1
|
Peschek J, Tuorto F. Interplay Between tRNA Modifications and Processing. J Mol Biol 2025:169198. [PMID: 40404521 DOI: 10.1016/j.jmb.2025.169198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 05/05/2025] [Accepted: 05/05/2025] [Indexed: 05/24/2025]
Abstract
Transfer RNAs play a key role during protein synthesis by decoding genetic information at the translating ribosome. During their biosynthesis, tRNA molecules undergo numerous processing steps. Moreover, tRNAs represent the RNA class that carries the largest variety and highest relative number of chemical modifications. While our functional and mechanistic understanding of these processes is primarily based on studies in yeast, the findings on dynamic tRNA maturation can be translated to higher eukaryotes including humans, particularly regarding the biochemical characterization of the multitude of enzymes involved. In this review, we summarize current knowledge on the sequential hierarchy and interplay of various processing and modification steps for mitochondrial and cytoplasmic tRNA, as well as tRNA-like structures in eukaryotic cells. We also highlight recent structural advances that shed light on the function of enzyme-tRNA complexes.
Collapse
Affiliation(s)
- Jirka Peschek
- Heidelberg University, Biochemistry Center (BZH), Heidelberg, Germany.
| | - Francesca Tuorto
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| |
Collapse
|
2
|
Dunkelmann DL, Piedrafita C, Dickson A, Liu KC, Elliott TS, Fiedler M, Bellini D, Zhou A, Cervettini D, Chin JW. Adding α,α-disubstituted and β-linked monomers to the genetic code of an organism. Nature 2024; 625:603-610. [PMID: 38200312 PMCID: PMC10794150 DOI: 10.1038/s41586-023-06897-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/23/2023] [Indexed: 01/12/2024]
Abstract
The genetic code of living cells has been reprogrammed to enable the site-specific incorporation of hundreds of non-canonical amino acids into proteins, and the encoded synthesis of non-canonical polymers and macrocyclic peptides and depsipeptides1-3. Current methods for engineering orthogonal aminoacyl-tRNA synthetases to acylate new monomers, as required for the expansion and reprogramming of the genetic code, rely on translational readouts and therefore require the monomers to be ribosomal substrates4-6. Orthogonal synthetases cannot be evolved to acylate orthogonal tRNAs with non-canonical monomers (ncMs) that are poor ribosomal substrates, and ribosomes cannot be evolved to polymerize ncMs that cannot be acylated onto orthogonal tRNAs-this co-dependence creates an evolutionary deadlock that has essentially restricted the scope of translation in living cells to α-L-amino acids and closely related hydroxy acids. Here we break this deadlock by developing tRNA display, which enables direct, rapid and scalable selection for orthogonal synthetases that selectively acylate their cognate orthogonal tRNAs with ncMs in Escherichia coli, independent of whether the ncMs are ribosomal substrates. Using tRNA display, we directly select orthogonal synthetases that specifically acylate their cognate orthogonal tRNA with eight non-canonical amino acids and eight ncMs, including several β-amino acids, α,α-disubstituted-amino acids and β-hydroxy acids. We build on these advances to demonstrate the genetically encoded, site-specific cellular incorporation of β-amino acids and α,α-disubstituted amino acids into a protein, and thereby expand the chemical scope of the genetic code to new classes of monomers.
Collapse
Affiliation(s)
| | - Carlos Piedrafita
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Alexandre Dickson
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Kim C Liu
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Thomas S Elliott
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Marc Fiedler
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Dom Bellini
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Andrew Zhou
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
3
|
Soma A, Kubota A, Tomoe D, Ikeuchi Y, Kawamura F, Arimoto H, Shiwa Y, Kanesaki Y, Nanamiya H, Yoshikawa H, Suzuki T, Sekine Y. yaaJ, the tRNA-Specific Adenosine Deaminase, Is Dispensable in Bacillus subtilis. Genes (Basel) 2023; 14:1515. [PMID: 37628567 PMCID: PMC10454642 DOI: 10.3390/genes14081515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
Post-transcriptional modifications of tRNA are crucial for their core function. The inosine (I; 6-deaminated adenosine) at the first position in the anticodon of tRNAArg(ICG) modulates the decoding capability and is generally considered essential for reading CGU, CGC, and CGA codons in eubacteria. We report here that the Bacillus subtilis yaaJ gene encodes tRNA-specific adenosine deaminase and is non-essential for viability. A β-galactosidase reporter assay revealed that the translational activity of CGN codons was not impaired in the yaaJ-deletion mutant. Furthermore, tRNAArg(CCG) responsible for decoding the CGG codon was dispensable, even in the presence or absence of yaaJ. These results strongly suggest that tRNAArg with either the anticodon ICG or ACG has an intrinsic ability to recognize all four CGN codons, providing a fundamental concept of non-canonical wobbling mediated by adenosine and inosine nucleotides in the anticodon. This is the first example of the four-way wobbling by inosine nucleotide in bacterial cells. On the other hand, the absence of inosine modification induced +1 frameshifting, especially at the CGA codon. Additionally, the yaaJ deletion affected growth and competency. Therefore, the inosine modification is beneficial for translational fidelity and proper growth-phase control, and that is why yaaJ has been actually conserved in B. subtilis.
Collapse
Affiliation(s)
- Akiko Soma
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Chiba 271-8510, Japan
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Atsushi Kubota
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Daisuke Tomoe
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Yoshiho Ikeuchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Fujio Kawamura
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Chiba 271-8510, Japan
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Hijiri Arimoto
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Yuh Shiwa
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Yu Kanesaki
- Shizuoka Instrumental Analysis Center, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hideaki Nanamiya
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
- Fukushima Translational Research Foundation, Capital Front Bldg., 7-4, 1-35, Sakae-machi, Fukushima 960-8031, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
4
|
Wu C, Huang X, Li M, Wang Z, Zhang Y, Tian B. Crosstalk between circRNAs and the PI3K/AKT and/or MEK/ERK signaling pathways in digestive tract malignancy progression. Future Oncol 2023; 18:4525-4538. [PMID: 36891896 DOI: 10.2217/fon-2022-0429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Evidence indicates that circular RNAs (circRNAs) may play an important role in regulating gene expression by binding to miRNAs through miRNA response elements. circRNAs are formed by back-splicing and have a covalently closed structure. The biogenesis of circRNAs also appears to be regulated by certain cell-specific and/or gene-specific mechanisms, and thus some circRNAs are tissue specific and tumor-expression specific. Furthermore, the high stability and tissue specificity of circRNAs may be of value for early diagnosis, survival prediction and precision medicine. This review summarizes current knowledge regarding the classification and functions of circRNAs and the role of circRNAs in regulating the PI3K/AKT and/or MEK/ERK signaling pathways in digestive tract malignancy tumors.
Collapse
Affiliation(s)
- Chao Wu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Xing Huang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Mao Li
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Zihe Wang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Yi Zhang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Bole Tian
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan Province, China
| |
Collapse
|
5
|
Cognat V, Pawlak G, Pflieger D, Drouard L. PlantRNA 2.0: an updated database dedicated to tRNAs of photosynthetic eukaryotes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1112-1119. [PMID: 36196656 DOI: 10.1111/tpj.15997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
PlantRNA (http://plantrna.ibmp.cnrs.fr/) is a comprehensive database of transfer RNA (tRNA) gene sequences retrieved from fully annotated nuclear, plastidial and mitochondrial genomes of photosynthetic organisms. In the first release (PlantRNA 1.0), tRNA genes from 11 organisms were annotated. In this second version, the annotation was implemented to 51 photosynthetic species covering the whole phylogenetic tree of photosynthetic organisms, from the most basal group of Archeplastida, the glaucophyte Cyanophora paradoxa, to various land plants. tRNA genes from lower photosynthetic organisms such as streptophyte algae or lycophytes as well as extremophile photosynthetic species such as Eutrema parvulum were incorporated in the database. As a whole, about 37 000 tRNA genes were accurately annotated. In the frame of the tRNA genes annotation from the genome of the Rhodophyte Chondrus crispus, non-canonical splicing sites in the D- or T-regions of tRNA molecules were identified and experimentally validated. As for PlantRNA 1.0, comprehensive biological information including 5'- and 3'-flanking sequences, A and B box sequences, region of transcription initiation and poly(T) transcription termination stretches, tRNA intron sequences and tRNA mitochondrial import are included.
Collapse
Affiliation(s)
- Valérie Cognat
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084, Strasbourg, France
| | - Gael Pawlak
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084, Strasbourg, France
| | - David Pflieger
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084, Strasbourg, France
| | - Laurence Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084, Strasbourg, France
| |
Collapse
|
6
|
Nagato Y, Tomikawa C, Yamaji H, Soma A, Takai K. Intron-Dependent or Independent Pseudouridylation of Precursor tRNA Containing Atypical Introns in Cyanidioschyzon merolae. Int J Mol Sci 2022; 23:ijms232012058. [PMID: 36292915 PMCID: PMC9602550 DOI: 10.3390/ijms232012058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Eukaryotic precursor tRNAs (pre-tRNAs) often have an intron between positions 37 and 38 of the anticodon loop. However, atypical introns are found in some eukaryotes and archaea. In an early-diverged red alga Cyanidioschyzon merolae, the tRNAIle(UAU) gene contains three intron coding regions, located in the D-, anticodon, and T-arms. In this study, we focused on the relationship between the intron removal and formation of pseudouridine (Ψ), one of the most universally modified nucleosides. It had been reported that yeast Pus1 is a multiple-site-specific enzyme that synthesizes Ψ34 and Ψ36 in tRNAIle(UAU) in an intron-dependent manner. Unexpectedly, our biochemical experiments showed that the C. merolae ortholog of Pus1 pseudouridylated an intronless tRNAIle(UAU) and that the modification position was determined to be 55 which is the target of Pus4 but not Pus1 in yeast. Furthermore, unlike yeast Pus1, cmPus1 mediates Ψ modification at positions 34, 36, and/or 55 only in some specific intron-containing pre-tRNAIle(UAU) variants. cmPus4 was confirmed to be a single-site-specific enzyme that only converts U55 to Ψ, in a similar manner to yeast Pus4. cmPus4 did not catalyze the pseudouridine formation in pre-tRNAs containing an intron in the T-arm.
Collapse
Affiliation(s)
- Yasuha Nagato
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Ehime, Japan
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Ehime, Japan
- Correspondence: ; Tel.: +81-89-927-9947
| | - Hideyuki Yamaji
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Ehime, Japan
| | - Akiko Soma
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Chiba, Japan
| | - Kazuyuki Takai
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Ehime, Japan
| |
Collapse
|
7
|
Abstract
Covalently closed, single-stranded circular RNAs can be produced from viral RNA genomes as well as from the processing of cellular housekeeping noncoding RNAs and precursor messenger RNAs. Recent transcriptomic studies have surprisingly uncovered that many protein-coding genes can be subjected to backsplicing, leading to widespread expression of a specific type of circular RNAs (circRNAs) in eukaryotic cells. Here, we discuss experimental strategies used to discover and characterize diverse circRNAs at both the genome and individual gene scales. We further highlight the current understanding of how circRNAs are generated and how the mature transcripts function. Some circRNAs act as noncoding RNAs to impact gene regulation by serving as decoys or competitors for microRNAs and proteins. Others form extensive networks of ribonucleoprotein complexes or encode functional peptides that are translated in response to certain cellular stresses. Overall, circRNAs have emerged as an important class of RNAmolecules in gene expression regulation that impact many physiological processes, including early development, immune responses, neurogenesis, and tumorigenesis.
Collapse
Affiliation(s)
- Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China;
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, Texas, USA;
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China;
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
8
|
Liu X, Zhang Y, Zhou S, Dain L, Mei L, Zhu G. Circular RNA: An emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines. J Control Release 2022; 348:84-94. [PMID: 35649485 PMCID: PMC9644292 DOI: 10.1016/j.jconrel.2022.05.043] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNA) is a class of natural (biogenic) or synthetic closed RNA without 5' or 3' ends. Meanwhile, their unique covalently-closed structures of circRNA prevent RNA degradation by exonucleases, thereby empowering them with high pharmaceutical stability and biostability relative to current standard-of-care linear mRNA. Natural circRNA can be non-coding RNAs as well as protein-coding RNA, the latter of which was recently discovered. The physiological functions of biogenic circRNAs, which largely remain elusive, include protein and gene sponges, cell activity modulators, and protein translation. The discovery that the circRNA levels can be correlated with some human diseases empowers circRNA with the potential as a novel type of disease biomarkers and a noncanonical class of therapeutic targets. Recently, synthetic circRNA have been engineered to explore their applications as a novel class of mRNA therapeutics and vaccines. In this review, we will discuss the current understanding of the biogenesis and physiological functions of natural circRNAs, the approaches to circRNA synthesis, and current research in the exploration of endogenous circRNAs as novel therapeutic targets and testing circRNAs as an emerging class of RNA therapeutics and vaccines.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Institute for Structural Biology and Drug Discovery, The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yu Zhang
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Institute for Structural Biology and Drug Discovery, The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Shurong Zhou
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Institute for Structural Biology and Drug Discovery, The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lauren Dain
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Institute for Structural Biology and Drug Discovery, The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lei Mei
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Institute for Structural Biology and Drug Discovery, The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Guizhi Zhu
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Institute for Structural Biology and Drug Discovery, The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
9
|
Liao X, Li XJ, Zheng GT, Chang FR, Fang L, Yu H, Huang J, Zhang YF. Mitochondrion-encoded circular RNAs are widespread and translatable in plants. PLANT PHYSIOLOGY 2022; 189:1482-1500. [PMID: 35325205 PMCID: PMC9237725 DOI: 10.1093/plphys/kiac143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/05/2022] [Indexed: 05/28/2023]
Abstract
Nucleus-encoded circular RNAs (ncircRNAs) have been widely detected in eukaryotes, and most circRNA identification algorithms are designed to identify them. However, using these algorithms, few mitochondrion-encoded circRNAs (mcircRNAs) have been identified in plants, and the role of plant mcircRNAs has not yet been addressed. Here, we developed a circRNA identification algorithm, mitochondrion-encoded circRNA identifier, based on common features of plant mitochondrial genomes. We identified 7,524, 9,819, 1,699, 1,821, 1,809, and 5,133 mcircRNAs in maize (Zea mays), Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), tomato (Solanum lycopersicum), cucumber (Cucumis sativus), and grape (Vitis vinifera), respectively. These mcircRNAs were experimentally validated. Plant mcircRNAs had distinct characteristics from ncircRNAs, and they were more likely to be derived from RNA degradation but not intron backsplicing. Alternative circularization was prevalent in plant mitochondria, and most parental genomic regions hosted multiple mcircRNA isoforms, which have homogenous 5' termini but heterogeneous 3' ends. By analysis of mitopolysome and mitoribosome profiling data, 1,463 mcircRNAs bound to ribosomes were detected in maize and Arabidopsis. Further analysis of mass spectrometry-based proteomics data identified 358 mcircRNA-derived polypeptides. Overall, we developed a computational pipeline that efficiently identifies plant mcircRNAs, and we demonstrated mcircRNAs are widespread and translated in plants.
Collapse
Affiliation(s)
| | | | | | - Feng-Rui Chang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lin Fang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hang Yu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jun Huang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | | |
Collapse
|
10
|
Chakrabarti A, Kaushik M, Khan J, Soota D, Ponnusamy K, Saini S, Manvati S, Singhal J, Ranganathan A, Pati S, Dhar PK, Singh S. tREPs-A New Class of Functional tRNA-Encoded Peptides. ACS OMEGA 2022; 7:18361-18373. [PMID: 35694484 PMCID: PMC9178612 DOI: 10.1021/acsomega.2c00661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
We asked if transfer RNA (tRNA) ever got an opportunity of translating its own sequence during evolution, what would have been the function of such tRNA-encoded peptides (tREPs)? If not, could one artificially synthesize tREPs to study the corresponding functional outcomes? Here, we report a novel, first-in-the-class, chemically synthesized tREP-18 molecule originating from the Escherichia coli tRNA sequence showing potent antileishmanial property. As a first step, E. coli tRNAs were computationally translated into peptide sequence equivalents and a database of full-length hypothetical tREPs was created. The tREP sequences were sent into sequence, structure, and energy filters to narrow down potential peptides for experimental validation. Based on the functional predictions, tREPs were screened against antiparasitic targets, leading to the identification of tREP-18 as a potential antiparasitic peptide. The in vitro assay of chemically synthesized tREP-18 on the Ag83 strain of Leishmania donovani showed its potent antileishmanial property (IC50 value of 22.13 nM). The atomic force microscopy and scanning electron microscopy images indicated significant alteration in the cytoskeletal architecture of tREP-18-treated parasites. Also, tREP-18 seems to destabilize the mitochondrial membrane potential of parasites, disrupting their cellular integrity and leading to parasitic death. The cellular assays of the tREP-18 peptide on the BS12 strain, a clinical isolate of post-kala azar dermal leishmaniasis, demonstrated its significant efficacy at an IC50 value of 15 nM. The tREP-18 peptide showed a toxic effect on the amastigote stage of the parasite, showing macrophage pathogen clearance at a concentration of 22.5 nM. This study provides the proof of the concept of making a new class of functional peptides from tRNA sequences. It also opens a huge untapped tRNA-peptide space toward novel discoveries and applications. In the future, it would be interesting to perform tREP edits and redesign tREPs toward specific applications.
Collapse
Affiliation(s)
- Amrita Chakrabarti
- Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, Uttar Pradesh, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Monika Kaushik
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Juveria Khan
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Deepanshu Soota
- National Centre for Biological Sciences, Bangalore 560065, India
| | | | - Sunil Saini
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Siddharth Manvati
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Jhalak Singhal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Soumya Pati
- Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, Uttar Pradesh, India
| | - Pawan Kumar Dhar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
11
|
Grigoriev A. Transfer RNA and Origins of RNA Interference. Front Mol Biosci 2021; 8:708984. [PMID: 34368233 PMCID: PMC8343393 DOI: 10.3389/fmolb.2021.708984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/08/2021] [Indexed: 01/21/2023] Open
Affiliation(s)
- Andrey Grigoriev
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NY, Uinted States
| |
Collapse
|
12
|
Schmidt CA, Matera AG. tRNA introns: Presence, processing, and purpose. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1583. [DOI: 10.1002/wrna.1583] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Casey A. Schmidt
- Curriculum in Genetics and Molecular Biology Integrative Program for Biological and Genome Sciences, University of North Carolina Chapel Hill North Carolina
| | - A. Gregory Matera
- Curriculum in Genetics and Molecular Biology Integrative Program for Biological and Genome Sciences, University of North Carolina Chapel Hill North Carolina
- Department of Biology, Lineberger Comprehensive Cancer Center University of North Carolina Chapel Hill North Carolina
- Department of Genetics, Lineberger Comprehensive Cancer Center University of North Carolina Chapel Hill North Carolina
| |
Collapse
|
13
|
The Uroboros Theory of Life's Origin: 22-Nucleotide Theoretical Minimal RNA Rings Reflect Evolution of Genetic Code and tRNA-rRNA Translation Machineries. Acta Biotheor 2019; 67:273-297. [PMID: 31388859 DOI: 10.1007/s10441-019-09356-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023]
Abstract
Theoretical minimal RNA rings attempt to mimick life's primitive RNAs. At most 25 22-nucleotide-long RNA rings code once for each biotic amino acid, a start and a stop codon and form a stem-loop hairpin, resembling consensus tRNAs. We calculated, for each RNA ring's 22 potential splicing positions, similarities of predicted secondary structures with tRNA vs. rRNA secondary structures. Assuming rRNAs partly derived from tRNA accretions, we predict positive associations between relative secondary structure similarities with rRNAs over tRNAs and genetic code integration orders of RNA ring anticodon cognate amino acids. Analyses consider for each secondary structure all nucleotide triplets as potential anticodon. Anticodons for ancient, chemically inert cognate amino acids are most frequent in the 25 RNA rings. For RNA rings with primordial cognate amino acids according to tRNA-homology-derived anticodons, tRNA-homology and coding sequences coincide, these are separate for predicted cognate amino acids that presumably integrated late the genetic code. RNA ring secondary structure similarity with rRNA over tRNA secondary structures associates best with genetic code integration orders of anticodon cognate amino acids when assuming split anticodons (one and two nucleotides at the spliced RNA ring 5' and 3' extremities, respectively), and at predicted anticodon location in the spliced RNA ring's midst. Results confirm RNA ring homologies with tRNAs and CDs, ancestral status of tRNA half genes split at anticodons, the tRNA-rRNA axis of RNA evolution, and that single theoretical minimal RNA rings potentially produce near-complete proto-tRNA sets. Hence genetic code pre-existence determines 25 short circular gene- and tRNA-like RNAs. Accounting for each potential splicing position, each RNA ring potentially translates most amino acids, realistically mimicks evolution of the tRNA-rRNA translation machinery. These RNA rings 'of creation' remind the uroboros' (snake biting its tail) symbolism for creative regeneration.
Collapse
|
14
|
Cicada Endosymbionts Have tRNAs That Are Correctly Processed Despite Having Genomes That Do Not Encode All of the tRNA Processing Machinery. mBio 2019; 10:mBio.01950-18. [PMID: 31213566 PMCID: PMC6581868 DOI: 10.1128/mbio.01950-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smallest bacterial genomes, in the range of about 0.1 to 0.5 million base pairs, are commonly found in the nutritional endosymbionts of insects. These tiny genomes are missing genes that encode proteins and RNAs required for the translation of mRNAs, one of the most highly conserved and important cellular processes. In this study, we found that the bacterial endosymbionts of cicadas have genomes which encode incomplete tRNA sets and lack genes required for tRNA processing. Nevertheless, we found that endosymbiont tRNAs are correctly processed at their 5′ and 3′ ends and, surprisingly, that mostly exist as tRNA halves. We hypothesize that the cicada host must supply its symbionts with these missing tRNA processing activities. Gene loss and genome reduction are defining characteristics of endosymbiotic bacteria. The most highly reduced endosymbiont genomes have lost numerous essential genes related to core cellular processes such as replication, transcription, and translation. Computational gene predictions performed for the genomes of the two bacterial symbionts of the cicada Diceroprocta semicincta, “Candidatus Hodgkinia cicadicola” (Alphaproteobacteria) and “Ca. Sulcia muelleri” (Bacteroidetes), have found only 26 and 16 tRNA genes and 15 and 10 aminoacyl tRNA synthetase genes, respectively. Furthermore, the original “Ca. Hodgkinia cicadicola” genome annotation was missing several essential genes involved in tRNA processing, such as those encoding RNase P and CCA tRNA nucleotidyltransferase as well as several RNA editing enzymes required for tRNA maturation. How these cicada endosymbionts perform basic translation-related processes remains unknown. Here, by sequencing eukaryotic mRNAs and total small RNAs, we show that the limited tRNA set predicted by computational annotation of “Ca. Sulcia muelleri” and “Ca. Hodgkinia cicadicola” is likely correct. Furthermore, we show that despite the absence of genes encoding tRNA processing activities in the symbiont genomes, symbiont tRNAs have correctly processed 5′ and 3′ ends and seem to undergo nucleotide modification. Surprisingly, we found that most “Ca. Hodgkinia cicadicola” and “Ca. Sulcia muelleri” tRNAs exist as tRNA halves. We hypothesize that “Ca. Sulcia muelleri” and “Ca. Hodgkinia cicadicola” tRNAs function in bacterial translation but require host-encoded enzymes to do so.
Collapse
|
15
|
Li HM, Ma XL, Li HG. Intriguing circles: Conflicts and controversies in circular RNA research. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1538. [PMID: 31034768 DOI: 10.1002/wrna.1538] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Circular RNAs (circRNAs) are covalently closed RNA circles without a 5' cap or 3' tail. Since the landmark discovery of ciRS-7/CDR1as functioning as a miR-7 sponge in 2013, circRNAs have become a hot topic in RNA research. CircRNAs have been found to play active roles in cancer, cardiovascular diseases, neurological disorders, and many other diseases. They can function as microRNA (miRNA) sponges, protein scaffolds, and even translation templates. However, as circRNA research expands, many divergent views have emerged. For example, are most circRNAs competent in serving as miRNA sponges? What kinds of circRNAs are most likely to sponge miRNAs? Apart from sponging miRNAs, what could the functions of most circRNAs be? What are the features of circRNAs that are translatable? Many researchers have claimed that circRNAs are abundant, stable, conserved, and specific molecules, which hold great potential in serving as biomarkers. However, circRNA abundance is variable and some circRNAs are abundant while others are not. In addition, their stability and conservation may vary under different circumstances. Furthermore, it is unclear whether circRNA biogenesis is more likely to be regulated by RNA binding proteins or transcription factors. All of these are open questions that remain to be answered by researchers in this field. Discussing and investigating these questions will advance the understanding of this class of novel molecules and may propel inspiring new ideas for future studies. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA in Disease and Development > RNA in Disease RNA Methods > RNA Analyses in Cells RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Hui-Min Li
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Xiu-Lan Ma
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Hong-Gang Li
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, 430030, P. R. China
| |
Collapse
|
16
|
Demongeot J, Seligmann H. More Pieces of Ancient than Recent Theoretical Minimal Proto-tRNA-Like RNA Rings in Genes Coding for tRNA Synthetases. J Mol Evol 2019; 87:152-174. [DOI: 10.1007/s00239-019-09892-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/22/2019] [Indexed: 12/19/2022]
|
17
|
Glycyl-tRNA synthetase from Nanoarchaeum equitans: The first crystal structure of archaeal GlyRS and analysis of its tRNA glycylation. Biochem Biophys Res Commun 2019; 511:228-233. [PMID: 30771900 DOI: 10.1016/j.bbrc.2019.01.142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 11/23/2022]
Abstract
This study reports the X-ray crystallographic structure of the glycyl-tRNA synthetase (GlyRS) of Nanoarchaeum equitans - a hyperthermophilic archaeal species. This is the first archaeal GlyRS crystal structure elucidated. The GlyRS comprises an N-terminal catalytic domain and a C-terminal anticodon-binding domain with a long β-sheet inserted between these domains. An unmodified transcript of the wild-type N. equitans tRNAGly was successfully glycylated using GlyRS. Substitution of the discriminator base A73 of tRNAGly with any other nucleotide caused a significant decrease in glycylation activity. Mutational analysis of the second base-pair C2G71 of the acceptor stem of tRNAGly elucidated the importance of the base-pair, especially G71, as an identity element for recognition by GlyRS. Glycylation assays using tRNAGly G71 substitution mutants and a GlyRS mutant where Arg223 is mutated to alanine strengthen the possibility that the carbonyl oxygen at position 6 of G71 would hydrogen-bond with the guanidine nitrogen of Arg223 in N. equitans GlyRS.
Collapse
|
18
|
Hirata A. Recent Insights Into the Structure, Function, and Evolution of the RNA-Splicing Endonucleases. Front Genet 2019; 10:103. [PMID: 30809252 PMCID: PMC6379350 DOI: 10.3389/fgene.2019.00103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/30/2019] [Indexed: 11/13/2022] Open
Abstract
RNA-splicing endonuclease (EndA) cleaves out introns from archaeal and eukaryotic precursor (pre)-tRNA and is essential for tRNA maturation. In archaeal EndA, the molecular mechanisms underlying complex assembly, substrate recognition, and catalysis have been well understood. Recently, certain studies have reported novel findings including the identification of new subunit types in archaeal EndA structures, providing insights into the mechanism underlying broad substrate specificity. Further, metagenomics analyses have enabled the acquisition of numerous DNA sequences of EndAs and intron-containing pre-tRNAs from various species, providing information regarding the co-evolution of substrate specificity of archaeal EndAs and tRNA genetic diversity, and the evolutionary pathway of archaeal and eukaryotic EndAs. Although the complex structure of the heterothermic form of eukaryotic EndAs is unknown, previous reports regarding their functions indicated that mutations in human EndA cause neurological disorders including pontocerebellar hypoplasia and progressive microcephaly, and yeast EndA significantly cleaves mitochondria-localized mRNA encoding cytochrome b mRNA processing 1 (Cpb1) for mRNA maturation. This mini-review summarizes the aforementioned results, discusses their implications, and offers my personal opinion regarding future directions for the analysis of the structure and function of EndAs.
Collapse
Affiliation(s)
- Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| |
Collapse
|
19
|
Abstract
Advances in genome-wide sequence technologies allow for detailed insights into the complexity of RNA landscapes of organisms from all three domains of life. Recent analyses of archaeal transcriptomes identified interaction and regulation networks of noncoding RNAs in this understudied domain. Here, we review current knowledge of small, noncoding RNAs with important functions for the archaeal lifestyle, which often requires adaptation to extreme environments. One focus is RNA metabolism at elevated temperatures in hyperthermophilic archaea, which reveals elevated amounts of RNA-guided RNA modification and virus defense strategies. Genome rearrangement events result in unique fragmentation patterns of noncoding RNA genes that require elaborate maturation pathways to yield functional transcripts. RNA-binding proteins, e.g., L7Ae and LSm, are important for many posttranscriptional control functions of RNA molecules in archaeal cells. We also discuss recent insights into the regulatory potential of their noncoding RNA partners.
Collapse
Affiliation(s)
- José Vicente Gomes-Filho
- Prokaryotic Small RNA Biology Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany;, ,
| | - Michael Daume
- Prokaryotic Small RNA Biology Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany;, ,
| | - Lennart Randau
- Prokaryotic Small RNA Biology Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany;, ,
- LOEWE Center for Synthetic Microbiology (Synmikro), 35032 Marburg, Germany
| |
Collapse
|
20
|
Structural Basis for tRNA Mimicry by a Bacterial Y RNA. Structure 2018; 26:1635-1644.e3. [PMID: 30318468 DOI: 10.1016/j.str.2018.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/03/2018] [Accepted: 09/10/2018] [Indexed: 12/29/2022]
Abstract
Noncoding Y RNAs are present in both animal cells and many bacteria. In all species examined, Y RNAs tether the Ro60 protein to an effector protein to perform various cellular functions. Recently, a new Y RNA subfamily was identified in bacteria. Bioinformatic analyses of these YrlA (Y RNA-like A) RNAs predict that the effector-binding domain resembles tRNA. We present the structure of this domain, the overall folding of which is strikingly similar to canonical tRNAs. The tertiary interactions that are responsible for stabilizing tRNA are present in YrlA, making it a close tRNA mimic. However, YrlA lacks a free CCA end and contains a kink in the stem corresponding to the anticodon stem. Since nucleotides in the D and T stems are conserved among YrlAs, they may be an interaction site for an unknown factor. Our experiments identify YrlA RNAs as a new class of tRNA mimics.
Collapse
|
21
|
Li X, Yang L, Chen LL. The Biogenesis, Functions, and Challenges of Circular RNAs. Mol Cell 2018; 71:428-442. [PMID: 30057200 DOI: 10.1016/j.molcel.2018.06.034] [Citation(s) in RCA: 1464] [Impact Index Per Article: 209.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/18/2018] [Accepted: 06/22/2018] [Indexed: 12/21/2022]
Abstract
Covalently closed circular RNAs (circRNAs) are produced by precursor mRNA back-splicing of exons of thousands of genes in eukaryotes. circRNAs are generally expressed at low levels and often exhibit cell-type-specific and tissue-specific patterns. Recent studies have shown that their biogenesis requires spliceosomal machinery and can be modulated by both cis complementary sequences and protein factors. The functions of most circRNAs remain largely unexplored, but known functions include sequestration of microRNAs or proteins, modulation of transcription and interference with splicing, and even translation to produce polypeptides. However, challenges exist at multiple levels to understanding of the regulation of circRNAs because of their circular conformation and sequence overlap with linear mRNA counterparts. In this review, we survey the recent progress on circRNA biogenesis and function and discuss technical obstacles in circRNA studies.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Li Yang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China.
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China.
| |
Collapse
|
22
|
Cahoon AB, Qureshi AA. Leaderless mRNAs are circularized in Chlamydomonas reinhardtii mitochondria. Curr Genet 2018; 64:1321-1333. [DOI: 10.1007/s00294-018-0848-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 11/28/2022]
|
23
|
Kaneta A, Fujishima K, Morikazu W, Hori H, Hirata A. The RNA-splicing endonuclease from the euryarchaeaon Methanopyrus kandleri is a heterotetramer with constrained substrate specificity. Nucleic Acids Res 2018; 46:1958-1972. [PMID: 29346615 PMCID: PMC5829648 DOI: 10.1093/nar/gky003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/25/2017] [Accepted: 01/03/2018] [Indexed: 11/14/2022] Open
Abstract
Four different types (α4, α'2, (αβ)2 and ϵ2) of RNA-splicing endonucleases (EndAs) for RNA processing are known to exist in the Archaea. Only the (αβ)2 and ϵ2 types can cleave non-canonical introns in precursor (pre)-tRNA. Both enzyme types possess an insert associated with a specific loop, allowing broad substrate specificity in the catalytic α units. Here, the hyperthermophilic euryarchaeon Methanopyrus kandleri (MKA) was predicted to harbor an (αβ)2-type EndA lacking the specific loop. To characterize MKA EndA enzymatic activity, we constructed a fusion protein derived from MKA α and β subunits (fMKA EndA). In vitro assessment demonstrated complete removal of the canonical bulge-helix-bulge (BHB) intron structure from MKA pre-tRNAAsn. However, removal of the relaxed BHB structure in MKA pre-tRNAGlu was inefficient compared to crenarchaeal (αβ)2 EndA, and the ability to process the relaxed intron within mini-helix RNA was not detected. fMKA EndA X-ray structure revealed a shape similar to that of other EndA types, with no specific loop. Mapping of EndA types and their specific loops and the tRNA gene diversity among various Archaea suggest that MKA EndA is evolutionarily related to other (αβ)2-type EndAs found in the Thaumarchaeota, Crenarchaeota and Aigarchaeota but uniquely represents constrained substrate specificity.
Collapse
Affiliation(s)
- Ayano Kaneta
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Wataru Morikazu
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
24
|
Designing fluorescent biosensors using circular permutations of riboswitches. Methods 2018; 143:102-109. [PMID: 29458090 DOI: 10.1016/j.ymeth.2018.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/31/2018] [Accepted: 02/14/2018] [Indexed: 02/06/2023] Open
Abstract
RNA-based fluorescent (RBF) biosensors have been applied to detect a variety of metabolites in vitro and in live cells. They are designed by combining the ligand sensing domain of natural riboswitches with in vitro selected fluorogenic aptamers. Different biosensor topologies have been developed to accommodate the diversity of riboswitch structures. Here we show that circular permutation of the riboswitch ligand sensing domain also gives functional biosensors, using the SAM-I riboswitch as our model. We reveal that this design can enhance fluorescence turn-on and ligand binding affinity compared to the non-permuted topology.
Collapse
|
25
|
Eger N, Schoppe L, Schuster S, Laufs U, Boeckel JN. Circular RNA Splicing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1087:41-52. [PMID: 30259356 DOI: 10.1007/978-981-13-1426-1_4] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs) are covalently closed single-stranded RNA molecules derived from exons by alternative mRNA splicing. Circularization of single-stranded RNA molecules was already described in 1976 for viroids in plants. Since then several additional types of circular RNAs in many species have been described such as the circular single-stranded RNA genome of the hepatitis delta virus (HDV) or circular RNAs as products or intermediates of tRNA and rRNA maturation in archaea. CircRNAs are generally formed by covalent binding of the 5' site of an upstream exon with the 3' of the same or a downstream exon. Meanwhile, two different models of circRNA biogenesis have been described, the lariat or exon skipping model and the direct backsplicing model. In the lariat model, canonical splicing occurs before backsplicing, whereas in the direct backsplicing model, the circRNA is generated first. In this chapter, we will review the formation of circular RNAs and highlight the derivation of different types of circular RNAs.
Collapse
Affiliation(s)
- Nicole Eger
- University of Heidelberg, Heidelberg, Germany
| | | | - Susanne Schuster
- Clinic and Polyclinic for Cardiology, University Hospital Leipzig, Leipzig, Germany
| | - Ulrich Laufs
- Clinic and Polyclinic for Cardiology, University Hospital Leipzig, Leipzig, Germany
| | - Jes-Niels Boeckel
- Clinic and Polyclinic for Cardiology, University Hospital Leipzig, Leipzig, Germany.
| |
Collapse
|
26
|
Wang M, Yu F, Wu W, Zhang Y, Chang W, Ponnusamy M, Wang K, Li P. Circular RNAs: A novel type of non-coding RNA and their potential implications in antiviral immunity. Int J Biol Sci 2017; 13:1497-1506. [PMID: 29230098 PMCID: PMC5723916 DOI: 10.7150/ijbs.22531] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/08/2017] [Indexed: 12/23/2022] Open
Abstract
Circular RNAs (circRNAs), a novel type of non-coding RNAs (ncRNAs), are ubiquitously expressed in eukaryotic cells during post-transcriptional processes. Unlike linear RNAs, circRNAs form covalent-closed continuous loops without 5' to 3' polarities and poly (A) tails. With advances in high-throughput sequencing technology, numerous circRNAs have been identified in plants, animals and humans. Notably, circRNAs display cell-type, tissue-type and developmental-stage specific expression patterns in eukaryotic transcriptome, which reveals their significant regulatory functions in gene expression. More importantly, circRNAs serve as microRNA (miRNA) sponges and crucial regulators of gene expression. Additionally, circRNAs modulate pre-mRNA alternative splicing and possess protein-coding capacity. CircRNAs exhibit altered expression under pathological conditions and are strongly associated with the development of various human diseases. Interestingly, circRNAs can also induce antiviral immune responses. A recent study found that the delivery of circRNAs generated in vitro activates RIG-I-mediated innate immune responses and provides protection against viral infection. The antiviral dsRNA-binding proteins, NF90/NF110, act as key regulators in circRNA biogenesis. NF90/NF110 are also functional in inhibiting viral replication through binding to viral mRNAs. In this review, we provide a comprehensive overview on the classification, biogenesis and functions of circRNAs. We also discuss the critical role of circRNAs in eliciting antiviral immunity, providing evidence for the potential implications of circRNAs in antiviral therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| |
Collapse
|
27
|
Dou Y, Li S, Yang W, Liu K, Du Q, Ren G, Yu B, Zhang C. Genome-wide Discovery of Circular RNAs in the Leaf and Seedling Tissues of Arabidopsis Thaliana. Curr Genomics 2017; 18:360-365. [PMID: 29081691 PMCID: PMC5635619 DOI: 10.2174/1389202918666170307161124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/12/2016] [Accepted: 10/27/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recently, identification and functional studies of circular RNAs, a type of non-coding RNAs arising from a ligation of 3' and 5' ends of a linear RNA molecule, were conducted in mammalian cells with the development of RNA-seq technology. METHOD Since compared with animals, studies on circular RNAs in plants are less thorough, a genome-wide identification of circular RNA candidates in Arabidopsis was conducted with our own developed bioinformatics tool to several existing RNA-seq datasets specifically for non-coding RNAs. RESULTS A total of 164 circular RNA candidates were identified from RNA-seq data, and 4 circular RNA transcripts, including both exonic and intronic circular RNAs, were experimentally validated. Interestingly, our results show that circular RNA transcripts are enriched in the photosynthesis system for the leaf tissue and correlated to the higher expression levels of their parent genes. Sixteen out of all 40 genes that have circular RNA candidates are related to the photosynthesis system, and out of the total 146 exonic circular RNA candidates, 63 are found in chloroplast.
Collapse
Affiliation(s)
- Yongchao Dou
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Shengjun Li
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Weilong Yang
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Kan Liu
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Qian Du
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology and Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Yu
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
28
|
Suzuki H, Kaneko A, Yamamoto T, Nambo M, Hirasawa I, Umehara T, Yoshida H, Park SY, Tamura K. Binding Properties of Split tRNA to the C-terminal Domain of Methionyl-tRNA Synthetase of Nanoarchaeum equitans. J Mol Evol 2017; 84:267-278. [PMID: 28589220 DOI: 10.1007/s00239-017-9796-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/30/2017] [Indexed: 11/28/2022]
Abstract
The C-terminal domain of methionyl-tRNA synthetase (MetRS-C) from Nanoarchaeum equitans is homologous to a tRNA-binding protein consisting of 111 amino acids (Trbp111) from Aquifex aeolicus. The crystal structure of MetRS-C showed that it existed as a homodimer, and that each monomer possessed an oligonucleotide/oligosaccharide-binding fold (OB-fold). Analysis using a quartz crystal microbalance indicated that MetRS-C freshly isolated from N. equitans was bound to tRNA. However, binding of the split 3'-half tRNA species was stronger than that of the 5'-half species. The T-loop and the 3'-end regions of the split 3'-half tRNA were found to be responsible for the binding. The minimum structure for binding to MetRS-C might be a minihelix-like stem-loop with single-stranded 3'-terminus. After successive duplications of such a small hairpin structure with the assistance of a Trbp-like structure, the interaction of the T-loop region of the 3'-half with a Trbp-like structure could have been evolutionarily replaced by RNA-RNA interactions, along with many combinational tertiary interactions, to form the modern tRNA structure.
Collapse
Affiliation(s)
- Hidemichi Suzuki
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Akihiro Kaneko
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Taro Yamamoto
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Mahoko Nambo
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Ito Hirasawa
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Takuya Umehara
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Hisashi Yoshida
- Protein Design Laboratory, Yokohama City University, Suehiro 1-7-29, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Sam-Yong Park
- Protein Design Laboratory, Yokohama City University, Suehiro 1-7-29, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Koji Tamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan. .,Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
29
|
Smith DR, Keeling PJ. Protists and the Wild, Wild West of Gene Expression: New Frontiers, Lawlessness, and Misfits. Annu Rev Microbiol 2016; 70:161-78. [PMID: 27359218 DOI: 10.1146/annurev-micro-102215-095448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The DNA double helix has been called one of life's most elegant structures, largely because of its universality, simplicity, and symmetry. The expression of information encoded within DNA, however, can be far from simple or symmetric and is sometimes surprisingly variable, convoluted, and wantonly inefficient. Although exceptions to the rules exist in certain model systems, the true extent to which life has stretched the limits of gene expression is made clear by nonmodel systems, particularly protists (microbial eukaryotes). The nuclear and organelle genomes of protists are subject to the most tangled forms of gene expression yet identified. The complicated and extravagant picture of the underlying genetics of eukaryotic microbial life changes how we think about the flow of genetic information and the evolutionary processes shaping it. Here, we discuss the origins, diversity, and growing interest in noncanonical protist gene expression and its relationship to genomic architecture.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7;
| | - Patrick J Keeling
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4;
| |
Collapse
|
30
|
Chen L, Huang C, Wang X, Shan G. Circular RNAs in Eukaryotic Cells. Curr Genomics 2016; 16:312-8. [PMID: 27047251 PMCID: PMC4763969 DOI: 10.2174/1389202916666150707161554] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/20/2015] [Accepted: 04/25/2015] [Indexed: 12/20/2022] Open
Abstract
Circular RNAs (circRNAs) are now recognized as large species of transcripts in eukaryotic cells. From model organisms such as C. elegans, Drosophila, mice to human beings, thousands of circRNAs formed from back-splicing of exons have been identified. The known complexity of transcriptome has been greatly expanded upon the discovery of these RNAs. Studies about the biogenesis and physiological functions have yielded substantial knowledge for the circRNAs, and they are now more likely to be viewed as regulatory elements coded by the genome rather than unavoidable noise of gene expression. Certain human diseases may also relate to circRNAs. These circRNAs show diversifications in features such as sequence composition and cellular localization, and thus we propose that they may be divided into subtypes such as cytoplasmic circRNAs, nuclear circRNAs, and exon-intron circRNAs (EIciRNAs). Here we summarize and discuss knowns and unknowns for these RNAs, and we need to keep in mind that the whole field is still at the beginning of exciting explorations.
Collapse
Affiliation(s)
- Liang Chen
- School of Life Sciences & CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, Anhui Province 230027, P.R. China
| | - Chuan Huang
- School of Life Sciences & CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, Anhui Province 230027, P.R. China
| | - Xiaolin Wang
- School of Life Sciences & CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, Anhui Province 230027, P.R. China
| | - Ge Shan
- School of Life Sciences & CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, Anhui Province 230027, P.R. China
| |
Collapse
|
31
|
Abstract
Circular RNAs (circRNAs) are produced from precursor mRNA (pre-mRNA) back-splicing of thousands of genes in eukaryotes. Although circRNAs are generally expressed at low levels, recent findings have shed new light on their cell type-specific and tissue-specific expression and on the regulation of their biogenesis. Furthermore, the data indicate that circRNAs shape gene expression by titrating microRNAs, regulating transcription and interfering with splicing, thus effectively expanding the diversity and complexity of eukaryotic transcriptomes.
Collapse
Affiliation(s)
- Ling-Ling Chen
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031 Shanghai, China
| |
Collapse
|
32
|
Abstract
The ciliate Oxytricha is a microbial eukaryote with two genomes, one of which experiences extensive genome remodeling during development. Each round of conjugation initiates a cascade of events that construct a transcriptionally active somatic genome from a scrambled germline genome, with considerable help from both long and small noncoding RNAs. This process of genome remodeling entails massive DNA deletion and reshuffling of remaining DNA segments to form functional genes from their interrupted and scrambled germline precursors. The use of Oxytricha as a model system provides an opportunity to study an exaggerated form of programmed genome rearrangement. Furthermore, studying the mechanisms that maintain nuclear dimorphism and mediate genome rearrangement has demonstrated a surprising plasticity and diversity of noncoding RNA pathways, with new roles that go beyond conventional gene silencing. Another aspect of ciliate genetics is their unorthodox patterns of RNA-mediated, epigenetic inheritance that rival Mendelian inheritance. This review takes the reader through the key experiments in a model eukaryote that led to fundamental discoveries in RNA biology and pushes the biological limits of DNA processing.
Collapse
|
33
|
Hirose Y, Ikeda KT, Noro E, Hiraoka K, Tomita M, Kanai A. Precise mapping and dynamics of tRNA-derived fragments (tRFs) in the development of Triops cancriformis (tadpole shrimp). BMC Genet 2015; 16:83. [PMID: 26168920 PMCID: PMC4501094 DOI: 10.1186/s12863-015-0245-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/30/2015] [Indexed: 12/03/2022] Open
Abstract
Background In a deep sequencing analysis of small RNAs prepared from a living fossil, the tadpole shrimp Triops cancriformis, a 32-nt small RNA was specifically detected in the adult stage. A nucleotide sequence comparison between the 32-nt small RNA and predicted tRNA sequences in the draft nuclear genomic DNA showed that the small RNA was derived from tRNAGly(GCC). To determine the overall features of the tRNA-derived fragments (tRFs) of T. cancriformis, the small RNA sequences in each of the six developmental stages (egg, 1st − 4th instar larvae, and adult) were compared with the mitochondrial and nuclear tRNA sequences. Results We found that the tRFs were derived from mitochondrial and nuclear tRNAs corresponding to 16 and 39 anticodons, respectively. The total read number of nuclear tRFs was approximately 400 times larger than the number of mitochondrial tRFs. Interestingly, the main regions in each parental tRNA from which these tRFs were derived differed, depending on the parental anticodon. Mitochondrial tRFSer(GCU)s were abundantly produced from the 5’ half regions of the parental tRNA, whereas mitochondrial tRFVal(UAC)s were mainly produced from the 3’ end regions. Highly abundant nuclear tRFs, tRFGly(GCC)s, tRFGly(CCC)s, tRFGlu(CUC)s, and tRFLys(CUU)s were derived from the 5’ half regions of the parental tRNAs. Further analysis of the tRF read counts in the individual developmental stages suggested that the expression of mitochondrial and nuclear tRFs differed during the six stages. Based on these data, we precisely summarized the positions of the tRFs in their parental tRNAs and their expression changes during development. Conclusions Our results reveal the entire dynamics of the tRFs from both the nuclear and mitochondrial genomes of T. cancriformis and indicate that the majority of tRFs in the cell are derived from nuclear tRNAs. This study provides the first examples of developmentally expressed mitochondrial tRFs. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0245-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuka Hirose
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan. .,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan.
| | - Kahori T Ikeda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan. .,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan.
| | - Emiko Noro
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan.
| | - Kiriko Hiraoka
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan.
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan. .,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan. .,Faculty of Environment and Information Studies, Keio University, Fujisawa, 252-0882, Japan.
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan. .,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan. .,Faculty of Environment and Information Studies, Keio University, Fujisawa, 252-0882, Japan.
| |
Collapse
|
34
|
Suzuki S, Shirato S, Hirakawa Y, Ishida KI. Nucleomorph Genome Sequences of Two Chlorarachniophytes, Amorphochlora amoebiformis and Lotharella vacuolata. Genome Biol Evol 2015; 7:1533-45. [PMID: 26002880 PMCID: PMC4494063 DOI: 10.1093/gbe/evv096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many algal groups acquired complex plastids by the uptake of green and red algae through multiple secondary endosymbioses. As a result of gene loss and transfer during the endosymbiotic processes, algal endosymbiont nuclei disappeared in most cases. However, chlorarachniophytes and cryptophytes still possess a relict nucleus, so-called the nucleomorph, of the green and red algal endosymbiont, respectively. Nucleomorph genomes are an interesting and suitable model to study the reductive evolution of endosymbiotically derived genomes. To date, nucleomorph genomes have been sequenced in four cryptophyte species and two chlorarachniophyte species, including Bigelowiella natans (373 kb) and Lotharella oceanica (610 kb). In this study, we report complete nucleomorph genome sequences of two chlorarachniophytes, Amorphochlora amoebiformis and Lotharella vacuolata, to gain insight into the reductive evolution of nucleomorph genomes in the chlorarachniophytes. The nucleomorph genomes consist of three chromosomes totaling 374 and 432 kb in size in A. amoebiformis and L. vacuolata, respectively. Comparative analyses among four chlorarachniophyte nucleomorph genomes revealed that these sequences share 171 function-predicted genes (86% of total 198 function-predicted nucleomorph genes), including the same set of genes encoding 17 plastid-associated proteins, and no evidence of a recent nucleomorph-to-nucleus gene transfer was found. This suggests that chlorarachniophyte nucleomorph genomes underwent most of their reductive evolution prior to the radiation of extent members of the group. However, there are slight variations in genome size, GC content, duplicated gene number, and subtelomeric regions among the four nucleomorph genomes, suggesting that the genomes might be undergoing changes that do not affect the core functions in each species.
Collapse
Affiliation(s)
- Shigekatsu Suzuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Shu Shirato
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yoshihisa Hirakawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Ken-Ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
35
|
Abstract
Profiling the RNA production in hyperthermophilic archaea revealed an abundance of small RNA-guided processes near the upper temperature limit of life. Archaea utilize the base-pairing ability of RNA guide sequences to target ribosomal RNAs, transfer RNAs, messenger RNAs, and viral genomes. Cellular processes that are guided by small RNAs include the modification of RNA molecules, trans-splicing, gene regulation, and RNA and DNA degradation. Here, a brief overview of our knowledge on small guide RNA genes in archaeal genomes is provided and examples of their putative roles in genome evolution are described.
Collapse
MESH Headings
- Archaea/genetics
- Base Sequence
- Evolution, Molecular
- Gene Expression Regulation, Archaeal
- Genome, Archaeal/genetics
- Hot Temperature
- Models, Genetic
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
Collapse
Affiliation(s)
- Lennart Randau
- Prokaryotic Small RNA Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
36
|
Abstract
tRNAs are widely believed to segregate into two classes, I and II. Computational analysis of eukaryotic tRNA entries in Genomic tRNA Database, however, leads to new, albeit paradoxical, presence of more than a thousand class-I tRNAs with uncharacteristic long variable arms (V-arms), like in class-II. Out of 62,202 tRNAs from 69 eukaryotes, as many as 1431 class-I tRNAs have these novel extended V-arms, and we refer to them as paradoxical tRNAs (pxtRNAs). A great majority of these 1431 pxtRNA genes are located in intergenic regions, about 18% embedded in introns of genes or ESTs, and just one in 3'UTR. A check on the conservations of 2D and 3D base pairs for each position of these pxtRNAs reveals a few variations, but they seem to have almost all the known features (already known identity and conserved elements of tRNA). Analyses of the A-Box and B-Box of these pxtRNA genes in eukaryotes display salient deviations from the previously annotated conserved features of the standard promoters, whereas the transcription termination signals are just canonical and non-canonical runs of thymidine, similar to the ones in standard tRNA genes. There is just one such pxtRNA(ProAGG) gene in the entire human genome, and the availability of data allows epigenetic analysis of this human pxtRNA(ProAGG) in three different cell lines, H1 hESC, K562, and NHEK, to assess the level of its expression. Histone acetylation and methylation of this lone pxtRNA(ProAGG) gene in human differ from that of the nine standard human tRNA(ProAGG) genes. The V-arm nucleotide sequences and their secondary structures in pxtRNA differ from that of class-II tRNA. Considering these differences, hypotheses of alternative splicing, non-canonical intron and gene transfer are examined to partially improve the Cove scores of these pxtRNAs and to critically question their antecedence and novelty.
Collapse
Affiliation(s)
- Sanga Mitra
- a Computational Biology Group , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| | - Arpa Samadder
- a Computational Biology Group , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| | - Pijush Das
- b Cancer Biology & Inflammatory Disorder Division , Indian Institute of Chemical Biology , Kolkata , India
| | - Smarajit Das
- c Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, University of Gothenburg , Gothenburg , Sweden
| | - Jayprokas Chakrabarti
- a Computational Biology Group , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India.,d Gyanxet, BF 286 Salt Lake, Kolkata , India
| |
Collapse
|
37
|
Disrupted tRNA Genes and tRNA Fragments: A Perspective on tRNA Gene Evolution. Life (Basel) 2015; 5:321-31. [PMID: 25629271 PMCID: PMC4390854 DOI: 10.3390/life5010321] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/14/2015] [Accepted: 01/21/2015] [Indexed: 01/17/2023] Open
Abstract
Transfer RNAs (tRNAs) are small non-coding RNAs with lengths of approximately 70-100 nt. They are directly involved in protein synthesis by carrying amino acids to the ribosome. In this sense, tRNAs are key molecules that connect the RNA world and the protein world. Thus, study of the evolution of tRNA molecules may reveal the processes that led to the establishment of the central dogma: genetic information flows from DNA to RNA to protein. Thanks to the development of DNA sequencers in this century, we have determined a huge number of nucleotide sequences from complete genomes as well as from transcriptomes in many species. Recent analyses of these large data sets have shown that particular tRNA genes, especially in Archaea, are disrupted in unique ways: some tRNA genes contain multiple introns and some are split genes. Even tRNA molecules themselves are fragmented post-transcriptionally in many species. These fragmented small RNAs are known as tRNA-derived fragments (tRFs). In this review, I summarize the progress of research into the disrupted tRNA genes and the tRFs, and propose a possible model for the molecular evolution of tRNAs based on the concept of the combination of fragmented tRNA halves.
Collapse
|
38
|
Valach M, Burger G, Gray MW, Lang BF. Widespread occurrence of organelle genome-encoded 5S rRNAs including permuted molecules. Nucleic Acids Res 2014; 42:13764-77. [PMID: 25429974 PMCID: PMC4267664 DOI: 10.1093/nar/gku1266] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 11/13/2022] Open
Abstract
5S Ribosomal RNA (5S rRNA) is a universal component of ribosomes, and the corresponding gene is easily identified in archaeal, bacterial and nuclear genome sequences. However, organelle gene homologs (rrn5) appear to be absent from most mitochondrial and several chloroplast genomes. Here, we re-examine the distribution of organelle rrn5 by building mitochondrion- and plastid-specific covariance models (CMs) with which we screened organelle genome sequences. We not only recover all organelle rrn5 genes annotated in GenBank records, but also identify more than 50 previously unrecognized homologs in mitochondrial genomes of various stramenopiles, red algae, cryptomonads, malawimonads and apusozoans, and surprisingly, in the apicoplast (highly derived plastid) genomes of the coccidian pathogens Toxoplasma gondii and Eimeria tenella. Comparative modeling of RNA secondary structure reveals that mitochondrial 5S rRNAs from brown algae adopt a permuted triskelion shape that has not been seen elsewhere. Expression of the newly predicted rrn5 genes is confirmed experimentally in 10 instances, based on our own and published RNA-Seq data. This study establishes that particularly mitochondrial 5S rRNA has a much broader taxonomic distribution and a much larger structural variability than previously thought. The newly developed CMs will be made available via the Rfam database and the MFannot organelle genome annotator.
Collapse
MESH Headings
- Coccidia/genetics
- Databases, Nucleic Acid
- Genes, Mitochondrial
- Genes, rRNA
- Genome, Mitochondrial
- Genome, Plastid
- Nucleic Acid Conformation
- Phaeophyceae/genetics
- RNA/chemistry
- RNA/genetics
- RNA, Mitochondrial
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/classification
- RNA, Ribosomal, 5S/genetics
- Sequence Analysis, RNA
- Stramenopiles/genetics
Collapse
Affiliation(s)
- Matus Valach
- Department of Biochemistry and Robert-Cedergren Centre of Bioinformatics and Genomics, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Gertraud Burger
- Department of Biochemistry and Robert-Cedergren Centre of Bioinformatics and Genomics, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Michael W Gray
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4B2, Canada
| | - B Franz Lang
- Department of Biochemistry and Robert-Cedergren Centre of Bioinformatics and Genomics, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
39
|
Abstract
It is now clear that there is a diversity of circular RNAs in biological systems. Circular RNAs can be produced by the direct ligation of 5' and 3' ends of linear RNAs, as intermediates in RNA processing reactions, or by "backsplicing," wherein a downstream 5' splice site (splice donor) is joined to an upstream 3' splice site (splice acceptor). Circular RNAs have unique properties including the potential for rolling circle amplification of RNA, the ability to rearrange the order of genomic information, protection from exonucleases, and constraints on RNA folding. Circular RNAs can function as templates for viroid and viral replication, as intermediates in RNA processing reactions, as regulators of transcription in cis, as snoRNAs, and as miRNA sponges. Herein, we review the breadth of circular RNAs, their biogenesis and metabolism, and their known and anticipated functions.
Collapse
Affiliation(s)
- Erika Lasda
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309, USA
| | - Roy Parker
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
40
|
Yoshihisa T. Handling tRNA introns, archaeal way and eukaryotic way. Front Genet 2014; 5:213. [PMID: 25071838 PMCID: PMC4090602 DOI: 10.3389/fgene.2014.00213] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/20/2014] [Indexed: 11/25/2022] Open
Abstract
Introns are found in various tRNA genes in all the three kingdoms of life. Especially, archaeal and eukaryotic genomes are good sources of tRNA introns that are removed by proteinaceous splicing machinery. Most intron-containing tRNA genes both in archaea and eukaryotes possess an intron at a so-called canonical position, one nucleotide 3′ to their anticodon, while recent bioinformatics have revealed unusual types of tRNA introns and their derivatives especially in archaeal genomes. Gain and loss of tRNA introns during various stages of evolution are obvious both in archaea and eukaryotes from analyses of comparative genomics. The splicing of tRNA molecules has been studied extensively from biochemical and cell biological points of view, and such analyses of eukaryotic systems provided interesting findings in the past years. Here, I summarize recent progresses in the analyses of tRNA introns and the splicing process, and try to clarify new and old questions to be solved in the next stages.
Collapse
Affiliation(s)
- Tohru Yoshihisa
- Graduate School of Life Science, University of Hyogo Ako-gun, Hyogo, Japan
| |
Collapse
|
41
|
Fujishima K, Kanai A. tRNA gene diversity in the three domains of life. Front Genet 2014; 5:142. [PMID: 24904642 PMCID: PMC4033280 DOI: 10.3389/fgene.2014.00142] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/28/2014] [Indexed: 11/29/2022] Open
Abstract
Transfer RNA (tRNA) is widely known for its key role in decoding mRNA into protein. Despite their necessity and relatively short nucleotide sequences, a large diversity of gene structures and RNA secondary structures of pre-tRNAs and mature tRNAs have recently been discovered in the three domains of life. Growing evidences of disrupted tRNA genes in the genomes of Archaea reveals unique gene structures such as, intron-containing tRNA, split tRNA, and permuted tRNA. Coding sequence for these tRNAs are either separated with introns, fragmented, or permuted at the genome level. Although evolutionary scenario behind the tRNA gene disruption is still unclear, diversity of tRNA structure seems to be co-evolved with their processing enzyme, so-called RNA splicing endonuclease. Metazoan mitochondrial tRNAs (mtRNAs) are known for their unique lack of either one or two arms from the typical tRNA cloverleaf structure, while still maintaining functionality. Recently identified nematode-specific V-arm containing tRNAs (nev-tRNAs) possess long variable arms that are specific to eukaryotic class II tRNASer and tRNALeu but also decode class I tRNA codons. Moreover, many tRNA-like sequences have been found in the genomes of different organisms and viruses. Thus, this review is aimed to cover the latest knowledge on tRNA gene diversity and further recapitulate the evolutionary and biological aspects that caused such uniqueness.
Collapse
Affiliation(s)
- Kosuke Fujishima
- NASA Ames Research Center Moffett Field, CA, USA ; Institute for Advanced Biosciences, Keio University Tsuruoka, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University Tsuruoka, Japan
| |
Collapse
|
42
|
Himeno H, Kurita D, Muto A. tmRNA-mediated trans-translation as the major ribosome rescue system in a bacterial cell. Front Genet 2014; 5:66. [PMID: 24778639 PMCID: PMC3985003 DOI: 10.3389/fgene.2014.00066] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/15/2014] [Indexed: 11/13/2022] Open
Abstract
Transfer messenger RNA (tmRNA; also known as 10Sa RNA or SsrA RNA) is a small RNA molecule that is conserved among bacteria. It has structural and functional similarities to tRNA: it has an upper half of the tRNA-like structure, its 5’ end is processed by RNase P, it has typical tRNA-specific base modifications, it is aminoacylated with alanine, it binds to EF-Tu after aminoacylation and it enters the ribosome with EF-Tu and GTP. However, tmRNA lacks an anticodon, and instead it has a coding sequence for a short peptide called tag-peptide. An elaborate interplay of actions of tmRNA as both tRNA and mRNA with the help of a tmRNA-binding protein, SmpB, facilitates trans-translation, which produces a single polypeptide from two mRNA molecules. Initially alanyl-tmRNA in complex with EF-Tu and SmpB enters the vacant A-site of the stalled ribosome like aminoacyl-tRNA but without a codon–anticodon interaction, and subsequently truncated mRNA is replaced with the tag-encoding region of tmRNA. During these processes, not only tmRNA but also SmpB structurally and functionally mimics both tRNA and mRNA. Thus trans-translation rescues the stalled ribosome, thereby allowing recycling of the ribosome. Since the tag-peptide serves as a target of AAA+ proteases, the trans-translation products are preferentially degraded so that they do not accumulate in the cell. Although alternative rescue systems have recently been revealed, trans-translation is the only system that universally exists in bacteria. Furthermore, it is unique in that it employs a small RNA and that it prevents accumulation of non-functional proteins from truncated mRNA in the cell. It might play the major role in rescuing the stalled translation in the bacterial cell.
Collapse
Affiliation(s)
- Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University Hirosaki, Japan
| | - Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University Hirosaki, Japan
| | - Akira Muto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University Hirosaki, Japan
| |
Collapse
|
43
|
Soma A. Circularly permuted tRNA genes: their expression and implications for their physiological relevance and development. Front Genet 2014; 5:63. [PMID: 24744771 PMCID: PMC3978253 DOI: 10.3389/fgene.2014.00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/12/2014] [Indexed: 12/02/2022] Open
Abstract
A number of genome analyses and searches using programs that focus on the RNA-specific bulge-helix-bulge (BHB) motif have uncovered a wide variety of disrupted tRNA genes. The results of these analyses have shown that genetic information encoding functional RNAs is described in the genome cryptically and is retrieved using various strategies. One such strategy is represented by circularly permuted tRNA genes, in which the sequences encoding the 5′-half and 3′-half of the specific tRNA are separated and inverted on the genome. Biochemical analyses have defined a processing pathway in which the termini of tRNA precursors (pre-tRNAs) are ligated to form a characteristic circular RNA intermediate, which is then cleaved at the acceptor-stem to generate the typical cloverleaf structure with functional termini. The sequences adjacent to the processing site located between the 3′-half and the 5′-half of pre-tRNAs potentially form a BHB motif, which is the dominant recognition site for the tRNA-intron splicing endonuclease, suggesting that circularization of pre-tRNAs depends on the splicing machinery. Some permuted tRNAs contain a BHB-mediated intron in their 5′- or 3′-half, meaning that removal of an intron, as well as swapping of the 5′- and 3′-halves, are required during maturation of their pre-tRNAs. To date, 34 permuted tRNA genes have been identified from six species of unicellular algae and one archaeon. Although their physiological significance and mechanism of development remain unclear, the splicing system of BHB motifs seems to have played a key role in the formation of permuted tRNA genes. In this review, current knowledge of circularly permuted tRNA genes is presented and some unanswered questions regarding these species are discussed.
Collapse
Affiliation(s)
- Akiko Soma
- Graduate School of Horticulture, Chiba University Matsudo, Japan
| |
Collapse
|
44
|
Soma A, Sugahara J, Onodera A, Yachie N, Kanai A, Watanabe S, Yoshikawa H, Ohnuma M, Kuroiwa H, Kuroiwa T, Sekine Y. Identification of highly-disrupted tRNA genes in nuclear genome of the red alga, Cyanidioschyzon merolae 10D. Sci Rep 2014; 3:2321. [PMID: 23900518 PMCID: PMC3728597 DOI: 10.1038/srep02321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/10/2013] [Indexed: 12/03/2022] Open
Abstract
The limited locations of tRNA introns are crucial for eukaryal tRNA-splicing endonuclease recognition. However, our analysis of the nuclear genome of an early-diverged red alga, Cyanidioschyzon merolae, demonstrated the first evidence of nuclear-encoded tRNA genes that contain ectopic and/or multiple introns. Some genes exhibited both intronic and permuted structures in which the 3′-half of the tRNA coding sequence lies upstream of the 5′-half, and an intron is inserted into either half. These highly disrupted tRNA genes, which account for 63% of all nuclear tRNA genes, are expressed via the orderly and sequential processing of bulge-helix-bulge (BHB) motifs at intron-exon junctions and termini of permuted tRNA precursors, probably by a C. merolae tRNA-splicing endonuclease with an unidentified subunit architecture. The results revealed a considerable diversity in eukaryal tRNA intron properties and endonuclease architectures, which will help to elucidate the acquisition mechanism of the BHB-mediated disrupted tRNA genes.
Collapse
Affiliation(s)
- Akiko Soma
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fuhrmann G, Swart E, Nowacki M, Lipps HJ. RNA-dependent genome processing during nuclear differentiation: the model systems of stichotrichous ciliates. Epigenomics 2013; 5:229-36. [PMID: 23566098 DOI: 10.2217/epi.13.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We introduce ciliated protozoa, and more specifically the stichotrichous ciliates Oxytricha and Stylonychia, as biological model systems for the analysis of programmed DNA-reorganization processes during nuclear differentiation. These include DNA excision, DNA elimination, reordering of gene segments and specific gene amplification. We show that small nuclear RNAs specify DNA sequences to be excised or retained, but also discuss the need for a RNA template molecule derived from the parental nucleus for these processes. This RNA template guides reordering of gene segments to become functional genes and determines gene copy number in the differentiated nucleus. Since the template is derived from the parental macronucleus, gene reordering and DNA amplification are inherited in a non-Mendelian epigenetic manner.
Collapse
Affiliation(s)
- Gloria Fuhrmann
- Institute of Cell Biology, Centre for Biomedical Research & Education (ZBAF), Stockumer Str. 10, 58453 Witten, Germany
| | | | | | | |
Collapse
|
46
|
Zuo Z, Peng D, Yin X, Zhou X, Cheng H, Zhou R. Genome-wide analysis reveals origin of transfer RNA genes from tRNA halves. Mol Biol Evol 2013; 30:2087-98. [PMID: 23744908 DOI: 10.1093/molbev/mst107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transfer RNAs (tRNAs) play an important role linking mitochondrial RNA and amino acids during protein biogenesis. Four types of tRNA genes have been identified in living organisms. However, the evolutionary origin of tRNAs remains largely unknown. In this article, we conduct a deep sequence analysis of diverse genomes that cover all three domains of life to unveil the evolutionary history of tRNA genes from tRNA halves. tRNA half homologs were detected in diverse organisms, and some of them were expressed in mouse tissues. Continuous tRNA genes have a conserved pattern similar to indels, which is, more closely flanking regions have higher single nucleotide substitution rates, whereas tRNA half homologs do not have this pattern. In addition, tRNAs tend to break into tRNA halves when tissues are incubated in vitro, the tendency of tRNA to break into tRNA halves may be a "side-effect" of tRNA genes evolving from tRNA halves. These results suggest that modern tRNAs originated from tRNA halves through a repeat element-mediated mechanism. These findings provide insight into the evolutionary origin of tRNA genes.
Collapse
Affiliation(s)
- Zhixiang Zuo
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
47
|
Kiethega GN, Yan Y, Turcotte M, Burger G. RNA-level unscrambling of fragmented genes in Diplonema mitochondria. RNA Biol 2013; 10:301-13. [PMID: 23324603 DOI: 10.4161/rna.23340] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We previously reported a unique genome with systematically fragmented genes and gene pieces dispersed across numerous circular chromosomes, occurring in mitochondria of diplonemids. Genes are split into up to 12 short fragments (modules), which are separately transcribed and joined in a way that differs from known trans-splicing. Further, cox1 mRNA includes six non-encoded uridines indicating RNA editing. In the absence of recognizable cis-elements, we postulated that trans-splicing and RNA editing are directed by trans-acting molecules. Here, we provide insight into the post-transcriptional processes by investigating transcription, RNA processing, trans-splicing and RNA editing in cox1 and at a newly discovered site in cob. We show that module precursor transcripts are up to several thousand nt long and processed accurately at their 5' and 3' termini to yield the short coding-only regions. Processing at 5' and 3' ends occurs independently, and a processed terminus engages in trans-splicing even if the module's other terminus is yet unprocessed. Moreover, only cognate module transcripts join, though without directionality. In contrast, module transcripts requiring RNA editing only trans-splice when editing is completed. Finally, experimental and computational analyses suggest the existence of RNA trans-factors with the potential for guiding both trans-splicing and RNA editing.
Collapse
|
48
|
Affiliation(s)
- Wenwen Fang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
49
|
Avatar pre-tRNAs help elucidate the properties of tRNA-splicing endonucleases that produce tRNA from permuted genes. Proc Natl Acad Sci U S A 2012; 109:21325-9. [PMID: 23236183 DOI: 10.1073/pnas.1219336110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unusual tRNA genes, found in some algae, have their mature terminal 3' portion in front of their 5' portion in the genome. The transcripts from such genes must be cleaved by a pre-tRNA endonuclease to form a functional tRNA. We present a mechanism for the generation of "corrected" tRNAs from such a "permuted" pre-tRNA configuration. We used two avatar (av) or model pre-tRNAs and two splicing endonucleases with distinct mechanisms of recognition of the pre-tRNA. The splicing results are compatible with an evolutionary route in which permuted genes result from a duplication event followed by DNA rearrangement. The model pre-tRNAs permit description of the features that a transcript, derived from a rearranged duplicated gene, must have to give rise to functional tRNA. The two tRNA endonucleases are a eukaryal enzyme that normally acts in a mature domain-dependent mode and an archaeal enzyme that acts in a mature domain-independent mode. Both av pre-tRNAs are able to fold into two conformations: 1 and 2. We find that only conformation 2 can yield a corrected functional tRNA. This result is consistent with contemporary algae representing snapshots of different evolutionary stages, with duplicated genes preceding recombinatorial events generating a permutated gene. In a scenario elucidated by the use of the av pre-tRNAs, algal permuted tRNA genes could have further lost one of two mature domains, eliminating steric problems for the algal tRNA endonuclease, which remains a typical eukaryal enzyme capable of correcting the permuted transcript to a functional tRNA.
Collapse
|
50
|
Popow J, Schleiffer A, Martinez J. Diversity and roles of (t)RNA ligases. Cell Mol Life Sci 2012; 69:2657-70. [PMID: 22426497 PMCID: PMC3400036 DOI: 10.1007/s00018-012-0944-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/01/2012] [Accepted: 02/13/2012] [Indexed: 12/29/2022]
Abstract
The discovery of discontiguous tRNA genes triggered studies dissecting the process of tRNA splicing. As a result, we have gained detailed mechanistic knowledge on enzymatic removal of tRNA introns catalyzed by endonuclease and ligase proteins. In addition to the elucidation of tRNA processing, these studies facilitated the discovery of additional functions of RNA ligases such as RNA repair and non-conventional mRNA splicing events. Recently, the identification of a new type of RNA ligases in bacteria, archaea, and humans closed a long-standing gap in the field of tRNA processing. This review summarizes past and recent findings in the field of tRNA splicing with a focus on RNA ligation as it preferentially occurs in archaea and humans. In addition to providing an integrated view of the types and phyletic distribution of RNA ligase proteins known to date, this survey also aims at highlighting known and potential accessory biological functions of RNA ligases.
Collapse
Affiliation(s)
- Johannes Popow
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohrgasse 3, 1030 Vienna, Austria
| | | | | |
Collapse
|