Schuelke T, Pereira TJ, Hardy SM, Bik HM. Nematode-associated microbial taxa do not correlate with host phylogeny, geographic region or feeding morphology in marine sediment habitats. Mol Ecol 2018; 27:1930-1951. [DOI: 10.1111/mec.14539] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/18/2017] [Accepted: 01/02/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Taruna Schuelke
- Department of Nematology; University of California, Riverside; Riverside CA USA
| | - Tiago José Pereira
- Department of Nematology; University of California, Riverside; Riverside CA USA
| | - Sarah M. Hardy
- School of Fisheries and Ocean Sciences; University of Alaska; Fairbanks AK USA
| | - Holly M. Bik
- Department of Nematology; University of California, Riverside; Riverside CA USA
| |
Collapse
|
38
|
Ozawa G, Shimamura S, Takaki Y, Takishita K, Ikuta T, Barry JP, Maruyama T, Fujikura K, Yoshida T. Ancient Occasional Host Switching of Maternally Transmitted Bacterial Symbionts of Chemosynthetic Vesicomyid Clams. Genome Biol Evol 2018; 9:2226-2236. [PMID: 28922872 PMCID: PMC5604134 DOI: 10.1093/gbe/evx166] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 11/22/2022] Open
Abstract
Vesicomyid clams in deep-sea chemosynthetic ecosystems harbor sulfur-oxidizing bacteria in their gill epithelial cells. These symbionts, which are vertically transmitted, are species-specific and thought to have cospeciated with their hosts. However, recent studies indicate incongruent phylogenies between some vesicomyid clams and their symbionts, suggesting that symbionts are horizontally transmitted. To more precisely understand the evolution of vesicomyid clams and their symbionts, we compared the evolution of vesicomyid clams and their symbionts through phylogenetic analyses using multi-gene data sets. Many clades in the phylogenetic trees of 13 host species (Abyssogena mariana, Ab. phaseoliformis, Akebiconcha kawamurai, Calyptogena fausta, C. laubieri, C. magnifica, C. nautilei, C. pacifica, Isorropodon fossajaponicum, Phreagena kilmeri, Ph. okutanii, Ph. soyoae, and Pliocardia stearnsii) and their symbionts were well resolved. Six of the 13 host-symbiont pairs (C. fausta, C. magnifica, C. pacifica, Ph. kilmeri, Ph. okutanii, and Ph. soyoae, and their respective symbionts) showed topological congruence. However, the remaining seven pairs (Ak. kawamurai, Ab mariana, Ab. phaseoliformis, C. laubieri, C. nautilei, I. fossajaponicum, and Pl. stearnsii and their corresponding symbionts) showed incongruent topologies, which were supported by the approximately unbiased and Bayes factor tests. Coevolution analyses indicated that six pairs cospeciated, whereas host switching events occurred in the remaining seven pairs. Markedly, multiple host switching events may have occurred in the lineages from the common ancestral symbiont of C. pacifica and C. fausta. Our phylogenetic and coevolution analyses provide additional evidence for host switching during the evolution of vesicomyids.
Collapse
Affiliation(s)
- Genki Ozawa
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima-cho, Yokosuka, Kanagawa, Japan.,Department of Marine Biosciences, School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Shigeru Shimamura
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima-cho, Yokosuka, Kanagawa, Japan
| | - Yoshihiro Takaki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima-cho, Yokosuka, Kanagawa, Japan
| | - Kiyotaka Takishita
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima-cho, Yokosuka, Kanagawa, Japan
| | - Tetsuro Ikuta
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima-cho, Yokosuka, Kanagawa, Japan
| | - James P Barry
- Monterey Bay Aquarium Research Institute, Moss Landing, Monterey, California
| | - Tadashi Maruyama
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima-cho, Yokosuka, Kanagawa, Japan
| | - Katsunori Fujikura
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima-cho, Yokosuka, Kanagawa, Japan
| | - Takao Yoshida
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima-cho, Yokosuka, Kanagawa, Japan.,Department of Marine Biosciences, School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa, Japan
| |
Collapse
|
39
|
Ponnudurai R, Sayavedra L, Kleiner M, Heiden SE, Thürmer A, Felbeck H, Schlüter R, Sievert SM, Daniel R, Schweder T, Markert S. Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont. Stand Genomic Sci 2017; 12:50. [PMID: 28878861 PMCID: PMC5581435 DOI: 10.1186/s40793-017-0266-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/23/2017] [Indexed: 11/30/2022] Open
Abstract
Bathymodiolus thermophilus, a mytilid mussel inhabiting the deep-sea hydrothermal vents of the East Pacific Rise, lives in symbiosis with chemosynthetic Gammaproteobacteria within its gills. The intracellular symbiont population synthesizes nutrients for the bivalve host using the reduced sulfur compounds emanating from the vents as energy source. As the symbiont is uncultured, comprehensive and detailed insights into its metabolism and its interactions with the host can only be obtained from culture-independent approaches such as genomics and proteomics. In this study, we report the first draft genome sequence of the sulfur-oxidizing symbiont of B. thermophilus, here tentatively named Candidatus Thioglobus thermophilus. The draft genome (3.1 Mb) harbors 3045 protein-coding genes. It revealed pathways for the use of sulfide and thiosulfate as energy sources and encodes the Calvin-Benson-Bassham cycle for CO2 fixation. Enzymes required for the synthesis of the tricarboxylic acid cycle intermediates oxaloacetate and succinate were absent, suggesting that these intermediates may be substituted by metabolites from external sources. We also detected a repertoire of genes associated with cell surface adhesion, bacteriotoxicity and phage immunity, which may perform symbiosis-specific roles in the B. thermophilus symbiosis.
Collapse
Affiliation(s)
- Ruby Ponnudurai
- Institute of Pharmacy, Ernst Moritz Arndt University, Greifswald, Germany
| | - Lizbeth Sayavedra
- Max Planck Institute for Marine Microbiology, Department of Symbiosis, Bremen, Germany
| | - Manuel Kleiner
- Department of Geoscience, University of Calgary, Calgary, Canada
| | - Stefan E Heiden
- Institute of Pharmacy, Ernst Moritz Arndt University, Greifswald, Germany
| | - Andrea Thürmer
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg August University, Göttingen, Germany
| | - Horst Felbeck
- Scripps Institution of Oceanography, La Jolla, CA USA
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, Ernst Moritz Arndt University, Greifswald, Germany
| | - Stefan M Sievert
- Woods Hole Oceanographic Institution, Biology Department, Woods Hole, MA USA
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg August University, Göttingen, Germany
| | - Thomas Schweder
- Institute of Pharmacy, Ernst Moritz Arndt University, Greifswald, Germany.,Institute of Marine Biotechnology, Walther-Rathenau-Straße 49A, 17489 Greifswald, Germany
| | - Stephanie Markert
- Institute of Pharmacy, Ernst Moritz Arndt University, Greifswald, Germany.,Institute of Marine Biotechnology, Walther-Rathenau-Straße 49A, 17489 Greifswald, Germany
| |
Collapse
|
40
|
McGill SE, Barker D. Comparison of the protein-coding genomes of three deep-sea, sulfur-oxidising bacteria: "Candidatus Ruthia magnifica", "Candidatus Vesicomyosocius okutanii" and Thiomicrospira crunogena. BMC Res Notes 2017; 10:296. [PMID: 28728564 PMCID: PMC5520373 DOI: 10.1186/s13104-017-2598-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/07/2017] [Indexed: 12/01/2022] Open
Abstract
Objective “Candidatus Ruthia magnifica”, “Candidatus Vesicomyosocius okutanii” and Thiomicrospira crunogena are all sulfur-oxidising bacteria found in deep-sea vent environments. Recent research suggests that the two symbiotic organisms, “Candidatus R. magnifica” and “Candidatus V. okutanii”, may share common ancestry with the autonomously living species T. crunogena. We used comparative genomics to examine the genome-wide protein-coding content of all three species to explore their similarities. In particular, we used the OrthoMCL algorithm to sort proteins into groups of putative orthologs on the basis of sequence similarity. Results The OrthoMCL inflation parameter was tuned using biological criteria. Using the tuned value, OrthoMCL delimited 1070 protein groups. 63.5% of these groups contained one protein from each species. Two groups contained duplicate protein copies from all three species. 123 groups were unique to T. crunogena and ten groups included multiple copies of T. crunogena proteins but only single copies from the other species. “Candidatus R. magnifica” had one unique group, and had multiple copies in one group where the other species had a single copy. There were no groups unique to “Candidatus V. okutanii”, and no groups in which there were multiple “Candidatus V. okutanii” proteins but only single proteins from the other species. Results align with previous suggestions that all three species share a common ancestor. However this is not definitive evidence to make taxonomic conclusions and the possibility of horizontal gene transfer was not investigated. Methodologically, the tuning of the OrthoMCL inflation parameter using biological criteria provides further methods to refine the OrthoMCL procedure.
Collapse
Affiliation(s)
- Susan E McGill
- School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK
| | - Daniel Barker
- School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK. .,Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, The Kings Buildings, Edinburgh, EH9 3FL, UK.
| |
Collapse
|
41
|
Oren A. A plea for linguistic accuracy - also for Candidatus taxa. Int J Syst Evol Microbiol 2017; 67:1085-1094. [PMID: 27926819 DOI: 10.1099/ijsem.0.001715] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
While all names of new taxa submitted to the International Journal of Systematic and Evolutionary Microbiology, either in direct submissions or in validation requests for names effectively published elsewhere, are subject to nomenclatural review to ensure that they are acceptable based on the rules of the International Code of Nomenclature of Prokaryotes, the names of Candidatus taxa have not been subjected to such a review. Formally, this was not necessary because the rank of Candidatus is not covered by the Code, and the names lack the priority afforded validly published names. However, many Candidatus taxa of different ranks are widely discussed in the scientific literature, and a proposal to incorporate the nomenclature of uncultured prokaryotes under the provisions of the Code is currently pending. Therefore, an evaluation of the names of Candidatus taxa published thus far is very timely. Out of the ~400 Candidatus names found in the literature, 120 contradict the current rules of the Code or are otherwise problematic. A list of those names of Candidatus taxa that need correction is presented here and alternative names that agree with the provisions of the Code are proposed.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 91904 Jerusalem, Israel
| |
Collapse
|
42
|
Genome Reduction and Microbe-Host Interactions Drive Adaptation of a Sulfur-Oxidizing Bacterium Associated with a Cold Seep Sponge. mSystems 2017; 2:mSystems00184-16. [PMID: 28345060 PMCID: PMC5361782 DOI: 10.1128/msystems.00184-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/09/2017] [Indexed: 12/20/2022] Open
Abstract
Sponges and their symbionts are important players in the biogeochemical cycles of marine environments. As a unique habitat within marine ecosystems, cold seeps have received considerable interest in recent years. This study explores the lifestyle of a new symbiotic SOB in a cold seep sponge. The results demonstrate that both this sponge symbiont and endosymbionts in deep-sea clams employ similar strategies of genome reduction. However, this bacterium has retained unique functions for immunity and defense. Thus, the functional features are determined by both the symbiotic relationship and host type. Moreover, analyses of the genome of an AOA suggest that microbes play different roles in biochemical cycles in the sponge body. Our findings provide new insights into invertebrate-associated bacteria in cold seep environments. As the most ancient metazoan, sponges have established close relationships with particular microbial symbionts. However, the characteristics and physiology of thioautotrophic symbionts in deep-sea sponges are largely unknown. Using a tailored “differential coverage binning” method on 22-Gb metagenomic sequences, we recovered the nearly complete genome of a sulfur-oxidizing bacterium (SOB) that dominates the microbiota of the cold seep sponge Suberites sp. Phylogenetic analyses suggested that this bacterium (an unclassified gammaproteobacterium termed “Gsub”) may represent a new deep-sea SOB group. Microscopic observations suggest that Gsub is probably an extracellular symbiont. Gsub has complete sulfide oxidation and carbon fixation pathways, suggesting a chemoautotrophic lifestyle. Comparative genomics with other sponge-associated SOB and free-living SOB revealed significant genome reduction in Gsub, characterized by the loss of genes for carbohydrate metabolism, motility, DNA repair, and osmotic stress response. Intriguingly, this scenario of genome reduction is highly similar to those of the endosymbionts in deep-sea clams. However, Gsub has retained genes for phage defense and protein secretion, with the latter potentially playing a role in interactions with the sponge host. In addition, we recovered the genome of an ammonia-oxidizing archaeon (AOA), which may carry out ammonia oxidation and carbon fixation within the sponge body. IMPORTANCE Sponges and their symbionts are important players in the biogeochemical cycles of marine environments. As a unique habitat within marine ecosystems, cold seeps have received considerable interest in recent years. This study explores the lifestyle of a new symbiotic SOB in a cold seep sponge. The results demonstrate that both this sponge symbiont and endosymbionts in deep-sea clams employ similar strategies of genome reduction. However, this bacterium has retained unique functions for immunity and defense. Thus, the functional features are determined by both the symbiotic relationship and host type. Moreover, analyses of the genome of an AOA suggest that microbes play different roles in biochemical cycles in the sponge body. Our findings provide new insights into invertebrate-associated bacteria in cold seep environments.
Collapse
|
43
|
Shimamura S, Kaneko T, Ozawa G, Matsumoto MN, Koshiishi T, Takaki Y, Kato C, Takai K, Yoshida T, Fujikura K, Barry JP, Maruyama T. Loss of genes related to Nucleotide Excision Repair (NER) and implications for reductive genome evolution in symbionts of deep-sea vesicomyid clams. PLoS One 2017; 12:e0171274. [PMID: 28199404 PMCID: PMC5310779 DOI: 10.1371/journal.pone.0171274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/17/2017] [Indexed: 01/08/2023] Open
Abstract
Intracellular thioautotrophic symbionts of deep-sea vesicomyid clams lack some DNA repair genes and are thought to be undergoing reductive genome evolution (RGE). In this study, we addressed two questions, 1) how these symbionts lost their DNA repair genes and 2) how such losses affect RGE. For the first question, we examined genes associated with nucleotide excision repair (NER; uvrA, uvrB, uvrC, uvrD, uvrD paralog [uvrDp] and mfd) in 12 symbionts of vesicomyid clams belonging to two clades (5 clade I and 7 clade II symbionts). While uvrA, uvrDp and mfd were conserved in all symbionts, uvrB and uvrC were degraded in all clade I symbionts but were apparently intact in clade II symbionts. UvrD was disrupted in two clade II symbionts. Among the intact genes in Ca. Vesicomyosocius okutanii (clade I), expressions of uvrD and mfd were detected by reverse transcription-polymerase chain reaction (RT-PCR), but those of uvrA and uvrDp were not. In contrast, all intact genes were expressed in the symbiont of Calyptogena pacifica (clade II). To assess how gene losses affect RGE (question 2), genetic distances of the examined genes in symbionts from Bathymodiolus septemdierum were shown to be larger in clade I than clade II symbionts. In addition, these genes had lower guanine+cytosine (GC) content and higher repeat sequence densities in clade I than measured in clade II. Our results suggest that NER genes are currently being lost from the extant lineages of vesicomyid clam symbionts. The loss of NER genes and mutY in these symbionts is likely to promote increases in genetic distance and repeat sequence density as well as reduced GC content in genomic genes, and may have facilitated reductive evolution of the genome.
Collapse
Affiliation(s)
- Shigeru Shimamura
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Takashi Kaneko
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- Tokyo College of Biotechnology, Kitakoujiya, Ota-ku,Tokyo, Japan
| | - Genki Ozawa
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- Kitasato University, School of Marine Biosciences, Kitasato Minami-ku Sagamihara-shi Kanagawa, Japan
| | - Mamiko Nishino Matsumoto
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Takeru Koshiishi
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Yoshihiro Takaki
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Chiaki Kato
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Takao Yoshida
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- Kitasato University, School of Marine Biosciences, Kitasato Minami-ku Sagamihara-shi Kanagawa, Japan
| | - Katsunori Fujikura
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - James P. Barry
- Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
| | - Tadashi Maruyama
- Kitasato University, School of Marine Biosciences, Kitasato Minami-ku Sagamihara-shi Kanagawa, Japan
- Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
44
|
Johnson SB, Krylova EM, Audzijonyte A, Sahling H, Vrijenhoek RC. Phylogeny and origins of chemosynthetic vesicomyid clams. SYST BIODIVERS 2016. [DOI: 10.1080/14772000.2016.1252438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shannon B. Johnson
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Elena M. Krylova
- P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovskii prospect 36, 117997 Moscow, Russia
| | - Asta Audzijonyte
- Fisheries and Environmental Management Group, Department of Environmental Sciences, University of Helsinki, Viikinaari 2, P.O. Box 65, FIN-00014, Finland
| | - Heiko Sahling
- MARUM – Center for Marine Environment Sciences and Faculty of Geosciences, University of Bremen, Klagenfurter Str., 28359 Bremen, Germany
| | - Robert C. Vrijenhoek
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| |
Collapse
|
45
|
Ponnudurai R, Kleiner M, Sayavedra L, Petersen JM, Moche M, Otto A, Becher D, Takeuchi T, Satoh N, Dubilier N, Schweder T, Markert S. Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis. ISME JOURNAL 2016; 11:463-477. [PMID: 27801908 PMCID: PMC5270565 DOI: 10.1038/ismej.2016.124] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/28/2016] [Accepted: 08/10/2016] [Indexed: 12/28/2022]
Abstract
The hydrothermal vent mussel Bathymodiolus azoricus lives in an intimate
symbiosis with two types of chemosynthetic Gammaproteobacteria in its gills: a
sulfur oxidizer and a methane oxidizer. Despite numerous investigations over the
last decades, the degree of interdependence between the three symbiotic
partners, their individual metabolic contributions, as well as the mechanism of
carbon transfer from the symbionts to the host are poorly understood. We used a
combination of proteomics and genomics to investigate the physiology and
metabolism of the individual symbiotic partners. Our study revealed that key
metabolic functions are most likely accomplished jointly by B. azoricus
and its symbionts: (1) CO2 is pre-concentrated by the host for carbon
fixation by the sulfur-oxidizing symbiont, and (2) the host replenishes
essential biosynthetic TCA cycle intermediates for the sulfur-oxidizing
symbiont. In return (3), the sulfur oxidizer may compensate for the host's
putative deficiency in amino acid and cofactor biosynthesis. We also identified
numerous ‘symbiosis-specific' host proteins by comparing
symbiont-containing and symbiont-free host tissues and symbiont fractions. These
proteins included a large complement of host digestive enzymes in the gill that
are likely involved in symbiont digestion and carbon transfer from the symbionts
to the host.
Collapse
Affiliation(s)
- Ruby Ponnudurai
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Manuel Kleiner
- Department of Geoscience, University of Calgary, Calgary, Canada
| | - Lizbeth Sayavedra
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Jillian M Petersen
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Germany.,Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Martin Moche
- Institute of Microbiology, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Andreas Otto
- Institute of Microbiology, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Nicole Dubilier
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Thomas Schweder
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Stephanie Markert
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| |
Collapse
|
46
|
Cultivation of a chemoautotroph from the SUP05 clade of marine bacteria that produces nitrite and consumes ammonium. ISME JOURNAL 2016; 11:263-271. [PMID: 27434424 PMCID: PMC5315479 DOI: 10.1038/ismej.2016.87] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/02/2016] [Accepted: 05/20/2016] [Indexed: 11/10/2022]
Abstract
Marine oxygen minimum zones (OMZs) are expanding regions of intense nitrogen cycling. Up to half of the nitrogen available for marine organisms is removed from the ocean in these regions. Metagenomic studies have identified an abundant group of sulfur-oxidizing bacteria (SUP05) with the genetic potential for nitrogen cycling and loss in OMZs. However, SUP05 have defied cultivation and their physiology remains untested. We cultured, sequenced and tested the physiology of an isolate from the SUP05 clade. We describe a facultatively anaerobic sulfur-oxidizing chemolithoautotroph that produces nitrite and consumes ammonium under anaerobic conditions. Genetic evidence that closely related strains are abundant at nitrite maxima in OMZs suggests that sulfur-oxidizing chemoautotrophs from the SUP05 clade are a potential source of nitrite, fueling competing nitrogen removal processes in the ocean.
Collapse
|
47
|
Seston SL, Beinart RA, Sarode N, Shockey AC, Ranjan P, Ganesh S, Girguis PR, Stewart FJ. Metatranscriptional Response of Chemoautotrophic Ifremeria nautilei Endosymbionts to Differing Sulfur Regimes. Front Microbiol 2016; 7:1074. [PMID: 27486438 PMCID: PMC4949241 DOI: 10.3389/fmicb.2016.01074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/27/2016] [Indexed: 12/26/2022] Open
Abstract
Endosymbioses between animals and chemoautotrophic bacteria are ubiquitous at hydrothermal vents. These environments are distinguished by high physico-chemical variability, yet we know little about how these symbioses respond to environmental fluctuations. We therefore examined how the γ-proteobacterial symbionts of the vent snail Ifremeria nautilei respond to changes in sulfur geochemistry. Via shipboard high-pressure incubations, we subjected snails to 105 μM hydrogen sulfide (LS), 350 μM hydrogen sulfide (HS), 300 μM thiosulfate (TS) and seawater without any added inorganic electron donor (ND). While transcript levels of sulfur oxidation genes were largely consistent across treatments, HS and TS treatments stimulated genes for denitrification, nitrogen assimilation, and CO2 fixation, coincident with previously reported enhanced rates of inorganic carbon incorporation and sulfur oxidation in these treatments. Transcripts for genes mediating oxidative damage were enriched in the ND and LS treatments, potentially due to a reduction in O2 scavenging when electron donors were scarce. Oxidative TCA cycle gene transcripts were also more abundant in ND and LS treatments, suggesting that I. nautilei symbionts may be mixotrophic when inorganic electron donors are limiting. These data reveal the extent to which I. nautilei symbionts respond to changes in sulfur concentration and species, and, interpreted alongside coupled biochemical metabolic rates, identify gene targets whose expression patterns may be predictive of holobiont physiology in environmental samples.
Collapse
Affiliation(s)
| | - Roxanne A Beinart
- Department of Organismic and Evolutionary Biology, Harvard University Cambridge, MA, USA
| | - Neha Sarode
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Abigail C Shockey
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison Madison, WI, USA
| | - Piyush Ranjan
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Sangita Ganesh
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University Cambridge, MA, USA
| | - Frank J Stewart
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| |
Collapse
|
48
|
Ohishi K, Yamamoto M, Tame A, Kusaka C, Nagai Y, Sugimura M, Inoue K, Uematsu K, Yoshida T, Ikuta T, Toyofuku T, Maruyama T. Long-term Cultivation of the Deep-Sea Clam Calyptogena okutanii: Changes in the Abundance of Chemoautotrophic Symbiont, Elemental Sulfur, and Mucus. THE BIOLOGICAL BULLETIN 2016; 230:257-267. [PMID: 27365420 DOI: 10.1086/bblv230n3p257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Survival of deep-sea Calyptogena clams depends on organic carbon produced by symbiotic, sulfur-oxidizing, autotrophic bacteria present in the epithelial cells of the gill. To understand the mechanism underlying this symbiosis, the development of a long-term cultivation system is essential. We cultivated specimens of Calyptogena okutanii in an artificial chemosynthetic aquarium with a hydrogen sulfide (H2S) supply system provided by the sulfate reduction of dog food buried in the sediment. We studied morphological and histochemical changes in the clams' gills by immunohistochemical and energy-dispersive X-ray analyses. The freshly collected clams contained a high amount of elemental sulfur in the gill epithelial cells, as well as densely packed symbiotic bacteria. Neither elemental sulfur nor symbiotic bacteria was detected in any other organs except the ovaries, where symbiotic bacteria, but not sulfur, was detected. The longest survival of an individual clam in this aquarium was 151 days. In the 3 clams dissected on Days 57 and 91 of the experiment, no elemental sulfur was detected in the gills. The symbiotic bacteria content had significantly decreased by Day 57, and was absent by Day 91. For comparison, we also studied the deep-sea mussel Bathymodiolus septemdierum, which harbors a phylogenetically close, sulfur-oxidizing, symbiotic bacterium with similar sulfur oxidation pathways. Sulfur particles were not detected, even in the gills of the freshly collected mussels. We discuss the importance of the proportion of available H2S and oxygen to the bivalves for elemental sulfur accumulation. Storage of nontoxic elemental sulfur, an energy source, seems to be an adaptive strategy of C. okutanii.
Collapse
Affiliation(s)
| | - Masahiro Yamamoto
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Akihiro Tame
- Department of Technical Services, Marine Works Japan, Ltd., Oppama higashi-cho, Yokosuka, Kanagawa 237-0063, Japan
| | - Chiho Kusaka
- Department of Marine Biodiversity Research, JAMSTEC, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Yukiko Nagai
- Department of Marine Biodiversity Research, JAMSTEC, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Makoto Sugimura
- Enoshima Aquarium, 2-19-1 Katasekaigan, Fujisawa, Kanagawa 251-0035, Japan
| | - Koji Inoue
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan; and
| | - Katsuyuki Uematsu
- Department of Technical Services, Marine Works Japan, Ltd., Oppama higashi-cho, Yokosuka, Kanagawa 237-0063, Japan
| | - Takao Yoshida
- Department of Marine Biodiversity Research, JAMSTEC, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Tetsuro Ikuta
- Department of Marine Biodiversity Research, JAMSTEC, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Takashi Toyofuku
- Department of Marine Biodiversity Research, JAMSTEC, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Tadashi Maruyama
- Marine Biodiversity Research Program, and Research and Development Center for Marine Biosciences, JAMSTEC, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|
49
|
Beinart RA, Gartman A, Sanders JG, Luther GW, Girguis PR. The uptake and excretion of partially oxidized sulfur expands the repertoire of energy resources metabolized by hydrothermal vent symbioses. Proc Biol Sci 2016; 282:20142811. [PMID: 25876848 PMCID: PMC4426611 DOI: 10.1098/rspb.2014.2811] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Symbiotic associations between animals and chemoautotrophic bacteria crowd around hydrothermal vents. In these associations, symbiotic bacteria use chemical reductants from venting fluid for the energy to support autotrophy, providing primary nutrition for the host. At vents along the Eastern Lau Spreading Center, the partially oxidized sulfur compounds (POSCs) thiosulfate and polysulfide have been detected in and around animal communities but away from venting fluid. The use of POSCs for autotrophy, as an alternative to the chemical substrates in venting fluid, could mitigate competition in these communities. To determine whether ESLC symbioses could use thiosulfate to support carbon fixation or produce POSCs during sulfide oxidation, we used high-pressure, flow-through incubations to assess the productivity of three symbiotic mollusc genera—the snails Alviniconcha spp. and Ifremeria nautilei, and the mussel Bathymodiolus brevior—when oxidizing sulfide and thiosulfate. Via the incorporation of isotopically labelled inorganic carbon, we found that the symbionts of all three genera supported autotrophy while oxidizing both sulfide and thiosulfate, though at different rates. Additionally, by concurrently measuring their effect on sulfur compounds in the aquaria with voltammetric microelectrodes, we showed that these symbioses excreted POSCs under highly sulfidic conditions, illustrating that these symbioses could represent a source for POSCs in their habitat. Furthermore, we revealed spatial disparity in the rates of carbon fixation among the animals in our incubations, which might have implications for the variability of productivity in situ. Together, these results re-shape our thinking about sulfur cycling and productivity by vent symbioses, demonstrating that thiosulfate may be an ecologically important energy source for vent symbioses and that they also likely impact the local geochemical regime through the excretion of POSCs.
Collapse
Affiliation(s)
- R A Beinart
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02136, USA
| | - A Gartman
- School of Marine Science and Policy, College of Earth, Ocean and Environment, University of Delaware, Lewes, MD, USA
| | - J G Sanders
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02136, USA
| | - G W Luther
- School of Marine Science and Policy, College of Earth, Ocean and Environment, University of Delaware, Lewes, MD, USA
| | - P R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02136, USA
| |
Collapse
|
50
|
Tian RM, Sun J, Cai L, Zhang WP, Zhou GW, Qiu JW, Qian PY. The deep-sea glass sponge Lophophysema eversa harbours potential symbionts responsible for the nutrient conversions of carbon, nitrogen and sulfur. Environ Microbiol 2016; 18:2481-94. [PMID: 26637128 DOI: 10.1111/1462-2920.13161] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/27/2015] [Indexed: 11/30/2022]
Abstract
Glass sponge (Hexactinellida, Porifera) is a special lineage because of its unique tissue organization and skeleton material. Structure and physiology of glass sponge have been extensively studied. However, our knowledge of the glass sponge-associated microbial community and of the interaction with the host is rather limited. Here, we performed genomic studies on the microbial community in the glass sponge Lophophysema eversa in seamount. The microbial community was dominated by an ammonia-oxidizing archaeum (AOA), a nitrite-oxidizing bacterium (NOB) and a sulfur-oxidizing bacterium (SOB), all of which were autotrophs. Genomic analysis on the AOA, NOB and SOB in the sponge revealed specific functional features of sponge-associated microorganisms in comparison with the closely related free-living relatives, including chemotaxis, phage defence, vitamin biosynthesis and nutrient uptake among others, which are related to ecological functions. The three autotrophs play essential roles in the cycles of carbon, nitrogen and sulfur in the microenvironment inside the sponge body, and they are considered to play symbiotic roles in the host as scavengers of toxic ammonia, nitrite and sulfide. Our study extends knowledge regarding the metabolism and the evolution of chemolithotrophs inside the invertebrate body.
Collapse
Affiliation(s)
- Ren-Mao Tian
- Divison of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Jin Sun
- Divison of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Lin Cai
- Divison of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Wei-Peng Zhang
- Divison of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Guo-Wei Zhou
- Divison of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Pei-Yuan Qian
- Divison of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| |
Collapse
|