1
|
Tao S, Cao Z, Xiao X, Song Z, Xiong D, Tian Y, Deng W, Liu Y, Hou H, Zou G, Ji X. Tunable Platform Capacity of Metal-Organic Frameworks via High-Entropy Strategy for Ultra-Fast Sodium Storage. NANO-MICRO LETTERS 2025; 17:201. [PMID: 40138092 PMCID: PMC11947337 DOI: 10.1007/s40820-025-01706-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025]
Abstract
Precise regulation of the platform capacity/voltage of electrode materials contributes to the efficient operation of sodium-ion fast-charging devices. However, the design of such electrode materials is still in a blank stage. Herein, based on tunable metal-organic frameworks, we have designed a novel material system-two-dimensional high-entropy metal-organic frameworks (HE-MOFs), which exhibits unique properties in sodium storage and is of vital importance for realizing fast-charging batteries. Furthermore, we have found that the high-entropy effect can regulate the electronic structure, the sodium-ion migration environment, and the sodium-ion storage active sites, thereby meeting the requirements of electrode materials for sodium-ion fast-charging devices. Impressively, the HE-MOFs material still maintains a reversible specific capacity of 89 mAh g-1 at a current density of 20 A g-1. It presents an ideal sodium storage voltage plateau of approximately 0.5 V, and its platform capacity is increased to 122.7 mAh g-1, far superior to that of Mn-MOFs (with no platform capacity). This helps to reduce safety hazards during the fast-charging process and demonstrates its great application value in the fields of fast-charging sodium-ion batteries and capacitors. Our research findings have broken the barriers to the application of non-conductive MOFs as energy storage materials, enhanced the understanding of the regulation of platform capacity and voltage, and paved the way for the realization of high-security sodium-ion fast-charging devices.
Collapse
Affiliation(s)
- Shusheng Tao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Ziwei Cao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Xuhuan Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Zirui Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Department of Materials, University of Oxford, Oxford, OX1 3PH, UK
| | - Dengyi Xiong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Ye Tian
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Wentao Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Youcai Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| |
Collapse
|
2
|
Wu Y, Tang M, Barsoum ML, Chen Z, Huang F. Functional crystalline porous framework materials based on supramolecular macrocycles. Chem Soc Rev 2025; 54:2906-2947. [PMID: 39931748 DOI: 10.1039/d3cs00939d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Crystalline porous framework materials like metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) possess periodic extended structures, high porosity, tunability and designability, making them good candidates for sensing, catalysis, gas adsorption, separation, etc. Despite their many advantages, there are still problems affecting their applicability. For example, most of them lack specific recognition sites for guest uptake. Supramolecular macrocycles are typical hosts for guest uptake in solution. Macrocycle-based crystalline porous framework materials, in which macrocycles are incorporated into framework materials, are growing into an emerging area as they combine reticular chemistry and supramolecular chemistry. Organic building blocks which incorporate macrocycles endow the framework materials with guest recognition sites in the solid state through supramolecular interactions. Distinct from solution-state molecular recognition, the complexation in the solid state is ordered and structurally achievable. This allows for determination of the mechanism of molecular recognition through noncovalent interactions while that of the traditional recognition in solution is ambiguous. Furthermore, crystalline porous framework materials in the solid state are well-defined and recyclable, and can realize what is impossible in solution. In this review, we summarize the progress of the incorporation of macrocycles into functional crystalline porous frameworks (i.e., MOFs and COFs) for their solid state applications such as molecular recognition, chiral separation and catalysis. We focus on the design and synthesis of organic building blocks with macrocycles, and then illustrate the applications of framework materials with macrocycles. Finally, we propose the future directions of macrocycle-based framework materials as reliable carriers for specific molecular recognition, as well as guiding the crystalline porous frameworks with their chemistry, applications and commercialization.
Collapse
Affiliation(s)
- Yitao Wu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| | - Meiqi Tang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Michael L Barsoum
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Zhijie Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| |
Collapse
|
3
|
Hu G, Liu Q, Deng H. Space Exploration of Metal-Organic Frameworks in the Mesopore Regime. Acc Chem Res 2024. [PMID: 39668693 DOI: 10.1021/acs.accounts.4c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
ConspectusThe past decades have witnessed the proliferation of porous materials offering high surface areas and the revolution in gas storage and separation, where metal-organic frameworks (MOFs) stand out as an important family. Alongside the pursuit of higher surface area, the increase in the size of guests, such as nanoparticles and biomolecules, has also led to the demand for larger space defined by the pores and cages within the MOF structure, from the conventional micropore regime (<2 nm) toward the mesopore regime (2-50 nm). Among the essential elements in the design of MOFs, molecular building blocks, their coordination and spatial arrangement, the chemistry for molecular design, and coordination bonds have become relatively mature, offering precise control of the shape and environment of the molecularly defined 3D cages; however, the correlation between the geometrical parameters and the size of polyhedrons describing the cages, concerning the spatial arrangement of building blocks, is much less explored.In this Account, we made efforts to associate actual cage size with the critical geometrical components, vertices, edges, connectivity, rings, and underlying polyhedrons, as well as the combination of components of various types in the design of MOFs. Several trends were found, such as influence from connectivity and expansion efficiency, offering insights into the construction of 3D cages in MOFs. This enables the creation of extremely large mesoporous cages in MOFs with an internal diameter up to 11.4 nm from relatively small building blocks. Furthermore, we discuss a strategy of partial removal or replacement of organic linkers to construct mesoporous cages from readily known topologies.All of the above efforts urged us to ask the following questions: Is there any limit in the sculpting of the 3D space from molecules? How large an area can one chemical bond support? The answer to these questions will deepen the knowledge of efficient utilization of chemical bonds in the sculpting of 3D spaces and guide the design of larger mesopores. Several general geometrical principals emerged: (1) Expansion efficiency and radius are positively correlated with the number of vertices. (2) Increase in the number of vertices and decrease of their connectivity favor the construction and expansion of large cages. (3) The boundary of the 3D space constructed by the chemical bonds is related to the polyhedron type and determined by the energy involved in crystallinity. Such principals are likely to be applicable also in the design of isolated cages in supramolecular chemistry. In addition to the structural design and synthesis, the applications of these mesoporous cages in MOFs are also summarized.
Collapse
Affiliation(s)
- Gaoli Hu
- Key Laboratory of Biomedical Polymers, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qi Liu
- College of Chemistry, Chemical Engineering and Materials, Soochow University, Suzhou 215123, China
| | - Hexiang Deng
- Key Laboratory of Biomedical Polymers, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Yang M, Yuan W, Li XY, Liu B, Zhou H. Metal-organic framework with pore contraction and modification by diethylammonium cations for record SO 2/CO 2 separation. Chem Commun (Camb) 2024; 60:12754-12757. [PMID: 39400004 DOI: 10.1039/d4cc04382k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A robust MOF with diethylammonium cations in its pores, enhances pore partitioning and modifies the environment, enabling selective and dense SO2 packing through hydrogen bonds. It achieves a reversible SO2 uptake with a high adsorption enthalpy and record IAST selectivity of 1182 for SO2/CO2 at 298 K and 1 bar.
Collapse
Affiliation(s)
- Mei Yang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Wenke Yuan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Xiu-Yuan Li
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, China.
| | - Bo Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Huifang Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
5
|
Xu Z, Yang W, Liu H, Jiang S, Sue ACH. Guest-Induced Conformational Transformations in Tiara[5]arene Crystals: A Pathway for Molecular Sieving. JACS AU 2024; 4:3475-3483. [PMID: 39328758 PMCID: PMC11423331 DOI: 10.1021/jacsau.4c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 09/28/2024]
Abstract
In pursuit of environmental sustainability and energy efficiency, assorted macrocyclic compounds have recently emerged as crystalline adsorbents for the efficient molecular sieving of various chemical commodities. Herein, we delve into the conformational characteristics and solid-state packing modes of tiara[5]arenes (T[5]), a rim-differentiated pillar[5]arene derivative. By meticulously exploring the conformational space, we have successfully identified a multitude of distinct T[5] conformers within a relatively narrow energy range of 22 kJ/mol. This finding underscores the inherent conformational flexibility of this macrocyclic scaffold, enabling T[5] to adapt diverse packing arrangements in the solid state. While solvent-free T[5] crystals do not exhibit permanent porosity, they undergo solvomorphic interconversions when exposed to various guest compounds. Our study demonstrates that T[5]-based crystalline materials exhibit a notable preference for selectively capturing aromatic and olefinic solvents, such as benzene, toluene, chlorobenzene, and cyclohexene, over their aliphatic hydrocarbon counterparts from equivalent volume liquid mixtures, achieving up to 10:1 selectivity between benzene and cyclohexane.
Collapse
Affiliation(s)
- Zezhao Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Weiwei Yang
- Institute for Molecular Design and Synthesis, Tianjin University, Tianjin 300072, China
| | - Huiyu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shan Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
Wang Z, Wu Y, Zhang Z, Sheng X, Fang S, Liu Y, Gong Y, Wang M, Song N, Huang F. A Pillar[5]arene-Containing Metal-Organic Framework for Rapid and Highly Capable Adsorption of a Mustard Gas Simulant. J Am Chem Soc 2024; 146:23330-23337. [PMID: 39110895 DOI: 10.1021/jacs.4c06061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Mustard gas causes irreversible damage upon inhalation or contact with the human body. Consequently, the development of adsorbents for effective interception of mustard gas at low concentrations and high flow rates is an urgent necessity. Here we report a stable porous pillar[5]arene-containing metal-organic framework (MOF) based on zirconium (EtP5-Zr-scu), demonstrating that embedding pillar[5]arene units in MOFs can provide specific binding sites for efficient adsorption of a mustard gas simulant, 2-chloroethyl ethyl sulfide (CEES). EtP5-Zr-scu achieves a higher capacity and more rapid adsorption compared to its counterpart without embedded pillar[5]arene units (H4tcpt-Zr-scu) and perethylated pillar[5]arene (EtP5) alone. Single crystal X-ray diffraction and solid-state nuclear magnetic resonance reveal that the enhanced performance of EtP5-Zr-scu is derived from the host-guest complexation between CEES and pillar[5]arene moieties. Moreover, breakthrough experiments confirmed that the interception performance of EtP5-Zr-scu against CEES (800 ppm, 120 mL/min) was significantly improved (566 min/g) compared with H4tcpt-Zr-scu (353 min/g) and EtP5 (0.873 min/g), attributed to the integration of open channels with specific recognition sites. This work marks a significant advancement in the development of macrocycle-incorporated crystalline framework materials with recognition sites for the efficient capture of guest molecules.
Collapse
Affiliation(s)
- Zeju Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Yitao Wu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhenguo Zhang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xinru Sheng
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shuai Fang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yang Liu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yide Gong
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Mengbin Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Nan Song
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| |
Collapse
|
7
|
Zhang G, Zhang J, Tao Y, Gan F, Lin G, Liang J, Shen C, Zhang Y, Qiu H. Facile fabrication of recyclable robust noncovalent porous crystals from low-symmetry helicene derivative. Nat Commun 2024; 15:5469. [PMID: 38937477 PMCID: PMC11211482 DOI: 10.1038/s41467-024-49865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
Porous frameworks constructed via noncovalent interactions show wide potential in molecular separation and gas adsorption. However, it remains a major challenge to prepare these materials from low-symmetry molecular building blocks. Herein, we report a facile strategy to fabricate noncovalent porous crystals through modular self-assembly of a low-symmetry helicene racemate. The P and M enantiomers in the racemate first stack into right- and left-handed triangular prisms, respectively, and subsequently the two types of prisms alternatively stack together into a hexagonal network with one-dimensional channels with a diameter of 14.5 Å. Remarkably, the framework reveals high stability upon heating to 275 °C, majorly due to the abundant π-interactions between the complementarily engaged helicene building blocks. Such porous framework can be readily prepared by fast rotary evaporation, and is easy to recycle and repeatedly reform. The refined porous structure and enriched π-conjugation also favor the selective adsorption of a series of small molecules.
Collapse
Affiliation(s)
- Guoli Zhang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jian Zhang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Tao
- Shanghai Key Laboratory of High Resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Fuwei Gan
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Geyu Lin
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juncong Liang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yuebiao Zhang
- Shanghai Key Laboratory of High Resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
8
|
Yu L, He M, Yao J, Xia Q, Yang S, Li J, Wang H. A robust aluminum-octacarboxylate framework with scu topology for selective capture of sulfur dioxide. Chem Sci 2024; 15:8530-8535. [PMID: 38846381 PMCID: PMC11151831 DOI: 10.1039/d4sc01877j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
The high structural diversity and porosity of metal-organic frameworks (MOFs) promote their applications in selective gas adsorption. The development of robust MOFs that are stable against corrosive SO2 remains a daunting challenge. Here, we report a highly robust aluminum-based MOF (HIAM-330) built on a 4-connected Al3(OH)2(COO)4 cluster and 8-connected octacarboxylate ligand with a (4,8)-connected scu topology. It exhibits a fully reversible SO2 uptake of 12.1 mmol g-1 at 298 K and 1 bar. It is capable of selective capture of SO2 over other gases (CO2, CH4, and N2) with high adsorption selectivities of 60, 330, and 3537 for equimolar mixtures of SO2/CO2, SO2/CH4, and SO2/N2, respectively, at 298 K and 1 bar. Breakthrough measurements verified the capability of HIAM-330 for selective capture of SO2 (2500 ppm) over CO2 or N2. High-resolution synchrotron X-ray powder diffraction of SO2 loaded HIAM-330 revealed the binding domains of adsorbed SO2 molecules and host-guest interactions.
Collapse
Affiliation(s)
- Liang Yu
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic 7098 Liuxian Blvd., Nanshan Shenzhen 518055 P. R. China
| | - Meng He
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Jinze Yao
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Qibin Xia
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Sihai Yang
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Jing Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic 7098 Liuxian Blvd., Nanshan Shenzhen 518055 P. R. China
- Department of Chemistry and Chemical Biology, Rutgers University 123 Bevier Road Piscataway NJ 08854 USA
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic 7098 Liuxian Blvd., Nanshan Shenzhen 518055 P. R. China
| |
Collapse
|
9
|
Li L, Kang K, Chee T, Tian Z, Sun Q, Xiao C. Incorporating Two Crown Ether Struts into the Backbone of Robust Zirconium-Based Metal-Organic Frameworks as Custom-Designed Efficient Collectors for Radioactive Metal Ions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308663. [PMID: 38311580 PMCID: PMC11005732 DOI: 10.1002/advs.202308663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/19/2024] [Indexed: 02/06/2024]
Abstract
The incorporation of crown ether into metal-organic frameworks (MOFs) is garnered significant attention because these macrocyclic units can fine-tune the inherent properties of the frameworks. However, the synthesis of flexible crown ethers with precise structures as the fundamental building blocks of crystalline MOFs remains a challenging endeavor, with only a limited number of transition metal examples existing to date. Herein, 18-crown-6 and 24-crown-8 struts are successfully incorporated into the skeleton of zirconium-based MOFs to obtain two new and stable crown ether-based MOFs, denoted as ZJU-X100 and ZJU-X102. These newly developed MOFs displayed high porosity and remarkable stability when exposed to various solvents, boiling water, pH values, and even concentrated HCl conditions. Thanks to their highly ordered porous structure and high-density embedding of specific binding sites within tubular channels, these two MOFs exhibited extremely fast sorption kinetics and demonstrated outstanding performance in the uptake of strontium and cesium ions, respectively. Furthermore, the structures of Sr-adsorbed ZJU-X100 and Cs-adsorbed ZJU-X102 are solved and confirmed the precise location of Sr2+/Cs+ in the cavity of 18-crown-6/24-crown-8. This makes modular mosaic of different crown ethers into the skeleton of stable zirconium-based MOFs possible and promote such materials have broad applications in sorption, sensing, and catalysis.
Collapse
Affiliation(s)
- Lei Li
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058P. R. China
| | - Kang Kang
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058P. R. China
| | - Tien‐Shee Chee
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141South Korea
| | - Zhenjiang Tian
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058P. R. China
| | - Qi Sun
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058P. R. China
| | - Chengliang Xiao
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058P. R. China
| |
Collapse
|
10
|
Li L, Zhao S, Huang H, Dong M, Liang J, Li H, Hao J, Zhao E, Gu X. Advanced Soft Porous Organic Crystal with Multiple Gas-Induced Single-Crystal-to-Single-Crystal Transformations for Highly Selective Separation of Propylene and Propane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303057. [PMID: 38098252 PMCID: PMC10916656 DOI: 10.1002/advs.202303057] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/20/2023] [Indexed: 03/07/2024]
Abstract
Soft porous organic crystals with stimuli-responsive single-crystal-to-single-crystal (SCSC) transformations are important tools for unraveling their structural transformations at the molecular level, which is of crucial importance for the rapid development of stimuli-responsive systems. Carefully balancing the crystallinity and flexibility of materials is the prerequisite to construct advanced organic crystals with SCSC, which remains challenging. Herein, a squaraine-based soft porous organic crystal (SPOC-SQ) with multiple gas-induced SCSC transformations and temperature-regulated gate-opening adsorption of various C1-C3 hydrocarbons is reported. SPOC-SQ is featured with both crystallinity and flexibility, which enable pertaining the single crystallinity of the purely organic framework during accommodating gas molecules and directly unveiling gas-framework interplays by SCXRD technique. Thanks to the excellent softness of SPOC-SQ crystals, multiple metastable single crystals are obtained after gas removals, which demonstrates a molecular-scale shape-memory effect. Benefiting from the single crystallinity, the molecule-level structural evolutions of the SPOC-SQ crystal framework during gas departure are uncovered. With the unique temperature-dependent gate-opening structural transformations, SPOC-SQ exhibits distinctly different absorption behaviors towards C3 H6 and C3 H8 , and highly efficient and selective separation of C3 H6 /C3 H8 (v/v, 50/50) is achieved at 273 K. Such advanced soft porous organic crystals are of both theoretical values and practical implications.
Collapse
Affiliation(s)
- Lin Li
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringAnalysis and Test CenterBeijing University of Chemical TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Shuhong Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringAnalysis and Test CenterBeijing University of Chemical TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Huiming Huang
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringAnalysis and Test CenterBeijing University of Chemical TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Muyao Dong
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringAnalysis and Test CenterBeijing University of Chemical TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Jie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringAnalysis and Test CenterBeijing University of Chemical TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringAnalysis and Test CenterBeijing University of Chemical TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Jian Hao
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringAnalysis and Test CenterBeijing University of Chemical TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Engui Zhao
- School of ScienceHarbin Institute of TechnologyShenzhenHIT Campus of University TownShenzhen518055P. R. China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringAnalysis and Test CenterBeijing University of Chemical TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
- Beijing National Laboratory for Molecular SciencesBeijing100190P. R. China
| |
Collapse
|
11
|
Liu J, Liu X, Liu Q, Cao J, Lv X, Wang S, Tian T, Zhou X, Deng H. Mesoporous Metal-Organic Frameworks for Catalytic RNA Deprotection and Activation. Angew Chem Int Ed Engl 2023; 62:e202302649. [PMID: 37338989 DOI: 10.1002/anie.202302649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
A metal-organic framework (MOF) with mespores (2 to 50 nm) allows the inclusion of large biomolecules, such as nucleic acids. However, chemical reaction on the nucleic acids, to further regulate their bioactivity, is yet to be demonstrated within MOF pores. Here, we report the deprotection of carbonate protected RNA molecules (21 to 102 nt) to restore their original activity using a MOF as a heterogeneous catalyst. Two MOFs, MOF-626 and MOF-636 are designed and synthesized, with mesopores of 2.2 and 2.8 nm, respectively, carrying isolated metal sites (Ni, Co, Cu, Pd, Rh and Ru). The pores favor the entrance of RNA, while the metal sites catalyze C-O bond cleavage at the carbonate group. Complete conversion of RNA is achieved by Pd-MOF-626, 90 times more efficiently than Pd(NO3 )2 . MOF crystals are also removable from the aqueous reaction media, leaving a negligible metal footprint, 3.9 ppb, only 1/55 of that using homogeneous Pd catalysts. These features make MOF potentially suited for bioorthogonal chemistry.
Collapse
Affiliation(s)
- Jin Liu
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Xingyu Liu
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan, 430071, China
| | - Qi Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jing Cao
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Xinheng Lv
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Shaoru Wang
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan, 430071, China
| | - Tian Tian
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan, 430071, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan, 430071, China
| | - Hexiang Deng
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
- Yangtze Memory Laboratories, Wuhan, 430075, China
| |
Collapse
|
12
|
Wu Y, Tang M, Wang Z, Shi L, Xiong Z, Chen Z, Sessler JL, Huang F. Pillararene incorporated metal-organic frameworks for supramolecular recognition and selective separation. Nat Commun 2023; 14:4927. [PMID: 37582786 PMCID: PMC10427641 DOI: 10.1038/s41467-023-40594-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
Crystalline frameworks containing incorporated flexible macrocycle units can afford new opportunities in molecular recognition and selective separation. However, such functionalized frameworks are difficult to prepare and challenging to characterize due to the flexible nature of macrocycles, which limits the development of macrocycle-based crystalline frameworks. Herein, we report the design and synthesis of a set of metal-organic frameworks (MOFs) containing pillar[5]arene units. The pillar[5]arene units were uniformly embedded in the periodic frameworks. Single crystal X-ray diffraction analysis revealed an interpenetrated network that appears to hinder the rotation of the pillar[5]arene repeating units in the frameworks, and it therefore resulted in the successful determination of the precise pillar[5]arene host structure in a MOF crystal. These MOFs can recognize paraquat and 1,2,4,5-tetracyanobenzene in solution and selectively remove trace pyridine from toluene with relative ease. The work presented here represents a critical step towards the synthesis of macrocycle-incorporated crystalline frameworks with well-defined structures and functional utility.
Collapse
Affiliation(s)
- Yitao Wu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Meiqi Tang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zeju Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Le Shi
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Zhangyi Xiong
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Zhijie Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China.
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712-1224, USA.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China.
| |
Collapse
|
13
|
Jin QY, Liang YY, Zhang ZH, Meng L, Geng JS, Hu KQ, Yu JP, Chai ZF, Mei L, Shi WQ. Colossal negative thermal expansion in a cucurbit[8]uril-enabled uranyl-organic polythreading framework via thermally induced relaxation. Chem Sci 2023; 14:6330-6340. [PMID: 37325134 PMCID: PMC10266465 DOI: 10.1039/d3sc01343j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
It is an ongoing goal to achieve the effective regulation of the thermal expansion properties of materials. In this work, we propose a method for incorporating host-guest complexation into a framework structure and construct a flexible cucurbit[8]uril uranyl-organic polythreading framework, U3(bcbpy)3(CB8). U3(bcbpy)3(CB8) can undergo huge negative thermal expansion (NTE) and has a large volumetric coefficient of -962.9 × 10-6 K-1 within the temperature range of 260 K to 300 K. Crystallographic snapshots of the polythreading framework at various temperatures reveal that, different from the intrinsic transverse vibrations of the subunits of metal-organic frameworks (MOFs) that experience NTE via a well-known hinging model, the remarkable NTE effect observed here is the result of a newly-proposed thermally induced relaxation process. During this process, an extreme spring-like contraction of the flexible CB8-based pseudorotaxane units, with an onset temperature of ∼260 K, follows a period of cumulative expansion. More interestingly, compared with MOFs that commonly have relatively strong coordination bonds, due to the difference in the structural flexibility and adaptivity of the weakly bonded U3(bcbpy)3(CB8) polythreading framework, U3(bcbpy)3(CB8) shows unique time-dependent structural dynamics related to the relaxation process, the first time this has been reported in NTE materials. This work provides a feasible pathway for exploring new NTE mechanisms by using tailored supramolecular host-guest complexes with high structural flexibility and has promise for the design of new kinds of functional metal-organic materials with controllable thermal responsive behaviour.
Collapse
Affiliation(s)
- Qiu-Yan Jin
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yuan-Yuan Liang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University Changzhou 213164 China
| | - Liao Meng
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Jun-Shan Geng
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
14
|
Hu G, Liu Q, Zhou Y, Yan W, Sun Y, Peng S, Zhao C, Zhou X, Deng H. Extremely Large 3D Cages in Metal-Organic Frameworks for Nucleic Acid Extraction. J Am Chem Soc 2023. [PMID: 37224417 DOI: 10.1021/jacs.3c02128] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Three-dimensional (3D) cages in the mesopore regime (2-50 nm) assembled from molecular building blocks are highly desirable in biological applications; however, their synthesis in crystalline form is quite challenging, as well as their structure characterization. Here, we report the synthesis of extremely large 3D cages in MOF crystals, with internal cage sizes of 6.9, and 8.5 nm in MOF-929; 9.3 and 11.4 nm in MOF-939, in cubic unit cells, a = 17.4 and 22.8 nm, respectively. These cages are constructed from relatively short organic linkers with the lengths of 0.85 and 1.3 nm, where the influence from molecular motion is minimized, thus favoring their crystallization. A 0.45 nm linker length elongation leads to a maximum 2.9 nm increase in cage size, giving a supreme efficiency in cage expansion. The spatial arrangements of these 3D cages were visualized by both X-ray diffraction and transmission electron microscopy. The efforts to obtain these cages in crystals pushed forward the size boundary for the construction of 3D cages from molecules and also exploited the limit of the area in space possibly supported per chemical bond, where the expansion efficiencies of the cages were found to play a critical role. These extremely large 3D cages in MOFs were useful in the complete extraction of long nucleic acid, such as total RNA and plasmid from aqueous solution.
Collapse
Affiliation(s)
- Gaoli Hu
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430075, China
| | - Qi Liu
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Yan
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yuqing Sun
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shuang Peng
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chengbin Zhao
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430075, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hexiang Deng
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430075, China
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
15
|
Finkelstein P, Reisenbauer JC, Botlik BB, Green O, Florin A, Morandi B. Nitrogen atom insertion into indenes to access isoquinolines. Chem Sci 2023; 14:2954-2959. [PMID: 36937579 PMCID: PMC10016357 DOI: 10.1039/d2sc06952k] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
We report a convenient protocol for a nitrogen atom insertion into indenes to afford isoquinolines. The reaction uses a combination of commercially available phenyliodine(iii) diacetate (PIDA) and ammonium carbamate as the nitrogen source to furnish a wide range of isoquinolines. Various substitution patterns and commonly used functional groups are well tolerated. The operational simplicity renders this protocol broadly applicable and has been successfully extended towards the direct interconversion of cyclopentadienes into the corresponding pyridines. Furthermore, this strategy enables the facile synthesis of 15N labelled isoquinolines, using 15NH4Cl as a commercial 15N source.
Collapse
Affiliation(s)
- Patrick Finkelstein
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Julia C Reisenbauer
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Bence B Botlik
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Ori Green
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Andri Florin
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| |
Collapse
|
16
|
Zhou Z, Li S, Wang W, Ma D, Zhao H, Jia L, Jia Y, Yu B. Two bis-color excited luminescent sensors of two-dimensional Cd(II)-MOFs bearing mixed ligands for detection of ions and pesticides in aqueous solutions. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Ernst M, Poręba T, Gnägi L, Gryn’ova G. Locating Guest Molecules inside Metal-Organic Framework Pores with a Multilevel Computational Approach. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:523-531. [PMID: 36660093 PMCID: PMC9841564 DOI: 10.1021/acs.jpcc.2c05561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Molecular docking has traditionally mostly been employed in the field of protein-ligand binding. Here, we extend this method, in combination with DFT-level geometry optimizations, to locate guest molecules inside the pores of metal-organic frameworks. The position and nature of the guest molecules tune the physicochemical properties of the host-guest systems. Therefore, it is essential to be able to reliably locate them to rationally enhance the performance of the known metal-organic frameworks and facilitate new material discovery. The results obtained with this approach are compared to experimental data. We show that the presented method can, in general, accurately locate adsorption sites and structures of the host-guest complexes. We therefore propose our approach as a computational alternative when no experimental structures of guest-loaded MOFs are available. Additional information on the adsorption strength in the studied host-guest systems emerges from the computed interaction energies. Our findings provide the basis for other computational studies on MOF-guest systems and contribute to a better understanding of the structure-interaction-property interplay associated with them.
Collapse
Affiliation(s)
- Michelle Ernst
- Computational
Carbon Chemistry Group, Heidelberg Institute
for Theoretical Studies (HITS gGmbH), 69118Heidelberg, Germany
- Interdisciplinary
Center for Scientific Computing, Heidelberg
University, 69120Heidelberg, Germany
| | - Tomasz Poręba
- European
Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000Grenoble, France
| | - Lars Gnägi
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074Aachen, Germany
| | - Ganna Gryn’ova
- Computational
Carbon Chemistry Group, Heidelberg Institute
for Theoretical Studies (HITS gGmbH), 69118Heidelberg, Germany
- Interdisciplinary
Center for Scientific Computing, Heidelberg
University, 69120Heidelberg, Germany
| |
Collapse
|
18
|
Chen X, Chen H, Fraser Stoddart J. The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angew Chem Int Ed Engl 2023; 62:e202211387. [PMID: 36131604 PMCID: PMC10099103 DOI: 10.1002/anie.202211387] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 02/02/2023]
Abstract
The tetracationic cyclophane, cyclobis(paraquat-p-phenylene), also known as the little blue box, constitutes a modular receptor that has facilitated the discovery of many host-guest complexes and mechanically interlocked molecules during the past 35 years. Its versatility in binding small π-donors in its tetracationic state, as well as forming trisradical tricationic complexes with viologen radical cations in its doubly reduced bisradical dicationic state, renders it valuable for the construction of various stimuli-responsive materials. Since the first reports in 1988, the little blue box has been featured in over 500 publications in the literature. All this research activity would not have been possible without the seminal contributions carried out by Siegfried Hünig, who not only pioneered the syntheses of viologen-containing cyclophanes, but also revealed their rich redox chemistry in addition to their ability to undergo intramolecular π-dimerization. This Review describes how his pioneering research led to the design and synthesis of the little blue box, and how this redox-active host evolved into the key component of molecular shuttles, switches, and machines.
Collapse
Affiliation(s)
- Xiao‐Yang Chen
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
| | - Hongliang Chen
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
| | - J. Fraser Stoddart
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
- School of ChemistryUniversity of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
19
|
Wei L, Sun T, Shi Z, Xu Z, Wen W, Jiang S, Zhao Y, Ma Y, Zhang YB. Guest-adaptive molecular sensing in a dynamic 3D covalent organic framework. Nat Commun 2022; 13:7936. [PMID: 36566293 DOI: 10.1038/s41467-022-35674-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Molecular recognition is an attractive approach to designing sensitive and selective sensors for volatile organic compounds (VOCs). Although organic macrocycles and cages have been well-developed for recognising organics by their adaptive pockets in liquids, porous solids for gas detection require a deliberate design balancing adaptability and robustness. Here we report a dynamic 3D covalent organic framework (dynaCOF) constructed from an environmentally sensitive fluorophore that can undergo concerted and adaptive structural transitions upon adsorption of gas and vapours. The COF is capable of rapid and reliable detection of various VOCs, even for non-polar hydrocarbon gas under humid conditions. The adaptive guest inclusion amplifies the host-guest interactions and facilitates the differentiation of organic vapours by their polarity and sizes/shapes, and the covalently linked 3D interwoven networks ensure the robustness and coherency of the materials. The present result paves the way for multiplex fluorescence sensing of various VOCs with molecular-specific responses.
Collapse
Affiliation(s)
- Lei Wei
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tu Sun
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Zhaolin Shi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zezhao Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wen Wen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Shan Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Yingbo Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China.
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China.
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
20
|
Liang Y, Li E, Wang K, Guan ZJ, He HH, Zhang L, Zhou HC, Huang F, Fang Y. Organo-macrocycle-containing hierarchical metal-organic frameworks and cages: design, structures, and applications. Chem Soc Rev 2022; 51:8378-8405. [PMID: 36112107 DOI: 10.1039/d2cs00232a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing hierarchical ordered systems is challenging. Using organo-macrocycles to construct metal-organic frameworks (MOFs) and porous coordination cages (PCCs) provides an efficient way to obtain hierarchical assemblies. Macrocycles, such as crown ethers, cyclodextrins, calixarenes, cucurbiturils, and pillararenes, can be incorporated within MOFs/PCCs and they also endow the resultant composites with enhanced properties and functionalities. This review summarizes recent developments of organo-macrocycle-containing hierarchical MOFs/PCCs, emphasizing applications and structure-property relationships of these hierarchically porous materials. This review provides insights for future research on hierarchical self-assembly using macrocycles as building blocks and functional ligands to extend the applications of the composites.
Collapse
Affiliation(s)
- Yu Liang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Errui Li
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Kunyu Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA
| | - Zong-Jie Guan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Hui-Hui He
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.,Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou 350117, China
| | - Liangliang Zhang
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou 350117, China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yu Fang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
21
|
Feng L, Astumian RD, Stoddart JF. Controlling dynamics in extended molecular frameworks. Nat Rev Chem 2022; 6:705-725. [PMID: 37117491 DOI: 10.1038/s41570-022-00412-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 11/09/2022]
Abstract
Molecular machines are essential dynamic components for fuel production, cargo delivery, information storage and processing in living systems. Scientists have demonstrated that they can design and synthesize artificial molecular machines that operate efficiently in isolation - for example, at high dilution in solution - fuelled by chemicals, electricity or light. To organize the spatial arrangement and motion of these machines within close proximity to one another in solid frameworks, such that useful macroscopic work can be performed, remains a challenge in both chemical and materials science. In this Review, we summarize the progress that has been made during the past decade in organizing dynamic molecular entities in such solid frameworks. Emerging applications of these dynamic smart materials in the contexts of molecular recognition, optoelectronics, drug delivery, photodynamic therapy and water desalination are highlighted. Finally, we review recent work on a new non-equilibrium adsorption phenomenon for which we have coined the term mechanisorption. The ability to use external energy to drive directional processes in mechanized extended frameworks augurs well for the future development of artificial molecular factories.
Collapse
|
22
|
Solid-state NMR studies of host-guest chemistry in metal-organic frameworks. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Chao Y, Thikekar TU, Fang W, Chang R, Xu J, Ouyang N, Xu J, Gao Y, Guo M, Zuilhof H, Sue ACH. "Rim-Differentiated" Pillar[6]arenes. Angew Chem Int Ed Engl 2022; 61:e202204589. [PMID: 35451151 DOI: 10.1002/anie.202204589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 11/06/2022]
Abstract
A "rim-differentiated" pillar[6]arene (RD-P[6]) was obtained successfully, with the assistance of a dimeric silver trifluoroacetate template, among eight different constitutional isomers in a direct and regioselective manner. The solid-state conformation of this macrocycle could switch from the 1,3,5-alternate to a truly rim-differentiated one upon guest inclusion. This highly symmetric RD-P[6] not only hosts metal-containing molecules inside its cavity, but also can form a pillar[6]arene-C60 adduct through co-crystallization on account of donor-acceptor interactions. The development of synthetic strategies to desymmetrize pillararenes offers new opportunities for engineering complex molecular architectures and organic electronic materials.
Collapse
Affiliation(s)
- Yang Chao
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.,College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Tushar Ulhas Thikekar
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Wangjian Fang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Rong Chang
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Jiong Xu
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Nianfeng Ouyang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Jun Xu
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Yan Gao
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Han Zuilhof
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.,Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| |
Collapse
|
24
|
Single-crystal structure determination of nanosized metal-organic frameworks by three-dimensional electron diffraction. Nat Protoc 2022; 17:2389-2413. [PMID: 35896741 DOI: 10.1038/s41596-022-00720-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/26/2022] [Indexed: 11/08/2022]
Abstract
Metal-organic frameworks (MOFs) have attracted considerable interest due to their well-defined pore architecture and structural tunability on molecular dimensions. While single-crystal X-ray diffraction (SCXRD) has been widely used to elucidate the structures of MOFs at the atomic scale, the formation of large and well-ordered crystals is still a crucial bottleneck for structure determination. To alleviate this challenge, three-dimensional electron diffraction (3D ED) has been developed for structure determination of nano- (submicron-)sized crystals. Such 3D ED data are collected from each single crystal using transmission electron microscopy. In this protocol, we introduce the entire workflow for structural analysis of MOFs by 3D ED, from sample preparation, data acquisition and data processing to structure determination. We describe methods for crystal screening and handling of crystal agglomerates, which are crucial steps in sample preparation for single-crystal 3D ED data collection. We further present how to set up a transmission electron microscope for 3D ED data acquisition and, more importantly, offer suggestions for the optimization of data acquisition conditions. For data processing, including unit cell and space group determination, and intensity integration, we provide guidelines on how to use electron and X-ray crystallography software to process 3D ED data. Finally, we present structure determination from 3D ED data and discuss the important features associated with 3D ED data that need to be considered. We believe that this protocol provides critical details for implementing and utilizing 3D ED as a structure determination platform for nano- (submicron-)sized MOFs as well as other crystalline materials.
Collapse
|
25
|
Zhang X, Liu K, Zhao J, Zhang Z, Luo Z, Guo Y, Zhang H, Wang Y, Bai R, Zhao D, Yang X, Liu Y, Yan X. Mechanically Interlocked Aerogels with Densely Rotaxanated Backbones. J Am Chem Soc 2022; 144:11434-11443. [PMID: 35696720 DOI: 10.1021/jacs.2c04717] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mechanically interlocked molecules are considered promising candidates for the construction of self-adaptive materials by virtue of their fascinating structural and dynamic features. However, it is still a great challenge to fabricate such materials with higher complexity and richer functionality. Herein, we propose the concept of mechanically interlocked aerogels (MIAs) in which the three-dimensional (3D) porous frameworks are made of dense mechanically interlocked modules, thereby enabling the integration of mechanical adaptivity and multifunctionality in a single entity. The lightweight MIA monoliths possess a good appearance and hierarchical meso- and submicron-pores. Profiting from the combination of dynamic mechanical bonds and porous skeletons of aerogels, our MIAs are not only mechanically robust (average Young's modulus = 5.80 GPa and specific modulus = 130.5 kN·m/kg) but also showcase favorable mechanical adaptivity and responsiveness under external stimuli. Taking advantage of the above integrative merits, we demonstrate the multifunctionality of our MIAs in terms of iodine uptake, thermal insulation, and selective adsorption of organic dyes. Our work opens the door to designing intelligent aerogels with delicate topological chemical structures while facilitating the development of mechanically interlocked materials.
Collapse
Affiliation(s)
- Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhen Luo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuchen Guo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yongming Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Dong Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xue Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
26
|
Detection of the UV-vis silent biomarker trimethylamine-N-oxide via outer-sphere interactions in a lanthanide metal-organic framework. Commun Chem 2022; 5:74. [PMID: 36697642 PMCID: PMC9814541 DOI: 10.1038/s42004-022-00690-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Trimethylamine-N-oxide (TMAO) is a biomarker of the cardiovascular disease that is one of the leading causes of worldwide death. Facile detection of TMAO can significantly improve the survival rate of this disease by allowing early prevention. However, the UV-vis silent nature of TMAO makes it intricated to be detected by conventional sensing materials or analytical instruments. Here we show a bilanthanide metal-organic framework functionalized by borono group for the recognition of TMAO. Superior sensitivity, selectivity and anti-interference ability were achieved by the inverse emission intensity changes of the two lanthanide centers. The limit of detection is 15.6 μM, covering the clinical urinary concentration range of TMAO. A smartphone application was developed based on the change in R-G-B chromaticity. The sensing mechanism via a well-matched outer-sphere interaction governing the sensing function was studied in detail, providing fundamentals in molecular level for the design of advanced sensing materials for UV-Vis silent molecules.
Collapse
|
27
|
Saura-Sanmartin A, Pastor A, Martinez-Cuezva A, Cutillas-Font G, Alajarin M, Berna J. Mechanically interlocked molecules in metal-organic frameworks. Chem Soc Rev 2022; 51:4949-4976. [PMID: 35612363 DOI: 10.1039/d2cs00167e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanically interlocked molecules (MIMs) have great potential in the development of molecular machinery due to their intercomponent dynamics. The incorporation of these molecules in a condensed phase makes it possible to take advantage of the control of the motion of the components at the macroscopic level. Metal-organic frameworks (MOFs) are postulated as ideal supports for intertwined molecules. This review covers the chemistry of the mechanical bond incorporated into metal-organic frameworks from the seminal studies to the latest published advances. We first describe some fundamental concepts of MIMs and MOFs. Next, we summarize the advances in the incorporation of rotaxanes and catenanes inside MOF matrices. Finally, we conclude by showing the study of the rotaxane dynamics in MOFs and the operation of some stimuli-responsive MIMs within MOFs. In addition to emphasising some selected examples, we offer a critical opinion on the state of the art of this research field, remarking the key points on which the future of these systems should be focused.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Aurelia Pastor
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Alberto Martinez-Cuezva
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Guillermo Cutillas-Font
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Mateo Alajarin
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Jose Berna
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| |
Collapse
|
28
|
Li X, Xie J, Du Z, Jiang L, Li G, Ling S, Zhu K. Docking rings in a solid: reversible assembling of pseudorotaxanes inside a zirconium metal-organic framework. Chem Sci 2022; 13:6291-6296. [PMID: 35733896 PMCID: PMC9159108 DOI: 10.1039/d2sc01497a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
An unprecedented zirconium metal–organic framework featuring a T-shaped benzimidazole strut was constructed and employed as a sponge-like material for selective absorption of macrocyclic guests. The neutral benzimidazole domain of the as-synthesized framework can be readily protonated and fully converted to benzimidazolium. Mechanical threading of [24]crown-8 ether wheels onto recognition sites to form pseudorotaxanes was evidenced by solution nuclear magnetic resonance, solid-state fluorescence, and infrared spectroscopy. Selective absorption of [24]crown-8 ether rather than its dibenzo counterpart was also observed. Further study reveals that this binding process is reversible and acid–base switchable. The success of docking macrocyclic guests in crystals via host–guest interactions provides an alternative route to complex functional materials with interpenetrated structures. A T-shaped ligand was designed as struts for building a zirconium metal–organic framework. Acid–base switchable docking and releasing a 24-membered crown ether inside crystals was successfully accomplished via post-synthetic modification.![]()
Collapse
Affiliation(s)
- Xia Li
- School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Jialin Xie
- School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Zhenglin Du
- School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Long Jiang
- Instrumental Analysis and Research Centre, Sun Yat-Sen University Guangzhou 510275 China
| | - Guangqin Li
- School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Sanliang Ling
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham Nottingham NG7 2RD UK
| | - Kelong Zhu
- School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
29
|
Chao Y, Thikekar TU, Fang W, Chang R, Xu J, Ouyang N, Xu J, Gao Y, Guo M, Zuilhof H, Sue ACH. "Rim‐Differentiated" Pillar[6]arenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yang Chao
- Tianjin University School of Pharmaceutical Science and Technology CHINA
| | | | - Wangjian Fang
- Tianjin University School of Pharmaceutical Science & Technology CHINA
| | - Rong Chang
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Jiong Xu
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Nianfeng Ouyang
- Xiamen University College of Chemistry & Chemical Engineering CHINA
| | - Jun Xu
- Tianjin University School of Pharmaceutical Science and Technology CHINA
| | - Yan Gao
- Tianjin University School of Pharmaceutical Science and Technology CHINA
| | - Minjie Guo
- Tianjin University School of Pharmaceutical Science & Technology CHINA
| | - Han Zuilhof
- WUR: Wageningen University & Research Chemistry NETHERLANDS
| | - Andrew Chi-Hau Sue
- Xiamen University College of Chemistry and Chemical Engineering 422 Siming S. Rd.Siming Dist. 361005 Xiamen CHINA
| |
Collapse
|
30
|
Hai G, Gao H, Huang X, Tan L, Xue X, Feng S, Wang G. An efficient factor for fast screening of high-performance two-dimensional metal-organic frameworks towards catalyzing oxygen evolution reaction. Chem Sci 2022; 13:4397-4405. [PMID: 35509463 PMCID: PMC9007064 DOI: 10.1039/d2sc00377e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/07/2022] [Indexed: 11/21/2022] Open
Abstract
Two-dimensional (2D) Metal-Organic frameworks (MOFs) are promising materials for catalyzing oxygen evolution reaction (OER) due to abundant exposed active sites and high specific surface area. However, how to fast screen...
Collapse
Affiliation(s)
- Guangtong Hai
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 P. R. China
| | - Hongyi Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Xiubing Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | | | - Xiangdong Xue
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Shihao Feng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| |
Collapse
|
31
|
Ahmed A, Efthymiou C, Sanii R, Patyk-Kaźmierczak E, Alsharabasy AM, Winterlich M, Kumar N, Sensharma D, Tong W, Guerin S, Farras Costa P, Hudson S, Thompson D, Zaworotko MJ, Tasiopoulos A, Papatriantafyllopoulou C. NUIG4: A Biocompatible pcu Metal-Organic Framework with an Exceptional Doxorubicin Encapsulation Capacity. J Mater Chem B 2022; 10:1378-1385. [DOI: 10.1039/d1tb02176a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks (MOFs) are promising multifunctional porous materials for biomedical and environmental applications. Here, we report synthesis and characterization of a new MOF based on tetrahedral secondary building unit [Zn4O(CBAB)3]n...
Collapse
|
32
|
Feng L, Qiu Y, Guo QH, Chen Z, Seale JSW, He K, Wu H, Feng Y, Farha OK, Astumian RD, Stoddart JF. Active mechanisorption driven by pumping cassettes. Science 2021; 374:1215-1221. [PMID: 34672694 DOI: 10.1126/science.abk1391] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Liang Feng
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Yunyan Qiu
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Qing-Hui Guo
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Zhijie Chen
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - James S W Seale
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Kun He
- Northwestern University Atomic and Nanoscale Characterization Experimental Center (NUANCE), Northwestern University, Evanston, IL 60208, USA
| | - Huang Wu
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.,Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - R Dean Astumian
- Department of Physics and Astronomy, University of Maine, Orono, ME 04469, USA
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
33
|
Neira I, García MD, Peinador C, Kaifer AE. Cucurbiturils as Effectors on the Self-Assembly of Pd(II) and Pt(II) Metallacycles. J Org Chem 2021; 86:14608-14616. [PMID: 34668711 DOI: 10.1021/acs.joc.1c01460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four bidentate, dicationic ligands (L12+-L42+) were prepared and investigated as guests for binding by the cucurbit[7]uril (CB[7]) host and structural components for metal (Pd and Pt)-coordinated self-assembly into metallacycles. In aqueous solutions, all the ligands were found to form stable complexes of variable stoichiometries with CB[7], and only one (L22+) failed to self-assemble, induced by the presence of suitable Pd or Pt complexes, into metallacycles. Exposure of the Pd-based metallacycles to CB[7] led to their disassembly at room temperature, while the Pt-based metallacycles remained stable under these conditions. However, heating of the Pt metallacycles in the presence of CB[7] also led to their disassembly. This interplay between the interactions in aqueous media of the L12+, L32+, and L42+ ligands with the CB[7] host and Pd (or Pt) complexes suggests the possibility of using these or related systems for controlled drug delivery applications.
Collapse
Affiliation(s)
- Iago Neira
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States.,Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Marcos D García
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Carlos Peinador
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Angel E Kaifer
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| |
Collapse
|
34
|
Nicoli F, Baroncini M, Silvi S, Groppi J, Credi A. Direct synthetic routes to functionalised crown ethers. Org Chem Front 2021; 8:5531-5549. [PMID: 34603737 PMCID: PMC8477657 DOI: 10.1039/d1qo00699a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022]
Abstract
Crown ethers are macrocyclic hosts that can complex a wide range of inorganic and organic cations as well as neutral guest species. Their widespread utilization in several areas of fundamental and applied chemistry strongly relies on strategies for their functionalisation, in order to obtain compounds that could carry out multiple functions and could be incorporated in sophisticated systems. Although functionalised crown ethers are normally synthesised by templated macrocyclisation using appropriately substituted starting materials, the direct addition of functional groups onto a pre-formed macrocyclic framework is a valuable yet underexplored alternative. Here we review the methodologies for the direct functionalisation of aliphatic and aromatic crown ethers sporadically reported in the literature over a period of four decades. The general approach for the introduction of moieties on aliphatic crown ethers involves a radical mediated cross dehydrogenative coupling initiated either by photochemical or thermal/chemical activation, while aromatic crown ethers are commonly derivatised via electrophilic aromatic substitution. Direct functionalization routes can reduce synthetic effort, allow the later modification of crown ether-based architectures, and disclose new ways to exploit these versatile macrocycles in contemporary supramolecular science and technology.
Collapse
Affiliation(s)
- Federico Nicoli
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| | - Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna viale Fanin 44 40127 Bologna Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica "G. Ciamician", Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Jessica Groppi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
35
|
Liang J, Gvilava V, Jansen C, Öztürk S, Spieß A, Lin J, Xing S, Sun Y, Wang H, Janiak C. Cucurbituril‐verkapselnde metallorganische Gerüstverbindung über Mechanochemie: Adsorbentien mit verbesserter Leistung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jun Liang
- Hoffmann Institute of Advanced Materials Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 China
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Deutschland
| | - Vasily Gvilava
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Deutschland
| | - Christian Jansen
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Deutschland
| | - Secil Öztürk
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Deutschland
| | - Alex Spieß
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Deutschland
| | - Jingxiang Lin
- The School of Ocean Science and Biochemistry Engineering Fuqing Branch of Fujian Normal University Fuqing 350300 China
| | - Shanghua Xing
- Hoffmann Institute of Advanced Materials Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 China
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Deutschland
| | - Yangyang Sun
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Deutschland
| | - Hao Wang
- Hoffmann Institute of Advanced Materials Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 China
| | - Christoph Janiak
- Hoffmann Institute of Advanced Materials Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 China
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Deutschland
| |
Collapse
|
36
|
Liang J, Gvilava V, Jansen C, Öztürk S, Spieß A, Lin J, Xing S, Sun Y, Wang H, Janiak C. Cucurbituril-Encapsulating Metal-Organic Framework via Mechanochemistry: Adsorbents with Enhanced Performance. Angew Chem Int Ed Engl 2021; 60:15365-15370. [PMID: 33974329 PMCID: PMC8362037 DOI: 10.1002/anie.202100675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/24/2021] [Indexed: 12/25/2022]
Abstract
The first examples of monolithic crystalline host-guest hybrid materials are described. The reaction of 1,3,5-benzenetricarboxylic acid (H3 BTC) and Fe(NO3 )3 ⋅9 H2 O in the presence of decamethylcucurbit[5]uril ammonium chloride (MC5⋅2 NH4 Cl⋅4 H2 O) directly affords MC5@MIL-100(Fe) hybrid monoliths featuring hierarchical micro-, meso- and macropores. Particularly, this "bottle-around-ship" synthesis and one-pot shaping are facilitated by a newly discovered Fe-MC5 flowing gel formed by mechanochemistry. The designed MC5@MIL-100(Fe) hybrid material with MC5 as active domains shows enhanced CH4 and lead(II) uptake performance, and selective capture of lead(II) cations at low concentrations. This shows that host-guest hybrid materials can exhibit synergic properties that out-perform materials based on individual components.
Collapse
Affiliation(s)
- Jun Liang
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic7098 Liuxian Blvd, Nanshan DistrictShenzhen518055China
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Vasily Gvilava
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Christian Jansen
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Secil Öztürk
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Alex Spieß
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Jingxiang Lin
- The School of Ocean Science and Biochemistry EngineeringFuqing Branch of Fujian Normal UniversityFuqing350300China
| | - Shanghua Xing
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic7098 Liuxian Blvd, Nanshan DistrictShenzhen518055China
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Yangyang Sun
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Hao Wang
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic7098 Liuxian Blvd, Nanshan DistrictShenzhen518055China
| | - Christoph Janiak
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic7098 Liuxian Blvd, Nanshan DistrictShenzhen518055China
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| |
Collapse
|
37
|
Brady KG, Liu B, Li X, Isaacs L. Self Assembled Cages with Mechanically Interlocked Cucurbiturils. Supramol Chem 2021; 33:8-32. [PMID: 34366642 PMCID: PMC8340875 DOI: 10.1080/10610278.2021.1908546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
We report preparation of (bis)aniline ligand 4 which contains a central viologen binding domain and its subcomponent self-assembly with aldehyde 5 and Fe(OTf)2 in CH3CN to yield tetrahedral assembly 6. Complexation of ligand 4 with CB[7] in the form of CB[7]•4•2PF6 allows the preparation of assembly 7 which contains an average of 1.95 (range 1-3) mechanically interlocked CB[7] units. Assemblies 6 and 7 are hydrolytically unstable in water due to their imine linkages. Redesign of our system with water stable 2,2'-bipyridine end groups was realized in the form of ligands 11 and 16 which also contain a central viologen binding domain. Self-assembly of 11 with Fe(NTf2)2 gave tetrahedral MOP 12 as evidenced by 1H NMR, DOSY, and mass spectrometric analysis. In contrast, isomeric ligand 16 underwent self-assembly with Fe(OTf)2 to give cubic assembly 17. Precomplexation of ligands 11 and 16 with CB[7] gave the acetonitrile soluble CB[7]•11•2PF6 and CB[7]•16•2PF6 complexes. Self-assembly of CB[7]•11•2PF6 with Fe(OTf)2 gave tetrahedron 13 which contains on average 1.8 mechanically interlocked CB[7] units as determined by 1H NMR, DOSY, and ESI-MS analysis. Self-assembly of CB[7]•16•2PF6 with Fe(OTf)2 gave cube 13 which contains 6.59 mechanically interlocked CB[7] units as determined by 1H NMR and DOSY measurements.
Collapse
Affiliation(s)
- Kimberly G. Brady
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Bingqing Liu
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
38
|
Ge M, Wang Y, Carraro F, Liang W, Roostaeinia M, Siahrostami S, Proserpio DM, Doonan C, Falcaro P, Zheng H, Zou X, Huang Z. High-Throughput Electron Diffraction Reveals a Hidden Novel Metal-Organic Framework for Electrocatalysis. Angew Chem Int Ed Engl 2021; 60:11391-11397. [PMID: 33682282 PMCID: PMC8252586 DOI: 10.1002/anie.202016882] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 01/25/2023]
Abstract
Metal-organic frameworks (MOFs) are known for their versatile combination of inorganic building units and organic linkers, which offers immense opportunities in a wide range of applications. However, many MOFs are typically synthesized as multiphasic polycrystalline powders, which are challenging for studies by X-ray diffraction. Therefore, developing new structural characterization techniques is highly desired in order to accelerate discoveries of new materials. Here, we report a high-throughput approach for structural analysis of MOF nano- and sub-microcrystals by three-dimensional electron diffraction (3DED). A new zeolitic-imidazolate framework (ZIF), denoted ZIF-EC1, was first discovered in a trace amount during the study of a known ZIF-CO3 -1 material by 3DED. The structures of both ZIFs were solved and refined using 3DED data. ZIF-EC1 has a dense 3D framework structure, which is built by linking mono- and bi-nuclear Zn clusters and 2-methylimidazolates (mIm- ). With a composition of Zn3 (mIm)5 (OH), ZIF-EC1 exhibits high N and Zn densities. We show that the N-doped carbon material derived from ZIF-EC1 is a promising electrocatalyst for oxygen reduction reaction (ORR). The discovery of this new MOF and its conversion to an efficient electrocatalyst highlights the power of 3DED in developing new materials and their applications.
Collapse
Affiliation(s)
- Meng Ge
- Department of Materials and Environmental ChemistryStockholm University10691StockholmSweden
| | - Yanzhi Wang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Francesco Carraro
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Weibin Liang
- Department of Chemistry and the Centre for Advanced NanomaterialsThe University of AdelaideAdelaide5005South AustraliaAustralia
| | - Morteza Roostaeinia
- Department of ChemistryUniversity of Calgary2500 University Drive NWCalgaryAlbertaT2N1N4Canada
| | - Samira Siahrostami
- Department of ChemistryUniversity of Calgary2500 University Drive NWCalgaryAlbertaT2N1N4Canada
| | - Davide M. Proserpio
- Dipartimento di ChimicaUniversità degli Studi di Milano20133MilanoItaly
- Samara Center for Theoretical Materials Science (SCTMS)Samara State Technical UniversitySamara443100Russia
| | - Christian Doonan
- Department of Chemistry and the Centre for Advanced NanomaterialsThe University of AdelaideAdelaide5005South AustraliaAustralia
| | - Paolo Falcaro
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Xiaodong Zou
- Department of Materials and Environmental ChemistryStockholm University10691StockholmSweden
| | - Zhehao Huang
- Department of Materials and Environmental ChemistryStockholm University10691StockholmSweden
| |
Collapse
|
39
|
Saura‐Sanmartin A, Martinez‐Cuezva A, Marin‐Luna M, Bautista D, Berna J. Effective Encapsulation of C
60
by Metal–Organic Frameworks with Polyamide Macrocyclic Linkers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Adrian Saura‐Sanmartin
- Departamento de Quimica Organica Facultad de Quimica Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| | - Alberto Martinez‐Cuezva
- Departamento de Quimica Organica Facultad de Quimica Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| | - Marta Marin‐Luna
- Departamento de Quimica Organica Facultad de Quimica Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| | - Delia Bautista
- Seccion Universitaria de Instrumentacion Científica (SUIC) Area Cientifica y Tecnica de Investigacion (ACTI) Universidad de Murcia 30100 Murcia Spain
| | - Jose Berna
- Departamento de Quimica Organica Facultad de Quimica Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| |
Collapse
|
40
|
Tay HM, Kyratzis N, Thoonen S, Boer SA, Turner DR, Hua C. Synthetic strategies towards chiral coordination polymers. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213763] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Ge M, Wang Y, Carraro F, Liang W, Roostaeinia M, Siahrostami S, Proserpio DM, Doonan C, Falcaro P, Zheng H, Zou X, Huang Z. High‐Throughput Electron Diffraction Reveals a Hidden Novel Metal–Organic Framework for Electrocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Meng Ge
- Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
| | - Yanzhi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Weibin Liang
- Department of Chemistry and the Centre for Advanced Nanomaterials The University of Adelaide Adelaide 5005 South Australia Australia
| | - Morteza Roostaeinia
- Department of Chemistry University of Calgary 2500 University Drive NW Calgary Alberta T2N1N4 Canada
| | - Samira Siahrostami
- Department of Chemistry University of Calgary 2500 University Drive NW Calgary Alberta T2N1N4 Canada
| | - Davide M. Proserpio
- Dipartimento di Chimica Università degli Studi di Milano 20133 Milano Italy
- Samara Center for Theoretical Materials Science (SCTMS) Samara State Technical University Samara 443100 Russia
| | - Christian Doonan
- Department of Chemistry and the Centre for Advanced Nanomaterials The University of Adelaide Adelaide 5005 South Australia Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
| | - Zhehao Huang
- Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
| |
Collapse
|
42
|
Mohamadhoseini M, Mohamadnia Z. Supramolecular self-healing materials via host-guest strategy between cyclodextrin and specific types of guest molecules. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
|
44
|
Saura-Sanmartin A, Martinez-Cuezva A, Marin-Luna M, Bautista D, Berna J. Effective Encapsulation of C 60 by Metal-Organic Frameworks with Polyamide Macrocyclic Linkers. Angew Chem Int Ed Engl 2021; 60:10814-10819. [PMID: 33617658 DOI: 10.1002/anie.202100996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/18/2021] [Indexed: 12/14/2022]
Abstract
A flexible benzylic amide macrocycle, functionalized with two carboxylic acid groups, was employed as the organic ligand for the preparation of robust copper(II)- and zinc(II)-based metal-organic frameworks. These polymers crystallized in the C2/m space group of the monoclinic crystal system, creating non-interpenetrated channels in one direction with an extraordinary solvent-accessible volume of 46 %. Unlike metal-organic rotaxane frameworks having benzylic amide macrocycles as linkers, the absence of the thread in these novel reticular materials causes a decrease of dimensionality and an improvement of pore size and dynamic guest adaptability. We studied the incorporation of fullerene C60 inside the adjustable pocket generated between two macrocycles connected to the same dinuclear clusters, occupying a remarkable 98 % of the cavities inside the network. The use of these materials as hosts for the selective recognition of different fullerenes was evaluated, mainly encapsulating the smaller size fullerene derivative in several mixtures of C60 and C70 .
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Alberto Martinez-Cuezva
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Marta Marin-Luna
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Delia Bautista
- Seccion Universitaria de Instrumentacion Científica (SUIC), Area Cientifica y Tecnica de Investigacion (ACTI), Universidad de Murcia, 30100, Murcia, Spain
| | - Jose Berna
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| |
Collapse
|
45
|
Three-Dimensional Electron Diffraction for Structural Analysis of Beam-Sensitive Metal-Organic Frameworks. CRYSTALS 2021. [DOI: 10.3390/cryst11030263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Electrons interact strongly with matter, which makes it possible to obtain high-resolution electron diffraction data from nano- and submicron-sized crystals. Using electron beam as a radiation source in a transmission electron microscope (TEM), ab initio structure determination can be conducted from crystals that are 6–7 orders of magnitude smaller than using X-rays. The rapid development of three-dimensional electron diffraction (3DED) techniques has attracted increasing interests in the field of metal-organic frameworks (MOFs), where it is often difficult to obtain large and high-quality crystals for single-crystal X-ray diffraction. Nowadays, a 3DED dataset can be acquired in 15–250 s by applying continuous crystal rotation, and the required electron dose rate can be very low (<0.1 e s−1 Å−2). In this review, we describe the evolution of 3DED data collection techniques and how the recent development of continuous rotation electron diffraction techniques improves data quality. We further describe the structure elucidation of MOFs using 3DED techniques, showing examples of using both low- and high-resolution 3DED data. With an improved data quality, 3DED can achieve a high accuracy, and reveal more structural details of MOFs. Because the physical and chemical properties of MOFs are closely associated with their crystal structures, we believe 3DED will only increase its importance in developing MOF materials.
Collapse
|
46
|
Fu Y, Guan H, Yin J, Kong X. Probing molecular motions in metal-organic frameworks with solid-state NMR. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213563] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Huang Z, Grape ES, Li J, Inge AK, Zou X. 3D electron diffraction as an important technique for structure elucidation of metal-organic frameworks and covalent organic frameworks. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213583] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Li X, Xu HS, Leng K, Chee SW, Zhao X, Jain N, Xu H, Qiao J, Gao Q, Park IH, Quek SY, Mirsaidov U, Loh KP. Partitioning the interlayer space of covalent organic frameworks by embedding pseudorotaxanes in their backbones. Nat Chem 2020; 12:1115-1122. [DOI: 10.1038/s41557-020-00562-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/11/2020] [Indexed: 01/12/2023]
|
49
|
Begum S, Hassan Z, Bräse S, Tsotsalas M. Polymerization in MOF-Confined Nanospaces: Tailored Architectures, Functions, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10657-10673. [PMID: 32787055 DOI: 10.1021/acs.langmuir.0c01832] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This feature article describes recent trends and advances in structuring network polymers using a coordination-driven metal-organic framework (MOF)-based template approach to demonstrate the concept of crystal-controlled polymerization in confined nanospaces, forming tailored architectures ranging from simple linear one-dimensional macromolecules to tunable three-dimensional cross-linked network polymers and interwoven molecular architectures. MOF-templated network polymers combine the characteristics and advantages of crystalline MOFs (high porosity, structural regularity, and designability) with the intrinsic behaviors of soft polymers (flexibility, processability, stability, or biocompatibility) with widespread application possibilities and tunable properties. The article ends with a summary of the remaining challenges to be addressed, and future research opportunities in this field are discussed.
Collapse
Affiliation(s)
- Salma Begum
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Zahid Hassan
- 3D Matter Made To Order - Cluster of Excellence (EXC-2082/1-390761711), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute for Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- 3D Matter Made To Order - Cluster of Excellence (EXC-2082/1-390761711), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Manuel Tsotsalas
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Institute for Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
50
|
Gropp C, Canossa S, Wuttke S, Gándara F, Li Q, Gagliardi L, Yaghi OM. Standard Practices of Reticular Chemistry. ACS CENTRAL SCIENCE 2020; 6:1255-1273. [PMID: 32875067 PMCID: PMC7453418 DOI: 10.1021/acscentsci.0c00592] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Reticular chemistry is a growing field of science with a multitude of practitioners with diverse frames of thinking, making the need for standard practices and quality indicators ever more compelling.
Collapse
Affiliation(s)
- Cornelius Gropp
- Department of Chemistry, University of California-Berkeley, Kavli Energy Nanoscience
Institute at UC Berkeley, Berkeley, California 94720, United States
| | - Stefano Canossa
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials,
UPV/EHU Science Park, 48940 Leioa, Spain
| | - Felipe Gándara
- Instituto de Ciencia de
Materiales de Madrid (ICMM)—Consejo Superior de Investigaciones
Científicas (CSIC), C/Sor Juana Ineś de la Cruz, 3, Madrid 28049, Spain
| | - Qiaowei Li
- Department of Chemistry and Shanghai Key Laboratory of
Molecular Catalysis and Innovative Materials, iChEM (Collaborative
Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Laura Gagliardi
- Department
of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory
Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Omar M. Yaghi
- Department of Chemistry, University of California-Berkeley, Kavli Energy Nanoscience
Institute at UC Berkeley, Berkeley, California 94720, United States
| |
Collapse
|