1
|
Li WC, Zhang L, Bai S, Zhao JH, Liu GR, Lan Y, Chen S, Ming J. Synthesis of benzoheterocycles by palladium-catalyzed migratory cyclization through an unexpected reaction cascade. Nat Commun 2025; 16:3367. [PMID: 40204738 PMCID: PMC11982304 DOI: 10.1038/s41467-025-58633-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Migratory functionalization of C-H bonds through metal migration from carbon to carbon under transition metal catalysis is a process of significant academic and industrial interest. Herein, a palladium-catalyzed migratory cyclization of α-bromoalkene derivatives ArXCBr=CH2, in which X denotes a phosphorus (P(O)R), silicon (SiR2), sulfur (SO2), carbon (C(O)), nitrogen (NTs), or oxygen-based moiety, affording various benzoheterocyclic compounds has been developed. Mechanistic investigations have demonstrated that the cyclization reaction proceeds through an unexpected cascade, with trans-1,2-palladium migration between sp2 carbons being a key step of catalytic cycle. To the best of our knowledge, this type of metal migration has not been reported previously.
Collapse
Affiliation(s)
- Wen-Cong Li
- Inner Mongolia Key Laboratory of Low Carbon Catalysis, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, China
- Natural Products Chem-Bio Innovation Center, College of Food and Bioengineering, College of Chemistry and Chemical Engineering, Chengdu University, Chengdu, China
- Inner Mongolia Academy of Science and Technology, Hohhot, China
| | - Lin Zhang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, China
| | - Shiming Bai
- Inner Mongolia Academy of Science and Technology, Hohhot, China
| | - Jia-Hao Zhao
- Inner Mongolia Key Laboratory of Low Carbon Catalysis, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
- Natural Products Chem-Bio Innovation Center, College of Food and Bioengineering, College of Chemistry and Chemical Engineering, Chengdu University, Chengdu, China
| | - Guang-Rui Liu
- Inner Mongolia Key Laboratory of Low Carbon Catalysis, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
- Natural Products Chem-Bio Innovation Center, College of Food and Bioengineering, College of Chemistry and Chemical Engineering, Chengdu University, Chengdu, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, China.
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, China.
| | - Shufeng Chen
- Inner Mongolia Key Laboratory of Low Carbon Catalysis, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.
| | - Jialin Ming
- Inner Mongolia Key Laboratory of Low Carbon Catalysis, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.
- Natural Products Chem-Bio Innovation Center, College of Food and Bioengineering, College of Chemistry and Chemical Engineering, Chengdu University, Chengdu, China.
| |
Collapse
|
2
|
Chen H, Zhang B, Chen S, Xiong F, Zhu X, Yu B, Long S. Recent advances in transition metal-mediated/ catalyzed radiofluorination of arenes and heteroarenes for positron emission tomography. Bioorg Chem 2025; 157:108272. [PMID: 40015108 DOI: 10.1016/j.bioorg.2025.108272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 03/01/2025]
Abstract
Positron emission tomography (PET) imaging endows the possibility of precise diagnosis and effective treatment of diseases. Aromatic (hetero)cycle is one of the most fundamental groups in pharmaceuticals as well as in the development of PET tracers. In particular, incorporation of 18F to aromatic (hetero)cycles has accelerated the progress of nuclear medicine tracers. Current trend indicates a rapid progress in 18F-labeling of aromatic (hetero)cycles for PET imaging. Transition metal-catalyzed 18F-labeling method speeds up the reaction by lowering the activation energy of the substrate by the metal complex. The reaction conditions are mild, and a wide range of substrates can be used. In this article we systematically reviewed the methods of radioactive 18F-labeling of aromatic (hetero)cycles with different precursors mediated by transition metals‑copper, ruthenium, nickel, palladium, silver, and titanium. The precursors, radiolabeling conditions, catalytic efficiency, catalytic mechanism, optimization of transition metal-catalyzed 18F-labeling methods, and corresponding frontier applications of 18F-labeled molecular probes were discussed.
Collapse
Affiliation(s)
- Haiyan Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1(st) Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China; Tongji Hospital, Department of Nuclear Medicine Tongji Medical College Huazhong University of Science & Technology, 1095 Jiefang Ave, Wuhan 430,030, China
| | - Buchuan Zhang
- Tongji Hospital, Department of Nuclear Medicine Tongji Medical College Huazhong University of Science & Technology, 1095 Jiefang Ave, Wuhan 430,030, China
| | - Siyu Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1(st) Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Feng Xiong
- Tongji Hospital, Department of Nuclear Medicine Tongji Medical College Huazhong University of Science & Technology, 1095 Jiefang Ave, Wuhan 430,030, China
| | - Xiaohua Zhu
- Tongji Hospital, Department of Nuclear Medicine Tongji Medical College Huazhong University of Science & Technology, 1095 Jiefang Ave, Wuhan 430,030, China.
| | - Bo Yu
- Tongji Hospital, Department of Nuclear Medicine Tongji Medical College Huazhong University of Science & Technology, 1095 Jiefang Ave, Wuhan 430,030, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1(st) Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China.
| |
Collapse
|
3
|
Sekiguchi Y, Onnuch P, Li Y, Liu RY. Migratory Aryl Cross-Coupling. J Am Chem Soc 2025; 147:1224-1230. [PMID: 39693397 DOI: 10.1021/jacs.4c15086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
A fundamental property of cross-coupling reactions is regiospecificity, meaning that the site of bond formation is determined by the leaving group's location on the electrophile. Typically, achieving a different substitution pattern requires the synthesis of a new, corresponding starting-material isomer. As an alternative, we proposed the development of cross-coupling variants that would afford access to multiple structural isomers from the same coupling partners. Here, we first demonstrate that a bulky palladium catalyst can facilitate the efficient, reversible transposition of aryl halides by temporarily forming metal aryne species. Despite the nearly thermoneutral equilibrium governing this process, combining it with the gradual addition of a suitable nucleophile results in dynamic kinetic resolution of the isomeric intermediates and high yields of unconventional product isomers. The method accommodates a range of oxygen- and nitrogen-centered nucleophiles and tolerates numerous common functional groups. A Curtin-Hammett kinetic scheme is supported by computational and experimental data, providing a general mechanistic framework for extending this migratory cross-coupling concept.
Collapse
Affiliation(s)
- Yoshiya Sekiguchi
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Polpum Onnuch
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Yuli Li
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Richard Y Liu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| |
Collapse
|
4
|
Pliego JR. Theoretical design of new ligands to boost reaction rate and selectivity in palladium-catalyzed aromatic fluorination. J Comput Chem 2025; 46:e27513. [PMID: 39350669 DOI: 10.1002/jcc.27513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/31/2024] [Accepted: 09/26/2024] [Indexed: 01/01/2025]
Abstract
The development of palladium-catalyzed fluorination with biaryl monophosphine ligands has faced two important problems that limit its application for bromoarenes: the formation of regioisomers and insufficient catalysis for heteroaryl substrates as bromothiophene derivatives. Overcoming these problems requires more ligand design. In this work, reliable theoretical calculations were used to elucidate important ligand features necessary for achieving more rate acceleration and selectivity. These features include increasing the ligand-substrate repulsion and creating a negative charge in the space around the fluoride ion bonded to the palladium. The investigated L5 ligand presents these features, and the calculations predict that this ligand completely suppresses the regioisomer formation in the difficult case of 4-bromoanisole. In addition, the free energy barriers are decreased by 2-3 kcal mol-1 in comparison with the catalysis involving the AlPhos ligand. Thus, the present study points out a direction for new developments in palladium-catalyzed fluorination.
Collapse
Affiliation(s)
- Josefredo R Pliego
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, São João del-Rei, MG, Brazil
| |
Collapse
|
5
|
Guo QY, Wang Z, Fan Y, Zheng H, Lin W. A Stable Site-Isolated Mono(phosphine)-Rhodium Catalyst on a Metal-Organic Layer for Highly Efficient Hydrogenation Reactions. Angew Chem Int Ed Engl 2024; 63:e202409387. [PMID: 38925605 DOI: 10.1002/anie.202409387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Phosphine-ligated transition metal complexes play a pivotal role in modern catalysis, but our understanding of the impact of ligand counts on the catalysis performance of the metal center is limited. Here we report the synthesis of a low-coordinate mono(phosphine)-Rh catalyst on a metal-organic layer (MOL), P-MOL • Rh, and its applications in the hydrogenation of mono-, di-, and tri-substituted alkenes as well as aryl nitriles with turnover numbers (TONs) of up to 390000. Mechanistic investigations and density functional theory calculations revealed the lowering of reaction energy barriers by the low steric hindrance of site-isolated mono(phosphine)-Rh sites on the MOL to provide superior catalytic activity over homogeneous Rh catalysts. The MOL also prevents catalyst deactivation to enable recycle and reuse of P-MOL • Rh in catalytic hydrogenation reactions.
Collapse
Affiliation(s)
- Qing-Yun Guo
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Zitong Wang
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Yingjie Fan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Haifeng Zheng
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Yang WP, Miao HJ, Liu L, Duan XH, Guo LN. Visible Light-Promoted Aromatization-Driven Deconstructive Fluorination of Spiro Carbocycles. Org Lett 2024; 26:7442-7446. [PMID: 39186378 DOI: 10.1021/acs.orglett.4c02793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
A visible light-promoted aromatization-driven deconstructive fluorination of spiro carbocycles is presented. A series of spiro dihydroquinazolinones reacted efficiently with NFSI under visible light irradiation to afford the 2-(4-fluoroalkyl)quinazolin-4(3H)-ones in good yields with excellent functional group tolerance. A radical pathway involving C-C bond cleavage and F atom transfer is proposed for the reaction. In addition, the ring-opening chlorination of spiro dihydroquinazolinones with NCS was also applicable.
Collapse
Affiliation(s)
- Wen-Peng Yang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hong-Jie Miao
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
7
|
Heinrich G, Kondratiuk M, Gooßen LJ, Wiesenfeldt MP. Rapid reaction optimization by robust and economical quantitative benchtop 19F NMR spectroscopy. Nat Protoc 2024; 19:1529-1556. [PMID: 38409535 DOI: 10.1038/s41596-023-00951-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/16/2023] [Indexed: 02/28/2024]
Abstract
The instrumental analysis of reaction mixtures is usually the rate-determining step in the optimization of chemical processes. Traditionally, reactions are analyzed by gas chromatography, HPLC or quantitative NMR spectroscopy on high-field spectrometers. However, chromatographic methods require elaborate work-up and calibration protocols, and high-field NMR spectrometers are expensive to purchase and operate. This protocol describes an inexpensive and highly effective analysis method based on low-field benchtop NMR spectroscopy. Its key feature is the use of fluorine-labeled model substrates that, because of the wide chemical shift range and high sensitivity of 19F, enable separate, quantitative detection of product and by-product signals even on low-field, permanent magnet spectrometers. An external lock/shim device obviates the need for deuterated solvents, permitting the direct, noninvasive measurement of crude reaction mixtures with minimal workup. The low field-strength facilitates a homogeneous excitation over a wide chemical shift range, minimizing systematic integration errors. The addition of the optimal amount of the nonshifting relaxation agent tris(acetylacetonato) iron(III) minimizes relaxation delays at full resolution, reducing the analysis time to 32 s per sample. The correct choice of processing parameters is also crucial. A step-by-step guideline is provided, the influence of all parameters, including adjustments needed when using high-field spectrometers, is discussed and potential pitfalls are highlighted. The wide applicability of the analytical protocol for reaction optimization is illustrated by three examples: a Buchwald-Hartwig amination, a Suzuki coupling and a C-H arylation reaction.
Collapse
Affiliation(s)
- G Heinrich
- Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - M Kondratiuk
- Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - L J Gooßen
- Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - M P Wiesenfeldt
- Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany.
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
| |
Collapse
|
8
|
Vesseur D, Li S, Mallet-Ladeira S, Miqueu K, Bourissou D. Ligand-Enabled Oxidative Fluorination of Gold(I) and Light-Induced Aryl-F Coupling at Gold(III). J Am Chem Soc 2024. [PMID: 38607393 DOI: 10.1021/jacs.4c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
MeDalphos Au(I) complexes featuring aryl, alkynyl, and alkyl groups readily react with electrophilic fluorinating reagents such as N-fluorobenzenesulfonimide and Selectfluor. The ensuing [(MeDalphos)Au(R)F]+ complexes have been isolated and characterized by multinuclear NMR spectroscopy as well as X-ray diffraction. They adopt a square-planar contra-thermodynamic structure, with F trans to N. DFT/IBO calculations show that the N lone pair of MeDalphos assists and directs the transfer of F+ to gold. The [(MeDalphos)Au(Ar)F]+ (Ar = Mes, 2,6-F2Ph) complexes smoothly engage in C-C cross-coupling with PhCCSiMe3 and Me3SiCN, providing direct evidence for the oxidative fluorination/transmetalation/reductive elimination sequence proposed for F+-promoted gold-catalyzed transformations. Moreover, direct reductive elimination to forge a C-F bond at Au(III) was explored and substantiated. Thermal means proved unsuccessful, leading mostly to decomposition, but irradiation with UV-visible light enabled efficient promotion of aryl-F coupling (up to 90% yield). The light-induced reductive elimination proceeds under mild conditions; it works even with the electron-deprived 2,6-difluorophenyl group, and it is not limited to the contra-thermodynamic form of the aryl Au(III) fluoride complexes.
Collapse
Affiliation(s)
- David Vesseur
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) , CNRS/Université Paul Sabatier , 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| | - Shuo Li
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) , CNRS/Université Paul Sabatier , 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (UAR 2599) , 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| | - Karinne Miqueu
- E2S-UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), CNRS/Université de Pau et des Pays de l'Adour, Hélioparc, 2 Avenue du Président Angot, 64053 Pau, Cedex 09, France
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) , CNRS/Université Paul Sabatier , 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| |
Collapse
|
9
|
Onnuch P, Ramagonolla K, Liu RY. Aminative Suzuki-Miyaura coupling. Science 2024; 383:1019-1024. [PMID: 38422125 DOI: 10.1126/science.adl5359] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/05/2024] [Indexed: 03/02/2024]
Abstract
The Suzuki-Miyaura and Buchwald-Hartwig coupling reactions are widely used to form carbon-carbon (C-C) and carbon-nitrogen (C-N) bonds, respectively. We report the incorporation of a formal nitrene insertion process into the Suzuki-Miyaura reaction, altering the products from C-C-linked biaryls to C-N-C-linked diaryl amines and thereby joining the Suzuki-Miyaura and Buchwald-Hartwig coupling pathways to the same starting-material classes. A combination of a bulky ancillary phosphine ligand on palladium and a commercially available amination reagent enables efficient reactivity across aryl halides and pseudohalides, boronic acids and esters, and many functional groups and heterocycles. Mechanistic insights reveal flexibility on the order of bond-forming events, suggesting potential for expansion of the aminative cross-coupling concept to encompass diverse nucleophiles and electrophiles as well as four-component variants.
Collapse
Affiliation(s)
- Polpum Onnuch
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Richard Y Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
10
|
Huo T, Zhao X, Cheng Z, Wei J, Zhu M, Dou X, Jiao N. Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing. Acta Pharm Sin B 2024; 14:1030-1076. [PMID: 38487004 PMCID: PMC10935128 DOI: 10.1016/j.apsb.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 11/13/2023] [Indexed: 03/17/2024] Open
Abstract
Synthetic chemistry plays an indispensable role in drug discovery, contributing to hit compounds identification, lead compounds optimization, candidate drugs preparation, and so on. As Nobel Prize laureate James Black emphasized, "the most fruitful basis for the discovery of a new drug is to start with an old drug"1. Late-stage modification or functionalization of drugs, natural products and bioactive compounds have garnered significant interest due to its ability to introduce diverse elements into bioactive compounds promptly. Such modifications alter the chemical space and physiochemical properties of these compounds, ultimately influencing their potency and druggability. To enrich a toolbox of chemical modification methods for drug discovery, this review focuses on the incorporation of halogen, oxygen, and nitrogen-the ubiquitous elements in pharmacophore components of the marketed drugs-through late-stage modification in recent two decades, and discusses the state and challenges faced in these fields. We also emphasize that increasing cooperation between chemists and pharmacists may be conducive to the rapid discovery of new activities of the functionalized molecules. Ultimately, we hope this review would serve as a valuable resource, facilitating the application of late-stage modification in the construction of novel molecules and inspiring innovative concepts for designing and building new drugs.
Collapse
Affiliation(s)
- Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| |
Collapse
|
11
|
Lee TC, Tong Y, Fu WC. Advances in Continuous Flow Fluorination Reactions. Chem Asian J 2023; 18:e202300723. [PMID: 37707985 DOI: 10.1002/asia.202300723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Fluorination reactions are important in constructing organofluorine motifs, which contribute to favorable biological properties in pharmaceuticals and agrochemicals. However, fluorination reagents and reactions are associated with various problems, such as their hazardous nature, high exothermicity, and poor selectivity and scalability. Continuous flow has emerged as a transformative technology to provide many advantages relative to batch syntheses. This review article summarizes recent continuous flow techniques that address the limitations and challenges of fluorination reactions. Approaches based on different flow techniques are discussed, including gas-liquid reactions, packed-bed reactors, in-line purifications, streamlined multistep synthesis, large-scale reactions well as flow photoredox- and electrocatalysis.
Collapse
Affiliation(s)
- Tsz Chun Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Yi Tong
- Department of Chemistry, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong SAR, China
| | - Wai Chung Fu
- Department of Chemistry, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong SAR, China
| |
Collapse
|
12
|
Lu Y, He Y, Schibli R, Mu L, van Dam RM. Proof-of-concept optimization of a copper-mediated 18F-radiosynthesis of a novel MAGL PET tracer on a high-throughput microdroplet platform and its macroscale translation. LAB ON A CHIP 2023; 23:4652-4663. [PMID: 37818614 PMCID: PMC10608794 DOI: 10.1039/d3lc00735a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Copper-mediated radiofluorination has demonstrated remarkable potential in forming aromatic C-18F bonds of radioligands for positron emission tomography (PET). Achieving optimal results often requires optimization efforts, requiring a substantial amount of radiolabeling precursor and time, severely limiting the experimental throughput. Recently, we successfully showcased the feasibility of performing and optimizing Cu-mediated radiosynthesis on a high-throughput microdroplet platform using the well-known and clinically used radioligand [18F]FDOPA as an illustrative example. In our current work, we optimized the Cu-mediated synthesis of a novel monoacylglycerol lipase (MAGL) PET tracer ([18F]YH149), showing the versatility of droplet-based techniques for early stage tracer development. Across 5 days, we conducted a total of 117 experiments, studying 36 distinct conditions, while utilizing <15 mg of total organoboron precursor. Compared to the original report in which the radiochemical yield (RCY) was 4.4 ± 0.5% (n = 5), the optimized droplet condition provided a substantial improvement in RCY (52 ± 8%, n = 4) and showed excellent radiochemical purity (100%) and molar activity (77-854 GBq μmol-1), using a starting activity of 0.2-1.45 GBq. Furthermore, we showed for the first time a translation of the optimized microscale conditions to a vial-based method. With similar starting activity (0.2-1.44 GBq), the translated synthesis exhibited a comparable RCY of 50 ± 10% (n = 4) while maintaining excellent radiochemical purity (100%) and acceptable molar activity (20-46 GBq μmol-1). The successful translation to vial-based reactions ensures wider applicability of the optimized synthesis by leveraging widely available commercial vial-based synthesis modules.
Collapse
Affiliation(s)
- Yingqing Lu
- Crump Institute for Molecular Imaging, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
- Department of Molecular & Medical Pharmacology, UCLA, Los Angeles, CA, USA
- Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, Los Angeles, CA, USA
| | - Yingfang He
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - R Michael van Dam
- Crump Institute for Molecular Imaging, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
- Department of Molecular & Medical Pharmacology, UCLA, Los Angeles, CA, USA
- Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, Los Angeles, CA, USA
| |
Collapse
|
13
|
Chen CL, Wang HY, Weng ZZ, Long LS, Zheng LS, Kong XJ. Uranyl Polyoxotungstate Cluster for Visible-Light-Driven Heterogeneous C-H Selective Fluorination. Inorg Chem 2023; 62:17041-17045. [PMID: 37819767 DOI: 10.1021/acs.inorgchem.3c02531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The selective fluorination of C-H bonds at room temperature using heterogeneous visible-light catalysts is both interesting and challenging. Herein, we present the heterogeneous sandwich-type structure uranyl-polyoxotungstate cluster Na17{Na@[(SbW9O33)2(UO2)6(PO3OH)6]}·46H2O (denoted as U6P6) to regulate the selective fluorination of the C-H bond under visible light and room temperature. This is the first report in which uranyl participates in the fluorination reaction in the form of an insoluble substance. U6P6 is capable of the effective selective fluorination of cycloalkanes and the recyclability of the photocatalyst due to the synergistic effect of multiple uranyl (UO2)2+ and the insolubility of organic reagents of polyoxotungstate. In situ electron paramagnetic resonance spectroscopy captured the generation of cycloalkane radicals during the photoreaction, confirming the mechanism of direct hydrogen atom transfer.
Collapse
Affiliation(s)
- Chao-Long Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - Hai-Ying Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - Zhen-Zhang Weng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| |
Collapse
|
14
|
Wang X, Zhang X, Xue L, Wang Q, You F, Dai L, Wu J, Kramer S, Lian Z. Mechanochemical Synthesis of Aryl Fluorides by Using Ball Milling and a Piezoelectric Material as the Redox Catalyst. Angew Chem Int Ed Engl 2023; 62:e202307054. [PMID: 37523257 DOI: 10.1002/anie.202307054] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Aryl fluorides are important structural motifs in many pharmaceuticals. Although the Balz-Schiemann reaction provides an entry to aryl fluorides from aryldiazonium tetrafluoroborates, it suffers from drawbacks such as long reaction time, high temperature, toxic solvent, toxic gas release, and low functional group tolerance. Here, we describe a general method for the synthesis of aryl fluorides from aryldiazonium tetrafluoroborates using a piezoelectric material as redox catalyst under ball milling conditions in the presence of Selectfluor. This approach effectively addresses the aforementioned limitations. Furthermore, the piezoelectric material can be recycled multiple times. Mechanistic investigations indicate that this fluorination reaction may proceed via a radical pathway, and Selectfluor plays a dual role as both a source of fluorine and a terminal reductant.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Xuemei Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Li Xue
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Qingqing Wang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Fengzhi You
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Lunzhi Dai
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Jiagang Wu
- Department of Materials Science, Sichuan University, 610064, Chengdu, China
| | - Søren Kramer
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| |
Collapse
|
15
|
Zhang L, Yan J, Ahmadli D, Wang Z, Ritter T. Electron-Transfer-Enabled Concerted Nucleophilic Fluorination of Azaarenes: Selective C-H Fluorination of Quinolines. J Am Chem Soc 2023; 145:20182-20188. [PMID: 37695320 PMCID: PMC10515641 DOI: 10.1021/jacs.3c07119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 09/12/2023]
Abstract
Direct C-H fluorination is an efficient strategy to construct aromatic C-F bonds, but the cleavage of specific C-H bonds in the presence of other functional groups and the high barrier of C-F bond formation make the transformation challenging. Progress for the electrophilic fluorination of arenes has been reported, but a similar transformation for electron-deficient azaarenes has remained elusive due to the high energy of the corresponding Wheland intermediates. Nucleophilic fluorination of electron-deficient azaarenes is difficult owing to the identity of the Meisenheimer intermediate after fluoride attack, from which fluoride elimination to regenerate the substrate is favored over hydride elimination to form the product. Herein, we report a new concept for C-H nucleophilic fluorination without the formation of azaarene Meisenheimer intermediates through a chain process with an asynchronous concerted F--e--H+ transfer. The concerted nucleophilic aromatic substitution strategy allows for the first successful nucleophilic oxidative fluorination of quinolines.
Collapse
Affiliation(s)
- Li Zhang
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Jiyao Yan
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Dilgam Ahmadli
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Zikuan Wang
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Tobias Ritter
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
16
|
Zhang H, Wu J, Zhang X, Fan M. LiBF 4-Promoted Aromatic Fluorodetriazenation under Mild Conditions. J Org Chem 2023; 88:12826-12834. [PMID: 37594375 DOI: 10.1021/acs.joc.3c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
An efficient and mild fluorination method through LiBF4-promoted aromatic fluorodetriazenation of 3,3-dimethyl-1-aryltriazenes is developed. The reaction proceeds smoothly and tends to complete within 2 h in the absence of a protic acid or strong Lewis acid. This method tolerates a wide range of functional groups and affords the aryl fluoride products in moderate to excellent yields.
Collapse
Affiliation(s)
- Hongjin Zhang
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin 300072, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, P.R. China
| | - Jianbo Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, P.R. China
| | - Xingxian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Mengyang Fan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
17
|
Ye Y, Kim ST, King RP, Baik MH, Buchwald SL. Studying Regioisomer Formation in the Pd-Catalyzed Fluorination of Cyclic Vinyl Triflates: Evidence for in situ Ligand Modification. Angew Chem Int Ed Engl 2023; 62:e202300109. [PMID: 36775802 PMCID: PMC10161128 DOI: 10.1002/anie.202300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
Pd-catalyzed nucleophilic fluorination reactions are important methods for the synthesis of fluoroarenes and fluoroalkenes. However, these reactions can generate a mixture of regioisomeric products that are often difficult to separate. While investigating the Pd-catalyzed fluorination of cyclic vinyl triflates, we observed that the addition of a substoichiometric quantity of TESCF3 significantly improved the regioselectivity of the reaction. Herein, we report a combined experimental and computational study on the mechanism of this transformation focusing on the role of TESCF3 . The poor regioselectivity of the reaction in the absence of additives results from the formation of LPd-cyclohexyne complexes (L=biaryl monophosphine ligand). When TESCF3 is added to the reaction mixture, the generation of the Pd-cyclohexyne complexes is diminished by an unexpected pathway involving the dearomatization of the ligand by nucleophilic attack from a trifluoromethyl anion (CF3 - ).
Collapse
Affiliation(s)
- Yuxuan Ye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seoung-Tae Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Ryan P King
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
18
|
Ye Y, Kim S, King RP, Baik M, Buchwald SL. Studying Regioisomer Formation in the Pd‐Catalyzed Fluorination of Cyclic Vinyl Triflates: Evidence for in situ Ligand Modification**. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Yuxuan Ye
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Seoung‐Tae Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Ryan P. King
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Mu‐Hyun Baik
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Stephen L. Buchwald
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
19
|
Sander S, Cosgrove EJ, Müller R, Kaupp M, Braun T. Hydrogen Bonding in Platinum Indolylphosphine Polyfluorido and Fluorido Complexes. Chemistry 2023; 29:e202202768. [PMID: 36327144 PMCID: PMC10107128 DOI: 10.1002/chem.202202768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
The reaction of the Pt complexes cis-[Pt(CH3 )(Ar){Ph2 P(Ind)}2 ] (Ind=2-(3-methyl)indolyl, Ar=4-tBuC6 H4 (1 a), 4-CH3 C6 H4 (1 b), Ph (1 c), 4-FC6 H4 (1 d), 4-ClC6 H4 (1 e), 4-CF3 C6 H4 (1 f)) with HF afforded the polyfluorido complexes trans-[Pt(F(HF)2 )(Ar){Ph2 P(Ind)}2 ] 2 a-f, which can be converted into the fluoride derivatives trans-[Pt(F)(Ar){Ph2 P(Ind)}2 ] (3 a-f) by treatment with CsF. The compounds 2 a-f and 3 a-f were characterised thoroughly by multinuclear NMR spectroscopy. The data reveal hydrogen bonding of the fluorido ligand with HF molecules and the indolylphosphine ligand. Polyfluorido complexes 2 a-f show larger |1 J(F,Pt)|, but lower 1 J(H,F) coupling constants when compared to the fluorido complexes 3 a-f. Decreasing 1 J(P,Pt) coupling constants in 2 a-f and 3 a-f suggest a cis influence of the aryl ligands in the following order: 4-tBuC6 H4 (a) ≈4-CH3 C6 H4 (b)
Collapse
Affiliation(s)
- Stefan Sander
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Elizabeth J. Cosgrove
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Robert Müller
- Institut für ChemieTechnische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr.C7Straße des 17. Juni 13510623BerlinGermany
| | - Martin Kaupp
- Institut für ChemieTechnische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr.C7Straße des 17. Juni 13510623BerlinGermany
| | - Thomas Braun
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| |
Collapse
|
20
|
Qi L, Dong M, Qian J, Yu S, Tong X. Pd 0 -Catalyzed Asymmetric Carbonitratation Reaction Featuring an H-Bonding-Driven Alkyl-Pd II -ONO 2 Reductive Elimination. Angew Chem Int Ed Engl 2023; 62:e202215397. [PMID: 36420824 DOI: 10.1002/anie.202215397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Reductive elimination of alkyl-PdII -O is a synthetically useful yet underdeveloped elementary reaction. Here we report that the combination of an H-bonding donor [PyH][BF4 ] and AgNO3 additive under toluene/H2 O biphasic system can enable such elementary step to form alkyl nitrate. This results in the Pd0 -catalyzed asymmetric carbonitratations of (Z)-1-iodo-1,6-dienes with (R)-BINAP as the chiral ligand, affording alkyl nitrates up to 96 % ee. Mechanistic studies disclose that the reaction consists of oxidative addition of Pd0 catalyst to vinyl iodide, anion ligand exchange between I- and NO3 - , alkene insertion and SN 2-type alkyl-PdII -ONO2 reductive elimination. Evidences suggest that H-bonding interaction of PyH⋅⋅⋅ONO2 can facilitate dissociation of O2 NO- ligand from the alkyl-PdII -ONO2 species, thus enabling the challenging alkyl-PdII -ONO2 reductive elimination to be feasible.
Collapse
Affiliation(s)
- Linjun Qi
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| | - Ming Dong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| | - Jinlong Qian
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| | - Shuling Yu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| | - Xiaofeng Tong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| |
Collapse
|
21
|
Firsan S, Sivakumar V, Colacot TJ. Emerging Trends in Cross-Coupling: Twelve-Electron-Based L 1Pd(0) Catalysts, Their Mechanism of Action, and Selected Applications. Chem Rev 2022; 122:16983-17027. [PMID: 36190916 PMCID: PMC9756297 DOI: 10.1021/acs.chemrev.2c00204] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Indexed: 01/25/2023]
Abstract
Monoligated palladium(0) species, L1Pd(0), have emerged as the most active catalytic species in the cross-coupling cycle. Today, there are methods available to generate the highly active but unstable L1Pd(0) catalysts from stable precatalysts. While the size of the ligand plays an important role in the formation of L1Pd(0) during in situ catalysis, the latter can be precisely generated from the precatalyst by various technologies. Computational, kinetic, and experimental studies indicate that all three steps in the catalytic cycle─oxidative addition, transmetalation, and reductive elimination─contain monoligated Pd. The synthesis of precatalysts, their mode of activation, application studies in model systems, as well as in industry are discussed. Ligand parametrization and AI based data science can potentially help predict the facile formation of L1Pd(0) species.
Collapse
Affiliation(s)
- Sharbil
J. Firsan
- Science
and Lab Solutions−Chemistry, MilliporeSigma, 6000 North Teutonia Avenue, Milwaukee, Wisconsin53209, United States
| | - Vilvanathan Sivakumar
- Merck
Life Science Pvt Ltd, No-12, Bommasandra-Jigani Link Road, Industrial Area, Bangalore560100, India
| | - Thomas J. Colacot
- Science
and Lab Solutions−Chemistry, MilliporeSigma, 6000 North Teutonia Avenue, Milwaukee, Wisconsin53209, United States
| |
Collapse
|
22
|
Lalloo N, Brigham CE, Sanford MS. Mechanism-Driven Development of Group 10 Metal-Catalyzed Decarbonylative Coupling Reactions. Acc Chem Res 2022; 55:3430-3444. [PMID: 36382937 PMCID: PMC9764028 DOI: 10.1021/acs.accounts.2c00496] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transition-metal-catalyzed cross-coupling reactions are widely used in both academia and industry for the construction of carbon-carbon and carbon-heteroatom bonds. The vast majority of cross-coupling reactions utilize aryl (pseudo)halides as the electrophilic coupling partner. Carboxylic acid derivatives (RC(O)X) represent a complementary class of electrophiles that can engage in decarbonylative couplings to produce analogous products. This decarbonylative approach offers the advantage that RC(O)X are abundant and inexpensive. In addition, decarbonylative coupling enables both intramolecular (between R and X of the carboxylic acid derivative) as well as intermolecular bond-forming reactions (in which an exogeneous nucleophile is coupled with the R group derived from RC(O)X). In these intermolecular reactions, the X-substituent on the carboxylic acid can be tuned to facilitate both oxidative addition and transmetalation, thus eliminating the need for an exogeneous base. This Account details our group's development of a diverse variety of base-free decarbonylative coupling reactions catalyzed by group 10 metals. Furthermore, it highlights how catalyst design can be guided by stoichiometric organometallic studies of these systems.Our early studies focused on intramolecular decarbonylative couplings that transform RC(O)X to the corresponding R-X with extrusion of CO. We first identified Pd and Ni monodentate phosphine catalysts that convert aryl thioesters (ArC(O)SR) to the corresponding thioethers (ArSR). We next expanded this reactivity to fluoroalkyl thioesters, using readily available fluoroalkyl carboxylic acids as the fluoroalkyl (RF) source. A Ni-phosphinoferrocene catalyst proved optimal, and the large bite angle bidentate ligand was necessary to promote the challenging RF-S bond-forming reductive elimination step.We next pursued intramolecular decarbonylative couplings of aroyl halides. Palladium-based catalysts bearing dialkylbiaryl ligands (e.g., BrettPhos) were identified as optimal for converting aroyl chlorides (ArC(O)Cl) to aryl chlorides (ArCl). These ligands were selected based on their ability to facilitate the key C-Cl bond-forming reductive elimination step of the catalytic cycle. In contrast, all attempts to convert aroyl fluorides [ArC(O)F)] to aryl fluorides (ArF) were unsuccessful with either Pd- or Ni-based catalysts. Organometallic studies of the Ni-system show that C(O)-F oxidative addition and CO deinsertion proceed smoothly, but the resulting nickel(II) aryl fluoride intermediate fails to undergo C-F bond-forming reductive elimination.In contrast to its inertness to reductive elimination, this nickel(II) aryl fluoride proved highly reactive toward transmetalation. The fluoride ligand serves as an internal base, such that no additional base is required. We leveraged this "transmetalation active" intermediate to achieve base-free Ni-catalyzed intermolecular decarbonylative coupling reactions between aroyl fluorides and boron reagents to access both biaryl and aryl-boronate ester products. By tuning the electrophile, transmetalating reagent, and catalyst, this same approach also proved applicable to base-free intermolecular decarbonylative fluoroalkylation (between difluoromethylacetyl fluoride and arylboronate esters) and aryl amination (between phenol esters and silyl amines).Moving forward, a key goal is to identify catalyst systems that enable more challenging bond constructions via this manifold. In addition, CO inhibition remains a major issue leading to the requirement for high temperatures and high catalyst loadings. Identifying catalysts that are resistant to CO binding and/or approaches to remove CO under mild conditions will be critical for making these reactions more practical and scalable.
Collapse
Affiliation(s)
- Naish Lalloo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Conor E. Brigham
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
23
|
Ruffell K, Argent SP, Ling KB, Ball LT. Bismuth-Mediated α-Arylation of Acidic Diketones with ortho-Substituted Boronic Acids. Angew Chem Int Ed Engl 2022; 61:e202210840. [PMID: 35950691 DOI: 10.1002/anie.202210840] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Indexed: 01/07/2023]
Abstract
The α-arylation of cyclic and fluoroalkyl 1,3-diketones is made challenging by the highly stabilized nature of the corresponding enolates, and is especially difficult for sterically demanding aryl partners. As a general solution to this problem, we report the Bi-mediated oxidative coupling of acidic diones and ortho-substituted arylboronic acids. Starting from a bench-stable bismacycle precursor, a sequence of B-to-Bi transmetallation, oxidation and C-C bond formation furnishes the arylated diones. Development of methodology that tolerates both sensitive functionality and steric demand is supported by interrogation of key reactive intermediates. Application of our strategy to cyclic diones enables the concise synthesis of important agrochemical intermediates which were previously prepared using toxic Pb reagents. This methodology also enables the first ever arylation of fluoroalkyl diones which, upon condensation with hydrazine, provides direct access to valuable fluoroalkyl pyrazoles.
Collapse
Affiliation(s)
- Katie Ruffell
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Stephen P Argent
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Kenneth B Ling
- Syngenta, Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - Liam T Ball
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
24
|
Deng H, Bengsch M, Tchorz N, Neumann CN. Sterically Controlled Late-Stage Functionalization of Bulky Phosphines. Chemistry 2022; 28:e202202074. [PMID: 35789048 PMCID: PMC9544633 DOI: 10.1002/chem.202202074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Indexed: 11/07/2022]
Abstract
The fine-tuning of metal-phosphine-catalyzed reactions relies largely on accessing ever more precisely tuned phosphine ligands by de-novo synthesis. Late-stage C-H functionalization and diversification of commercial phosphines offers rapid access to entire libraries of derivatives based on privileged scaffolds. But existing routes, relying on phosphorus-directed transformations, only yield functionalization of Csp 2 -H bonds in a specific position relative to phosphorus. In contrast to phosphorus-directed strategies, herein we disclose an orthogonal functionalization strategy capable of introducing a range of substituents into previously inaccessible positions on arylphosphines. The strongly coordinating phosphine group acts solely as a bystander in the sterically controlled borylation of bulky phosphines, and the resulting borylated phosphines serve as the supporting ligands for palladium during diversification through phosphine self-assisted Suzuki-Miyaura reactions.
Collapse
Affiliation(s)
- Hao Deng
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Marco Bengsch
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Nico Tchorz
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Constanze N. Neumann
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
25
|
Planas O, Peciukenas V, Leutzsch M, Nöthling N, Pantazis DA, Cornella J. Mechanism of the Aryl-F Bond-Forming Step from Bi(V) Fluorides. J Am Chem Soc 2022; 144:14489-14504. [PMID: 35921250 PMCID: PMC9394462 DOI: 10.1021/jacs.2c01072] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 01/10/2023]
Abstract
In this article, we describe a combined experimental and theoretical mechanistic investigation of the C(sp2)-F bond formation from neutral and cationic high-valent organobismuth(V) fluorides, featuring a dianionic bis-aryl sulfoximine ligand. An exhaustive assessment of the substitution pattern in the ligand, the sulfoximine, and the reactive aryl on neutral triarylbismuth(V) difluorides revealed that formation of dimeric structures in solution promotes facile Ar-F bond formation. Noteworthy, theoretical modeling of reductive elimination from neutral bismuth(V) difluorides agrees with the experimentally determined kinetic and thermodynamic parameters. Moreover, the addition of external fluoride sources leads to inactive octahedral anionic Bi(V) trifluoride salts, which decelerate reductive elimination. On the other hand, a parallel analysis for cationic bismuthonium fluorides revealed the crucial role of tetrafluoroborate anion as fluoride source. Both experimental and theoretical analyses conclude that C-F bond formation occurs through a low-energy five-membered transition-state pathway, where the F anion is delivered to a C(sp2) center, from a BF4 anion, reminiscent of the Balz-Schiemann reaction. The knowledge gathered throughout the investigation permitted a rational assessment of the key parameters of several ligands, identifying the simple sulfone-based ligand family as an improved system for the stoichiometric and catalytic fluorination of arylboronic acid derivatives.
Collapse
Affiliation(s)
- Oriol Planas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Vytautas Peciukenas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Nils Nöthling
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
26
|
Ruffell K, Argent SP, Ling KB, Ball LT. Bismuth‐Mediated α‐Arylation of Acidic Diketones with ortho‐Substituted Boronic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Katie Ruffell
- University of Nottingham School of Chemistry UNITED KINGDOM
| | | | - Kenneth B. Ling
- Syngenta Ltd Jealott's Hill International Research Centre UNITED KINGDOM
| | - Liam Thomas Ball
- University of Nottingham School of Chemistry The University of NottinghamUniversity Park NG7 2RD Nottingham UNITED KINGDOM
| |
Collapse
|
27
|
Norman JP, Larson NG, Neufeldt SR. Different Oxidative Addition Mechanisms for 12- and 14-Electron Palladium(0) Explain Ligand-Controlled Divergent Site Selectivity. ACS Catal 2022; 12:8822-8828. [PMID: 37601556 PMCID: PMC10438894 DOI: 10.1021/acscatal.2c01698] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In cross-coupling reactions, dihaloheteroarenes are usually most reactive at C─halide bonds adjacent to a heteroatom. This selectivity has been previously rationalized. However, no mechanistic explanation exists for anomalous reports in which specific ligands effect inverted selectivity with dihalopyridines and -pyridazines. Here we provide evidence that these ligands uniquely promote oxidative addition at 12e- Pd(0). Computations indicate that 12e- and 14e- Pd(0) can favor different mechanisms for oxidative addition due to differences in their HOMO symmetries. These mechanisms are shown to lead to different site preferences, where 12e- Pd(0) can favor oxidative addition at an atypical site distal to nitrogen.
Collapse
Affiliation(s)
| | | | - Sharon R. Neufeldt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
28
|
Car-Parrinello molecular dynamics study of CuF, AgF, CuPF6 and AgPF6 in acetonitrile solvent and Cluster-Continuum calculation of the solvation free energy of Cu(I), Ag(I) and Li(I). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Pliego JR. Copper-Catalyzed Aromatic Fluorination of 2-(2-bromophenyl)pyridine via Cu(I)/Cu(III) Mechanism in Acetonitrile Solvent: Cluster-Continuum Free Energy Profile and Microkinetic Analysis. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Ragan AN, Kraemer Y, Kong WY, Prasad S, Tantillo DJ, Pitts CR. Evidence for C–F Bond Formation through Formal Reductive Elimination from Tellurium(VI). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Abbey N. Ragan
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Yannick Kraemer
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Wang-Yeuk Kong
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Supreeth Prasad
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Dean J. Tantillo
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Cody Ross Pitts
- University of California Davis Department of Chemistry One Shields Avenue 95616 Davis UNITED STATES
| |
Collapse
|
31
|
Ragan AN, Kraemer Y, Kong WY, Prasad S, Tantillo DJ, Pitts CR. Evidence for C-F Bond Formation through Formal Reductive Elimination from Tellurium(VI). Angew Chem Int Ed Engl 2022; 61:e202208046. [PMID: 35859267 DOI: 10.1002/anie.202208046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/10/2022]
Abstract
The fundamental challenge of C-F bond formation by reductive elimination has been met by compounds of select transition metals and fewer main group elements. The work detailed herein expands the list of main group elements known to be capable of reductively eliminating a C-F bond to include tellurium. Surprising and novel modes of both sp2 and sp3 C-F bond formation were observed alongside formation of TeIV cations during two separate attempts to synthesize/characterize fluorinated organotellurium(VI) cations in superacidic media (SbF5 /SO2 ClF). Following detailed low-temperature NMR experiments, the mechanisms of the two unique reductive elimination reactions were probed and investigated using density functional theory (DFT) calculations. Ultimately, we found that an "indirect" reductive elimination pathway is likely operative whereby Sb plays a key role in fluoride abstraction and C-F bond formation, as opposed to unimolecular reductive elimination from a discrete TeVI cation.
Collapse
Affiliation(s)
- Abbey N Ragan
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Yannick Kraemer
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Supreeth Prasad
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Cody Ross Pitts
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
32
|
Fujii T, Gallarati S, Corminboeuf C, Wang Q, Zhu J. Modular Synthesis of Benzocyclobutenes via Pd(II)-Catalyzed Oxidative [2+2] Annulation of Arylboronic Acids with Alkenes. J Am Chem Soc 2022; 144:8920-8926. [PMID: 35561421 DOI: 10.1021/jacs.2c03565] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Benzocyclobutenes (BCBs) are highly valuable compounds in organic synthesis, medicinal chemistry, and materials science. However, catalytic modular synthesis of functionalized BCBs from easily accessible starting materials remains limited. We report herein an efficient synthesis of diversely functionalized BCBs by a Pd(II)-catalyzed formal [2+2] annulation between arylboronic acids and alkenes in the presence of N-fluorobenzenesulfonimide (NFSI). An intermolecular carbopalladation followed by palladium oxidation, intramolecular C(sp2)-H activation by a transient C(sp3)-Pd(IV) species, and selective carbon-carbon (C-C) bond-forming reductive elimination from a high-valent five-membered palladacycle is proposed to account for the reaction outcome. Kinetically competent oxidation of alkylPd(II) to alkylPd(IV) species is important to avoid the formation of a Heck adduct. The reaction forges two C-C bonds of the cyclobutene core and is compatible with a wide range of functional groups. No chelating bidentate directing group in the alkene part is needed for this transformation.
Collapse
Affiliation(s)
- Takuji Fujii
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Simone Gallarati
- Laboratory for Computational Molecular Design (LCMD), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design (LCMD), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
33
|
Zou S, Luo X, Chen C, Xi C. Photoredox-catalyzed fluorodifluoroacetylation of alkenes with FSO 2CF 2CO 2Me and Et 3N·3HF. Org Biomol Chem 2022; 20:3726-3730. [PMID: 35466989 DOI: 10.1039/d2ob00488g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoredox-catalyzed three-component fluorodifluoroacetylation of aromatic alkenes is reported, which features a wide substrate scope and functional group tolerance. An advantage of the reaction is the use of a nucleophilic fluoride source and a general difluoroacetylation reagent for the fluorodifluoroacetylation of alkenes.
Collapse
Affiliation(s)
- Song Zou
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Xuewei Luo
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Chao Chen
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Chanjuan Xi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China. .,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
34
|
Delcaillau T, Schmitt HL, Boehm P, Falk E, Morandi B. Palladium-Catalyzed Carbothiolation of Alkenes and Alkynes for the Synthesis of Heterocycles. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tristan Delcaillau
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland
| | - Hendrik L. Schmitt
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland
| | - Philip Boehm
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland
| | - Eric Falk
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland
| |
Collapse
|
35
|
Copper-Mediated Aromatic Fluorination Using N-Heterocycle-Carbene Ligand: Free Energy Profile of the Cu(I)/Cu(III) and Cu(II) radical Mechanisms. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Medina-Mercado I, Porcel S. Biaryl Coupling of Aryldiazonium Salts and Arylboronic Acids Catalysed by Gold. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0041-1737882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractA gold-catalysed coupling of aryldiazonium salts with arylboronic acids is described. The reactions proceed in satisfactory yields under irradiation with blue LEDs in the presence of KF and a catalytic amount of ascorbic acid. Notably, 4-nitrobenzendiazonium tetrafluoroborate is sufficiently reactive to undergo the coupling with a variety of arylboronic acids in the absence of aryl radical initiators. The coupling is applicable for electron-donating and electron-withdrawing groups present at the para, ortho, and meta positions of both substrates.
Collapse
|
37
|
Elias EK, Rehbein SM, Neufeldt SR. Solvent coordination to palladium can invert the selectivity of oxidative addition. Chem Sci 2022; 13:1618-1628. [PMID: 35282616 PMCID: PMC8827013 DOI: 10.1039/d1sc05862b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
Reaction solvent was previously shown to influence the selectivity of Pd/P t Bu3-catalyzed Suzuki-Miyaura cross-couplings of chloroaryl triflates. The role of solvents has been hypothesized to relate to their polarity, whereby polar solvents stabilize anionic transition states involving [Pd(P t Bu3)(X)]- (X = anionic ligand) and nonpolar solvents do not. However, here we report detailed studies that reveal a more complicated mechanistic picture. In particular, these results suggest that the selectivity change observed in certain solvents is primarily due to solvent coordination to palladium. Polar coordinating and polar noncoordinating solvents lead to dramatically different selectivity. In coordinating solvents, preferential reaction at triflate is likely catalyzed by Pd(P t Bu3)(solv), whereas noncoordinating solvents lead to reaction at chloride through monoligated Pd(P t Bu3). The role of solvent coordination is supported by stoichiometric oxidative addition experiments, density functional theory (DFT) calculations, and catalytic cross-coupling studies. Additional results suggest that anionic [Pd(P t Bu3)(X)]- is also relevant to triflate selectivity in certain scenarios, particularly when halide anions are available in high concentrations.
Collapse
Affiliation(s)
- Emily K Elias
- Department of Chemistry and Biochemistry, Montana State University Bozeman Montana 59717 USA
| | - Steven M Rehbein
- Department of Chemistry and Biochemistry, Montana State University Bozeman Montana 59717 USA
| | - Sharon R Neufeldt
- Department of Chemistry and Biochemistry, Montana State University Bozeman Montana 59717 USA
| |
Collapse
|
38
|
Sirindil F, Pertschi R, Naulin E, Hatey D, Weibel JM, Pale P, Blanc A. trans-Dichlorobis(XPhos)palladium(II) Precatalyst for Suzuki-Miyaura Cross-Coupling Reactions of Aryl/Vinyl Sulfonates/Halides: Scope, Mechanistic Study, and Synthetic Applications. ACS OMEGA 2022; 7:1186-1196. [PMID: 35036781 PMCID: PMC8756804 DOI: 10.1021/acsomega.1c05770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Suzuki-Miyaura cross-coupling reactions of aryl/vinyl sulfonates/halides with various boron species were performed using an easily available trans-dichlorobis(XPhos)palladium(II) precatalyst. Under microwave assistance, more than 30 coupling products were obtained with yields ranging from 23 to 99%, including the synthesis of two bioactive compounds, dubamine and tamoxifen. A mechanistic investigation of the Suzuki-Miyaura reaction was conducted notably by nuclear magnetic resonance (NMR) and high-resolution mass spectroscopy, revealing the nature of the active Pd0 species and of the reducing entity.
Collapse
|
39
|
Jiang Z, Zhao DD, Hu YT, Rao Y, Guo SY, Xu YH, Li Q, Huang ZS. Palladium oxidative addition complex-enabled synthesis of amino-substituted indolyl-4(3 H)-quinazolinones and their antitumor activity evaluation. Org Biomol Chem 2021; 20:553-557. [PMID: 34932056 DOI: 10.1039/d1ob02307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The indolyl-4(3H)-quinazolinone core is an important structural motif in functional molecules. However, few methods exist for its direct modification, which limits its potential application. Reported herein is a palladium-mediated amination of halogen-containing indolyl-4(3H)-quinazolinones with a variety of primary and secondary amines via the corresponding palladium oxidative addition complexes. The protocol allows the facile synthesis of indolyl-4(3H)-quinazolinone derivatives with amino groups at all the positions of the benzene ring in moderate to good yields with mild reaction conditions and good functional group tolerance. Furthermore, the antitumor activity of these products was evaluated.
Collapse
Affiliation(s)
- Zhi Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Dan-Dan Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Yu-Tao Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Yong Rao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Shi-Yao Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Yao-Hao Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Qingjiang Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
40
|
Rachor SG, Müller R, Wittwer P, Kaupp M, Braun T. Synthesis, Reactivity, and Bonding of Gold(I) Fluorido-Phosphine Complexes. Inorg Chem 2021; 61:357-367. [PMID: 34913690 DOI: 10.1021/acs.inorgchem.1c02959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gold(I) fluorido complexes with phosphine ligands have been synthesized from their respective iodido precursors. The bonding situation in comparison between complexes bearing phosphines and N-heterocyclic carbenes (NHCs) was explored quantum-chemically, obtaining similar results for both. Calculations of the 19F NMR chemical shifts match the experimental values well, including the approximately 40 ppm low-field shifts for the phosphine complexes compared to the NHC complexes, in spite of similar negative charges on fluorine. The reactivity of the highly water-sensitive gold(I) fluorido complexes was studied, resulting in substitution at the metal using trimethylsilyl reagents. The compounds studied were characterized using NMR as well as X-ray diffraction methods.
Collapse
Affiliation(s)
- Simon G Rachor
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Robert Müller
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Strasse des 17 Juni 135, 10623 Berlin, Germany
| | - Philipp Wittwer
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Strasse des 17 Juni 135, 10623 Berlin, Germany
| | - Thomas Braun
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
41
|
Zhang Z, Luo J, Gao H. Rapid Access to Fluorinated Anilides via DAST-Mediated Deoxyfluorination of Arylhydroxylamines. Org Lett 2021; 23:9332-9336. [PMID: 34797084 DOI: 10.1021/acs.orglett.1c03779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new strategy for the synthesis of fluorinated anilides in the absence of metals and oxidants has been developed. This deoxyfluorination of N-arylhydroxylamines with diethylaminosulfur trifluoride (DAST) proceeded smoothly under mild conditions, and the ortho- or para-fluorinated aromatic amine products were prepared in moderate to good yields. Structurally diverse fluorinated anilides, including heterocyclic and pharmaceutically relevant molecules, can be efficiently constructed by this protocol.
Collapse
Affiliation(s)
- Zhuyong Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.,School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, Shandong 250100, China
| | - Junfei Luo
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hongyin Gao
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, Shandong 250100, China
| |
Collapse
|
42
|
Paul N, Patra T, Maiti D. Recent Developments in Hydrodecyanation and Decyanative Functionalization Reactions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nilanjan Paul
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi Telangana 502285 India
| | - Tuhin Patra
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
- Tokyo Tech World Research Hub Initiative (WRHI) Laboratory for Chemistry and Life Science Tokyo Institute of Technology Tokyo 152-8550 Japan
| |
Collapse
|
43
|
Sander S, Müller R, Ahrens M, Kaupp M, Braun T. Platinum Indolylphosphine Fluorido and Polyfluorido Complexes: An Interplay between Cyclometallation, Fluoride Migration, and Hydrogen Bonding. Chemistry 2021; 27:14287-14298. [PMID: 34337795 PMCID: PMC8596594 DOI: 10.1002/chem.202102451] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 11/06/2022]
Abstract
The reaction of [PtCl2 (COD)] (COD=1,5-cyclooctadiene) with diisopropyl-2-(3-methyl)indolylphosphine (iPr2 P(C9 H8 N)) led to the formation of the platinum(ii) chlorido complexes, cis-[PtCl2 {iPr2 P(C9 H8 N)}2 ] (1) and trans-[PtCl2 {iPr2 P(C9 H8 N)}2 ] (2). The cis-complex 1 reacted with NEt3 yielding the complex cis-[PtCl{κ2 -(P,N)-iPr2 P(C9 H7 N)}{iPr2 P(C9 H8 N)}] (3) bearing a cyclometalated κ2 -(P,N)-phosphine ligand, while the isomer 2 with a trans-configuration did not show any reactivity towards NEt3 . Treatment of 1 or 3 with (CH3 )4 NF (TMAF) resulted in the formation of the twofold cyclometalated complex cis-[Pt{κ2 -(P,N)-iPr2 P(C9 H7 N)}2 ] (4). The molecular structures of the complexes 1-4 were determined by single-crystal X-ray diffraction. The fluorido complex cis-[PtF{κ2 -(P,N)-iPr2 P(C9 H7 N)}{iPr2 P(C9 H8 N)}] ⋅ (HF)4 (5 ⋅ (HF)4 ) was formed when complex 4 was treated with different hydrogen fluoride sources. The Pt(ii) fluorido complex 5 ⋅ (HF)4 exhibits intramolecular hydrogen bonding in its outer coordination sphere between the fluorido ligand and the NH group of the 3-methylindolyl moiety. In contrast to its chlorido analogue 3, complex 5 ⋅ (HF)4 reacted with CO or the ynamide 1-(2-phenylethynyl)-2-pyrrolidinone to yield the complexes trans-[Pt(CO){κ2 -(P,C)-iPr2 P(C9 H7 NCO)}{iPr2 P(C9 H8 N)}][F(HF)4 ] (7) and a complex, which we suggest to be cis-[Pt{C=C(Ph)OCN(C3 H6 )}{κ2 -(P,N)-iPr2 P(C9 H7 N)}{iPr2 P(C9 H8 N)}][F(HF)4 ] (9), respectively. The structure of 9 was assigned on the basis of DFT calculations as well as NMR and IR data. Hydrogen bonding of HF and NH to fluoride was proven to be crucial for the existence of 7 and 9.
Collapse
Affiliation(s)
- Stefan Sander
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Robert Müller
- Institut für ChemieTechnische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr.C7Straße des 17. Juni 13510623BerlinGermany
| | - Mike Ahrens
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Martin Kaupp
- Institut für ChemieTechnische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr.C7Straße des 17. Juni 13510623BerlinGermany
| | - Thomas Braun
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| |
Collapse
|
44
|
|
45
|
Ajenjo J, Destro G, Cornelissen B, Gouverneur V. Closing the gap between 19F and 18F chemistry. EJNMMI Radiopharm Chem 2021; 6:33. [PMID: 34564781 PMCID: PMC8464544 DOI: 10.1186/s41181-021-00143-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/03/2021] [Indexed: 11/10/2022] Open
Abstract
Positron emission tomography (PET) has become an invaluable tool for drug discovery and diagnosis. The positron-emitting radionuclide fluorine-18 is frequently used in PET radiopharmaceuticals due to its advantageous characteristics; hence, methods streamlining access to 18F-labelled radiotracers can make a direct impact in medicine. For many years, access to 18F-labelled radiotracers was limited by the paucity of methodologies available, and the poor diversity of precursors amenable to 18F-incorporation. During the last two decades, 18F-radiochemistry has progressed at a fast pace with the appearance of numerous methodologies for late-stage 18F-incorporation onto complex molecules from a range of readily available precursors including those that do not require pre-functionalisation. Key to these advances is the inclusion of new activation modes to facilitate 18F-incorporation. Specifically, new advances in late-stage 19F-fluorination under transition metal catalysis, photoredox catalysis, and organocatalysis combined with the availability of novel 18F-labelled fluorination reagents have enabled the invention of novel processes for 18F-incorporation onto complex (bio)molecules. This review describes these major breakthroughs with a focus on methodologies for C-18F bond formation. This reinvigorated interest in 18F-radiochemistry that we have witnessed in recent years has made a direct impact on 19F-chemistry with many laboratories refocusing their efforts on the development of methods using nucleophilic fluoride instead of fluorination reagents derived from molecular fluorine gas.
Collapse
Affiliation(s)
- Javier Ajenjo
- Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Gianluca Destro
- Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Bart Cornelissen
- Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Véronique Gouverneur
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| |
Collapse
|
46
|
Xu W, Zhang Q, Shao Q, Xia C, Wu M. Photocatalytic C−F Bond Activation of Fluoroarenes,
gem
‐Difluoroalkenes and Trifluoromethylarenes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100426] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wengang Xu
- College of New Energy China University of Petroleum China East 266580 Qingdao P. R. China
| | - Qiao Zhang
- College of Chemical Engineering State Key Laboratory of Heavy Oil Processing China University of Petroleum (China East) 266580 Qingdao P. R. China
| | - Qi Shao
- College of Chemical Engineering State Key Laboratory of Heavy Oil Processing China University of Petroleum (China East) 266580 Qingdao P. R. China
| | - Congjian Xia
- College of Chemical Engineering State Key Laboratory of Heavy Oil Processing China University of Petroleum (China East) 266580 Qingdao P. R. China
| | - Mingbo Wu
- College of New Energy China University of Petroleum China East 266580 Qingdao P. R. China
- College of Chemical Engineering State Key Laboratory of Heavy Oil Processing China University of Petroleum (China East) 266580 Qingdao P. R. China
| |
Collapse
|
47
|
Bui TT, Kim HK. Recent Advances in Photo-mediated Radiofluorination. Chem Asian J 2021; 16:2155-2167. [PMID: 34189852 DOI: 10.1002/asia.202100399] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/26/2021] [Indexed: 01/22/2023]
Abstract
Carbon-fluorine bond formations have received a lot of attention because organofluorine compounds are widely used in pharmaceutical, agricultural, and materials science applications. In particular, the incorporation of fluorine-18, which is a commonly used radioisotope for radiopharmaceuticals for positron emission tomography (PET), a molecular imaging tool for the visualization of biochemical events, human metabolism processes, and the measurement and diagnosis of diseases in humans, plays a crucial role in clinical and preclinical studies. Several synthetic methodologies for carbon-fluorine-18 bond formation have been developed. However, conventional fluorination methods have some remaining drawbacks such as the high temperature and basic environment. Photo-induced catalysis is an emerging technique that allow chemists to achieve the synthesis of target molecular architectures under mild conditions. Moreover, several radiofluorination strategies have been developed via photocatalysis. In this review, we focused on describing recent advances in the field of light-mediated radiofluorination.
Collapse
Affiliation(s)
- Tien Tan Bui
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Korea.,Research Institute of Clinical Medicine, Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, 54907, Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Korea.,Research Institute of Clinical Medicine, Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, 54907, Korea
| |
Collapse
|
48
|
Britton R, Gouverneur V, Lin JH, Meanwell M, Ni C, Pupo G, Xiao JC, Hu J. Contemporary synthetic strategies in organofluorine chemistry. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00042-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Maleckis A, Herath ID, Otting G. Synthesis of 13C/ 19F/ 2H labeled indoles for use as tryptophan precursors for protein NMR spectroscopy. Org Biomol Chem 2021; 19:5133-5147. [PMID: 34032255 DOI: 10.1039/d1ob00611h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthesis of indoles labeled with 13C-1H and 13C-19F spin pairs is described. All syntheses utilize inexpensive carbon-13C dioxide as the 13C isotope source. Ruthenium-mediated ring-closing metathesis is the key step in construction of the 13C containing indole carbocycle. Fluorine is introduced via electrophilic fluorination at the 7-position and via palladium-mediated cross-coupling at the 4-position. Indole and fluoroindoles are viable tryptophan precursors for in vivo protein expression. We show that they are viable also in in vitro protein synthesis using standard E. coli S30 extracts. Incorporation of the synthesized 13C-1H and 13C-19F spin pair labeled tryptophans into proteins enables high-resolution and high-sensitivity nuclear magnetic resonance (NMR) spectroscopy.
Collapse
Affiliation(s)
- Ansis Maleckis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia.
| | - Iresha D Herath
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
50
|
Sheng J, Ni H, Ni S, He Y, Cui R, Liao G, Bian K, Wu B, Wang X. Diversity‐Oriented Synthesis of Aliphatic Fluorides via Reductive C(sp
3
)−C(sp
3
) Cross‐Coupling Fluoroalkylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102481] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Sheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Hui‐Qi Ni
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Shan‐Xiu Ni
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Yan He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Ru Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Guang‐Xu Liao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Kang‐Jie Bian
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Bing‐Bing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Xi‐Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| |
Collapse
|