1
|
Wang L, Geng Z, Liu Y, Cao L, Liu Y, Zhang H, Bi Y, Lu J. Multi-Modal Design, Synthesis, and Biological Evaluation of Novel Fusidic Acid Derivatives. Molecules 2025; 30:1983. [PMID: 40363790 PMCID: PMC12073777 DOI: 10.3390/molecules30091983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/21/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Fusidic acid (FA), a tetracyclic triterpenoid, has been approved to treat methicillin-resistant Staphylococcus aureus (MRSA) infections. However, there are few reports about FA derivatives with high efficacy superior to FA, manifesting the difficulty of discovering the derivatives based on experience-based drug design. In this study, we employed a stepwise method to discover novel FA derivatives. First, molecular dynamics (MD) simulations were performed to identify the molecular mechanism of FA against elongation factor G (EF-G) and drug resistance. Then, we utilized a scaffold decorator to design novel FA derivatives at the 3- and 21-positions of FA. The ligand-based and structure-based screening models, including Chemprop and RTMScore, were employed to identify promising hits from the generated set. Ten generated FA derivatives with high efficacy in the Chemprop and RTMScore models were synthesized for in vitro testing. Compounds 4 and 10 demonstrated a 2-fold increase in potency against MRSA strains compared to FA. This study highlights the significant impact of AI-based methods on the design of novel FA derivatives with drug efficacy, which provides a new approach for drug discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (L.W.); (Z.G.); (Y.L.); (L.C.); (Y.L.); (H.Z.)
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (L.W.); (Z.G.); (Y.L.); (L.C.); (Y.L.); (H.Z.)
| |
Collapse
|
2
|
González-López A, Ge X, Larsson DSD, Sihlbom Wallem C, Sanyal S, Selmer M. Structural mechanism of FusB-mediated rescue from fusidic acid inhibition of protein synthesis. Nat Commun 2025; 16:3693. [PMID: 40251147 PMCID: PMC12008383 DOI: 10.1038/s41467-025-58902-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/04/2025] [Indexed: 04/20/2025] Open
Abstract
The antibiotic resistance protein FusB rescues protein synthesis from inhibition by fusidic acid (FA), which locks elongation factor G (EF-G) to the ribosome after GTP hydrolysis. Here, we present time-resolved single-particle cryo-EM structures explaining the mechanism of FusB-mediated rescue. FusB binds to the FA-trapped EF-G on the ribosome, causing large-scale conformational changes of EF-G that break interactions with the ribosome, tRNA, and mRNA. This leads to dissociation of EF-G from the ribosome, followed by FA release. We also observe two independent binding sites of FusB on the classical-state ribosome, overlapping with the binding site of EF-G to each of the ribosomal subunits, yet not inhibiting tRNA delivery. The affinity of FusB to the ribosome and the concentration of FusB in S. aureus during FusB-mediated resistance support that direct binding of FusB to ribosomes could occur in the cell. Our results reveal an intricate resistance mechanism involving specific interactions of FusB with both EF-G and the ribosome, and a non-canonical release pathway of EF-G.
Collapse
Affiliation(s)
- Adrián González-López
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
- Uppsala Antibiotic Center, Uppsala University, Uppsala, Sweden
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
| | - Daniel S D Larsson
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
| | - Carina Sihlbom Wallem
- Proteomics Core Facility, Scilifelab and University of Gothenburg, Gothenburg, Sweden
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
| | - Maria Selmer
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden.
- Uppsala Antibiotic Center, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Majumdar S, Kashyap A, Koripella RK, Sharma MR, Hurst-Hess K, Manjari SR, Banavali NK, Ghosh P, Agrawal RK. HflX-mediated drug resistance through ribosome splitting and rRNA disordering in mycobacteria. Proc Natl Acad Sci U S A 2025; 122:e2419826122. [PMID: 39913204 PMCID: PMC11831132 DOI: 10.1073/pnas.2419826122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/10/2025] [Indexed: 02/12/2025] Open
Abstract
HflX is a highly conserved ribosome-associated GTPase implicated in rescuing stalled ribosomes and mediating antibiotic resistance in several bacteria, including macrolide-lincosamide antibiotic resistance in mycobacteria. Mycobacterial HflXs carry a distinct N-terminal extension (NTE) and a small insertion, as compared to their eubacterial homologs. Here, we present several high-resolution cryo-EM structures of mycobacterial HflX in complex with the 70S ribosome and its 50S subunit, with and without antibiotics. These structures reveal a distinct mechanism for HflX-mediated ribosome splitting and antibiotic resistance in mycobacteria. Our findings indicate that the NTE of mycobacterial HflX induces persistent disordering of multiple 23S rRNA helices, facilitating the dissociation of the 70S ribosome and generating an inactive pool of 50S subunits. During this process, HflX undergoes a large conformational change that stabilizes its NTE. Mycobacterial HflX also acts as an anti-association factor by binding to predissociated 50S subunits. Our structures show that a mycobacteria-specific insertion in HflX reaches far into the peptidyl transferase center (PTC), such that it would overlap with the ribosome-bound macrolide antibiotics. However, in the presence of antibiotics, this insertion retracts, adjusts around, and interacts with the antibiotic molecules. These results suggest that mycobacterial HflX is agnostic to antibiotic presence in the PTC. It mediates antibiotic resistance by splitting antibiotic-stalled 70S ribosomes and inactivating the resulting 50S subunits.
Collapse
Affiliation(s)
- Soneya Majumdar
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY12237
| | - Amuliya Kashyap
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY12208
| | - Ravi K. Koripella
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY12237
| | - Manjuli R. Sharma
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY12237
| | - Kelley Hurst-Hess
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY12208
| | - Swati R. Manjari
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY12237
| | - Nilesh K. Banavali
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY12237
- Department of Biomedical Sciences, University at Albany, Albany, NY12208
| | - Pallavi Ghosh
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY12208
- Department of Biomedical Sciences, University at Albany, Albany, NY12208
| | - Rajendra K. Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY12237
- Department of Biomedical Sciences, University at Albany, Albany, NY12208
| |
Collapse
|
4
|
Jia X, Huang C, Liu F, Dong Z, Liu K. Elongation factor 2 in cancer: a promising therapeutic target in protein translation. Cell Mol Biol Lett 2024; 29:156. [PMID: 39707196 DOI: 10.1186/s11658-024-00674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024] Open
Abstract
Aberrant elongation of proteins can lead to the activation of oncogenic signaling pathways, resulting in the dysregulation of oncogenic signaling pathways. Eukaryotic elongation factor 2 (eEF2) is an essential regulator of protein synthesis that precisely elongates nascent peptides in the protein elongation process. Although studies have linked aberrant eEF2 expression to various cancers, research has primarily focused on its structure, highlighting a need for deeper exploration into its molecular functions. In this review, recent advancements in the structure, guanosine triphosphatase (GTPase) activity, posttranslational modifications, regulatory factors, and inhibitors of eEF2 are summarized. These findings provide a comprehensive cognition on the critical role of eEF2 and its potential as a therapeutic target in cancer. Furthermore, this review highlights important unanswered questions that warrant investigation in future research.
Collapse
Affiliation(s)
- Xuechao Jia
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chuntian Huang
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
- Department of Pathology and Pathophysiology, School of Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Fangfang Liu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, 450001, Henan, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450000, Henan, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, 450001, Henan, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
5
|
Chen Y, Gavriliuc M, Zeng Y, Xu S, Wang Y. Allosteric Effects of EF-G Domain I Mutations Inducing Ribosome Frameshifting Revealed by Multiplexed Force Spectroscopy. Chembiochem 2024; 25:e202400130. [PMID: 38923096 PMCID: PMC11446648 DOI: 10.1002/cbic.202400130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Ribosome translocation catalyzed by elongation factor G (EF-G) is a critical step in protein synthesis where the ribosome typically moves along the mRNA by three nucleotides at each step. To investigate the mechanism of EF-G catalysis, it is essential to precisely resolve the ribosome motion at both ends of the mRNA, which, to our best knowledge, is only achieved with the magnetic-based force spectroscopy developed by our groups. Here, we introduce a novel multiplexed force spectroscopy technique that, for the first time, offers single-nucleotide resolution for multiple samples. This technique combines multiple acoustic force generators with the smallest atomic magnetometer designed for biological research. Utilizing this technique, we demonstrate that mutating EF-G at the GTP binding pocket results in the ribosome moving only two nucleotides on both ends of the mRNA, thereby compromising ribosome translocation. This finding suggests a direct link between GTP hydrolysis and ribosome translocation. Our results not only provide mechanistic insights into the role of GTP binding pocket but also illuminate how allosteric mutations can manipulate translocation. We anticipate broader applications of our technique in the ribosome field, leveraging its high efficiency and single-nucleotide resolution.
Collapse
Affiliation(s)
- Yanjun Chen
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA E-mails
| | - Miriam Gavriliuc
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Yi Zeng
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA E-mails
| | - Shoujun Xu
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA E-mails
| | - Yuhong Wang
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| |
Collapse
|
6
|
Alejo JL, Girodat D, Hammerling MJ, Willi JA, Jewett MC, Engelhart AE, Adamala KP. Alternate conformational trajectories in ribosome translocation. PLoS Comput Biol 2024; 20:e1012319. [PMID: 39141679 PMCID: PMC11346969 DOI: 10.1371/journal.pcbi.1012319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/26/2024] [Accepted: 07/12/2024] [Indexed: 08/16/2024] Open
Abstract
Translocation in protein synthesis entails the efficient and accurate movement of the mRNA-[tRNA]2 substrate through the ribosome after peptide bond formation. An essential conformational change during this process is the swiveling of the small subunit head domain about two rRNA 'hinge' elements. Using iterative selection and molecular dynamics simulations, we derive alternate hinge elements capable of translocation in vitro and in vivo and describe their effects on the conformational trajectory of the EF-G-bound, translocating ribosome. In these alternate conformational pathways, we observe a diversity of swivel kinetics, hinge motions, three-dimensional head domain trajectories and tRNA dynamics. By finding alternate conformational pathways of translocation, we identify motions and intermediates that are essential or malleable in this process. These findings highlight the plasticity of protein synthesis and provide a more thorough understanding of the available sequence and conformational landscape of a central biological process.
Collapse
Affiliation(s)
- Jose L. Alejo
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dylan Girodat
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Michael J. Hammerling
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Jessica A. Willi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Aaron E. Engelhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Katarzyna P. Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
7
|
Lin R, Wang Y. Developing Multichannel smFRET Approach to Dissecting Ribosomal Mechanisms. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:501-509. [PMID: 39056063 PMCID: PMC11267599 DOI: 10.1021/cbmi.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 07/28/2024]
Abstract
The ribosome, a 2.6 megadalton biomolecule measuring approximately 20 nm in diameter, coordinates numerous ligands, factors, and regulators to translate proteins with high fidelity and speed. Understanding its complex functions necessitates multiperspective observations. We developed a dual-FRET single-molecule Förste Resonance Energy Transfer method (dual-smFRET), allowing simultaneous observation and correlation of tRNA dynamics and Elongation Factor G (EF-G) conformations in the same complex, in a 10 s time window. By synchronizing laser shutters and motorized filter sets, two FRET signals are captured in consecutive 5 s intervals with a time gap of 50-100 ms. We observed distinct fluorescent emissions from single-, double-, and quadruple-labeled ribosome complexes. Through comprehensive spectrum analysis and correction, we distinguish and correlate conformational changes in two parts of the ribosome, offering additional perspectives on its coordination and timing during translocation. Our setup's versatility, accommodating up to six FRET pairs, suggests broader applications in studying large biomolecules and various biological systems.
Collapse
Affiliation(s)
| | - Yuhong Wang
- Department
of Biology and Biochemistry, University
of Houston, Houston, Texas 77204, United States
| |
Collapse
|
8
|
Weiss JL, Decker JC, Bolano A, Krahn N. Tuning tRNAs for improved translation. Front Genet 2024; 15:1436860. [PMID: 38983271 PMCID: PMC11231383 DOI: 10.3389/fgene.2024.1436860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Transfer RNAs have been extensively explored as the molecules that translate the genetic code into proteins. At this interface of genetics and biochemistry, tRNAs direct the efficiency of every major step of translation by interacting with a multitude of binding partners. However, due to the variability of tRNA sequences and the abundance of diverse post-transcriptional modifications, a guidebook linking tRNA sequences to specific translational outcomes has yet to be elucidated. Here, we review substantial efforts that have collectively uncovered tRNA engineering principles that can be used as a guide for the tuning of translation fidelity. These principles have allowed for the development of basic research, expansion of the genetic code with non-canonical amino acids, and tRNA therapeutics.
Collapse
Affiliation(s)
- Joshua L Weiss
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - J C Decker
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Ariadna Bolano
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Natalie Krahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
9
|
González-López A, Larsson DSD, Koripella RK, Cain BN, Chavez MG, Hergenrother PJ, Sanyal S, Selmer M. Structures of the Staphylococcus aureus ribosome inhibited by fusidic acid and fusidic acid cyclopentane. Sci Rep 2024; 14:14253. [PMID: 38902339 PMCID: PMC11190147 DOI: 10.1038/s41598-024-64868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024] Open
Abstract
The antibiotic fusidic acid (FA) is used to treat Staphylococcus aureus infections. It inhibits protein synthesis by binding to elongation factor G (EF-G) and preventing its release from the ribosome after translocation. While FA, due to permeability issues, is only effective against gram-positive bacteria, the available structures of FA-inhibited complexes are from gram-negative model organisms. To fill this knowledge gap, we solved cryo-EM structures of the S. aureus ribosome in complex with mRNA, tRNA, EF-G and FA to 2.5 Å resolution and the corresponding complex structures with the recently developed FA derivative FA-cyclopentane (FA-CP) to 2.0 Å resolution. With both FA variants, the majority of the ribosomal particles are observed in chimeric state and only a minor population in post-translocational state. As expected, FA binds in a pocket between domains I, II and III of EF-G and the sarcin-ricin loop of 23S rRNA. FA-CP binds in an identical position, but its cyclopentane moiety provides additional contacts to EF-G and 23S rRNA, suggesting that its improved resistance profile towards mutations in EF-G is due to higher-affinity binding. These high-resolution structures reveal new details about the S. aureus ribosome, including confirmation of many rRNA modifications, and provide an optimal starting point for future structure-based drug discovery on an important clinical drug target.
Collapse
Affiliation(s)
- Adrián González-López
- Department of Cell and Molecular Biology, Uppsala University, BMC, P.O. Box 596, 75124, Uppsala, Sweden
| | - Daniel S D Larsson
- Department of Cell and Molecular Biology, Uppsala University, BMC, P.O. Box 596, 75124, Uppsala, Sweden
| | - Ravi Kiran Koripella
- Department of Cell and Molecular Biology, Uppsala University, BMC, P.O. Box 596, 75124, Uppsala, Sweden
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, USA
| | - Brett N Cain
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Martin Garcia Chavez
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, BMC, P.O. Box 596, 75124, Uppsala, Sweden
| | - Maria Selmer
- Department of Cell and Molecular Biology, Uppsala University, BMC, P.O. Box 596, 75124, Uppsala, Sweden.
| |
Collapse
|
10
|
Majumdar S, Kashyap A, Koripella RK, Sharma MR, Hurst-Hess K, Manjari SR, Banavali NK, Ghosh P, Agrawal RK. Drug resistance through ribosome splitting and rRNA disordering in mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598844. [PMID: 38915643 PMCID: PMC11195266 DOI: 10.1101/2024.06.13.598844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
HflX is known to rescue stalled ribosomes and is implicated in antibiotic resistance in several bacteria. Here we present several high-resolution cryo-EM structures of mycobacterial HflX in complex with the ribosome and its 50S subunit, with and without antibiotics. These structures reveal a distinct mechanism for HflX-mediated ribosome splitting and antibiotic resistance in mycobacteria. In addition to dissociating ribosome into two subunits, mycobacterial HflX mediates persistent disordering of multiple 23S rRNA helices to generate an inactive pool of 50S subunits. Mycobacterial HflX also acts as an anti-association factor by binding to pre-dissociated 50S subunits. A mycobacteria-specific insertion in HflX reaches further into the peptidyl transferase center. The position of this insertion overlaps with ribosome-bound macrolides or lincosamide class of antibiotics. The extended conformation of insertion seen in the absence of these antibiotics retracts and adjusts around the bound antibiotics instead of physically displacing them. It therefore likely imparts antibiotic resistance by sequestration of the antibiotic-bound inactive 50S subunits.
Collapse
Affiliation(s)
- Soneya Majumdar
- Division of Translational Medicine, New York State Department of Health, Albany, NY
| | - Amuliya Kashyap
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY
| | - Ravi K. Koripella
- Division of Translational Medicine, New York State Department of Health, Albany, NY
| | - Manjuli R. Sharma
- Division of Translational Medicine, New York State Department of Health, Albany, NY
| | - Kelley Hurst-Hess
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY
| | - Swati R. Manjari
- Division of Translational Medicine, New York State Department of Health, Albany, NY
| | - Nilesh K. Banavali
- Division of Translational Medicine, New York State Department of Health, Albany, NY
- Department of Biomedical Sciences, University at Albany, Albany, NY
| | - Pallavi Ghosh
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY
- Department of Biomedical Sciences, University at Albany, Albany, NY
| | - Rajendra K. Agrawal
- Division of Translational Medicine, New York State Department of Health, Albany, NY
- Department of Biomedical Sciences, University at Albany, Albany, NY
| |
Collapse
|
11
|
Chowdhury AR, Sapkota D, Girodat D. Conformational changes of ribosomes during translation elongation resolved by molecular dynamics simulations. Curr Opin Struct Biol 2024; 86:102804. [PMID: 38569462 DOI: 10.1016/j.sbi.2024.102804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/06/2024] [Accepted: 03/04/2024] [Indexed: 04/05/2024]
Abstract
Molecular dynamics simulations have emerged as a powerful set of tools to unravel the intricate dynamics of ribosomes during protein synthesis. Recent advancements in this field have enabled simulations to delve deep into the conformational rearrangements of ribosomes and associated factors, providing invaluable insights into the intricacies of translation. Emphasis on simulations has recently been on translation elongation, such as tRNA selection, translocation, and ribosomal head-swivel motions. These studies have offered crucial structural interpretations of how genetic information is faithfully translated into proteins. This review outlines recent discoveries concerning ribosome conformational changes occurring during translation elongation, as elucidated through molecular dynamics simulations.
Collapse
Affiliation(s)
- Anuradha Rai Chowdhury
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA. https://twitter.com/atomcellplankl
| | - Divya Sapkota
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Dylan Girodat
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
12
|
Aseev LV, Koledinskaya LS, Boni IV. Extraribosomal Functions of Bacterial Ribosomal Proteins-An Update, 2023. Int J Mol Sci 2024; 25:2957. [PMID: 38474204 DOI: 10.3390/ijms25052957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Ribosomal proteins (r-proteins) are abundant, highly conserved, and multifaceted cellular proteins in all domains of life. Most r-proteins have RNA-binding properties and can form protein-protein contacts. Bacterial r-proteins govern the co-transcriptional rRNA folding during ribosome assembly and participate in the formation of the ribosome functional sites, such as the mRNA-binding site, tRNA-binding sites, the peptidyl transferase center, and the protein exit tunnel. In addition to their primary role in a cell as integral components of the protein synthesis machinery, many r-proteins can function beyond the ribosome (the phenomenon known as moonlighting), acting either as individual regulatory proteins or in complexes with various cellular components. The extraribosomal activities of r-proteins have been studied over the decades. In the past decade, our understanding of r-protein functions has advanced significantly due to intensive studies on ribosomes and gene expression mechanisms not only in model bacteria like Escherichia coli or Bacillus subtilis but also in little-explored bacterial species from various phyla. The aim of this review is to update information on the multiple functions of r-proteins in bacteria.
Collapse
Affiliation(s)
- Leonid V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Irina V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
13
|
Hong HR, Prince CR, Tetreault DD, Wu L, Feaga HA. YfmR is a translation factor that prevents ribosome stalling and cell death in the absence of EF-P. Proc Natl Acad Sci U S A 2024; 121:e2314437121. [PMID: 38349882 PMCID: PMC10895253 DOI: 10.1073/pnas.2314437121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
Protein synthesis is performed by the ribosome and a host of highly conserved elongation factors. Elongation factor P (EF-P) prevents ribosome stalling at difficult-to-translate sequences, such as polyproline tracts. In bacteria, phenotypes associated with efp deletion range from modest to lethal, suggesting that some species encode an additional translation factor that has similar function to EF-P. Here we identify YfmR as a translation factor that is essential in the absence of EF-P in Bacillus subtilis. YfmR is an ABCF ATPase that is closely related to both Uup and EttA, ABCFs that bind the ribosomal E-site and are conserved in more than 50% of bacterial genomes. We show that YfmR associates with actively translating ribosomes and that depleting YfmR from Δefp cells causes severe ribosome stalling at a polyproline tract in vivo. YfmR depletion from Δefp cells was lethal and caused reduced levels of actively translating ribosomes. Our results therefore identify YfmR as an important translation factor that is essential in B. subtilis in the absence of EF-P.
Collapse
Affiliation(s)
- Hye-Rim Hong
- Department of Microbiology, Cornell University, Ithaca, NY14853
| | | | | | - Letian Wu
- Department of Microbiology, Cornell University, Ithaca, NY14853
| | | |
Collapse
|
14
|
Mogila I, Tamulaitiene G, Keda K, Timinskas A, Ruksenaite A, Sasnauskas G, Venclovas Č, Siksnys V, Tamulaitis G. Ribosomal stalk-captured CARF-RelE ribonuclease inhibits translation following CRISPR signaling. Science 2023; 382:1036-1041. [PMID: 38033086 DOI: 10.1126/science.adj2107] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023]
Abstract
Prokaryotic type III CRISPR-Cas antiviral systems employ cyclic oligoadenylate (cAn) signaling to activate a diverse range of auxiliary proteins that reinforce the CRISPR-Cas defense. Here we characterize a class of cAn-dependent effector proteins named CRISPR-Cas-associated messenger RNA (mRNA) interferase 1 (Cami1) consisting of a CRISPR-associated Rossmann fold sensor domain fused to winged helix-turn-helix and a RelE-family mRNA interferase domain. Upon activation by cyclic tetra-adenylate (cA4), Cami1 cleaves mRNA exposed at the ribosomal A-site thereby depleting mRNA and leading to cell growth arrest. The structures of apo-Cami1 and the ribosome-bound Cami1-cA4 complex delineate the conformational changes that lead to Cami1 activation and the mechanism of Cami1 binding to a bacterial ribosome, revealing unexpected parallels with eukaryotic ribosome-inactivating proteins.
Collapse
Affiliation(s)
- Irmantas Mogila
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Giedre Tamulaitiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Konstanty Keda
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Albertas Timinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Audrone Ruksenaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Giedrius Sasnauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Gintautas Tamulaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
15
|
Xiong W, Ye Y, He D, He S, Xiang Y, Xiao J, Feng W, Wu M, Yang Z, Wang D. Deregulation of Ribosome Biogenesis in Nitrite-Oxidizing Bacteria Leads to Nitrite Accumulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16673-16684. [PMID: 37862695 DOI: 10.1021/acs.est.3c06002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Nitrite (NO2-) accumulation caused by nitrite-oxidizing bacteria (NOB) inhibition in nitrification is a double-edged sword, i.e., a disaster in aquatic environments but a hope for innovating nitrogen removal technology in wastewater treatment. However, little information is available regarding the molecular mechanism of NOB inhibition at the cellular level. Herein, we investigate the response of NOB inhibition on NO2- accumulation established by a side-stream free ammonia treatment unit in a nitrifying reactor using integrated metagenomics and metaproteomics. Results showed that compared with the baseline, the relative abundance and activity of NOB in the experimental stage decreased by 91.64 and 68.66%, respectively, directly resulting in a NO2- accumulation rate of 88%. Moreover, RNA polymerase, translation factors, and aa-tRNA ligase were significantly downregulated, indicating that protein synthesis in NOB was interfered during NO2- accumulation. Further investigations showed that ribosomal proteins and GTPases, responsible for bindings between either ribosomal proteins and rRNA or ribosome subunits, were remarkably downregulated. This suggests that ribosome biogenesis was severely disrupted, which might be the key reason for the inhibited protein synthesis. Our findings fill a knowledge gap regarding the underlying mechanisms of NO2- accumulation, which would be beneficial for regulating the accumulation of NO2- in aquatic environments and engineered systems.
Collapse
Affiliation(s)
- Weiping Xiong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yuhang Ye
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dandan He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Siying He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yinping Xiang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Jun Xiao
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Wenyi Feng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Mengru Wu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhaohui Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| |
Collapse
|
16
|
Huang T, Choi J, Prabhakar A, Puglisi JD, Petrov A. Partial spontaneous intersubunit rotations in pretranslocation ribosomes. Proc Natl Acad Sci U S A 2023; 120:e2114979120. [PMID: 37801472 PMCID: PMC10576065 DOI: 10.1073/pnas.2114979120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/29/2023] [Indexed: 10/08/2023] Open
Abstract
The two main steps of translation, peptidyl transfer, and translocation are accompanied by counterclockwise and clockwise rotations of the large and small ribosomal subunits with respect to each other. Upon peptidyl transfer, the small ribosomal subunit rotates counterclockwise relative to the large subunit, placing the ribosome into the rotated conformation. Simultaneously, tRNAs move into the hybrid conformation, and the L1 stalk moves inward toward the P-site tRNA. The conformational dynamics of pretranslocation ribosomes were extensively studied by ensemble and single-molecule methods. Different experimental modalities tracking ribosomal subunits, tRNAs, and the L1 stalk showed that pretranslocation ribosomes undergo spontaneous conformational transitions. Thus, peptidyl transfer unlocks the ribosome and decreases an energy barrier for the reverse ribosome rotation during translocation. However, the tracking of translation with ribosomes labeled at rRNA helices h44 and H101 showed a lack of spontaneous rotations in pretranslocation complexes. Therefore, reverse intersubunit rotations occur during EF-G catalyzed translocation. To reconcile these views, we used high-speed single-molecule microscopy to follow translation in real time. We showed spontaneous rotations in puromycin-released h44-H101 dye-labeled ribosomes. During elongation, the h44-H101 ribosomes undergo partial spontaneous rotations. Spontaneous rotations in h44-H101-labeled ribosomes are restricted prior to aminoacyl-tRNA binding. The pretranslocation h44-H101 ribosomes spontaneously exchanged between three different rotational states. This demonstrates that peptidyl transfer unlocks spontaneous rotations and pretranslocation ribosomes can adopt several thermally accessible conformations, thus supporting the Brownian model of translocation.
Collapse
Affiliation(s)
- Tianhan Huang
- Department of Biological Sciences, Auburn University, Auburn, AL36849
| | - Junhong Choi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Joseph D. Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Alexey Petrov
- Department of Biological Sciences, Auburn University, Auburn, AL36849
| |
Collapse
|
17
|
Wang YH, Dai H, Zhang L, Wu Y, Wang J, Wang C, Xu CH, Hou H, Yang B, Zhu Y, Zhang X, Zhou J. Cryo-electron microscopy structure and translocation mechanism of the crenarchaeal ribosome. Nucleic Acids Res 2023; 51:8909-8924. [PMID: 37604686 PMCID: PMC10516650 DOI: 10.1093/nar/gkad661] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/29/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
Archaeal ribosomes have many domain-specific features; however, our understanding of these structures is limited. We present 10 cryo-electron microscopy (cryo-EM) structures of the archaeal ribosome from crenarchaeota Sulfolobus acidocaldarius (Sac) at 2.7-5.7 Å resolution. We observed unstable conformations of H68 and h44 of ribosomal RNA (rRNA) in the subunit structures, which may interfere with subunit association. These subunit structures provided models for 12 rRNA expansion segments and 3 novel r-proteins. Furthermore, the 50S-aRF1 complex structure showed the unique domain orientation of aRF1, possibly explaining P-site transfer RNA (tRNA) release after translation termination. Sac 70S complexes were captured in seven distinct steps of the tRNA translocation reaction, confirming conserved structural features during archaeal ribosome translocation. In aEF2-engaged 70S ribosome complexes, 3D classification of cryo-EM data based on 30S head domain identified two new translocation intermediates with 30S head domain tilted 5-6° enabling its disengagement from the translocated tRNA and its release post-translocation. Additionally, we observed conformational changes to aEF2 during ribosome binding and switching from three different states. Our structural and biochemical data provide new insights into archaeal translation and ribosome translocation.
Collapse
Affiliation(s)
- Ying-Hui Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hong Dai
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ling Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yun Wu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jingfen Wang
- Center for Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chen Wang
- Center for Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Cai-Huang Xu
- Center for Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Hai Hou
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Bing Yang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yongqun Zhu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xing Zhang
- Center for Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jie Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
18
|
Zafar H, Hassan AH, Demo G. Translation machinery captured in motion. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1792. [PMID: 37132456 DOI: 10.1002/wrna.1792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
Translation accuracy is one of the most critical factors for protein synthesis. It is regulated by the ribosome and its dynamic behavior, along with translation factors that direct ribosome rearrangements to make translation a uniform process. Earlier structural studies of the ribosome complex with arrested translation factors laid the foundation for an understanding of ribosome dynamics and the translation process as such. Recent technological advances in time-resolved and ensemble cryo-EM have made it possible to study translation in real time at high resolution. These methods provided a detailed view of translation in bacteria for all three phases: initiation, elongation, and termination. In this review, we focus on translation factors (in some cases GTP activation) and their ability to monitor and respond to ribosome organization to enable efficient and accurate translation. This article is categorized under: Translation > Ribosome Structure/Function Translation > Mechanisms.
Collapse
Affiliation(s)
- Hassan Zafar
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ahmed H Hassan
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Gabriel Demo
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
19
|
Knapp BD, Willis L, Gonzalez C, Vashistha H, Touma JJ, Tikhonov M, Ram J, Salman H, Elias JE, Huang KC. Metabolomic rearrangement controls the intrinsic microbial response to temperature changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550177. [PMID: 37546722 PMCID: PMC10401945 DOI: 10.1101/2023.07.22.550177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Temperature is one of the key determinants of microbial behavior and survival, whose impact is typically studied under heat- or cold-shock conditions that elicit specific regulation to combat lethal stress. At intermediate temperatures, cellular growth rate varies according to the Arrhenius law of thermodynamics without stress responses, a behavior whose origins have not yet been elucidated. Using single-cell microscopy during temperature perturbations, we show that bacteria exhibit a highly conserved, gradual response to temperature upshifts with a time scale of ~1.5 doublings at the higher temperature, regardless of initial/final temperature or nutrient source. We find that this behavior is coupled to a temperature memory, which we rule out as being neither transcriptional, translational, nor membrane dependent. Instead, we demonstrate that an autocatalytic enzyme network incorporating temperature-sensitive Michaelis-Menten kinetics recapitulates all temperature-shift dynamics through metabolome rearrangement, which encodes a temperature memory and successfully predicts alterations in the upshift response observed under simple-sugar, low-nutrient conditions, and in fungi. This model also provides a mechanistic framework for both Arrhenius-dependent growth and the classical Monod Equation through temperature-dependent metabolite flux.
Collapse
Affiliation(s)
| | - Lisa Willis
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Carlos Gonzalez
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Harsh Vashistha
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joanna Jammal Touma
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mikhail Tikhonov
- Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jeffrey Ram
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Hanna Salman
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Josh E. Elias
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Kerwyn Casey Huang
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
20
|
Poulis P, Peske F, Rodnina MV. The many faces of ribosome translocation along the mRNA: reading frame maintenance, ribosome frameshifting and translational bypassing. Biol Chem 2023; 404:755-767. [PMID: 37077160 DOI: 10.1515/hsz-2023-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/22/2023] [Indexed: 04/21/2023]
Abstract
In each round of translation elongation, the ribosome translocates along the mRNA by precisely one codon. Translocation is promoted by elongation factor G (EF-G) in bacteria (eEF2 in eukaryotes) and entails a number of precisely-timed large-scale structural rearrangements. As a rule, the movements of the ribosome, tRNAs, mRNA and EF-G are orchestrated to maintain the exact codon-wise step size. However, signals in the mRNA, as well as environmental cues, can change the timing and dynamics of the key rearrangements leading to recoding of the mRNA into production of trans-frame peptides from the same mRNA. In this review, we discuss recent advances on the mechanics of translocation and reading frame maintenance. Furthermore, we describe the mechanisms and biological relevance of non-canonical translocation pathways, such as hungry and programmed frameshifting and translational bypassing, and their link to disease and infection.
Collapse
Affiliation(s)
- Panagiotis Poulis
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
21
|
Omollo C, Singh V, Kigondu E, Wasuna A, Agarwal P, Moosa A, Ioerger TR, Mizrahi V, Chibale K, Warner DF. Developing synergistic drug combinations to restore antibiotic sensitivity in drug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 2023; 65:AAC.02554-20. [PMID: 33619062 PMCID: PMC8092878 DOI: 10.1128/aac.02554-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/14/2021] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis (TB) is a leading global cause of mortality owing to an infectious agent, accounting for almost one-third of antimicrobial resistance (AMR) deaths annually. We aimed to identify synergistic anti-TB drug combinations with the capacity to restore therapeutic efficacy against drug-resistant mutants of the causative agent, Mycobacterium tuberculosis We investigated combinations containing the known translational inhibitors, spectinomycin (SPT) and fusidic acid (FA), or the phenothiazine, chlorpromazine (CPZ), which disrupts mycobacterial energy metabolism. Potentiation of whole-cell drug efficacy was observed in SPT-CPZ combinations. This effect was lost against an M. tuberculosis mutant lacking the major facilitator superfamily (MFS) efflux pump, Rv1258c. Notably, the SPT-CPZ combination partially restored SPT efficacy against an SPT-resistant mutant carrying a g1379t point mutation in rrs, encoding the mycobacterial 16S ribosomal RNA. Combinations of SPT with FA, which targets the mycobacterial elongation factor G, exhibited potentiating activity against wild-type M. tuberculosis Moreover, this combination produced a modest potentiating effect against both FA-monoresistant and SPT-monoresistant mutants. Finally, combining SPT with the frontline anti-TB agents, rifampicin (RIF) and isoniazid, resulted in enhanced activity in vitro and ex vivo against both drug-susceptible M. tuberculosis and a RIF-monoresistant rpoB S531L mutant.These results support the utility of novel potentiating drug combinations in restoring antibiotic susceptibility of M. tuberculosis strains carrying genetic resistance to any one of the partner compounds.
Collapse
Affiliation(s)
- Charles Omollo
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Vinayak Singh
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Elizabeth Kigondu
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
| | - Antonina Wasuna
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
| | - Pooja Agarwal
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Atica Moosa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Thomas R Ioerger
- Texas A&M University, Department of Computer Science, College Station, TX, 77843, USA
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
22
|
Majumdar S, Emmerich A, Krakovka S, Mandava CS, Svärd SG, Sanyal S. Insights into translocation mechanism and ribosome evolution from cryo-EM structures of translocation intermediates of Giardia intestinalis. Nucleic Acids Res 2023; 51:3436-3451. [PMID: 36912103 PMCID: PMC10123126 DOI: 10.1093/nar/gkad176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023] Open
Abstract
Giardia intestinalis is a protozoan parasite that causes diarrhea in humans. Using single-particle cryo-electron microscopy, we have determined high-resolution structures of six naturally populated translocation intermediates, from ribosomes isolated directly from actively growing Giardia cells. The highly compact and uniquely GC-rich Giardia ribosomes possess eukaryotic rRNAs and ribosomal proteins, but retain some bacterial features. The translocation intermediates, with naturally bound tRNAs and eukaryotic elongation factor 2 (eEF2), display characteristic ribosomal intersubunit rotation and small subunit's head swiveling-universal for translocation. In addition, we observe the eukaryote-specific 'subunit rolling' dynamics, albeit with limited features. Finally, the eEF2·GDP state features a uniquely positioned 'leaving phosphate (Pi)' that proposes hitherto unknown molecular events of Pi and eEF2 release from the ribosome at the final stage of translocation. In summary, our study elucidates the mechanism of translocation in the protists and illustrates evolution of the translation machinery from bacteria to eukaryotes from both the structural and mechanistic perspectives.
Collapse
Affiliation(s)
- Soneya Majumdar
- Department of Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Andrew Emmerich
- Department of Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Sascha Krakovka
- Department of Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Chandra Sekhar Mandava
- Department of Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| |
Collapse
|
23
|
Das A, Adiletta N, Ermolenko DN. Interplay between Inter-Subunit Rotation of the Ribosome and Binding of Translational GTPases. Int J Mol Sci 2023; 24:ijms24086878. [PMID: 37108045 PMCID: PMC10138997 DOI: 10.3390/ijms24086878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Translational G proteins, whose release from the ribosome is triggered by GTP hydrolysis, regulate protein synthesis. Concomitantly with binding and dissociation of protein factors, translation is accompanied by forward and reverse rotation between ribosomal subunits. Using single-molecule measurements, we explore the ways in which the binding of translational GTPases affects inter-subunit rotation of the ribosome. We demonstrate that the highly conserved translation factor LepA, whose function remains debated, shifts the equilibrium toward the non-rotated conformation of the ribosome. By contrast, the catalyst of ribosome translocation, elongation factor G (EF-G), favors the rotated conformation of the ribosome. Nevertheless, the presence of P-site peptidyl-tRNA and antibiotics, which stabilize the non-rotated conformation of the ribosome, only moderately reduces EF-G binding. These results support the model suggesting that EF-G interacts with both the non-rotated and rotated conformations of the ribosome during mRNA translocation. Our results provide new insights into the molecular mechanisms of LepA and EF-G action and underscore the role of ribosome structural dynamics in translation.
Collapse
Affiliation(s)
- Ananya Das
- Department of Biochemistry & Biophysics, School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Nichole Adiletta
- Department of Biochemistry & Biophysics, School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Dmitri N Ermolenko
- Department of Biochemistry & Biophysics, School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
24
|
Shanbhag C, Saraogi I. Bacterial GTPases as druggable targets to tackle antimicrobial resistance. Bioorg Med Chem Lett 2023; 87:129276. [PMID: 37030567 DOI: 10.1016/j.bmcl.2023.129276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Small molecules as antibacterial agents have contributed immensely to the growth of modern medicine over the last several decades. However, the emergence of drug resistance among bacterial pathogens has undermined the effectiveness of the existing antibiotics. Thus, there is an exigency to address the antibiotic crisis by developing new antibacterial agents and identifying novel drug targets in bacteria. In this review, we summarize the importance of guanosine triphosphate hydrolyzing proteins (GTPases) as key agents for bacterial survival. We also discuss representative examples of small molecules that target bacterial GTPases as novel antibacterial agents, and highlight areas that are ripe for exploration. Given their vital roles in cell viability, virulence, and antibiotic resistance, bacterial GTPases are highly attractive antibacterial targets that will likely play a vital role in the fight against antimicrobial resistance.
Collapse
|
25
|
Salimova EV, Mozgovoj OS, Efimova SS, Ostroumova OS, Parfenova LV. 3-Amino-Substituted Analogues of Fusidic Acid as Membrane-Active Antibacterial Compounds. MEMBRANES 2023; 13:309. [PMID: 36984696 PMCID: PMC10056636 DOI: 10.3390/membranes13030309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Fusidic acid (FA) is an antibiotic with high activity against Staphylococcus aureus; it has been used in clinical practice since the 1960s. However, the narrow antimicrobial spectrum of FA limits its application in the treatment of bacterial infections. In this regard, this work aims both at the study of the antimicrobial effect of a number of FA amines and at the identification of their potential biological targets. In this way, FA analogues containing aliphatic and aromatic amino groups and biogenic polyamine, spermine and spermidine, moieties at the C-3 atom, were synthesized (20 examples). Pyrazinecarboxamide-substituted analogues exhibit a high antibacterial activity against S. aureus (MRSA) with MIC ≤ 0.25 μg/mL. Spermine and spermidine derivatives, along with activity against S. aureus, also inhibit the growth and reproduction of Gram-negative bacteria Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa, and have a high fungicidal effect against Candida albicans and Cryptococcus neoformans. The study of the membrane activity demonstrated that the spermidine- and spermine-containing compounds are able to immerse into membranes and disorder the lipidsleading to a detergent effect. Moreover, spermine-based compounds are also able to form ion-permeable pores in the lipid bilayers mimicking the bacterial membranes. Using molecular docking, inhibition of the protein synthesis elongation factor EF-G was proposed, and polyamine substituents were shown to make the greatest contribution to the stability of the complexes of fusidic acid derivatives with biological targets. This suggests that the antibacterial effect of the obtained compounds may be associated with both membrane activity and inhibition of the elongation factor EF-G.
Collapse
Affiliation(s)
- Elena V. Salimova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141 Prospect Oktyabrya, 450075 Ufa, Russia
| | - Oleg S. Mozgovoj
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141 Prospect Oktyabrya, 450075 Ufa, Russia
| | - Svetlana S. Efimova
- Institute of Cytology of Russian Academy of Sciences, 4 Tikhoretsky Prospect, 194064 Saint Petersburg, Russia
| | - Olga S. Ostroumova
- Institute of Cytology of Russian Academy of Sciences, 4 Tikhoretsky Prospect, 194064 Saint Petersburg, Russia
| | - Lyudmila V. Parfenova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141 Prospect Oktyabrya, 450075 Ufa, Russia
| |
Collapse
|
26
|
Han W, Peng B, Wang C, Townsend GE, Barry NA, Peske F, Goodman AL, Liu J, Rodnina MV, Groisman EA. Gut colonization by Bacteroides requires translation by an EF-G paralog lacking GTPase activity. EMBO J 2023; 42:e112372. [PMID: 36472247 PMCID: PMC9841332 DOI: 10.15252/embj.2022112372] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Protein synthesis is crucial for cell growth and survival yet one of the most energy-consuming cellular processes. How, then, do cells sustain protein synthesis under starvation conditions when energy is limited? To accelerate the translocation of mRNA-tRNAs through the ribosome, bacterial elongation factor G (EF-G) hydrolyzes energy-rich guanosine triphosphate (GTP) for every amino acid incorporated into a protein. Here, we identify an EF-G paralog-EF-G2-that supports translocation without hydrolyzing GTP in the gut commensal bacterium Bacteroides thetaiotaomicron. EF-G2's singular ability to sustain protein synthesis, albeit at slow rates, is crucial for bacterial gut colonization. EF-G2 is ~10-fold more abundant than canonical EF-G1 in bacteria harvested from murine ceca and, unlike EF-G1, specifically accumulates during carbon starvation. Moreover, we uncover a 26-residue region unique to EF-G2 that is essential for protein synthesis, EF-G2 dissociation from the ribosome, and responsible for the absence of GTPase activity. Our findings reveal how cells curb energy consumption while maintaining protein synthesis to advance fitness in nutrient-fluctuating environments.
Collapse
Affiliation(s)
- Weiwei Han
- Department of Microbial PathogenesisYale School of MedicineNew HavenCTUSA
- Yale Microbial Sciences InstituteWest HavenCTUSA
| | - Bee‐Zen Peng
- Department of Physical BiochemistryMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Chunyan Wang
- Department of Microbial PathogenesisYale School of MedicineNew HavenCTUSA
- Yale Microbial Sciences InstituteWest HavenCTUSA
| | - Guy E Townsend
- Department of Microbial PathogenesisYale School of MedicineNew HavenCTUSA
- Yale Microbial Sciences InstituteWest HavenCTUSA
- Present address:
Department of Biochemistry and Molecular BiologyPenn State College of MedicineHersheyPAUSA
| | - Natasha A Barry
- Department of Microbial PathogenesisYale School of MedicineNew HavenCTUSA
- Yale Microbial Sciences InstituteWest HavenCTUSA
| | - Frank Peske
- Department of Physical BiochemistryMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Andrew L Goodman
- Department of Microbial PathogenesisYale School of MedicineNew HavenCTUSA
- Yale Microbial Sciences InstituteWest HavenCTUSA
| | - Jun Liu
- Department of Microbial PathogenesisYale School of MedicineNew HavenCTUSA
- Yale Microbial Sciences InstituteWest HavenCTUSA
| | - Marina V Rodnina
- Department of Physical BiochemistryMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Eduardo A Groisman
- Department of Microbial PathogenesisYale School of MedicineNew HavenCTUSA
- Yale Microbial Sciences InstituteWest HavenCTUSA
| |
Collapse
|
27
|
Sass P. Antibiotics: Precious Goods in Changing Times. Methods Mol Biol 2023; 2601:3-26. [PMID: 36445576 DOI: 10.1007/978-1-0716-2855-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Antibiotics represent a first line of defense of diverse microorganisms, which produce and use antibiotics to counteract natural enemies or competitors for nutritional resources in their nearby environment. For antimicrobial activity, nature has invented a great variety of antibiotic modes of action that involve the perturbation of essential bacterial structures or biosynthesis pathways of macromolecules such as the bacterial cell wall, DNA, RNA, or proteins, thereby threatening the specific microbial lifestyle and eventually even survival. However, along with highly inventive modes of antibiotic action, nature also developed a comparable set of resistance mechanisms that help the bacteria to circumvent antibiotic action. Microorganisms have evolved specific adaptive responses that allow to appropriately react to the presence of antimicrobial agents, thereby ensuring survival during antimicrobial stress. In times of rapid development and spread of antibiotic (multi-)resistance, new resistance-breaking strategies to counteract bacterial infections are desperately needed. This chapter is an update to Chapter 1 of the first edition of this book and intends to give an overview of common antibiotics and their target pathways. It will also present examples for new antibiotics with novel modes of action, illustrating that nature's repertoire of innovative new antimicrobial agents has not been fully exploited yet, and we still might find new drugs that help to evade established antimicrobial resistance strategies.
Collapse
Affiliation(s)
- Peter Sass
- Interfaculty Institute for Microbiology and Infection Medicine, Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
28
|
Abstract
Developing mathematical representations of biological systems that can allow predictions is a challenging and important research goal. It is demonstrated here how the ribosome, the nano-machine responsible for synthesizing all proteins necessary for cellular life, can be represented as a bipartite network. Ten ribosomal structures from Bacteria and six from Eukarya are explored. Ribosomal networks are found to exhibit unique properties despite variations in the nodes and edges of the different graphs. The ribosome is shown to exhibit very large topological redundancies, demonstrating mathematical resiliency. These results can potentially explain how it can function consistently despite changes in composition and connectivity. Furthermore, this representation can be used to analyze ribosome function within the large machinery of network theory, where the degrees of freedom are the possible interactions, and can be used to provide new insights for translation regulation and therapeutics.
Collapse
|
29
|
Imamoto JM, Zauhar RJ, Bruist MF. Sarcin/Ricin Domain RNA Retains Its Structure Better Than A-RNA in Adaptively Biased Molecular Dynamics Simulations. J Phys Chem B 2022; 126:10018-10033. [PMID: 36417896 DOI: 10.1021/acs.jpcb.2c05859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Less than one in thirty of the RNA sequences transcribed in humans are translated into protein. The noncoding RNA (ncRNA) functions in catalysis, structure, regulation, and more. However, for the most part, these functions are poorly characterized. RNA is modular and described by motifs that include helical A-RNA with canonical Watson-Crick base-pairing as well as structures with only noncanonical base pairs. Understanding the structure and dynamics of motifs will aid in deciphering functions of specific ncRNAs. We present computational studies on a standard sarcin/ricin domain (SRD), citrus bark cracking viroid SRD, as well as A-RNA. We have applied enhanced molecular dynamics techniques that construct an inverse free-energy surface (iFES) determined by collective variables that monitor base-pairing and backbone conformation. Each SRD RNA is flanked on each side by A-RNA, allowing comparison of the behavior of these motifs in the same molecule. The RNA iFESs have single peaks, indicating that the combined motifs should denature as a single cohesive unit, rather than by regional melting. Local root-mean-square deviation (RMSD) analysis and communication propensity (CProp, variance in distances between residue pairs) reveal distinct motif properties. Our analysis indicates that the standard SRD is more stable than the viroid SRD, which is more stable than A-RNA. Base pairs at SRD to A-RNA transitions have limited flexibility. Application of CProp reveals extraordinary stiffness of the SRD, allowing residues on opposite sides of the motif to sense each other's motions.
Collapse
Affiliation(s)
- Jason M Imamoto
- Department of Chemistry and Biochemistry, St. Joseph's University, Philadelphia, Pennsylvania19131, United States
| | - Randy J Zauhar
- Department of Chemistry and Biochemistry, St. Joseph's University, Philadelphia, Pennsylvania19131, United States
| | - Michael F Bruist
- Department of Chemistry and Biochemistry, St. Joseph's University, Philadelphia, Pennsylvania19131, United States
| |
Collapse
|
30
|
Screening and Molecular Docking of Bioactive Metabolites of the Red Sea Sponge Callyspongia siphonella as Potential Antimicrobial Agents. Antibiotics (Basel) 2022; 11:antibiotics11121682. [PMID: 36551340 PMCID: PMC9774121 DOI: 10.3390/antibiotics11121682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Marine sponges create a wide range of bioactive secondary metabolites, as documented throughout the year. Several bioactive secondary metabolites were isolated from different members of Callyspongia siphonella species. This study aimed for isolation and structural elucidation of major metabolites in order to investigate their diverse bioactivities such as antimicrobial and anti-biofilm activities. Afterwards, a molecular docking study was conducted, searching for the possible mechanistic pathway of the most bioactive metabolites. Extraction, fractionation, and metabolomics analysis of different fractions was performed in order to obtain complete chemical profile. Moreover, in vitro assessment of different bioactivities was performed, using recent techniques. Additionally, purification, structural elucidation of high features using recent chromatographic and spectroscopic techniques was established. Finally, AutoDock Vina software was used for the Pharmacophore-based docking-based analysis. As a result, DCM (dichloromethane) fraction exerted the best antibacterial activity using disc diffusion method; particularly against S. aureus with an inhibition zone of 6.6 mm. Compound 11 displayed a considerable activity against both MRSA (Methicillin-resistant Staphyllococcus aureus) and Staphyllococcus aureus with inhibition ratios of 50.37 and 60.90%, respectively. Concerning anti-biofilm activity, compounds 1 and 2 displayed powerful activity with inhibition ratios ranging from 39.37% to 70.98%. Pharmacophore-based docking-based analysis suggested elongation factor G (EF-G) to be a probable target for compound 11 (siphonellinol C) that showed the best in vitro antibacterial activity, offering unexplored potential for new drugs and treatment candidates.
Collapse
|
31
|
Abstract
Translocation of transfer RNA (tRNA) and messenger RNA (mRNA) through the ribosome is catalyzed by the GTPase elongation factor G (EF-G) in bacteria. Although guanosine-5'-triphosphate (GTP) hydrolysis accelerates translocation and is required for dissociation of EF-G, its fundamental role remains unclear. Here, we used ensemble Förster resonance energy transfer (FRET) to monitor how inhibition of GTP hydrolysis impacts the structural dynamics of the ribosome. We used FRET pairs S12-S19 and S11-S13, which unambiguously report on rotation of the 30S head domain, and the S6-L9 pair, which measures intersubunit rotation. Our results show that, in addition to slowing reverse intersubunit rotation, as shown previously, blocking GTP hydrolysis slows forward head rotation. Surprisingly, blocking GTP hydrolysis completely abolishes reverse head rotation. We find that the S13-L33 FRET pair, which has been used in previous studies to monitor head rotation, appears to report almost exclusively on intersubunit rotation. Furthermore, we find that the signal from quenching of 3'-terminal pyrene-labeled mRNA, which is used extensively to follow mRNA translocation, correlates most closely with reverse intersubunit rotation. To account for our finding that blocking GTP hydrolysis abolishes a rotational event that occurs after the movements of mRNA and tRNAs are essentially complete, we propose that the primary role of GTP hydrolysis is to create an irreversible step in a mechanism that prevents release of EF-G until both the tRNAs and mRNA have moved by one full codon, ensuring productive translocation and maintenance of the translational reading frame.
Collapse
|
32
|
Tu B, Cao N, Zhang B, Zheng W, Li J, Tang X, Su K, Li J, Zhang Z, Yan Z, Li D, Zheng X, Zhang K, Hong WD, Wu P. Synthesis and Biological Evaluation of Novel Fusidic Acid Derivatives as Two-in-One Agent with Potent Antibacterial and Anti-Inflammatory Activity. Antibiotics (Basel) 2022; 11:antibiotics11081026. [PMID: 36009895 PMCID: PMC9405029 DOI: 10.3390/antibiotics11081026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
Fusidic acid (FA), a narrow-spectrum antibiotics, is highly sensitive to various Gram-positive cocci associated with skin infections. It has outstanding antibacterial effects against certain Gram-positive bacteria whilst no cross-resistance with other antibiotics. Two series of FA derivatives were synthesized and their antibacterial activities were tested. A new aromatic side-chain analog, FA-15 exhibited good antibacterial activity with MIC values in the range of 0.781–1.563 µM against three strains of Staphylococcus spp. Furthermore, through the assessment by the kinetic assay, similar characteristics of bacteriostasis by FA and its aromatic derivatives were observed. In addition, anti-inflammatory activities of FA and its aromatic derivatives were evaluated by using a 12-O-tetradecanoylphorbol-13-acetate (TPA) induced mouse ear edema model. The results also indicated that FA and its aromatic derivatives effectively reduced TPA-induced ear edema in a dose-dependent manner. Following, multiform computerized simulation, including homology modeling, molecular docking, molecular dynamic simulation and QSAR was conducted to clarify the mechanism and regularity of activities. Overall, the present work gave vital clues about structural modifications and has profound significance in deeply scouting for bioactive potentials of FA and its derivatives.
Collapse
Affiliation(s)
- Borong Tu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Nana Cao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Bingjie Zhang
- School of Biomedicine and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China;
| | - Wende Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Jiahao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Xiaowen Tang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Kaize Su
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Jinxuan Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Zhen Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Zhenping Yan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
- School of Biomedicine and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China;
- Correspondence: (K.Z.); (W.D.H.); (P.W.); Tel.: +86-13822330019 (K.Z.); +44-7863354263 (W.D.H.); +86-18825179347 (P.W.)
| | - Weiqian David Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK
- Correspondence: (K.Z.); (W.D.H.); (P.W.); Tel.: +86-13822330019 (K.Z.); +44-7863354263 (W.D.H.); +86-18825179347 (P.W.)
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (B.T.); (N.C.); (W.Z.); (J.L.); (X.T.); (K.S.); (J.L.); (Z.Z.); (Z.Y.); (D.L.); (X.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
- School of Biomedicine and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China;
- Correspondence: (K.Z.); (W.D.H.); (P.W.); Tel.: +86-13822330019 (K.Z.); +44-7863354263 (W.D.H.); +86-18825179347 (P.W.)
| |
Collapse
|
33
|
Nishima W, Girodat D, Holm M, Rundlet EJ, Alejo JL, Fischer K, Blanchard SC, Sanbonmatsu KY. Hyper-swivel head domain motions are required for complete mRNA-tRNA translocation and ribosome resetting. Nucleic Acids Res 2022; 50:8302-8320. [PMID: 35808938 DOI: 10.1093/nar/gkac597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
Translocation of messenger RNA (mRNA) and transfer RNA (tRNA) substrates through the ribosome during protein synthesis, an exemplar of directional molecular movement in biology, entails a complex interplay of conformational, compositional, and chemical changes. The molecular determinants of early translocation steps have been investigated rigorously. However, the elements enabling the ribosome to complete translocation and reset for subsequent protein synthesis reactions remain poorly understood. Here, we have combined molecular simulations with single-molecule fluorescence resonance energy transfer imaging to gain insights into the rate-limiting events of the translocation mechanism. We find that diffusive motions of the ribosomal small subunit head domain to hyper-swivelled positions, governed by universally conserved rRNA, can maneuver the mRNA and tRNAs to their fully translocated positions. Subsequent engagement of peptidyl-tRNA and disengagement of deacyl-tRNA from mRNA, within their respective small subunit binding sites, facilitate the ribosome resetting mechanism after translocation has occurred to enable protein synthesis to resume.
Collapse
Affiliation(s)
- Wataru Nishima
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Dylan Girodat
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Mikael Holm
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Emily J Rundlet
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jose L Alejo
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kara Fischer
- New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| |
Collapse
|
34
|
Miyoshi T, Nomura T, Takeya K, Uchiumi T. The natural bicyclic hexapeptide RA-VII is a novel inhibitor of the eukaryotic translocase eEF2. Biochem Biophys Res Commun 2022; 615:88-93. [DOI: 10.1016/j.bbrc.2022.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
|
35
|
Wieland M, Holm M, Rundlet EJ, Morici M, Koller TO, Maviza TP, Pogorevc D, Osterman IA, Müller R, Blanchard SC, Wilson DN. The cyclic octapeptide antibiotic argyrin B inhibits translation by trapping EF-G on the ribosome during translocation. Proc Natl Acad Sci U S A 2022; 119:e2114214119. [PMID: 35500116 PMCID: PMC9171646 DOI: 10.1073/pnas.2114214119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/16/2022] [Indexed: 11/18/2022] Open
Abstract
Argyrins are a family of naturally produced octapeptides that display promising antimicrobial activity against Pseudomonas aeruginosa. Argyrin B (ArgB) has been shown to interact with an elongated form of the translation elongation factor G (EF-G), leading to the suggestion that argyrins inhibit protein synthesis by interfering with EF-G binding to the ribosome. Here, using a combination of cryo-electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET), we demonstrate that rather than interfering with ribosome binding, ArgB rapidly and specifically binds EF-G on the ribosome to inhibit intermediate steps of the translocation mechanism. Our data support that ArgB inhibits conformational changes within EF-G after GTP hydrolysis required for translocation and factor dissociation, analogous to the mechanism of fusidic acid, a chemically distinct antibiotic that binds a different region of EF-G. These findings shed light on the mechanism of action of the argyrin-class antibiotics on protein synthesis as well as the nature and importance of rate-limiting, intramolecular conformational events within the EF-G-bound ribosome during late-steps of translocation.
Collapse
Affiliation(s)
- Maximiliane Wieland
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Mikael Holm
- St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Emily J. Rundlet
- St. Jude Children's Research Hospital, Memphis, TN 38105
- Weill Cornell Medicine, Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065
| | - Martino Morici
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Timm O. Koller
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Tinashe P. Maviza
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Domen Pogorevc
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarland University, 66123 Saarbrücken,Germany
| | - Ilya A. Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Rolf Müller
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarland University, 66123 Saarbrücken,Germany
| | | | - Daniel N. Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
36
|
Noller HF, Donohue JP, Gutell RR. The universally conserved nucleotides of the small subunit ribosomal RNAs. RNA (NEW YORK, N.Y.) 2022; 28:623-644. [PMID: 35115361 PMCID: PMC9014874 DOI: 10.1261/rna.079019.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/19/2022] [Indexed: 05/03/2023]
Abstract
The ribosomal RNAs, along with their substrates the transfer RNAs, contain the most highly conserved nucleotides in all of biology. We have assembled a database containing structure-based alignments of sequences of the small-subunit rRNAs from organisms that span the entire phylogenetic spectrum, to identify the nucleotides that are universally conserved. In its simplest (bacterial and archaeal) forms, the small-subunit rRNA has ∼1500 nt, of which we identify 140 that are absolutely invariant among the 1961 species in our alignment. We examine the positions and detailed structural and functional interactions of these universal nucleotides in the context of a half century of biochemical and genetic studies and high-resolution structures of ribosome functional complexes. The vast majority of these nucleotides are exposed on the subunit interface surface of the small subunit, where the functional processes of the ribosome take place. However, only 40 of them have been directly implicated in specific ribosomal functions, such as contacting the tRNAs, mRNA, or translation factors. The roles of many other invariant nucleotides may serve to constrain the positions and orientations of those nucleotides that are directly involved in function. Yet others can be rationalized by participation in unusual noncanonical tertiary structures that may uniquely allow correct folding of the rRNA to form a functional ribosome. However, there remain at least 50 nt whose universal conservation is not obvious, serving as a metric for the incompleteness of our understanding of ribosome structure and function.
Collapse
Affiliation(s)
- Harry F Noller
- Center for Molecular Biology of RNA, Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - John Paul Donohue
- Center for Molecular Biology of RNA, Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Robin R Gutell
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
37
|
Abstract
In all living cells, the ribosome translates the genetic information carried by messenger RNAs (mRNAs) into proteins. The process of ribosome recycling, a key step during protein synthesis that ensures ribosomal subunits remain available for new rounds of translation, has been largely overlooked. Despite being essential to the survival of the cell, several mechanistic aspects of ribosome recycling remain unclear. In eubacteria and mitochondria, recycling of the ribosome into subunits requires the concerted action of the ribosome recycling factor (RRF) and elongation factor G (EF-G). Recently, the conserved protein HflX was identified in bacteria as an alternative factor that recycles the ribosome under stress growth conditions. The homologue of HflX, the GTP-binding protein 6 (GTPBP6), has a dual role in mitochondrial translation by facilitating ribosome recycling and biogenesis. In this review, mechanisms of ribosome recycling in eubacteria and mitochondria are described based on structural studies of ribosome complexes.
Collapse
Affiliation(s)
- Savannah M Seely
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1019, USA
| | - Matthieu G Gagnon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1019, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1019, USA.,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1019, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas 77555, USA
| |
Collapse
|
38
|
Abstract
Accurate protein synthesis (translation) relies on translation factors that rectify ribosome fluctuations into a unidirectional process. Understanding this process requires structural characterization of the ribosome and translation-factor dynamics. In the 2000s, crystallographic studies determined high-resolution structures of ribosomes stalled with translation factors, providing a starting point for visualizing translation. Recent progress in single-particle cryogenic electron microscopy (cryo-EM) has enabled near-atomic resolution of numerous structures sampled in heterogeneous complexes (ensembles). Ensemble and time-resolved cryo-EM have now revealed unprecedented views of ribosome transitions in the three principal stages of translation: initiation, elongation, and termination. This review focuses on how translation factors help achieve high accuracy and efficiency of translation by monitoring distinct ribosome conformations and by differentially shifting the equilibria of ribosome rearrangements for cognate and near-cognate substrates. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Andrei A Korostelev
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA;
| |
Collapse
|
39
|
Xu B, Liu L, Song G. Functions and Regulation of Translation Elongation Factors. Front Mol Biosci 2022; 8:816398. [PMID: 35127825 PMCID: PMC8807479 DOI: 10.3389/fmolb.2021.816398] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Translation elongation is a key step of protein synthesis, during which the nascent polypeptide chain extends by one amino acid residue during one elongation cycle. More and more data revealed that the elongation is a key regulatory node for translational control in health and disease. During elongation, elongation factor Tu (EF-Tu, eEF1A in eukaryotes) is used to deliver aminoacyl-tRNA (aa-tRNA) to the A-site of the ribosome, and elongation factor G (EF-G, EF2 in eukaryotes and archaea) is used to facilitate the translocation of the tRNA2-mRNA complex on the ribosome. Other elongation factors, such as EF-Ts/eEF1B, EF-P/eIF5A, EF4, eEF3, SelB/EFsec, TetO/Tet(M), RelA and BipA, have been found to affect the overall rate of elongation. Here, we made a systematic review on the canonical and non-canonical functions and regulation of these elongation factors. In particular, we discussed the close link between translational factors and human diseases, and clarified how post-translational modifications control the activity of translational factors in tumors.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
- *Correspondence: Benjin Xu, ; Guangtao Song,
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Guangtao Song
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Benjin Xu, ; Guangtao Song,
| |
Collapse
|
40
|
Gamper H, Masuda I, Hou YM. Genome Expansion by tRNA +1 Frameshifting at Quadruplet Codons. J Mol Biol 2022; 434:167440. [PMID: 34995554 PMCID: PMC9643101 DOI: 10.1016/j.jmb.2021.167440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 11/29/2022]
Abstract
Inducing tRNA +1 frameshifting to read a quadruplet codon has the potential to incorporate a non-canonical amino acid (ncAA) into the polypeptide chain. While this strategy is attractive for genome expansion in biotechnology and bioengineering endeavors, improving the yield is hampered by a lack of understanding of where the shift can occur in an elongation cycle of protein synthesis. Lacking a clear answer to this question, current efforts have focused on designing +1-frameshifting tRNAs with an extra nucleotide inserted to the anticodon loop for pairing with a quadruplet codon in the aminoacyl-tRNA binding (A) site of the ribosome. However, the designed and evolved +1-frameshifting tRNAs vary broadly in achieving successful genome expansion. Here we summarize recent work on +1-frameshifting tRNAs. We suggest that, rather than engineering the quadruplet anticodon-codon pairing scheme at the ribosome A site, efforts should be made to engineer the pairing scheme at steps after the A site, including the step of the subsequent translocation and the step that stabilizes the pairing scheme in the +1-frame in the peptidyl-tRNA binding (P) site.
Collapse
Affiliation(s)
- Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, USA
| | - Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
41
|
Tajima K, Katoh T, Suga H. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2736-2753. [PMID: 35188576 PMCID: PMC8934632 DOI: 10.1093/nar/gkac068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/13/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
In ribosomal translation, peptidyl transfer occurs between P-site peptidyl-tRNA and A-site aminoacyl-tRNA, followed by translocation of the resulting P-site deacylated-tRNA and A-site peptidyl-tRNA to E and P site, respectively, mediated by EF-G. Here, we report that mistranslocation of P-site peptidyl-tRNA and A-site aminoacyl-tRNA toward E and A site occurs when high concentration of EF-G triggers the migration of two tRNAs prior to completion of peptidyl transfer. Consecutive incorporation of less reactive amino acids, such as Pro and d-Ala, makes peptidyl transfer inefficient and thus induces the mistranslocation event. Consequently, the E-site peptidyl-tRNA drops off from ribosome to give a truncated peptide lacking the C-terminal region. The P-site aminoacyl-tRNA allows for reinitiation of translation upon accommodation of a new aminoacyl-tRNA at A site, leading to synthesis of a truncated peptide lacking the N-terminal region, which we call the ‘reinitiated peptide’. We also revealed that such a drop-off-reinitiation event can be alleviated by EF-P that promotes peptidyl transfer of Pro. Moreover, this event takes place both in vitro and in cell, showing that reinitiated peptides during protein synthesis could be accumulated in this pathway in cells.
Collapse
Affiliation(s)
- Kenya Tajima
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | - Hiroaki Suga
- To whom correspondence should be addressed. Tel: +81 3 5841 8372; Fax: +81 3 5841 8372;
| |
Collapse
|
42
|
Carbone CE, Loveland AB, Gamper HB, Hou YM, Demo G, Korostelev AA. Time-resolved cryo-EM visualizes ribosomal translocation with EF-G and GTP. Nat Commun 2021; 12:7236. [PMID: 34903725 PMCID: PMC8668904 DOI: 10.1038/s41467-021-27415-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022] Open
Abstract
During translation, a conserved GTPase elongation factor-EF-G in bacteria or eEF2 in eukaryotes-translocates tRNA and mRNA through the ribosome. EF-G has been proposed to act as a flexible motor that propels tRNA and mRNA movement, as a rigid pawl that biases unidirectional translocation resulting from ribosome rearrangements, or by various combinations of motor- and pawl-like mechanisms. Using time-resolved cryo-EM, we visualized GTP-catalyzed translocation without inhibitors, capturing elusive structures of ribosome•EF-G intermediates at near-atomic resolution. Prior to translocation, EF-G binds near peptidyl-tRNA, while the rotated 30S subunit stabilizes the EF-G GTPase center. Reverse 30S rotation releases Pi and translocates peptidyl-tRNA and EF-G by ~20 Å. An additional 4-Å translocation initiates EF-G dissociation from a transient ribosome state with highly swiveled 30S head. The structures visualize how nearly rigid EF-G rectifies inherent and spontaneous ribosomal dynamics into tRNA-mRNA translocation, whereas GTP hydrolysis and Pi release drive EF-G dissociation.
Collapse
Affiliation(s)
| | - Anna B Loveland
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, USA
| | - Howard B Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gabriel Demo
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, USA.
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| | | |
Collapse
|
43
|
Gao X, Yu X, Zhu K, Qin B, Wang W, Han P, Aleksandra Wojdyla J, Wang M, Cui S. Crystal Structure of Mycobacterium tuberculosis Elongation Factor G1. Front Mol Biosci 2021; 8:667638. [PMID: 34540889 PMCID: PMC8446442 DOI: 10.3389/fmolb.2021.667638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) caused an estimated 10 million cases of tuberculosis and 1.2 million deaths in 2019 globally. The increasing emergence of multidrug-resistant and extensively drug-resistant Mtb is becoming a public health threat worldwide and makes the identification of anti-Mtb drug targets urgent. Elongation factor G (EF-G) is involved in tRNA translocation on ribosomes during protein translation. Therefore, EF-G is a major focus of structural analysis and a valuable drug target of antibiotics. However, the crystal structure of Mtb EF-G1 is not yet available, and this has limited the design of inhibitors. Here, we report the crystal structure of Mtb EF-G1 in complex with GDP. The unique crystal form of the Mtb EF-G1-GDP complex provides an excellent platform for fragment-based screening using a crystallographic approach. Our findings provide a structure-based explanation for GDP recognition, and facilitate the identification of EF-G1 inhibitors with potential interest in the context of drug discovery.
Collapse
Affiliation(s)
- Xiaopan Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, And Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xia Yu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, And Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-resistant Tuberculosis Research Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Institute, Capital Medical University, Beijing, China
| | - Kaixiang Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, And Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, And Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, And Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pu Han
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | - Meitian Wang
- Swiss Light Source at the Paul Scherrer Institut, Villigen, Switzerland
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, And Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Sanming Project of Medicine in Shenzhen on Construction of Novel Systematic Network Against Tuberculosis, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
44
|
Smythers AL, Iannetta AA, Hicks LM. Crosslinking mass spectrometry unveils novel interactions and structural distinctions in the model green alga Chlamydomonas reinhardtii. Mol Omics 2021; 17:917-928. [PMID: 34499065 DOI: 10.1039/d1mo00197c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interactomics is an emerging field that seeks to identify both transient and complex-bound protein interactions that are essential for metabolic functions. Crosslinking mass spectrometry (XL-MS) has enabled untargeted global analysis of these protein networks, permitting largescale simultaneous analysis of protein structure and interactions. Increased commercial availability of highly specific, cell permeable crosslinkers has propelled the study of these critical interactions forward, with the development of MS-cleavable crosslinkers further increasing confidence in identifications. Herein, the global interactome of the unicellular alga Chlamydomonas reinhardtii was analyzed via XL-MS by implementing the MS-cleavable disuccinimidyl sulfoxide (DSSO) crosslinker and enriching for crosslinks using strong cation exchange chromatography. Gentle lysis via repeated freeze-thaw cycles facilitated in vitro analysis of 157 protein-protein crosslinks (interlinks) and 612 peptides linked to peptides of the same protein (intralinks) at 1% FDR throughout the C. reinhardtii proteome. The interlinks confirmed known protein relationships across the cytosol and chloroplast, including coverage on 42% and 38% of the small and large ribosomal subunits, respectively. Of the 157 identified interlinks, 92% represent the first empirical evidence of interaction observed in C. reinhardtii. Several of these crosslinks point to novel associations between proteins, including the identification of a previously uncharacterized Mg-chelatase associated protein (Cre11.g477733.t1.2) bound to seven distinct lysines on Mg-chelatase (Cre06.g306300.t1.2). Additionally, the observed intralinks facilitated characterization of novel protein structures across the C. reinhardtii proteome. Together, these data establish a framework of protein-protein interactions that can be further explored to facilitate understanding of the dynamic protein landscape in C. reinhardtii.
Collapse
Affiliation(s)
- Amanda L Smythers
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan Laboratories, 125 South Road, CB#3290, Chapel Hill, NC 27599-3290, USA.
| | - Anthony A Iannetta
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan Laboratories, 125 South Road, CB#3290, Chapel Hill, NC 27599-3290, USA.
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan Laboratories, 125 South Road, CB#3290, Chapel Hill, NC 27599-3290, USA.
| |
Collapse
|
45
|
Bao C, Ermolenko DN. Ribosome as a Translocase and Helicase. BIOCHEMISTRY (MOSCOW) 2021; 86:992-1002. [PMID: 34488575 PMCID: PMC8294220 DOI: 10.1134/s0006297921080095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During protein synthesis, ribosome moves along mRNA to decode one codon after the other. Ribosome translocation is induced by a universally conserved protein, elongation factor G (EF-G) in bacteria and elongation factor 2 (EF-2) in eukaryotes. EF-G-induced translocation results in unwinding of the intramolecular secondary structures of mRNA by three base pairs at a time that renders the translating ribosome a processive helicase. Professor Alexander Sergeevich Spirin has made numerous seminal contributions to understanding the molecular mechanism of translocation. Here, we review Spirin's insights into the ribosomal translocation and recent advances in the field that stemmed from Spirin's pioneering work. We also discuss key remaining challenges in studies of translocase and helicase activities of the ribosome.
Collapse
Affiliation(s)
- Chen Bao
- Department of Biochemistry & Biophysics, School of Medicine and Dentistry and Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| | - Dmitri N Ermolenko
- Department of Biochemistry & Biophysics, School of Medicine and Dentistry and Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
46
|
Paleskava A, Maksimova EM, Vinogradova DS, Kasatsky PS, Kirillov SV, Konevega AL. Differential Contribution of Protein Factors and 70S Ribosome to Elongation. Int J Mol Sci 2021; 22:9614. [PMID: 34502523 PMCID: PMC8431766 DOI: 10.3390/ijms22179614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
The growth of the polypeptide chain occurs due to the fast and coordinated work of the ribosome and protein elongation factors, EF-Tu and EF-G. However, the exact contribution of each of these components in the overall balance of translation kinetics remains not fully understood. We created an in vitro translation system Escherichia coli replacing either elongation factor with heterologous thermophilic protein from Thermus thermophilus. The rates of the A-site binding and decoding reactions decreased an order of magnitude in the presence of thermophilic EF-Tu, indicating that the kinetics of aminoacyl-tRNA delivery depends on the properties of the elongation factor. On the contrary, thermophilic EF-G demonstrated the same translocation kinetics as a mesophilic protein. Effects of translocation inhibitors (spectinomycin, hygromycin B, viomycin and streptomycin) were also similar for both proteins. Thus, the process of translocation largely relies on the interaction of tRNAs and the ribosome and can be efficiently catalysed by thermophilic EF-G even at suboptimal temperatures.
Collapse
Affiliation(s)
- Alena Paleskava
- Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, 188300 Gatchina, Russia; (A.P.); (E.M.M.); (D.S.V.); (P.S.K.); (S.V.K.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Elena M. Maksimova
- Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, 188300 Gatchina, Russia; (A.P.); (E.M.M.); (D.S.V.); (P.S.K.); (S.V.K.)
| | - Daria S. Vinogradova
- Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, 188300 Gatchina, Russia; (A.P.); (E.M.M.); (D.S.V.); (P.S.K.); (S.V.K.)
| | - Pavel S. Kasatsky
- Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, 188300 Gatchina, Russia; (A.P.); (E.M.M.); (D.S.V.); (P.S.K.); (S.V.K.)
| | - Stanislav V. Kirillov
- Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, 188300 Gatchina, Russia; (A.P.); (E.M.M.); (D.S.V.); (P.S.K.); (S.V.K.)
| | - Andrey L. Konevega
- Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, 188300 Gatchina, Russia; (A.P.); (E.M.M.); (D.S.V.); (P.S.K.); (S.V.K.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- NRC “Kurchatov Institute”, 123182 Moscow, Russia
| |
Collapse
|
47
|
Bernetti M, Hall KB, Bussi G. Reweighting of molecular simulations with explicit-solvent SAXS restraints elucidates ion-dependent RNA ensembles. Nucleic Acids Res 2021; 49:e84. [PMID: 34107023 PMCID: PMC8373061 DOI: 10.1093/nar/gkab459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 01/03/2023] Open
Abstract
Small-angle X-ray scattering (SAXS) experiments are increasingly used to probe RNA structure. A number of forward models that relate measured SAXS intensities and structural features, and that are suitable to model either explicit-solvent effects or solute dynamics, have been proposed in the past years. Here, we introduce an approach that integrates atomistic molecular dynamics simulations and SAXS experiments to reconstruct RNA structural ensembles while simultaneously accounting for both RNA conformational dynamics and explicit-solvent effects. Our protocol exploits SAXS pure-solute forward models and enhanced sampling methods to sample an heterogenous ensemble of structures, with no information towards the experiments provided on-the-fly. The generated structural ensemble is then reweighted through the maximum entropy principle so as to match reference SAXS experimental data at multiple ionic conditions. Importantly, accurate explicit-solvent forward models are used at this reweighting stage. We apply this framework to the GTPase-associated center, a relevant RNA molecule involved in protein translation, in order to elucidate its ion-dependent conformational ensembles. We show that (a) both solvent and dynamics are crucial to reproduce experimental SAXS data and (b) the resulting dynamical ensembles contain an ion-dependent fraction of extended structures.
Collapse
Affiliation(s)
- Mattia Bernetti
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, Trieste 34136, Italy
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, Trieste 34136, Italy
| |
Collapse
|
48
|
Demo G, Gamper HB, Loveland AB, Masuda I, Carbone CE, Svidritskiy E, Hou YM, Korostelev AA. Structural basis for +1 ribosomal frameshifting during EF-G-catalyzed translocation. Nat Commun 2021; 12:4644. [PMID: 34330903 PMCID: PMC8324841 DOI: 10.1038/s41467-021-24911-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 07/12/2021] [Indexed: 12/25/2022] Open
Abstract
Frameshifting of mRNA during translation provides a strategy to expand the coding repertoire of cells and viruses. How and where in the elongation cycle +1-frameshifting occurs remains poorly understood. We describe seven ~3.5-Å-resolution cryo-EM structures of 70S ribosome complexes, allowing visualization of elongation and translocation by the GTPase elongation factor G (EF-G). Four structures with a + 1-frameshifting-prone mRNA reveal that frameshifting takes place during translocation of tRNA and mRNA. Prior to EF-G binding, the pre-translocation complex features an in-frame tRNA-mRNA pairing in the A site. In the partially translocated structure with EF-G•GDPCP, the tRNA shifts to the +1-frame near the P site, rendering the freed mRNA base to bulge between the P and E sites and to stack on the 16S rRNA nucleotide G926. The ribosome remains frameshifted in the nearly post-translocation state. Our findings demonstrate that the ribosome and EF-G cooperate to induce +1 frameshifting during tRNA-mRNA translocation.
Collapse
MESH Headings
- Biocatalysis
- Cryoelectron Microscopy
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Frameshifting, Ribosomal/genetics
- Models, Molecular
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational/genetics
- Peptide Elongation Factor G/chemistry
- Peptide Elongation Factor G/genetics
- Peptide Elongation Factor G/metabolism
- Protein Conformation
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- tRNA Methyltransferases/genetics
- tRNA Methyltransferases/metabolism
Collapse
Affiliation(s)
- Gabriel Demo
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Howard B Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anna B Loveland
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA
| | - Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christine E Carbone
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA
| | - Egor Svidritskiy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA.
| |
Collapse
|
49
|
Parajuli NP, Mandava CS, Pavlov MY, Sanyal S. Mechanistic insights into translation inhibition by aminoglycoside antibiotic arbekacin. Nucleic Acids Res 2021; 49:6880-6892. [PMID: 34125898 PMCID: PMC8266624 DOI: 10.1093/nar/gkab495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
How aminoglycoside antibiotics limit bacterial growth and viability is not clearly understood. Here we employ fast kinetics to reveal the molecular mechanism of action of a clinically used, new-generation, semisynthetic aminoglycoside Arbekacin (ABK), which is designed to avoid enzyme-mediated deactivation common to other aminoglycosides. Our results portray complete picture of ABK inhibition of bacterial translation with precise quantitative characterizations. We find that ABK inhibits different steps of translation in nanomolar to micromolar concentrations by imparting pleotropic effects. ABK binding stalls elongating ribosomes to a state, which is unfavorable for EF-G binding. This prolongs individual translocation step from ∼50 ms to at least 2 s; the mean time of translocation increases inversely with EF-G concentration. ABK also inhibits translation termination by obstructing RF1/RF2 binding to the ribosome. Furthermore, ABK decreases accuracy of mRNA decoding (UUC vs. CUC) by ∼80 000 fold, causing aberrant protein production. Importantly, translocation and termination events cannot be completely stopped even with high ABK concentration. Extrapolating our kinetic model of ABK action, we postulate that aminoglycosides impose bacteriostatic effect mainly by inhibiting translocation, while they become bactericidal in combination with decoding errors.
Collapse
Affiliation(s)
- Narayan Prasad Parajuli
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| | - Chandra Sekhar Mandava
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| | - Michael Y Pavlov
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| |
Collapse
|
50
|
Goh KJ, Ero R, Yan XF, Park JE, Kundukad B, Zheng J, Sze SK, Gao YG. Translational GTPase BipA Is Involved in the Maturation of a Large Subunit of Bacterial Ribosome at Suboptimal Temperature. Front Microbiol 2021; 12:686049. [PMID: 34326822 PMCID: PMC8313970 DOI: 10.3389/fmicb.2021.686049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/09/2021] [Indexed: 12/02/2022] Open
Abstract
BPI-inducible protein A (BipA), a highly conserved paralog of the well-known translational GTPases LepA and EF-G, has been implicated in bacterial motility, cold shock, stress response, biofilm formation, and virulence. BipA binds to the aminoacyl-(A) site of the bacterial ribosome and establishes contacts with the functionally important regions of both subunits, implying a specific role relevant to the ribosome, such as functioning in ribosome biogenesis and/or conditional protein translation. When cultured at suboptimal temperatures, the Escherichia coli bipA genomic deletion strain (ΔbipA) exhibits defects in growth, swimming motility, and ribosome assembly, which can be complemented by a plasmid-borne bipA supplementation or suppressed by the genomic rluC deletion. Based on the growth curve, soft agar swimming assay, and sucrose gradient sedimentation analysis, mutation of the catalytic residue His78 rendered plasmid-borne bipA unable to complement its deletion phenotypes. Interestingly, truncation of the C-terminal loop of BipA exacerbates the aforementioned phenotypes, demonstrating the involvement of BipA in ribosome assembly or its function. Furthermore, tandem mass tag-mass spectrometry analysis of the ΔbipA strain proteome revealed upregulations of a number of proteins (e.g., DeaD, RNase R, CspA, RpoS, and ObgE) implicated in ribosome biogenesis and RNA metabolism, and these proteins were restored to wild-type levels by plasmid-borne bipA supplementation or the genomic rluC deletion, implying BipA involvement in RNA metabolism and ribosome biogenesis. We have also determined that BipA interacts with ribosome 50S precursor (pre-50S), suggesting its role in 50S maturation and ribosome biogenesis. Taken together, BipA demonstrates the characteristics of a bona fide 50S assembly factor in ribosome biogenesis.
Collapse
Affiliation(s)
- Kwok Jian Goh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Rya Ero
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xin-Fu Yan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jung-Eun Park
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Binu Kundukad
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|