1
|
Michael N, Huang BY, Ray KK, Kinz-Thompson CD, Gonzalez RL. A cascade of structural rearrangements positions peptide release factor II for polypeptide hydrolysis on the ribosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.642146. [PMID: 40161701 PMCID: PMC11952352 DOI: 10.1101/2025.03.09.642146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Peptide release factor II (RF2) catalyzes the release of the nascent polypeptide from the bacterial ribosomal complex during translation termination and a subset of ribosome rescue pathways. Despite its critical role, the mechanisms that govern RF2 function and regulation remain elusive. Here, using single-molecule fluorescence energy transfer (smFRET), we characterize the conformational landscape that RF2 explores on the ribosomal complex and show that RF2 binding and dissociation from the ribosome follows a series of conformational rearrangements which depend on its ribosomal binding platform. We also show how further interactions with the ribosomal complex are necessary to properly position RF2 for polypeptide release. This work investigates not only the dynamics RF2 undergoes while in complex with the ribosome, but also identifies a potential mechanism by which the regulation of these dynamics may be disrupted, which may be exploited for future development of broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Nina Michael
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Bridget Y. Huang
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Korak Kumar Ray
- Department of Chemistry, Columbia University, New York, NY 10027, USA
- Current address: MRC Laboratory of Medical Sciences, London, UK
| | - Colin D. Kinz-Thompson
- Department of Chemistry, Columbia University, New York, NY 10027, USA
- Current address: Department of Chemistry, Rutgers University-Newark, Newark, NJ, USA
| | - Ruben L. Gonzalez
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| |
Collapse
|
2
|
Ando Y, Kobo A, Niwa T, Yamakawa A, Konoma S, Kobayashi Y, Nureki O, Taguchi H, Itoh Y, Chadani Y. A mini-hairpin shaped nascent peptide blocks translation termination by a distinct mechanism. Nat Commun 2025; 16:2323. [PMID: 40057501 PMCID: PMC11890864 DOI: 10.1038/s41467-025-57659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025] Open
Abstract
Protein synthesis by ribosomes produces functional proteins but also serves diverse regulatory functions, which depend on the coding amino acid sequences. Certain nascent peptides interact with the ribosome exit tunnel to arrest translation and modulate themselves or the expression of downstream genes. However, a comprehensive understanding of the mechanisms of such ribosome stalling and its regulation remains elusive. In this study, we systematically screen for unidentified ribosome arrest peptides through phenotypic evaluation, proteomics, and mass spectrometry analyses, leading to the discovery of the arrest peptides PepNL and NanCL in E. coli. Our cryo-EM study on PepNL reveals a distinct arrest mechanism, in which the N-terminus of PepNL folds back towards the tunnel entrance to prevent the catalytic GGQ motif of the release factor from accessing the peptidyl transferase center, causing translation arrest at the UGA stop codon. Furthermore, unlike sensory arrest peptides that require an arrest inducer, PepNL uses tryptophan as an arrest inhibitor, where Trp-tRNATrp reads through the stop codon. Our findings illuminate the mechanism and regulatory framework of nascent peptide-induced translation arrest, paving the way for exploring regulatory nascent peptides.
Collapse
Affiliation(s)
- Yushin Ando
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Akinao Kobo
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
| | - Tatsuya Niwa
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Japan
| | - Ayako Yamakawa
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
| | - Suzuna Konoma
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
| | - Yuki Kobayashi
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Hideki Taguchi
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan.
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Japan.
| | - Yuzuru Itoh
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Yuhei Chadani
- Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan.
| |
Collapse
|
3
|
Lahry K, Datta M, Varshney U. Genetic analysis of translation initiation in bacteria: An initiator tRNA-centric view. Mol Microbiol 2024; 122:772-788. [PMID: 38410838 DOI: 10.1111/mmi.15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Translation of messenger RNA (mRNA) in bacteria occurs in the steps of initiation, elongation, termination, and ribosome recycling. The initiation step comprises multiple stages and uses a special transfer RNA (tRNA) called initiator tRNA (i-tRNA), which is first aminoacylated and then formylated using methionine and N10-formyl-tetrahydrofolate (N10-fTHF), respectively. Both methionine and N10-fTHF are produced via one-carbon metabolism, linking translation initiation with active cellular metabolism. The fidelity of i-tRNA binding to the ribosomal peptidyl-site (P-site) is attributed to the structural features in its acceptor stem, and the highly conserved three consecutive G-C base pairs (3GC pairs) in the anticodon stem. The acceptor stem region is important in formylation of the amino acid attached to i-tRNA and in its initial binding to the P-site. And, the 3GC pairs are crucial in transiting the i-tRNA through various stages of initiation. We utilized the feature of 3GC pairs to investigate the nuanced layers of scrutiny that ensure fidelity of translation initiation through i-tRNA abundance and its interactions with the components of the translation apparatus. We discuss the importance of i-tRNA in the final stages of ribosome maturation, as also the roles of the Shine-Dalgarno sequence, ribosome heterogeneity, initiation factors, ribosome recycling factor, and coevolution of the translation apparatus in orchestrating a delicate balance between the fidelity of initiation and/or its leakiness to generate proteome plasticity in cells to confer growth fitness advantages in response to the dynamic nutritional states.
Collapse
Affiliation(s)
- Kuldeep Lahry
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Madhurima Datta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
4
|
Skeparnias I, Bou-Nader C, Anastasakis DG, Fan L, Wang YX, Hafner M, Zhang J. Structural basis of MALAT1 RNA maturation and mascRNA biogenesis. Nat Struct Mol Biol 2024; 31:1655-1668. [PMID: 38956168 DOI: 10.1038/s41594-024-01340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 05/29/2024] [Indexed: 07/04/2024]
Abstract
The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) long noncoding RNA (lncRNA) has key roles in regulating transcription, splicing, tumorigenesis, etc. Its maturation and stabilization require precise processing by RNase P, which simultaneously initiates the biogenesis of a 3' cytoplasmic MALAT1-associated small cytoplasmic RNA (mascRNA). mascRNA was proposed to fold into a transfer RNA (tRNA)-like secondary structure but lacks eight conserved linking residues required by the canonical tRNA fold. Here we report crystal structures of human mascRNA before and after processing, which reveal an ultracompact, quasi-tRNA-like structure. Despite lacking all linker residues, mascRNA faithfully recreates the characteristic 'elbow' feature of tRNAs to recruit RNase P and ElaC homolog protein 2 (ELAC2) for processing, which exhibit distinct substrate specificities. Rotation and repositioning of the D-stem and anticodon regions preclude mascRNA from aminoacylation, avoiding interference with translation. Therefore, a class of metazoan lncRNA loci uses a previously unrecognized, unusually streamlined quasi-tRNA architecture to recruit select tRNA-processing enzymes while excluding others to drive bespoke RNA biogenesis, processing and maturation.
Collapse
Affiliation(s)
- Ilias Skeparnias
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Charles Bou-Nader
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Dimitrios G Anastasakis
- RNA Molecular Biology Laboratory, National Institute for Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD, USA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-Ray Scattering Core Facility of National Cancer Institute, Frederick, MD, USA
| | - Yun-Xing Wang
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-Ray Scattering Core Facility of National Cancer Institute, Frederick, MD, USA
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Markus Hafner
- RNA Molecular Biology Laboratory, National Institute for Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| |
Collapse
|
5
|
Coelho JPL, Yip MCJ, Oltion K, Taunton J, Shao S. The eRF1 degrader SRI-41315 acts as a molecular glue at the ribosomal decoding center. Nat Chem Biol 2024; 20:877-884. [PMID: 38172604 PMCID: PMC11253071 DOI: 10.1038/s41589-023-01521-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Translation termination is an essential cellular process, which is also of therapeutic interest for diseases that manifest from premature stop codons. In eukaryotes, translation termination requires eRF1, which recognizes stop codons, catalyzes the release of nascent proteins from ribosomes and facilitates ribosome recycling. The small molecule SRI-41315 triggers eRF1 degradation and enhances translational readthrough of premature stop codons. However, the mechanism of action of SRI-41315 on eRF1 and translation is not known. Here we report cryo-EM structures showing that SRI-41315 acts as a metal-dependent molecular glue between the N domain of eRF1 responsible for stop codon recognition and the ribosomal subunit interface near the decoding center. Retention of eRF1 on ribosomes by SRI-41315 leads to ribosome collisions, eRF1 ubiquitylation and a higher frequency of translation termination at near-cognate stop codons. Our findings reveal a new mechanism of release factor inhibition and additional implications for pharmacologically targeting eRF1.
Collapse
Affiliation(s)
- João P L Coelho
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Matthew C J Yip
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Keely Oltion
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Ishida S, Ngo PHT, Gundlach A, Ellington A. Engineering Ribosomal Machinery for Noncanonical Amino Acid Incorporation. Chem Rev 2024; 124:7712-7730. [PMID: 38829723 DOI: 10.1021/acs.chemrev.3c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The introduction of noncanonical amino acids into proteins has enabled researchers to modify fundamental physicochemical and functional properties of proteins. While the alteration of the genetic code, via the introduction of orthogonal aminoacyl-tRNA synthetase:tRNA pairs, has driven many of these efforts, the various components involved in the process of translation are important for the development of new genetic codes. In this review, we will focus on recent advances in engineering ribosomal machinery for noncanonical amino acid incorporation and genetic code modification. The engineering of the ribosome itself will be considered, as well as the many factors that interact closely with the ribosome, including both tRNAs and accessory factors, such as the all-important EF-Tu. Given the success of genome re-engineering efforts, future paths for radical alterations of the genetic code will require more expansive alterations in the translation machinery.
Collapse
Affiliation(s)
- Satoshi Ishida
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Phuoc H T Ngo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Arno Gundlach
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Zafar H, Hassan AH, Demo G. Translation machinery captured in motion. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1792. [PMID: 37132456 DOI: 10.1002/wrna.1792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
Translation accuracy is one of the most critical factors for protein synthesis. It is regulated by the ribosome and its dynamic behavior, along with translation factors that direct ribosome rearrangements to make translation a uniform process. Earlier structural studies of the ribosome complex with arrested translation factors laid the foundation for an understanding of ribosome dynamics and the translation process as such. Recent technological advances in time-resolved and ensemble cryo-EM have made it possible to study translation in real time at high resolution. These methods provided a detailed view of translation in bacteria for all three phases: initiation, elongation, and termination. In this review, we focus on translation factors (in some cases GTP activation) and their ability to monitor and respond to ribosome organization to enable efficient and accurate translation. This article is categorized under: Translation > Ribosome Structure/Function Translation > Mechanisms.
Collapse
Affiliation(s)
- Hassan Zafar
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ahmed H Hassan
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Gabriel Demo
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
8
|
Saurer M, Leibundgut M, Nadimpalli HP, Scaiola A, Schönhut T, Lee RG, Siira SJ, Rackham O, Dreos R, Lenarčič T, Kummer E, Gatfield D, Filipovska A, Ban N. Molecular basis of translation termination at noncanonical stop codons in human mitochondria. Science 2023; 380:531-536. [PMID: 37141370 DOI: 10.1126/science.adf9890] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The genetic code that specifies the identity of amino acids incorporated into proteins during protein synthesis is almost universally conserved. Mitochondrial genomes feature deviations from the standard genetic code, including the reassignment of two arginine codons to stop codons. The protein required for translation termination at these noncanonical stop codons to release the newly synthesized polypeptides is not currently known. In this study, we used gene editing and ribosomal profiling in combination with cryo-electron microscopy to establish that mitochondrial release factor 1 (mtRF1) detects noncanonical stop codons in human mitochondria by a previously unknown mechanism of codon recognition. We discovered that binding of mtRF1 to the decoding center of the ribosome stabilizes a highly unusual conformation in the messenger RNA in which the ribosomal RNA participates in specific recognition of the noncanonical stop codons.
Collapse
Affiliation(s)
- Martin Saurer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Alain Scaiola
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Tanja Schönhut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Richard G Lee
- Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia
| | - Stefan J Siira
- Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
| | - René Dreos
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Tea Lenarčič
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Eva Kummer
- Novo Nordisk Foundation Center for Protein Research, Protein Structure and Function Program, Blegdamsvej 3B, 2200 København N, Denmark
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
9
|
Nadler F, Lavdovskaia E, Krempler A, Cruz-Zaragoza LD, Dennerlein S, Richter-Dennerlein R. Human mtRF1 terminates COX1 translation and its ablation induces mitochondrial ribosome-associated quality control. Nat Commun 2022; 13:6406. [PMID: 36302763 PMCID: PMC9613700 DOI: 10.1038/s41467-022-34088-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/11/2022] [Indexed: 12/25/2022] Open
Abstract
Translation termination requires release factors that read a STOP codon in the decoding center and subsequently facilitate the hydrolysis of the nascent peptide chain from the peptidyl tRNA within the ribosome. In human mitochondria eleven open reading frames terminate in the standard UAA or UAG STOP codon, which can be recognized by mtRF1a, the proposed major mitochondrial release factor. However, two transcripts encoding for COX1 and ND6 terminate in the non-conventional AGA or AGG codon, respectively. How translation termination is achieved in these two cases is not known. We address this long-standing open question by showing that the non-canonical release factor mtRF1 is a specialized release factor that triggers COX1 translation termination, while mtRF1a terminates the majority of other mitochondrial translation events including the non-canonical ND6. Loss of mtRF1 leads to isolated COX deficiency and activates the mitochondrial ribosome-associated quality control accompanied by the degradation of COX1 mRNA to prevent an overload of the ribosome rescue system. Taken together, these results establish the role of mtRF1 in mitochondrial translation, which had been a mystery for decades, and lead to a comprehensive picture of translation termination in human mitochondria.
Collapse
Affiliation(s)
- Franziska Nadler
- grid.411984.10000 0001 0482 5331Department of Cellular Biochemistry, University Medical Center Goettingen, D-37073 Goettingen, Germany
| | - Elena Lavdovskaia
- grid.411984.10000 0001 0482 5331Department of Cellular Biochemistry, University Medical Center Goettingen, D-37073 Goettingen, Germany ,grid.7450.60000 0001 2364 4210Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Goettingen, D-37075 Goettingen, Germany
| | - Angelique Krempler
- grid.411984.10000 0001 0482 5331Department of Cellular Biochemistry, University Medical Center Goettingen, D-37073 Goettingen, Germany
| | - Luis Daniel Cruz-Zaragoza
- grid.411984.10000 0001 0482 5331Department of Cellular Biochemistry, University Medical Center Goettingen, D-37073 Goettingen, Germany
| | - Sven Dennerlein
- grid.411984.10000 0001 0482 5331Department of Cellular Biochemistry, University Medical Center Goettingen, D-37073 Goettingen, Germany
| | - Ricarda Richter-Dennerlein
- grid.411984.10000 0001 0482 5331Department of Cellular Biochemistry, University Medical Center Goettingen, D-37073 Goettingen, Germany ,grid.7450.60000 0001 2364 4210Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Goettingen, D-37075 Goettingen, Germany ,grid.7450.60000 0001 2364 4210Goettingen Center for Molecular Biosciences, University of Goettingen, D-37077 Goettingen, Germany
| |
Collapse
|
10
|
Ille AM, Lamont H, Mathews MB. The Central Dogma revisited: Insights from protein synthesis, CRISPR, and beyond. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1718. [PMID: 35199457 DOI: 10.1002/wrna.1718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/28/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Francis Crick advanced two distinct but interrelated fundamental principles of molecular biology: (1) the Sequence Hypothesis and (2) the Central Dogma. The Sequence Hypothesis defines biological information transfer as the residue-by-residue transfer of sequence information between nucleic acids and to proteins. This is commonly summarized as DNA ➔ RNA ➔ protein and is colloquially referred to as the Central Dogma. More specifically, however, the Central Dogma expounded by Crick included a critical restriction, stipulating that "once sequential information has passed into protein it cannot get out again." Under this definition, the Central Dogma has stood the test of time despite challenges. In principle, a violation of the Central Dogma could transpire through synthetic biology or by natural occurrence. To address these possibilities, we draw insights from existing modes of information transfer in protein synthesis and from synthetic Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR) gene-editing. We introduce a three-part evaluation scheme, which we apply to the CRISPR/Cas9 system and the more recent CRISPR prime editing system. Potential mechanisms by which engineered sequence editing systems might violate the Central Dogma are considered. We conclude that although information transfer in protein synthesis and CRISPR gene-editing remain within the bounds of the Central Dogma, the underlying mechanisms point toward an avenue of synthetic biology that could directly violate the Central Dogma. Finally, we speculate on some of the theoretical and practical implications of a protein-derived information transfer system. This article is categorized under: RNA Evolution and Genomics > Ribonomics RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Mechanisms.
Collapse
Affiliation(s)
- Alexander M Ille
- School of Graduate Studies, Rutgers University, Newark, New Jersey, USA
| | - Hannah Lamont
- School of Graduate Studies, Rutgers University, Newark, New Jersey, USA
| | - Michael B Mathews
- School of Graduate Studies, Rutgers University, Newark, New Jersey, USA
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
11
|
Tian Y, Zeng F, Raybarman A, Fatma S, Carruthers A, Li Q, Huang RH. Sequential rescue and repair of stalled and damaged ribosome by bacterial PrfH and RtcB. Proc Natl Acad Sci U S A 2022; 119:e2202464119. [PMID: 35858322 PMCID: PMC9304027 DOI: 10.1073/pnas.2202464119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/10/2022] [Indexed: 01/14/2023] Open
Abstract
RtcB is involved in transfer RNA (tRNA) splicing in archaeal and eukaryotic organisms. However, most RtcBs are found in bacteria, whose tRNAs have no introns. Because tRNAs are the substrates of archaeal and eukaryotic RtcB, it is assumed that bacterial RtcBs are for repair of damaged tRNAs. Here, we show that a subset of bacterial RtcB, denoted RtcB2 herein, specifically repair ribosomal damage in the decoding center. To access the damage site for repair, however, the damaged 70S ribosome needs to be dismantled first, and this is accomplished by bacterial PrfH. Peptide-release assays revealed that PrfH is only active with the damaged 70S ribosome but not with the intact one. A 2.55-Å cryo-electron microscopy structure of PrfH in complex with the damaged 70S ribosome provides molecular insight into PrfH discriminating between the damaged and the intact ribosomes via specific recognition of the cleaved 3'-terminal nucleotide. RNA repair assays demonstrated that RtcB2 efficiently repairs the damaged 30S ribosomal subunit but not the damaged tRNAs. Cell-based assays showed that the RtcB2-PrfH pair reverse the damage inflicted by ribosome-specific ribotoxins in vivo. Thus, our combined biochemical, structural, and cell-based studies have uncovered a bacterial defense system specifically evolved to reverse the lethal ribosomal damage in the decoding center for cell survival.
Collapse
Affiliation(s)
- Yannan Tian
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Fuxing Zeng
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
| | - Adrika Raybarman
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Shirin Fatma
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Amy Carruthers
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Qingrong Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
| | - Raven H. Huang
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
12
|
Abstract
In all living cells, the ribosome translates the genetic information carried by messenger RNAs (mRNAs) into proteins. The process of ribosome recycling, a key step during protein synthesis that ensures ribosomal subunits remain available for new rounds of translation, has been largely overlooked. Despite being essential to the survival of the cell, several mechanistic aspects of ribosome recycling remain unclear. In eubacteria and mitochondria, recycling of the ribosome into subunits requires the concerted action of the ribosome recycling factor (RRF) and elongation factor G (EF-G). Recently, the conserved protein HflX was identified in bacteria as an alternative factor that recycles the ribosome under stress growth conditions. The homologue of HflX, the GTP-binding protein 6 (GTPBP6), has a dual role in mitochondrial translation by facilitating ribosome recycling and biogenesis. In this review, mechanisms of ribosome recycling in eubacteria and mitochondria are described based on structural studies of ribosome complexes.
Collapse
Affiliation(s)
- Savannah M Seely
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1019, USA
| | - Matthieu G Gagnon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1019, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1019, USA.,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1019, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas 77555, USA
| |
Collapse
|
13
|
Kurita D, Himeno H. Bacterial Ribosome Rescue Systems. Microorganisms 2022; 10:372. [PMID: 35208827 PMCID: PMC8874680 DOI: 10.3390/microorganisms10020372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022] Open
Abstract
To maintain proteostasis, the cell employs multiple ribosome rescue systems to relieve the stalled ribosome on problematic mRNA. One example of problematic mRNA is non-stop mRNA that lacks an in-frame stop codon produced by endonucleolytic cleavage or transcription error. In Escherichia coli, there are at least three ribosome rescue systems that deal with the ribosome stalled on non-stop mRNA. According to one estimation, 2-4% of translation is the target of ribosome rescue systems even under normal growth conditions. In the present review, we discuss the recent findings of ribosome rescue systems in bacteria.
Collapse
Affiliation(s)
| | - Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Hirosaki University, 3, Bunkyo-cho, Hirosaki 036-8561, Japan;
| |
Collapse
|
14
|
Nadler F, Lavdovskaia E, Richter-Dennerlein R. Maintaining mitochondrial ribosome function: The role of ribosome rescue and recycling factors. RNA Biol 2021; 19:117-131. [PMID: 34923906 PMCID: PMC8786322 DOI: 10.1080/15476286.2021.2015561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The universally conserved process of protein biosynthesis is crucial for maintaining cellular homoeostasis and in eukaryotes, mitochondrial translation is essential for aerobic energy production. Mitochondrial ribosomes (mitoribosomes) are highly specialized to synthesize 13 core subunits of the oxidative phosphorylation (OXPHOS) complexes. Although the mitochondrial translation machinery traces its origin from a bacterial ancestor, it has acquired substantial differences within this endosymbiotic environment. The cycle of mitoribosome function proceeds through the conserved canonical steps of initiation, elongation, termination and mitoribosome recycling. However, when mitoribosomes operate in the context of limited translation factors or on aberrant mRNAs, they can become stalled and activation of rescue mechanisms is required. This review summarizes recent advances in the understanding of protein biosynthesis in mitochondria, focusing especially on the mechanistic and physiological details of translation termination, and mitoribosome recycling and rescue.
Collapse
Affiliation(s)
- Franziska Nadler
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Elena Lavdovskaia
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| | - Ricarda Richter-Dennerlein
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| |
Collapse
|
15
|
Balasanyants SM, Aleksandrova EV, Polikanov YS. The Role of Release Factors in the Hydrolysis of Ester Bond in Peptidyl-tRNA. BIOCHEMISTRY (MOSCOW) 2021; 86:1122-1127. [PMID: 34565315 DOI: 10.1134/s0006297921090078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Class I release factors (RFs) recognize stop codons in the sequences of mRNAs and are required for the hydrolysis of peptidyl-tRNA in the ribosomal P site during the final step of protein synthesis in bacteria, resulting in the release of a complete polypeptide chain from the ribosome. A key role in this process belongs to the highly conserved GGQ motif in RFs. Mutations in this motif can reduce the hydrolysis rate or even completely inhibit the reaction. Previously, it was hypothesized that the amino acid residues of GGQ (especially glutamine) are essential for the proper coordination of the water molecule for subsequent hydrolysis of the ester bond. However, available structures of the 70S ribosome termination complex do not allow unambiguous identification of the exact orientation of the carbonyl group in peptidyl-tRNA relative to the GGQ, as well as of the position of the catalytic water molecule in the peptidyl transferase center (PTC). This mini-review summarizes key facts and hypotheses on the role of GGQ in the catalysis of peptide release, as well as suggests and discusses future experiments aimed to produce high-quality structural data for deciphering the precise mechanism of RF-mediated catalysis.
Collapse
Affiliation(s)
- Samson M Balasanyants
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Elena V Aleksandrova
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yury S Polikanov
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
16
|
Korostelev AA. Diversity and Similarity of Termination and Ribosome Rescue in Bacterial, Mitochondrial, and Cytoplasmic Translation. BIOCHEMISTRY (MOSCOW) 2021; 86:1107-1121. [PMID: 34565314 DOI: 10.1134/s0006297921090066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
When a ribosome encounters the stop codon of an mRNA, it terminates translation, releases the newly made protein, and is recycled to initiate translation on a new mRNA. Termination is a highly dynamic process in which release factors (RF1 and RF2 in bacteria; eRF1•eRF3•GTP in eukaryotes) coordinate peptide release with large-scale molecular rearrangements of the ribosome. Ribosomes stalled on aberrant mRNAs are rescued and recycled by diverse bacterial, mitochondrial, or cytoplasmic quality control mechanisms. These are catalyzed by rescue factors with peptidyl-tRNA hydrolase activity (bacterial ArfA•RF2 and ArfB, mitochondrial ICT1 and mtRF-R, and cytoplasmic Vms1), that are distinct from each other and from release factors. Nevertheless, recent structural studies demonstrate a remarkable similarity between translation termination and ribosome rescue mechanisms. This review describes how these pathways rely on inherent ribosome dynamics, emphasizing the active role of the ribosome in all translation steps.
Collapse
Affiliation(s)
- Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA.
| |
Collapse
|
17
|
Bernetti M, Hall KB, Bussi G. Reweighting of molecular simulations with explicit-solvent SAXS restraints elucidates ion-dependent RNA ensembles. Nucleic Acids Res 2021; 49:e84. [PMID: 34107023 PMCID: PMC8373061 DOI: 10.1093/nar/gkab459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 01/03/2023] Open
Abstract
Small-angle X-ray scattering (SAXS) experiments are increasingly used to probe RNA structure. A number of forward models that relate measured SAXS intensities and structural features, and that are suitable to model either explicit-solvent effects or solute dynamics, have been proposed in the past years. Here, we introduce an approach that integrates atomistic molecular dynamics simulations and SAXS experiments to reconstruct RNA structural ensembles while simultaneously accounting for both RNA conformational dynamics and explicit-solvent effects. Our protocol exploits SAXS pure-solute forward models and enhanced sampling methods to sample an heterogenous ensemble of structures, with no information towards the experiments provided on-the-fly. The generated structural ensemble is then reweighted through the maximum entropy principle so as to match reference SAXS experimental data at multiple ionic conditions. Importantly, accurate explicit-solvent forward models are used at this reweighting stage. We apply this framework to the GTPase-associated center, a relevant RNA molecule involved in protein translation, in order to elucidate its ion-dependent conformational ensembles. We show that (a) both solvent and dynamics are crucial to reproduce experimental SAXS data and (b) the resulting dynamical ensembles contain an ion-dependent fraction of extended structures.
Collapse
Affiliation(s)
- Mattia Bernetti
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, Trieste 34136, Italy
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, Trieste 34136, Italy
| |
Collapse
|
18
|
Kumar N, Sharma S, Kaushal PS. Protein synthesis in Mycobacterium tuberculosis as a potential target for therapeutic interventions. Mol Aspects Med 2021; 81:101002. [PMID: 34344520 DOI: 10.1016/j.mam.2021.101002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022]
Abstract
Mycobacterium tuberculosis (Mtb) causes one of humankind's deadliest diseases, tuberculosis. Mtb protein synthesis machinery possesses several unique species-specific features, including its ribosome that carries two mycobacterial specific ribosomal proteins, bL37 and bS22, and ribosomal RNA segments. Since the protein synthesis is a vital cellular process that occurs on the ribosome, a detailed knowledge of the structure and function of mycobacterial ribosomes is essential to understand the cell's proteome by translation regulation. Like in many bacterial species such as Bacillus subtilis and Streptomyces coelicolor, two distinct populations of ribosomes have been identified in Mtb. Under low-zinc conditions, Mtb ribosomal proteins S14, S18, L28, and L33 are replaced with their non-zinc binding paralogues. Depending upon the nature of physiological stress, species-specific modulation of translation by stress factors and toxins that interact with the ribosome have been reported. In addition, about one-fourth of messenger RNAs in mycobacteria have been reported to be leaderless, i.e., without 5' UTR regions. However, the mechanism by which they are recruited to the Mtb ribosome is not understood. In this review, we highlight the mycobacteria-specific features of the translation apparatus and propose exploiting these features to improve the efficacy and specificity of existing antibiotics used to treat tuberculosis.
Collapse
Affiliation(s)
- Niraj Kumar
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India
| | - Shivani Sharma
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India
| | - Prem S Kaushal
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India.
| |
Collapse
|
19
|
Albers S, Beckert B, Matthies MC, Mandava CS, Schuster R, Seuring C, Riedner M, Sanyal S, Torda AE, Wilson DN, Ignatova Z. Repurposing tRNAs for nonsense suppression. Nat Commun 2021; 12:3850. [PMID: 34158503 PMCID: PMC8219837 DOI: 10.1038/s41467-021-24076-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Three stop codons (UAA, UAG and UGA) terminate protein synthesis and are almost exclusively recognized by release factors. Here, we design de novo transfer RNAs (tRNAs) that efficiently decode UGA stop codons in Escherichia coli. The tRNA designs harness various functionally conserved aspects of sense-codon decoding tRNAs. Optimization within the TΨC-stem to stabilize binding to the elongation factor, displays the most potent effect in enhancing suppression activity. We determine the structure of the ribosome in a complex with the designed tRNA bound to a UGA stop codon in the A site at 2.9 Å resolution. In the context of the suppressor tRNA, the conformation of the UGA codon resembles that of a sense-codon rather than when canonical translation termination release factors are bound, suggesting conformational flexibility of the stop codons dependent on the nature of the A-site ligand. The systematic analysis, combined with structural insights, provides a rationale for targeted repurposing of tRNAs to correct devastating nonsense mutations that introduce a premature stop codon.
Collapse
Affiliation(s)
- Suki Albers
- grid.9026.d0000 0001 2287 2617Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Bertrand Beckert
- grid.9026.d0000 0001 2287 2617Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Marco C. Matthies
- grid.9026.d0000 0001 2287 2617Center for Bioinformatics, University of Hamburg, Hamburg, Germany
| | - Chandra Sekhar Mandava
- grid.8993.b0000 0004 1936 9457Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Raphael Schuster
- grid.9026.d0000 0001 2287 2617Institute of Organic Chemistry, University of Hamburg, Hamburg, Germany
| | | | - Maria Riedner
- grid.9026.d0000 0001 2287 2617Institute of Organic Chemistry, University of Hamburg, Hamburg, Germany
| | - Suparna Sanyal
- grid.8993.b0000 0004 1936 9457Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Andrew E. Torda
- grid.9026.d0000 0001 2287 2617Center for Bioinformatics, University of Hamburg, Hamburg, Germany
| | - Daniel N. Wilson
- grid.9026.d0000 0001 2287 2617Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Zoya Ignatova
- grid.9026.d0000 0001 2287 2617Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
20
|
Hillen HS, Lavdovskaia E, Nadler F, Hanitsch E, Linden A, Bohnsack KE, Urlaub H, Richter-Dennerlein R. Structural basis of GTPase-mediated mitochondrial ribosome biogenesis and recycling. Nat Commun 2021; 12:3672. [PMID: 34135319 PMCID: PMC8209004 DOI: 10.1038/s41467-021-23702-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis requires auxiliary factors to promote folding and assembly of ribosomal proteins and RNA. Particularly, maturation of the peptidyl transferase center (PTC) is mediated by conserved GTPases, but the molecular basis is poorly understood. Here, we define the mechanism of GTPase-driven maturation of the human mitochondrial large ribosomal subunit (mtLSU) using endogenous complex purification, in vitro reconstitution and cryo-EM. Structures of transient native mtLSU assembly intermediates that accumulate in GTPBP6-deficient cells reveal how the biogenesis factors GTPBP5, MTERF4 and NSUN4 facilitate PTC folding. Addition of recombinant GTPBP6 reconstitutes late mtLSU biogenesis in vitro and shows that GTPBP6 triggers a molecular switch and progression to a near-mature PTC state. Additionally, cryo-EM analysis of GTPBP6-treated mature mitochondrial ribosomes reveals the structural basis for the dual-role of GTPBP6 in ribosome biogenesis and recycling. Together, these results provide a framework for understanding step-wise PTC folding as a critical conserved quality control checkpoint.
Collapse
Affiliation(s)
- Hauke S Hillen
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany.
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany.
| | - Elena Lavdovskaia
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| | - Franziska Nadler
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Elisa Hanitsch
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Andreas Linden
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Goettingen, Goettingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Ricarda Richter-Dennerlein
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany.
| |
Collapse
|
21
|
Alboushi L, Hackett AP, Naeli P, Bakhti M, Jafarnejad SM. Multifaceted control of mRNA translation machinery in cancer. Cell Signal 2021; 84:110037. [PMID: 33975011 DOI: 10.1016/j.cellsig.2021.110037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
The mRNA translation machinery is tightly regulated through several, at times overlapping, mechanisms that modulate its efficiency and accuracy. Due to their fast rate of growth and metabolism, cancer cells require an excessive amount of mRNA translation and protein synthesis. However, unfavorable conditions, such as hypoxia, amino acid starvation, and oxidative stress, which are abundant in cancer, as well as many anti-cancer treatments inhibit mRNA translation. Cancer cells adapt to the various internal and environmental stresses by employing specialised transcript-specific translation to survive and gain a proliferative advantage. We will highlight the major signaling pathways and mechanisms of translation that regulate the global or mRNA-specific translation in response to the intra- or extra-cellular signals and stresses that are key components in the process of tumourigenesis.
Collapse
Affiliation(s)
- Lilas Alboushi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Angela P Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
22
|
Pundir S, Ge X, Sanyal S. GGQ methylation enhances both speed and accuracy of stop codon recognition by bacterial class-I release factors. J Biol Chem 2021; 296:100681. [PMID: 33887323 PMCID: PMC8131318 DOI: 10.1016/j.jbc.2021.100681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 10/28/2022] Open
Abstract
Accurate translation termination in bacteria requires correct recognition of the stop codons by the class-I release factors (RFs) RF1 and RF2, which release the nascent peptide from the peptidyl tRNA after undergoing a "compact to open" conformational transition. These RFs possess a conserved Gly-Gly-Gln (GGQ) peptide release motif, of which the Q residue is posttranslationally methylated. GGQ-methylated RFs have been shown to be faster in peptide release than the unmethylated ones, but it was unknown whether this modification had additional roles. Using a fluorescence-based real-time in vitro translation termination assay in a stopped-flow instrument, we demonstrate that methylated RF1 and RF2 are two- to four-fold more accurate in the cognate stop codon recognition than their unmethylated variants. Using pH titration, we show that the lack of GGQ methylation facilitates the "compact to open" transition, which results in compromised accuracy of the unmethylated RFs. Furthermore, thermal melting studies using circular dichroism and SYPRO-orange fluorescence demonstrate that GGQ methylation increases overall stability of the RF proteins. This increased stability, we suspect, is the basis for the more controlled conformational change of the methylated RFs upon codon recognition, which enhances both their speed and accuracy. This GGQ methylation-based modulation of the accuracy of RFs can be a tool for regulating translational termination in vivo.
Collapse
Affiliation(s)
- Shreya Pundir
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
23
|
Kummer E, Schubert KN, Schoenhut T, Scaiola A, Ban N. Structural basis of translation termination, rescue, and recycling in mammalian mitochondria. Mol Cell 2021; 81:2566-2582.e6. [PMID: 33878294 DOI: 10.1016/j.molcel.2021.03.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022]
Abstract
The mitochondrial translation system originates from a bacterial ancestor but has substantially diverged in the course of evolution. Here, we use single-particle cryo-electron microscopy (cryo-EM) as a screening tool to identify mitochondrial translation termination mechanisms and to describe them in molecular detail. We show how mitochondrial release factor 1a releases the nascent chain from the ribosome when it encounters the canonical stop codons UAA and UAG. Furthermore, we define how the peptidyl-tRNA hydrolase ICT1 acts as a rescue factor on mitoribosomes that have stalled on truncated messages to recover them for protein synthesis. Finally, we present structural models detailing the process of mitochondrial ribosome recycling to explain how a dedicated elongation factor, mitochondrial EFG2 (mtEFG2), has specialized for cooperation with the mitochondrial ribosome recycling factor to dissociate the mitoribosomal subunits at the end of the translation process.
Collapse
Affiliation(s)
- Eva Kummer
- Swiss Federal Institute of Technology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093 Zurich, Switzerland.
| | - Katharina Noel Schubert
- Swiss Federal Institute of Technology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093 Zurich, Switzerland
| | - Tanja Schoenhut
- Swiss Federal Institute of Technology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093 Zurich, Switzerland
| | - Alain Scaiola
- Swiss Federal Institute of Technology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093 Zurich, Switzerland
| | - Nenad Ban
- Swiss Federal Institute of Technology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093 Zurich, Switzerland.
| |
Collapse
|
24
|
Müller C, Crowe-McAuliffe C, Wilson DN. Ribosome Rescue Pathways in Bacteria. Front Microbiol 2021; 12:652980. [PMID: 33815344 PMCID: PMC8012679 DOI: 10.3389/fmicb.2021.652980] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Ribosomes that become stalled on truncated or damaged mRNAs during protein synthesis must be rescued for the cell to survive. Bacteria have evolved a diverse array of rescue pathways to remove the stalled ribosomes from the aberrant mRNA and return them to the free pool of actively translating ribosomes. In addition, some of these pathways target the damaged mRNA and the incomplete nascent polypeptide chain for degradation. This review highlights the recent developments in our mechanistic understanding of bacterial ribosomal rescue systems, including drop-off, trans-translation mediated by transfer-messenger RNA and small protein B, ribosome rescue by the alternative rescue factors ArfA and ArfB, as well as Bacillus ribosome rescue factor A, an additional rescue system found in some Gram-positive bacteria, such as Bacillus subtilis. Finally, we discuss the recent findings of ribosome-associated quality control in particular bacterial lineages mediated by RqcH and RqcP. The importance of rescue pathways for bacterial survival suggests they may represent novel targets for the development of new antimicrobial agents against multi-drug resistant pathogenic bacteria.
Collapse
Affiliation(s)
| | | | - Daniel N. Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
25
|
Shetty S, Varshney U. Regulation of translation by one-carbon metabolism in bacteria and eukaryotic organelles. J Biol Chem 2021; 296:100088. [PMID: 33199376 PMCID: PMC7949028 DOI: 10.1074/jbc.rev120.011985] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Protein synthesis is an energetically costly cellular activity. It is therefore important that the process of mRNA translation remains in excellent synchrony with cellular metabolism and its energy reserves. Unregulated translation could lead to the production of incomplete, mistranslated, or misfolded proteins, squandering the energy needed for cellular sustenance and causing cytotoxicity. One-carbon metabolism (OCM), an integral part of cellular intermediary metabolism, produces a number of one-carbon unit intermediates (formyl, methylene, methenyl, methyl). These OCM intermediates are required for the production of amino acids such as methionine and other biomolecules such as purines, thymidylate, and redox regulators. In this review, we discuss how OCM impacts the translation apparatus (composed of ribosome, tRNA, mRNA, and translation factors) and regulates crucial steps in protein synthesis. More specifically, we address how the OCM metabolites regulate the fidelity and rate of translation initiation in bacteria and eukaryotic organelles such as mitochondria. Modulation of the fidelity of translation initiation by OCM opens new avenues to understand alternative translation mechanisms involved in stress tolerance and drug resistance.
Collapse
Affiliation(s)
- Sunil Shetty
- Biozentrum, University of Basel, Basel, Switzerland
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India; Jawaharlal Nehru Centre for Advanced Scientific Studies, Jakkur, Bangalore, India.
| |
Collapse
|
26
|
Susorov D, Egri S, Korostelev AA. Termi-Luc: a versatile assay to monitor full-protein release from ribosomes. RNA (NEW YORK, N.Y.) 2020; 26:2044-2050. [PMID: 32817446 PMCID: PMC7668252 DOI: 10.1261/rna.076588.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 05/05/2023]
Abstract
Termination of protein biosynthesis is an essential step of gene expression, during which a complete functional protein is released from the ribosome. Premature or inefficient termination results in truncated, nonfunctional, or toxic proteins that may cause disease. Indeed, more than 10% of human genetic diseases are caused by nonsense mutations leading to premature termination. Efficient and sensitive approaches are required to study eukaryotic termination mechanisms and to identify potential therapeutics that modulate termination. Canonical radioactivity-based termination assays are complex, report on a short peptide release, and are incompatible with high-throughput screening. Here we describe a robust and simple in vitro assay to study the kinetics of full-protein release. The assay monitors luminescence upon release of nanoluciferase from a mammalian pretermination complex. The assay can be used to record time-progress curves of protein release in a high-throughput format, making it optimal for studying release kinetics and for high-throughput screening for small molecules that modulate the efficiency of termination.
Collapse
Affiliation(s)
- Denis Susorov
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Shawn Egri
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Andrei A Korostelev
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
27
|
Kurita D, Abo T, Himeno H. Molecular determinants of release factor 2 for ArfA-mediated ribosome rescue. J Biol Chem 2020; 295:13326-13337. [PMID: 32727848 DOI: 10.1074/jbc.ra120.014664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/27/2020] [Indexed: 02/01/2023] Open
Abstract
Translation termination in bacteria requires that the stop codon be recognized by release factor RF1 or RF2, leading to hydrolysis of the ester bond between the peptide and tRNA on the ribosome. As a consequence, normal termination cannot proceed if the translated mRNA lacks a stop codon. In Escherichia coli, the ribosome rescue factor ArfA releases the nascent polypeptide from the stalled ribosome with the help of RF2 in a stop codon-independent manner. Interestingly, the reaction does not proceed if RF1 is instead provided, even though the structures of RF1 and RF2 are very similar. Here, we identified the regions of RF2 required for the ArfA-dependent ribosome rescue system. Introduction of hydrophobic residues from RF2 found at the interface between RF2 and ArfA into RF1 allowed RF1 to associate with the ArfA-ribosome complex to a certain extent but failed to promote peptidyl-tRNA hydrolysis, whereas WT RF1 did not associate with the complex. We also identified the key residues required for the process after ribosome binding. Our findings provide a basis for understanding how the ArfA-ribosome complex is specifically recognized by RF2 and how RF2 undergoes a conformational change upon binding to the ArfA-ribosome complex.
Collapse
Affiliation(s)
- Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan.
| | - Tatsuhiko Abo
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan.
| |
Collapse
|
28
|
Ayyub SA, Gao F, Lightowlers RN, Chrzanowska-Lightowlers ZM. Rescuing stalled mammalian mitoribosomes - what can we learn from bacteria? J Cell Sci 2020; 133:133/1/jcs231811. [PMID: 31896602 DOI: 10.1242/jcs.231811] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In the canonical process of translation, newly completed proteins escape from the ribosome following cleavage of the ester bond that anchors the polypeptide to the P-site tRNA, after which the ribosome can be recycled to initiate a new round of translation. Not all protein synthesis runs to completion as various factors can impede the progression of ribosomes. Rescuing of stalled ribosomes in mammalian mitochondria, however, does not share the same mechanisms that many bacteria use. The classic method for rescuing bacterial ribosomes is trans-translation. The key components of this system are absent from mammalian mitochondria; however, four members of a translation termination factor family are present, with some evidence of homology to members of a bacterial back-up rescue system. To date, there is no definitive demonstration of any other member of this family functioning in mitoribosome rescue. Here, we provide an overview of the processes and key players of canonical translation termination in both bacteria and mammalian mitochondria, followed by a perspective of the bacterial systems used to rescue stalled ribosomes. We highlight any similarities or differences with the mitochondrial translation release factors, and suggest potential roles for these proteins in ribosome rescue in mammalian mitochondria.
Collapse
Affiliation(s)
- Shreya Ahana Ayyub
- The Wellcome Centre for Mitochondrial Research, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Fei Gao
- The Wellcome Centre for Mitochondrial Research, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert N Lightowlers
- The Wellcome Centre for Mitochondrial Research, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Zofia M Chrzanowska-Lightowlers
- The Wellcome Centre for Mitochondrial Research, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
29
|
Welty R, Rau M, Pabit S, Dunstan MS, Conn GL, Pollack L, Hall KB. Ribosomal Protein L11 Selectively Stabilizes a Tertiary Structure of the GTPase Center rRNA Domain. J Mol Biol 2019; 432:991-1007. [PMID: 31874150 DOI: 10.1016/j.jmb.2019.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/14/2023]
Abstract
The GTPase Center (GAC) RNA domain in bacterial 23S rRNA is directly bound by ribosomal protein L11, and this complex is essential to ribosome function. Previous cocrystal structures of the 58-nucleotide GAC RNA bound to L11 revealed the intricate tertiary fold of the RNA domain, with one monovalent and several divalent ions located in specific sites within the structure. Here, we report a new crystal structure of the free GAC that is essentially identical to the L11-bound structure, which retains many common sites of divalent ion occupation. This new structure demonstrates that RNA alone folds into its tertiary structure with bound divalent ions. In solution, we find that this tertiary structure is not static, but rather is best described as an ensemble of states. While L11 protein cannot bind to the GAC until the RNA has adopted its tertiary structure, new experimental data show that L11 binds to Mg2+-dependent folded states, which we suggest lie along the folding pathway of the RNA. We propose that L11 stabilizes a specific GAC RNA tertiary state, corresponding to the crystal structure, and that this structure reflects the functionally critical conformation of the rRNA domain in the fully assembled ribosome.
Collapse
Affiliation(s)
- Robb Welty
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO, 63110, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael Rau
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO, 63110, USA
| | - Suzette Pabit
- School of Applied and Engineering Physics, Cornell University, Clark Hall, Ithaca, NY, 14853, USA
| | - Mark S Dunstan
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta GA, 30322, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Clark Hall, Ithaca, NY, 14853, USA
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO, 63110, USA.
| |
Collapse
|
30
|
Release factor-dependent ribosome rescue by BrfA in the Gram-positive bacterium Bacillus subtilis. Nat Commun 2019; 10:5397. [PMID: 31776341 PMCID: PMC6881298 DOI: 10.1038/s41467-019-13408-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
Rescue of the ribosomes from dead-end translation complexes, such as those on truncated (non-stop) mRNA, is essential for the cell. Whereas bacteria use trans-translation for ribosome rescue, some Gram-negative species possess alternative and release factor (RF)-dependent rescue factors, which enable an RF to catalyze stop-codon-independent polypeptide release. We now discover that the Gram-positive Bacillus subtilis has an evolutionarily distinct ribosome rescue factor named BrfA. Genetic analysis shows that B. subtilis requires the function of either trans-translation or BrfA for growth, even in the absence of proteotoxic stresses. Biochemical and cryo-electron microscopy (cryo-EM) characterization demonstrates that BrfA binds to non-stop stalled ribosomes, recruits homologous RF2, but not RF1, and induces its transition into an open active conformation. Although BrfA is distinct from E. coli ArfA, they use convergent strategies in terms of mode of action and expression regulation, indicating that many bacteria may have evolved as yet unidentified ribosome rescue systems. In bacteria, the conserved trans-translation system serves as the primary pathway of ribosome rescue, but many species can also use alternative rescue pathways. Here the authors report that in B. subtilis, the rescue factor BrfA binds to non-stop stalled ribosomes, recruits RF2 but not RF1, and induces transition of the ribosome into an open active conformation.
Collapse
|
31
|
Emmanuel JS, Sengupta A, Gordon ER, Noble JT, Cruz-Vera LR. The regulatory TnaC nascent peptide preferentially inhibits release factor 2-mediated hydrolysis of peptidyl-tRNA. J Biol Chem 2019; 294:19224-19235. [PMID: 31712310 DOI: 10.1074/jbc.ra119.011313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/01/2019] [Indexed: 01/29/2023] Open
Abstract
The tnaC regulatory gene from the tna operon of Escherichia coli controls the transcription of its own operon through an attenuation mechanism relying on the accumulation of arrested ribosomes during inhibition of its own translation termination. This free l-Trp-dependent mechanism of inhibition of translation termination remains unclear. Here, we analyzed the inhibitory effects of l-Trp on the function of two known E. coli translation termination factors, RF1 and RF2. Using a series of reporter genes, we found that the in vivo l-Trp sensitivity of tnaC gene expression is influenced by the identity of its stop codon, with the UGA stop codon producing higher expression efficiency of the tnaA-lacZ gene construct than the UAG stop codon. In vitro TnaC-peptidyl-tRNA accumulation and toe-printing assays confirmed that in the presence of l-Trp, the UGA stop codon generates higher accumulation of both TnaC-peptidyl-tRNA and arrested ribosomes than does the UAG stop codon. RF-mediated hydrolysis assays corroborated that l-Trp blocks RF2 function more than that of RF1. Mutational analyses disclosed that amino acids substitutions at the 246 and 256 residue positions surrounding the RF2-GGQ functional motif reduce l-Trp-dependent expression of the tnaC(UGA) tnaA-lacZ construct and the ability of l-Trp to inhibit RF2-mediated cleavage of the TnaC-peptidyl-tRNA. Altogether, our results indicate that l-Trp preferentially blocks RF2 activity during translation termination of the tnaC gene. This inhibition depends on the identities of amino acid residues surrounding the RF2-GGQ functional motif.
Collapse
Affiliation(s)
| | - Arnab Sengupta
- University of Alabama in Huntsville, Huntsville, Alabama 35899
| | | | | | | |
Collapse
|
32
|
Ge X, Oliveira A, Hjort K, Bergfors T, Gutiérrez-de-Terán H, Andersson DI, Sanyal S, Åqvist J. Inhibition of translation termination by small molecules targeting ribosomal release factors. Sci Rep 2019; 9:15424. [PMID: 31659219 PMCID: PMC6817905 DOI: 10.1038/s41598-019-51977-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/10/2019] [Indexed: 11/18/2022] Open
Abstract
The bacterial ribosome is an important drug target for antibiotics that can inhibit different stages of protein synthesis. Among the various classes of compounds that impair translation there are, however, no known small-molecule inhibitors that specifically target ribosomal release factors (RFs). The class I RFs are essential for correct termination of translation and they differ considerably between bacteria and eukaryotes, making them potential targets for inhibiting bacterial protein synthesis. We carried out virtual screening of a large compound library against 3D structures of free and ribosome-bound RFs in order to search for small molecules that could potentially inhibit termination by binding to the RFs. Here, we report identification of two such compounds which are found both to bind free RFs in solution and to inhibit peptide release on the ribosome, without affecting peptide bond formation.
Collapse
Affiliation(s)
- Xueliang Ge
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Ana Oliveira
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Karin Hjort
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Terese Bergfors
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Johan Åqvist
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden.
| |
Collapse
|
33
|
Svidritskiy E, Demo G, Loveland AB, Xu C, Korostelev AA. Extensive ribosome and RF2 rearrangements during translation termination. eLife 2019; 8:46850. [PMID: 31513010 PMCID: PMC6742477 DOI: 10.7554/elife.46850] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022] Open
Abstract
Protein synthesis ends when a ribosome reaches an mRNA stop codon. Release factors (RFs) decode the stop codon, hydrolyze peptidyl-tRNA to release the nascent protein, and then dissociate to allow ribosome recycling. To visualize termination by RF2, we resolved a cryo-EM ensemble of E. coli 70S•RF2 structures at up to 3.3 Å in a single sample. Five structures suggest a highly dynamic termination pathway. Upon peptidyl-tRNA hydrolysis, the CCA end of deacyl-tRNA departs from the peptidyl transferase center. The catalytic GGQ loop of RF2 is rearranged into a long β-hairpin that plugs the peptide tunnel, biasing a nascent protein toward the ribosome exit. Ribosomal intersubunit rotation destabilizes the catalytic RF2 domain on the 50S subunit and disassembles the central intersubunit bridge B2a, resulting in RF2 departure. Our structures visualize how local rearrangements and spontaneous inter-subunit rotation poise the newly-made protein and RF2 to dissociate in preparation for ribosome recycling.
Collapse
Affiliation(s)
- Egor Svidritskiy
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - Gabriel Demo
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - Anna B Loveland
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - Chen Xu
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Andrei A Korostelev
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States.,Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
34
|
Abstract
The kink-turn (k-turn) is a widespread structural motif found in functional RNA species. It typically comprises a three-nucleotide bulge followed by tandem trans sugar edge-Hoogsteen G:A base pairs. It introduces a sharp kink into the axis of duplex RNA, juxtaposing the minor grooves. Cross-strand H-bonds form at the interface, accepted by the conserved adenine nucleobases of the G:A basepairs. Alternative acceptors for one of these divides the k-turns into two conformational classes N3 and N1. The base pair that follows the G:A pairs (3b:3n) determines which conformation is adopted by a given k-turn. k-turns often mediate tertiary contacts in folded RNA species and frequently bind proteins. Common k-turn binding proteins include members of the L7Ae family, such as the human 15·5k protein. A recognition helix within these proteins binds in the widened major groove on the outside of the k-turn, that makes specific H-bonds with the conserved guanine nucleobases of the G:A pairs. L7Ae binds with extremely high affinity, and single-molecule data are consistent with folding by conformational selection. The standard, simple k-turn can be elaborated in a variety of ways, that include the complex k-turns and the k-junctions. In free solution in the absence of added metal ions or protein k-turns do not adopt the tightly-kinked conformation. They undergo folding by the binding of proteins, by the formation of tertiary contacts, and some (but not all) will fold on the addition of metal ions. Whether or not folding occurs in the presence of metal ions depends on local sequence, including the 3b:3n position, and the -1b:-1n position (5' to the bulge). In most cases -1b:-1n = C:G, so that the 3b:3n position is critical since it determines both folding properties and conformation. In general, the selection of these sequence matches a given k-turn to its biological requirements. The k-turn structure is now very well understood, to the point at which they can be used as a building block for the formation of RNA nano-objects, including triangles and squares.
Collapse
|
35
|
The structural basis for release-factor activation during translation termination revealed by time-resolved cryogenic electron microscopy. Nat Commun 2019; 10:2579. [PMID: 31189921 PMCID: PMC6561943 DOI: 10.1038/s41467-019-10608-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/14/2019] [Indexed: 11/08/2022] Open
Abstract
When the ribosome encounters a stop codon, it recruits a release factor (RF) to hydrolyze the ester bond between the peptide chain and tRNA. RFs have structural motifs that recognize stop codons in the decoding center and a GGQ motif for induction of hydrolysis in the peptidyl transfer center 70 Å away. Surprisingly, free RF2 is compact, with only 20 Å between its codon-reading and GGQ motifs. Cryo-EM showed that ribosome-bound RFs have extended structures, suggesting that RFs are compact when entering the ribosome and then extend their structures upon stop codon recognition. Here we use time-resolved cryo-EM to visualize transient compact forms of RF1 and RF2 at 3.5 and 4 Å resolution, respectively, in the codon-recognizing ribosome complex on the native pathway. About 25% of complexes have RFs in the compact state at 24 ms reaction time, and within 60 ms virtually all ribosome-bound RFs are transformed to their extended forms. Translation termination is under strong selection pressure for high speed and accuracy. Here the authors provide a 3D view of the dynamics of a translating bacterial ribosome as it recruits a class-1 release factor (RF1 or RF2) upon encountering a stop codon, and propose a structure-based kinetic model for the early steps in bacterial translation termination.
Collapse
|
36
|
Lind C, Esguerra M, Jespers W, Satpati P, Gutierrez-de-Terán H, Åqvist J. Free energy calculations of RNA interactions. Methods 2019; 162-163:85-95. [DOI: 10.1016/j.ymeth.2019.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/01/2019] [Accepted: 02/15/2019] [Indexed: 01/19/2023] Open
|
37
|
The Origin and Evolution of Release Factors: Implications for Translation Termination, Ribosome Rescue, and Quality Control Pathways. Int J Mol Sci 2019; 20:ijms20081981. [PMID: 31018531 PMCID: PMC6514570 DOI: 10.3390/ijms20081981] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 01/26/2023] Open
Abstract
The evolution of release factors catalyzing the hydrolysis of the final peptidyl-tRNA bond and the release of the polypeptide from the ribosome has been a longstanding paradox. While the components of the translation apparatus are generally well-conserved across extant life, structurally unrelated release factor peptidyl hydrolases (RF-PHs) emerged in the stems of the bacterial and archaeo-eukaryotic lineages. We analyze the diversification of RF-PH domains within the broader evolutionary framework of the translation apparatus. Thus, we reconstruct the possible state of translation termination in the Last Universal Common Ancestor with possible tRNA-like terminators. Further, evolutionary trajectories of the several auxiliary release factors in ribosome quality control (RQC) and rescue pathways point to multiple independent solutions to this problem and frequent transfers between superkingdoms including the recently characterized ArfT, which is more widely distributed across life than previously appreciated. The eukaryotic RQC system was pieced together from components with disparate provenance, which include the long-sought-after Vms1/ANKZF1 RF-PH of bacterial origin. We also uncover an under-appreciated evolutionary driver of innovation in rescue pathways: effectors deployed in biological conflicts that target the ribosome. At least three rescue pathways (centered on the prfH/RFH, baeRF-1, and C12orf65 RF-PH domains), were likely innovated in response to such conflicts.
Collapse
|
38
|
Matsumoto A. Dynamic analysis of ribosome by a movie made from many three-dimensional electron-microscopy density maps. Biophys Physicobiol 2019; 16:108-113. [PMID: 31131181 PMCID: PMC6530885 DOI: 10.2142/biophysico.16.0_108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/12/2019] [Indexed: 12/01/2022] Open
Abstract
The atomic models of the 70S ribosome including the bound molecules were built from many 3D-EM density maps. The positions and conformations of the bound molecules were determined by fitting them to the regions in the density maps which remained after fitting the 70S ribosome. Then, using these atomic models, a movie for the elongation cycle was made. For determining the sequential order in which the models appeared in the movie, the knowledge about the bound molecules and the ratchet angles were used. The movie revealed several interesting points which were not apparent from each density map, suggesting the usefulness of a movie made from many 3D-EM density maps.
Collapse
|
39
|
Abstract
Ribosomes are biological nanomachine that synthesise all proteins within a cell. It took decades to reveal the architecture of this essential cellular component. To understand the structure -function relationship of this nanomachine needed the utilisisation of different biochemical, biophysical and structural techniques. Structural studies combined with mutagenesis of the different ribosomal complexes comprising various RNAs and proteins enabled us to understand how this machine works inside a cell. Nowadays quite a number of ribosomal structures were published that confirmed biochemical studies on particular steps of protein synthesis by the ribosome . Four major steps were identified: initiation , elongation, termination and recycling. These steps lead us to the important question how the ribosome function can be regulated. Advances in technology for cryo electron microscopy: sample preparations, image recording, developments in algorithms for image analysis and processing significantly helped in revelation of structural details of the ribosome . We now have a library of ribosome structures from prokaryotes to eukaryotes that enable us to understand the complex mechanics of this nanomachine. As this structural library continues to grow, we gradually improve our understanding of this process and how it can be regulated and how the specific ribosomes can be stalled or activated, or completely disabled. This article provides a comprehensive overview of ribosomal structures that represent structural snapshots of the ribosome at its different functional states. Better understanding rises more particular questions that have to be addressed by determination structures of more complexes.Synopsis: Structural biology of the ribosome.
Collapse
Affiliation(s)
- Abid Javed
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Elena V Orlova
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK.
| |
Collapse
|
40
|
Control of mRNA Translation by Versatile ATP-Driven Machines. Trends Biochem Sci 2018; 44:167-180. [PMID: 30527974 DOI: 10.1016/j.tibs.2018.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022]
Abstract
Translation is organized in a cycle that requires ribosomal subunits, mRNA, aminoacylated transfer RNAs, and myriad regulatory factors. As soon as translation reaches a stop codon or stall, a termination or surveillance process is launched via the release factors eRF1 or Pelota, respectively. The ATP-binding cassette (ABC) protein ABCE1 interacts with release factors and coordinates the recycling process in Eukarya and Archaea. After splitting, ABCE1 stays with the small ribosomal subunit and emerges as an integral part of translation initiation complexes. In addition, eEF3 and ABCF proteins control translation by binding at the E-site. In this review, we highlight advances in the fundamental role of ABC systems in mRNA translation in view of their collective inner mechanics.
Collapse
|
41
|
'Stop' in protein synthesis is modulated with exquisite subtlety by an extended RNA translation signal. Biochem Soc Trans 2018; 46:1615-1625. [PMID: 30420414 DOI: 10.1042/bst20180190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/30/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
Abstract
Translational stop codons, UAA, UAG, and UGA, form an integral part of the universal genetic code. They are of significant interest today for their underlying fundamental role in terminating protein synthesis, but also for their potential utilisation for programmed alternative translation events. In diverse organisms, UAA has wide usage, but it is puzzling that the high fidelity UAG is selected against and yet UGA, vulnerable to suppression, is widely used, particularly in those archaeal and bacterial genomes with a high GC content. In canonical protein synthesis, stop codons are interpreted by protein release factors that structurally and functionally mimic decoding tRNAs and occupy the decoding site on the ribosome. The release factors make close contact with the decoding complex through multiple interactions. Correct interactions cause conformational changes resulting in new and enhanced contacts with the ribosome, particularly between specific bases in the mRNA and rRNA. The base following the stop codon (fourth or +4 base) may strongly influence decoding efficiency, facilitating alternative non-canonical events like frameshifting or selenocysteine incorporation. The fourth base is drawn into the decoding site with a compacted stop codon in the eukaryotic termination complex. Surprisingly, mRNA sequences upstream and downstream of this core tetranucleotide signal have a significant influence on the strength of the signal. Since nine bases downstream of the stop codon are within the mRNA channel, their interactions with rRNA, and r-proteins may affect efficiency. With this understanding, it is now possible to design stop signals of desired strength for specific applied purposes.
Collapse
|
42
|
Abstract
This review summarizes our current understanding of translation in prokaryotes, focusing on the mechanistic and structural aspects of each phase of translation: initiation, elongation, termination, and ribosome recycling. The assembly of the initiation complex provides multiple checkpoints for messenger RNA (mRNA) and start-site selection. Correct codon-anticodon interaction during the decoding phase of elongation results in major conformational changes of the small ribosomal subunit and shapes the reaction pathway of guanosine triphosphate (GTP) hydrolysis. The ribosome orchestrates proton transfer during peptide bond formation, but requires the help of elongation factor P (EF-P) when two or more consecutive Pro residues are to be incorporated. Understanding the choreography of transfer RNA (tRNA) and mRNA movements during translocation helps to place the available structures of translocation intermediates onto the time axis of the reaction pathway. The nascent protein begins to fold cotranslationally, in the constrained space of the polypeptide exit tunnel of the ribosome. When a stop codon is reached at the end of the coding sequence, the ribosome, assisted by termination factors, hydrolyzes the ester bond of the peptidyl-tRNA, thereby releasing the nascent protein. Following termination, the ribosome is dissociated into subunits and recycled into another round of initiation. At each step of translation, the ribosome undergoes dynamic fluctuations between different conformation states. The aim of this article is to show the link between ribosome structure, dynamics, and function.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen 37077, Germany
| |
Collapse
|
43
|
Graf M, Huter P, Maracci C, Peterek M, Rodnina MV, Wilson DN. Visualization of translation termination intermediates trapped by the Apidaecin 137 peptide during RF3-mediated recycling of RF1. Nat Commun 2018; 9:3053. [PMID: 30076302 PMCID: PMC6076264 DOI: 10.1038/s41467-018-05465-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022] Open
Abstract
During translation termination in bacteria, the release factors RF1 and RF2 are recycled from the ribosome by RF3. While high-resolution structures of the individual termination factors on the ribosome exist, direct structural insight into how RF3 mediates dissociation of the decoding RFs has been lacking. Here we have used the Apidaecin 137 peptide to trap RF1 together with RF3 on the ribosome and visualize an ensemble of termination intermediates using cryo-electron microscopy. Binding of RF3 to the ribosome induces small subunit (SSU) rotation and swivelling of the head, yielding intermediate states with shifted P-site tRNAs and RF1 conformations. RF3 does not directly eject RF1 from the ribosome, but rather induces full rotation of the SSU that indirectly dislodges RF1 from its binding site. SSU rotation is coupled to the accommodation of the GTPase domain of RF3 on the large subunit (LSU), thereby promoting GTP hydrolysis and dissociation of RF3 from the ribosome. In bacteria, the process of translation termination is performed by three termination release factors RF1, RF2 and RF3. Here the authors provide detailed structural insights into the mechanism by which RF1 is dissociated from the ribosome by RF3 during termination.
Collapse
Affiliation(s)
- Michael Graf
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Paul Huter
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077, Germany
| | - Miroslav Peterek
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077, Germany
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany.
| |
Collapse
|
44
|
Svidritskiy E, Demo G, Korostelev AA. Mechanism of premature translation termination on a sense codon. J Biol Chem 2018; 293:12472-12479. [PMID: 29941456 DOI: 10.1074/jbc.aw118.003232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accurate translation termination by release factors (RFs) is critical for the integrity of cellular proteomes. Premature termination on sense codons, for example, results in truncated proteins, whose accumulation could be detrimental to the cell. Nevertheless, some sense codons are prone to triggering premature termination, but the structural basis for this is unclear. To investigate premature termination, we determined a cryo-EM structure of the Escherichia coli 70S ribosome bound with RF1 in response to a UAU (Tyr) sense codon. The structure reveals that RF1 recognizes a UAU codon similarly to a UAG stop codon, suggesting that sense codons induce premature termination because they structurally mimic a stop codon. Hydrophobic interaction between the nucleobase of U3 (the third position of the UAU codon) and conserved Ile-196 in RF1 is important for misreading the UAU codon. Analyses of RNA binding in ribonucleoprotein complexes or by amino acids reveal that Ile-U packing is a frequent protein-RNA-binding motif with key functional implications. We discuss parallels with eukaryotic translation termination by the release factor eRF1.
Collapse
Affiliation(s)
- Egor Svidritskiy
- From the RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Gabriel Demo
- From the RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Andrei A Korostelev
- From the RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
45
|
Adio S, Sharma H, Senyushkina T, Karki P, Maracci C, Wohlgemuth I, Holtkamp W, Peske F, Rodnina MV. Dynamics of ribosomes and release factors during translation termination in E. coli. eLife 2018; 7:34252. [PMID: 29889659 PMCID: PMC5995542 DOI: 10.7554/elife.34252] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/11/2018] [Indexed: 12/28/2022] Open
Abstract
Release factors RF1 and RF2 promote hydrolysis of peptidyl-tRNA during translation termination. The GTPase RF3 promotes recycling of RF1 and RF2. Using single molecule FRET and biochemical assays, we show that ribosome termination complexes that carry two factors, RF1–RF3 or RF2–RF3, are dynamic and fluctuate between non-rotated and rotated states, whereas each factor alone has its distinct signature on ribosome dynamics and conformation. Dissociation of RF1 depends on peptide release and the presence of RF3, whereas RF2 can dissociate spontaneously. RF3 binds in the GTP-bound state and can rapidly dissociate without GTP hydrolysis from termination complex carrying RF1. In the absence of RF1, RF3 is stalled on ribosomes if GTP hydrolysis is blocked. Our data suggest how the assembly of the ribosome–RF1–RF3–GTP complex, peptide release, and ribosome fluctuations promote termination of protein synthesis and recycling of the release factors. Inside cells, molecular machines called ribosomes make proteins using messenger RNA as a template. However, the template contains more than just the information needed to create the protein. A ‘stop codon’ in the mRNA marks where the ribosome should stop. When this is reached a group of proteins called release factors removes the newly made protein from the ribosome. Bacteria typically have three types of release factors. RF1 and RF2 recognize the stop codon, and RF3 helps to release RF1 or RF2 from the ribosome so that it can be recycled to produce another protein. It was not fully understood how the release factors interact with the ribosome and how this terminates protein synthesis. Adio et al. used TIRF microscopy to study individual ribosomes from the commonly studied bacteria species Escherichia coli. This technique allows researchers to monitor movements of the ribosome and record how release factors bind to it. The results of the experiments performed by Adio et al. show that although RF1 and RF2 are very similar to each other, they interact with the ribosome in different ways. In addition, only RF1 relies upon RF3 to release it from the ribosome; RF2 can release itself. RF3 releases RF1 by forcing the ribosome to change shape. RF3 then uses energy produced by the breakdown of a molecule called GTP to help release itself from the ribosome. Most importantly, the findings presented by Adio et al. highlight that the movements of ribosomes and release factors during termination are only loosely coupled rather than occur in a set order. Other molecular machines are likely to work in a similar way. The results could also help us to understand the molecular basis of several human diseases, such as Duchenne muscular dystrophy and cystic fibrosis, that result from ribosomes not recognizing stop codons in the mRNA.
Collapse
Affiliation(s)
- Sarah Adio
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Heena Sharma
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Tamara Senyushkina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Prajwal Karki
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ingo Wohlgemuth
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Wolf Holtkamp
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
46
|
Conformational Control of Translation Termination on the 70S Ribosome. Structure 2018; 26:821-828.e3. [PMID: 29731232 DOI: 10.1016/j.str.2018.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/07/2018] [Accepted: 04/05/2018] [Indexed: 11/20/2022]
Abstract
Translation termination ensures proper lengths of cellular proteins. During termination, release factor (RF) recognizes a stop codon and catalyzes peptide release. Conformational changes in RF are thought to underlie accurate translation termination. However, structural studies of ribosome termination complexes have only captured RFs in a conformation that is consistent with the catalytically active state. Here, we employ a hyper-accurate RF1 variant to obtain crystal structures of 70S termination complexes that suggest a structural pathway for RF1 activation. We trapped RF1 conformations with the catalytic domain outside of the peptidyl-transferase center, while the codon-recognition domain binds the stop codon. Stop-codon recognition induces 30S decoding-center rearrangements that precede accommodation of the catalytic domain. The separation of codon recognition from the opening of the catalytic domain suggests how rearrangements in RF1 and in the ribosomal decoding center coordinate stop-codon recognition with peptide release, ensuring accurate translation termination.
Collapse
|
47
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 386] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
48
|
Hentschel J, Burnside C, Mignot I, Leibundgut M, Boehringer D, Ban N. The Complete Structure of the Mycobacterium smegmatis 70S Ribosome. Cell Rep 2018; 20:149-160. [PMID: 28683309 DOI: 10.1016/j.celrep.2017.06.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/03/2017] [Accepted: 06/10/2017] [Indexed: 11/24/2022] Open
Abstract
The ribosome carries out the synthesis of proteins in every living cell. It consequently represents a frontline target in anti-microbial therapy. Tuberculosis ranks among the leading causes of death worldwide, due in large part to the combination of difficult-to-treat latency and antibiotic resistance. Here, we present the 3.3-Å cryo-EM structure of the 70S ribosome of Mycobacterium smegmatis, a close relative to the human pathogen Mycobacterium tuberculosis. The structure reveals two additional ribosomal proteins and localizes them to the vicinity of drug-target sites in both the catalytic center and the decoding site of the ribosome. Furthermore, we visualized actinobacterium-specific rRNA and protein expansions that extensively remodel the ribosomal surface with implications for polysome organization. Our results provide a foundation for understanding the idiosyncrasies of mycobacterial translation and reveal atomic details of the structure that will facilitate the design of anti-tubercular therapeutics.
Collapse
Affiliation(s)
- Jendrik Hentschel
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, Otto-Stern-Weg 5, Zürich 8093, Switzerland
| | - Chloe Burnside
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, Otto-Stern-Weg 5, Zürich 8093, Switzerland
| | - Ingrid Mignot
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, Otto-Stern-Weg 5, Zürich 8093, Switzerland
| | - Marc Leibundgut
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, Otto-Stern-Weg 5, Zürich 8093, Switzerland
| | - Daniel Boehringer
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, Otto-Stern-Weg 5, Zürich 8093, Switzerland
| | - Nenad Ban
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, Otto-Stern-Weg 5, Zürich 8093, Switzerland.
| |
Collapse
|
49
|
Casy W, Prater AR, Cornish PV. Operative Binding of Class I Release Factors and YaeJ Stabilizes the Ribosome in the Nonrotated State. Biochemistry 2018; 57:1954-1966. [PMID: 29499110 DOI: 10.1021/acs.biochem.7b00824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During translation, the small subunit of the ribosome rotates with respect to the large subunit primarily between two states as mRNA is being translated into a protein. At the termination of bacterial translation, class I release factors (RFs) bind to a stop codon in the A-site and catalyze the release of the peptide chain from the ribosome. Periodically, mRNA is truncated prematurely, and the translating ribosome stalls at the end of the mRNA forming a nonstop complex requiring one of several ribosome rescue factors to intervene. One factor, YaeJ, is structurally homologous with the catalytic region of RFs but differs by binding to the ribosome directly through its C-terminal tail. Structures of the ribosome show that the ribosome adopts the nonrotated state conformation when these factors are bound. However, these studies do not elucidate the influence of binding to cognate or noncognate codons on the dynamics of intersubunit rotation. Here, we investigate the effects of wild-type and mutant forms of RF1, RF2, and YaeJ binding on ribosome intersubunit rotation using single-molecule Förster resonance energy transfer. We show that both RF1 binding and RF2 binding are sufficient to shift the population of posthydrolysis ribosome complexes from primarily the rotated to the nonrotated state only when a cognate stop codon is present in the A-site. Similarly, YaeJ binding stabilizes nonstop ribosomal complexes in the nonrotated state. Along with previous studies, these results are consistent with the idea that directed conformational changes and binding of subsequent factors to the ribosome are requisite for efficient termination and ribosome recycling.
Collapse
Affiliation(s)
- Widler Casy
- Department of Biochemistry , University of Missouri , Columbia , Missouri 65211 , United States
| | - Austin R Prater
- Department of Biochemistry , University of Missouri , Columbia , Missouri 65211 , United States
| | - Peter V Cornish
- Department of Biochemistry , University of Missouri , Columbia , Missouri 65211 , United States
| |
Collapse
|
50
|
Post-termination Ribosome Intermediate Acts as the Gateway to Ribosome Recycling. Cell Rep 2018; 20:161-172. [PMID: 28683310 DOI: 10.1016/j.celrep.2017.06.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/06/2017] [Accepted: 06/09/2017] [Indexed: 01/24/2023] Open
Abstract
During termination of translation, the nascent peptide is first released from the ribosome, which must be subsequently disassembled into subunits in a process known as ribosome recycling. In bacteria, termination and recycling are mediated by the translation factors RF, RRF, EF-G, and IF3, but their precise roles have remained unclear. Here, we use single-molecule fluorescence to track the conformation and composition of the ribosome in real time during termination and recycling. Our results show that peptide release by RF induces a rotated ribosomal conformation. RRF binds to this rotated intermediate to form the substrate for EF-G that, in turn, catalyzes GTP-dependent subunit disassembly. After the 50S subunit departs, IF3 releases the deacylated tRNA from the 30S subunit, thus preventing reassembly of the 70S ribosome. Our findings reveal the post-termination rotated state as the crucial intermediate in the transition from termination to recycling.
Collapse
|