1
|
Ma R, Zhu B. Pericentromeric sequences, where a conservation paradox occurs. Trends Cell Biol 2025:S0962-8924(25)00034-0. [PMID: 40011088 DOI: 10.1016/j.tcb.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/28/2025]
Abstract
Pericentromeric sequences are characterized by their tandem repeat structure, heterochromatinization, and rapid evolution. The rapid evolvement creates highly diversified pericentromeric sequences, which facilitate reproductive isolation, as best exemplified in Drosophila studies. Despite their high variability, pericentromeric sequences ranging from fission yeast to humans are heterochromatinized with the same histone modification, H3K9 methylation. These features present a paradox, how highly variable sequences get recognized by conserved machineries. This Opinion discusses how this paradox is resolved and how diversification and conservation get unified at pericentromeric sequences.
Collapse
Affiliation(s)
- Runze Ma
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Bing Zhu
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Hunnicutt KE, Callahan CM, Keeble S, Moore EC, Good JM, Larson EL. Different complex regulatory phenotypes underlie hybrid male sterility in divergent rodent crosses. Genetics 2025; 229:iyae198. [PMID: 39601270 PMCID: PMC11796465 DOI: 10.1093/genetics/iyae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Hybrid incompatibilities are a critical component of species barriers and may arise due to negative interactions between divergent regulatory elements in parental species. We used a comparative approach to identify common themes in the regulatory phenotypes associated with hybrid male sterility in two divergent rodent crosses, dwarf hamsters and house mice. We investigated three potential characteristic gene expression phenotypes in hybrids including the propensity of transgressive differentially expressed genes toward over or underexpression, the influence of developmental stage on patterns of misexpression, and the role of the sex chromosomes on misexpression phenotypes. In contrast to near pervasive overexpression in hybrid house mice, we found that misexpression in hybrid dwarf hamsters was dependent on developmental stage. In both house mouse and dwarf hamster hybrids, however, misexpression increased with the progression of spermatogenesis, although to varying extents and with potentially different consequences. In both systems, we detected sex chromosome-specific overexpression in stages of spermatogenesis where inactivated X chromosome expression was expected, but the hybrid overexpression phenotypes were fundamentally different. Importantly, misexpression phenotypes support the presence of multiple developmental blocks to spermatogenesis in dwarf hamster hybrids, including a potential role of meiotic stalling or breakdown early in spermatogenesis. Collectively, we demonstrate that while there are some similarities in hybrid expression phenotypes of house mice and dwarf hamsters, there are also clear differences that point toward unique mechanisms underlying hybrid male sterility. Our results highlight the potential of comparative approaches in helping to understand the causes and consequences of disrupted gene expression in speciation.
Collapse
Affiliation(s)
- Kelsie E Hunnicutt
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Colin M Callahan
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Emily C Moore
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
3
|
Xie D, Ma Y, Ye P, Liu Y, Ding Q, Huang G, Félix MA, Cai Z, Zhao Z. A newborn F-box gene blocks gene flow by selectively degrading phosphoglucomutase in species hybrids. Proc Natl Acad Sci U S A 2024; 121:e2418037121. [PMID: 39514314 PMCID: PMC11573670 DOI: 10.1073/pnas.2418037121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
The establishment of reproductive barriers such as postzygotic hybrid incompatibility (HI) remains the key to speciation. Gene duplication followed by differential functionalization has long been proposed as a major model underlying HI, but little supporting evidence exists. Here, we demonstrate that a newborn F-box gene, Cni-neib-1, of the nematode Caenorhabditis nigoni specifically inactivates an essential phosphoglucomutase encoded by Cbr-shls-1 in its sister species Caenorhabditis briggsae and their hybrids. Zygotic expression of Cni-neib-1 specifically depletes Cbr-SHLS-1, but not Cni-SHLS-1, in approximately 40 min starting from gastrulation, causing embryonic death. Cni-neib-1 is one of thirty-three paralogues emerging from a recent surge in F-box gene duplication events within C. nigoni, all of which are evolving under positive selection. Cni-neib-1 undergoes turnover even among C. nigoni populations. Differential expansion of F-box genes between the two species could reflect their distinctive innate immune responses. Collectively, we demonstrate how recent duplication of genes involved in protein degradation can cause incidental destruction of targets in hybrids that leads to HI, providing an invaluable insight into mechanisms of speciation.
Collapse
Affiliation(s)
- Dongying Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Yiming Ma
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Pohao Ye
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Yiqing Liu
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Qiutao Ding
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Gefei Huang
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
- Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris75005, France
| | - Zongwei Cai
- Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| |
Collapse
|
4
|
Hunnicutt KE, Callahan C, Keeble S, Moore EC, Good JM, Larson EL. Different complex regulatory phenotypes underlie hybrid male sterility in divergent rodent crosses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564782. [PMID: 37961317 PMCID: PMC10634954 DOI: 10.1101/2023.10.30.564782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Hybrid incompatibilities are a critical component of species barriers and may arise due to negative interactions between divergent regulatory elements in parental species. We used a comparative approach to identify common themes in the regulatory phenotypes associated with hybrid male sterility in two divergent rodent crosses, dwarf hamsters and house mice. We investigated three potential characteristic gene expression phenotypes in hybrids including the propensity of transgressive differentially expressed genes towards over or underexpression, the influence of developmental stage on patterns of misexpression, and the role of the sex chromosomes on misexpression phenotypes. In contrast to near pervasive overexpression in hybrid house mice, we found that misexpression in hybrid dwarf hamsters was dependent on developmental stage. In both house mouse and dwarf hamster hybrids, however, misexpression increased with the progression of spermatogenesis, although to varying extents and with potentially different consequences. In both systems, we detected sex-chromosome specific overexpression in stages of spermatogenesis where inactivated X chromosome expression was expected, but the hybrid overexpression phenotypes were fundamentally different. Importantly, misexpression phenotypes support the presence of multiple developmental blocks to spermatogenesis in dwarf hamster hybrids, including a potential role of meiotic stalling or breakdown early in spermatogenesis. Collectively, we demonstrate that while there are some similarities in hybrid expression phenotypes of house mice and dwarf hamsters, there are also clear differences that point towards unique mechanisms underlying hybrid male sterility. Our results highlight the potential of comparative approaches in helping to understand the causes and consequences of disrupted gene expression in speciation.
Collapse
Affiliation(s)
- Kelsie E Hunnicutt
- University of Denver, Department of Biological Sciences, Denver, CO, 80208
| | - Colin Callahan
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812
| | - Emily C Moore
- University of Denver, Department of Biological Sciences, Denver, CO, 80208
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812
| | - Erica L Larson
- University of Denver, Department of Biological Sciences, Denver, CO, 80208
| |
Collapse
|
5
|
Matsukawa K, Kato Y, Yoshida A, Onishi H, Nakano S, Itoh M, Takano-Shimizu-Kouno T. Sharp decline in male fertility in F2 hybrids of the female-heterogametic silk moth Bombyx. Genetics 2024; 228:iyae149. [PMID: 39374851 PMCID: PMC11538408 DOI: 10.1093/genetics/iyae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Sexual selection drives rapid evolution of morphological, physiological, and behavioral traits, especially in males, and it may also drive the rapid evolution of hybrid male sterility. Indeed, the faster male theory of speciation was once viewed as a major cause of Haldane's rule in male-heterogametic XY taxa, but is increasingly being replaced by the genetic conflict hypothesis partly because it cannot explain the faster evolution of hybrid female sterility in female-heterogametic ZW taxa. The theory nonetheless predicts that there should be more genes for hybrid male sterility than for hybrid female sterility even in such taxa, but this remains untested. Thus, finding evidence for the faster male theory of reproductive isolation beyond the F1 generation in ZW systems still represents a challenge to studying the impact of sexual selection. In this study, we examined F2 hybrids between the domesticated silkworm Bombyx mori and the wild silk moth Bombyx mandarina, which have ZW sex determination. We found that although only females showed reduced fertility in the F1 generation, the F2 hybrid males had a significant reduction in fertility compared with the parental and F1 males. Importantly, 27% of the F2 males and 15% of the F2 females were completely sterile, suggesting the presence of recessive incompatibilities causing male sterility in female-heterogametic taxa.
Collapse
Affiliation(s)
- Kana Matsukawa
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki Goshokaido-cho, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yasuko Kato
- Faculty of Applied Biology, Kyoto Institute of Technology, Matsugasaki Goshokaido-cho, Sakyo-ku, Kyoto 606-8585, Japan
| | - Aya Yoshida
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki Goshokaido-cho, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hisaka Onishi
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki Goshokaido-cho, Sakyo-ku, Kyoto 606-8585, Japan
| | - Sachiko Nakano
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki Goshokaido-cho, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masanobu Itoh
- Faculty of Applied Biology, Kyoto Institute of Technology, Matsugasaki Goshokaido-cho, Sakyo-ku, Kyoto 606-8585, Japan
| | - Toshiyuki Takano-Shimizu-Kouno
- Faculty of Applied Biology, Kyoto Institute of Technology, Matsugasaki Goshokaido-cho, Sakyo-ku, Kyoto 606-8585, Japan
- KYOTO Drosophila Stock Center, Kyoto Institute of Technology, Saga Ippongi-cho, Ukyo-ku, Kyoto 616-8354, Japan
| |
Collapse
|
6
|
Searle JB, Pardo-Manuel de Villena F. Meiotic Drive and Speciation. Annu Rev Genet 2024; 58:341-363. [PMID: 39585909 DOI: 10.1146/annurev-genet-111523-102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Meiotic drive is the biased transmission of alleles from heterozygotes, contrary to Mendel's laws, and reflects intragenomic conflict rather than organism-level Darwinian selection. Theory has been developed as to how centromeric properties can promote female meiotic drive and how conflict between the X and Y chromosomes in males can promote male meiotic drive. There are empirical data that fit both the centromere drive and sex chromosome drive models. Sex chromosome drive may have relevance to speciation through the buildup of Dobzhansky-Muller incompatibilities involving drive and suppressor systems, studied particularly in Drosophila. Centromere drive may promote fixation of chromosomal rearrangements involving the centromere, and those fixed rearrangements may contribute to reproductive isolation, studied particularly in the house mouse. Genome-wide tests suggest that meiotic drive promotes allele fixation with regularity, and those studying the genomics of speciation need to be aware of the potential impact of such fixations on reproductive isolation. New species can originate in many different ways (including multiple factors acting together), and a substantial body of work on meiotic drive point to it being one of the processes involved.
Collapse
Affiliation(s)
- Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA;
| | | |
Collapse
|
7
|
Sun S, Ting CT, Wu CI. Selection with two alleles of X-linkage and its application to the fitness component analysis of OdsH in Drosophila. G3 (BETHESDA, MD.) 2024; 14:jkae157. [PMID: 39001870 PMCID: PMC11537805 DOI: 10.1093/g3journal/jkae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 04/29/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
In organisms with the XY sex-determination system, there is an imbalance in the inheritance and transmission of the X chromosome between males and females. Unlike an autosomal allele, an X-linked recessive allele in a female will have phenotypic effects on its male counterpart. Thus, genes located on the X chromosome are of particular interest to researchers in molecular evolution and genetics. Here we present a model for selection with two alleles of X-linkage to understand fitness components associated with genes on the X chromosome. We apply this model to the fitness analysis of an X-linked gene, OdsH (16D), in the fruit fly Drosophila melanogaster. The function of OdsH is involved in sperm production and the gene is rapidly evolving under positive selection. Using site-directed gene targeting, we generated functional and defective OdsH variants tagged with the eye-color marker gene white. We compare the allele frequency changes of the two OdsH variants, each directly competing against a wild-type OdsH allele in concurrent but separate experimental populations. After 20 generations, the two genetically modified OdsH variants displayed a 40% difference in allele frequencies, with the functional OdsH variant demonstrating an advantage over the defective variant. Using maximum likelihood estimation, we determined the fitness components associated with the OdsH alleles in males and females. Our analysis revealed functional aspects of the fitness determinants associated with OdsH, and that sex-specific fertility and viability consequences both contribute to selection on an X-linked gene.
Collapse
Affiliation(s)
- Sha Sun
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Chau-Ti Ting
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 106, Taiwan
| | - Chung-I Wu
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Berube B, Ernst E, Cahn J, Roche B, de Santis Alves C, Lynn J, Scheben A, Grimanelli D, Siepel A, Ross-Ibarra J, Kermicle J, Martienssen RA. Teosinte Pollen Drive guides maize diversification and domestication by RNAi. Nature 2024; 633:380-388. [PMID: 39112710 PMCID: PMC11390486 DOI: 10.1038/s41586-024-07788-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/04/2024] [Indexed: 08/17/2024]
Abstract
Selfish genetic elements contribute to hybrid incompatibility and bias or 'drive' their own transmission1,2. Chromosomal drive typically functions in asymmetric female meiosis, whereas gene drive is normally post-meiotic and typically found in males. Here, using single-molecule and single-pollen genome sequencing, we describe Teosinte Pollen Drive, an instance of gene drive in hybrids between maize (Zea mays ssp. mays) and teosinte mexicana (Z. mays ssp. mexicana) that depends on RNA interference (RNAi). 22-nucleotide small RNAs from a non-coding RNA hairpin in mexicana depend on Dicer-like 2 (Dcl2) and target Teosinte Drive Responder 1 (Tdr1), which encodes a lipase required for pollen viability. Dcl2, Tdr1 and the hairpin are in tight pseudolinkage on chromosome 5, but only when transmitted through the male. Introgression of mexicana into early cultivated maize is thought to have been critical to its geographical dispersal throughout the Americas3, and a tightly linked inversion in mexicana spans a major domestication sweep in modern maize4. A survey of maize traditional varieties and sympatric populations of teosinte mexicana reveals correlated patterns of admixture among unlinked genes required for RNAi on at least four chromosomes that are also subject to gene drive in pollen from synthetic hybrids. Teosinte Pollen Drive probably had a major role in maize domestication and diversification, and offers an explanation for the widespread abundance of 'self' small RNAs in the germ lines of plants and animals.
Collapse
Affiliation(s)
- Benjamin Berube
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jonathan Cahn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Benjamin Roche
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Jason Lynn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, Center for Population Biology and Genome Center, University of California at Davis, Davis, CA, USA
| | - Jerry Kermicle
- Laboratory of Genetics, University of Wisconsin, Madison, WI, USA
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
9
|
Said I, Barbash DA, Clark AG. The Structure of Simple Satellite Variation in the Human Genome and Its Correlation With Centromere Ancestry. Genome Biol Evol 2024; 16:evae153. [PMID: 39018452 PMCID: PMC11305138 DOI: 10.1093/gbe/evae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
Although repetitive DNA forms much of the human genome, its study is challenging due to limitations in assembly and alignment of repetitive short-reads. We have deployed k-Seek, software that detects tandem repeats embedded in single reads, on 2,504 human genomes from the 1,000 Genomes Project to quantify the variation and abundance of simple satellites (repeat units <20 bp). We find that the ancestral monomer of Human Satellite 3 makes up the largest portion of simple satellite content in humans (mean of ∼8 Mb). We discovered ∼50,000 rare tandem repeats that are not detected in the T2T-CHM13v2.0 assembly, including undescribed variants of telomericand pericentromeric repeats. We find broad homogeneity of the most abundant repeats across populations, except for AG-rich repeats which are more abundant in African individuals. We also find cliques of highly similar AG- and AT-rich satellites that are interspersed and form higher-order structures that covary in copy number across individuals, likely through concerted amplification via unequal exchange. Finally, we use pericentromeric polymorphisms to estimate centromeric genetic relatedness between individuals and find a strong predictive relationship between centromeric lineages and pericentromeric simple satellite abundances. In particular, ancestral monomers of Human Satellite 2 and Human Satellite 3 abundances correlate with clusters of centromeric ancestry on chromosome 16 and chromosome 9, with some clusters structured by population. These results provide new descriptions of the population dynamics that underlie the evolution of simple satellites in humans.
Collapse
Affiliation(s)
- Iskander Said
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Biswas S, Gurdziel K, Meller VH. siRNA that participates in Drosophila dosage compensation is produced by many 1.688X and 359 bp repeats. Genetics 2024; 227:iyae074. [PMID: 38718207 PMCID: PMC11228850 DOI: 10.1093/genetics/iyae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 07/09/2024] Open
Abstract
Organisms with differentiated sex chromosomes must accommodate unequal gene dosage in males and females. Male fruit flies increase X-linked gene expression to compensate for hemizygosity of their single X chromosome. Full compensation requires localization of the Male-Specific Lethal (MSL) complex to active genes on the male X, where it modulates chromatin to elevate expression. The mechanisms that identify X chromatin are poorly understood. The euchromatic X is enriched for AT-rich, ∼359 bp satellites termed the 1.688X repeats. Autosomal insertions of 1.688X DNA enable MSL recruitment to nearby genes. Ectopic expression of dsRNA from one of these repeats produces siRNA and partially restores X-localization of MSLs in males with defective X recognition. Surprisingly, expression of double-stranded RNA from three other 1.688X repeats failed to rescue males. We reconstructed dsRNA-expressing transgenes with sequence from two of these repeats and identified phasing of repeat DNA, rather than sequence or orientation, as the factor that determines rescue of males with defective X recognition. Small RNA sequencing revealed that siRNA was produced in flies with a transgene that rescues, but not in those carrying a transgene with the same repeat but different phasing. We demonstrate that pericentromeric X heterochromatin promotes X recognition through a maternal effect, potentially mediated by small RNA from closely related heterochromatic repeats. This suggests that the sources of siRNAs promoting X recognition are highly redundant. We propose that enrichment of satellite repeats on Drosophilid X chromosomes facilitates the rapid evolution of differentiated sex chromosomes by marking the X for compensation.
Collapse
Affiliation(s)
- Sudeshna Biswas
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | - Katherine Gurdziel
- Department of Pharmacology, Wayne State University, Integrative Bioscience Center (iBio), 6135 Woodward, Detroit, MI 48202, USA
- Institute of Environmental Health Sciences, Wayne State University, Integrative Bioscience Center (iBio), 6135 Woodward, Detroit, MI 48202, USA
| | - Victoria H Meller
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| |
Collapse
|
11
|
Lisachov A, Panthum T, Dedukh D, Singchat W, Ahmad SF, Wattanadilokcahtkun P, Thong T, Srikampa P, Noito K, Rasoarahona R, Kraichak E, Muangmai N, Chatchaiphan S, Sriphairoj K, Hatachote S, Chaiyes A, Jantasuriyarat C, Dokkaew S, Chailertlit V, Suksavate W, Sonongbua J, Prasanpan J, Payungporn S, Han K, Antunes A, Srisapoome P, Koga A, Duengkae P, Na-Nakorn U, Matsuda Y, Srikulnath K. Genome-wide sequence divergence of satellite DNA could underlie meiotic failure in male hybrids of bighead catfish and North African catfish (Clarias, Clariidae). Genomics 2024; 116:110868. [PMID: 38795738 DOI: 10.1016/j.ygeno.2024.110868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024]
Abstract
Hybrid sterility, a hallmark of postzygotic isolation, arises from parental genome divergence disrupting meiosis. While chromosomal incompatibility is often implicated, the underlying mechanisms remain unclear. This study investigated meiotic behavior and genome-wide divergence in bighead catfish (C. macrocephalus), North African catfish (C. gariepinus), and their sterile male hybrids (important in aquaculture). Repetitive DNA analysis using bioinformatics and cytogenetics revealed significant divergence in satellite DNA (satDNA) families between parental species. Notably, one hybrid exhibited successful meiosis and spermatozoa production, suggesting potential variation in sterility expression. Our findings suggest that genome-wide satDNA divergence, rather than chromosome number differences, likely contributes to meiotic failure and male sterility in these catfish hybrids.
Collapse
Affiliation(s)
- Artem Lisachov
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Dmitrij Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov 27721, Czech Republic
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Pish Wattanadilokcahtkun
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Thanyapat Thong
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Phanitada Srikampa
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Kantika Noito
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Ryan Rasoarahona
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Ekaphan Kraichak
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Department of Botany, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Narongrit Muangmai
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - Satid Chatchaiphan
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - Kednapat Sriphairoj
- Faculty of Natural Resources and Agro-Industry, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Sittichai Hatachote
- Faculty of Natural Resources and Agro-Industry, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Aingorn Chaiyes
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; School of Agriculture and Cooperatives, Sukhothai Thammathirat Open University, Nonthaburi 11120, Thailand
| | - Chatchawan Jantasuriyarat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Department of Genetics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Sahabhop Dokkaew
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - Visarut Chailertlit
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Department of Genetics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; Pathum Thani Aquatic Animal Genetics Research and Development Center, Aquatic Animal Genetics Research and Development Division, Department of Fisheries, Pathum Thani 12120, Thailand
| | - Warong Suksavate
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Jumaporn Sonongbua
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Faculty of Interdisciplinary Studies, Khon Kaen University, Nong Kom Ko, Mueang Nong Khai District, Nong Khai 43000, Thailand
| | - Jiraboon Prasanpan
- Kalasin Fish Hatchery Farm (Betagro), Buaban, Yangtalad District, Kalasin 46120, Thailand
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kyudong Han
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Department of Microbiology, Dankook University, Cheonan 31116, Republic of Korea; Bio-Medical Engineering Core Facility Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Prapansak Srisapoome
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - Akihiko Koga
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Prateep Duengkae
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Uthairat Na-Nakorn
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - Yoichi Matsuda
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Department of Genetics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
12
|
Bente H, Köhler C. Molecular basis and evolutionary drivers of endosperm-based hybridization barriers. PLANT PHYSIOLOGY 2024; 195:155-169. [PMID: 38298124 PMCID: PMC11060687 DOI: 10.1093/plphys/kiae050] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
The endosperm, a transient seed tissue, plays a pivotal role in supporting embryo growth and germination. This unique feature sets flowering plants apart from gymnosperms, marking an evolutionary innovation in the world of seed-bearing plants. Nevertheless, the importance of the endosperm extends beyond its role in providing nutrients to the developing embryo by acting as a versatile protector, preventing hybridization events between distinct species and between individuals with different ploidy. This phenomenon centers on growth and differentiation of the endosperm and the speed at which both processes unfold. Emerging studies underscore the important role played by type I MADS-box transcription factors, including the paternally expressed gene PHERES1. These factors, along with downstream signaling pathways involving auxin and abscisic acid, are instrumental in regulating endosperm development and, consequently, the establishment of hybridization barriers. Moreover, mutations in various epigenetic regulators mitigate these barriers, unveiling a complex interplay of pathways involved in their formation. In this review, we discuss the molecular underpinnings of endosperm-based hybridization barriers and their evolutionary drivers.
Collapse
Affiliation(s)
- Heinrich Bente
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Claudia Köhler
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
13
|
Blackmon H, Jonika MM, Alfieri JM, Fardoun L, Demuth JP. Drift drives the evolution of chromosome number I: The impact of trait transitions on genome evolution in Coleoptera. J Hered 2024; 115:173-182. [PMID: 38181226 PMCID: PMC10936555 DOI: 10.1093/jhered/esae001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024] Open
Abstract
Chromosomal mutations such as fusions and fissions are often thought to be deleterious, especially in heterozygotes (underdominant), and consequently are unlikely to become fixed. Yet, many models of chromosomal speciation ascribe an important role to chromosomal mutations. When the effective population size (Ne) is small, the efficacy of selection is weakened, and the likelihood of fixing underdominant mutations by genetic drift is greater. Thus, it is possible that ecological and phenotypic transitions that modulate Ne facilitate the fixation of chromosome changes, increasing the rate of karyotype evolution. We synthesize all available chromosome number data in Coleoptera and estimate the impact of traits expected to change Ne on the rate of karyotype evolution in the family Carabidae and 12 disparate clades from across Coleoptera. Our analysis indicates that in Carabidae, wingless clades have faster rates of chromosome number increase. Additionally, our analysis indicates clades exhibiting multiple traits expected to reduce Ne, including strict inbreeding, oligophagy, winglessness, and island endemism, have high rates of karyotype evolution. Our results suggest that chromosome number changes are likely fixed by genetic drift despite an initial fitness cost and that chromosomal speciation models may be important to consider in clades with very small Ne.
Collapse
Affiliation(s)
- Heath Blackmon
- Department of Biology, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, United States
| | - Michelle M Jonika
- Department of Biology, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
| | - James M Alfieri
- Department of Biology, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, United States
| | - Leen Fardoun
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Jeffery P Demuth
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
14
|
Nunes WVB, Oliveira DS, Dias GDR, Carvalho AB, Caruso ÍP, Biselli JM, Guegen N, Akkouche A, Burlet N, Vieira C, Carareto CMA. A comprehensive evolutionary scenario for the origin and neofunctionalization of the Drosophila speciation gene Odysseus (OdsH). G3 (BETHESDA, MD.) 2024; 14:jkad299. [PMID: 38156703 PMCID: PMC10917504 DOI: 10.1093/g3journal/jkad299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 11/22/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Odysseus (OdsH) was the first speciation gene described in Drosophila related to hybrid sterility in offspring of mating between Drosophila mauritiana and Drosophila simulans. Its origin is attributed to the duplication of the gene unc-4 in the subgenus Sophophora. By using a much larger sample of Drosophilidae species, we showed that contrary to what has been previously proposed, OdsH origin occurred 62 MYA. Evolutionary rates, expression, and transcription factor-binding sites of OdsH evidence that it may have rapidly experienced neofunctionalization in male sexual functions. Furthermore, the analysis of the OdsH peptide allowed the identification of mutations of D. mauritiana that could result in incompatibility in hybrids. In order to find if OdsH could be related to hybrid sterility, beyond Sophophora, we explored the expression of OdsH in Drosophila arizonae and Drosophila mojavensis, a pair of sister species with incomplete reproductive isolation. Our data indicated that OdsH expression is not atypical in their male-sterile hybrids. In conclusion, we have proposed that the origin of OdsH occurred earlier than previously proposed, followed by neofunctionalization. Our results also suggested that its role as a speciation gene might be restricted to D. mauritiana and D. simulans.
Collapse
Affiliation(s)
- William Vilas Boas Nunes
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), 2265 Cristóvão Colombo Street, 15054-000 São José do Rio Preto, Brazil
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Bât. Grégor Mendel, 43 Boulevard 11 Novembre 1918, 69622 Villeurbanne, France
| | - Daniel Siqueira Oliveira
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), 2265 Cristóvão Colombo Street, 15054-000 São José do Rio Preto, Brazil
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Bât. Grégor Mendel, 43 Boulevard 11 Novembre 1918, 69622 Villeurbanne, France
| | - Guilherme de Rezende Dias
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CCS sl A2-075, 373 Carlos Chagas Filho Avenue, 21941-971 Rio de Janeiro, Brazil
| | - Antonio Bernardo Carvalho
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CCS sl A2-075, 373 Carlos Chagas Filho Avenue, 21941-971 Rio de Janeiro, Brazil
| | - Ícaro Putinhon Caruso
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), 2265 Cristóvão Colombo Street, 15054-000 São José do Rio Preto, Brazil
| | - Joice Matos Biselli
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), 2265 Cristóvão Colombo Street, 15054-000 São José do Rio Preto, Brazil
| | - Nathalie Guegen
- Faculté de Médecine, iGReD, Université Clermont Auvergne, CNRS, INSERM, 4 Bd Claude Bernard, 63000 Clermont-Ferrande, France
| | - Abdou Akkouche
- Faculté de Médecine, iGReD, Université Clermont Auvergne, CNRS, INSERM, 4 Bd Claude Bernard, 63000 Clermont-Ferrande, France
| | - Nelly Burlet
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Bât. Grégor Mendel, 43 Boulevard 11 Novembre 1918, 69622 Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Bât. Grégor Mendel, 43 Boulevard 11 Novembre 1918, 69622 Villeurbanne, France
| | - Claudia M A Carareto
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), 2265 Cristóvão Colombo Street, 15054-000 São José do Rio Preto, Brazil
| |
Collapse
|
15
|
Berube B, Ernst E, Cahn J, Roche B, de Santis Alves C, Lynn J, Scheben A, Siepel A, Ross-Ibarra J, Kermicle J, Martienssen R. Teosinte Pollen Drive guides maize diversification and domestication by RNAi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548689. [PMID: 37503269 PMCID: PMC10370002 DOI: 10.1101/2023.07.12.548689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Meiotic drivers subvert Mendelian expectations by manipulating reproductive development to bias their own transmission. Chromosomal drive typically functions in asymmetric female meiosis, while gene drive is normally postmeiotic and typically found in males. Using single molecule and single-pollen genome sequencing, we describe Teosinte Pollen Drive, an instance of gene drive in hybrids between maize (Zea mays ssp. mays) and teosinte mexicana (Zea mays ssp. mexicana), that depends on RNA interference (RNAi). 22nt small RNAs from a non-coding RNA hairpin in mexicana depend on Dicer-Like 2 (Dcl2) and target Teosinte Drive Responder 1 (Tdr1), which encodes a lipase required for pollen viability. Dcl2, Tdr1, and the hairpin are in tight pseudolinkage on chromosome 5, but only when transmitted through the male. Introgression of mexicana into early cultivated maize is thought to have been critical to its geographical dispersal throughout the Americas, and a tightly linked inversion in mexicana spans a major domestication sweep in modern maize. A survey of maize landraces and sympatric populations of teosinte mexicana reveals correlated patterns of admixture among unlinked genes required for RNAi on at least 4 chromosomes that are also subject to gene drive in pollen from synthetic hybrids. Teosinte Pollen Drive likely played a major role in maize domestication and diversification, and offers an explanation for the widespread abundance of "self" small RNAs in the germlines of plants and animals.
Collapse
Affiliation(s)
- Benjamin Berube
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | - Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | - Jonathan Cahn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | - Benjamin Roche
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | | | - Jason Lynn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | - Jeffrey Ross-Ibarra
- Dept. of Evolution & Ecology, Center for Population Biology and Genome Center, University of California, Davis CA
| | - Jerry Kermicle
- Laboratory of Genetics, University of Wisconsin, Madison WI
| | - Rob Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| |
Collapse
|
16
|
Bredemeyer KR, Hillier L, Harris AJ, Hughes GM, Foley NM, Lawless C, Carroll RA, Storer JM, Batzer MA, Rice ES, Davis BW, Raudsepp T, O'Brien SJ, Lyons LA, Warren WC, Murphy WJ. Single-haplotype comparative genomics provides insights into lineage-specific structural variation during cat evolution. Nat Genet 2023; 55:1953-1963. [PMID: 37919451 PMCID: PMC10845050 DOI: 10.1038/s41588-023-01548-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/20/2023] [Indexed: 11/04/2023]
Abstract
The role of structurally dynamic genomic regions in speciation is poorly understood due to challenges inherent in diploid genome assembly. Here we reconstructed the evolutionary dynamics of structural variation in five cat species by phasing the genomes of three interspecies F1 hybrids to generate near-gapless single-haplotype assemblies. We discerned that cat genomes have a paucity of segmental duplications relative to great apes, explaining their remarkable karyotypic stability. X chromosomes were hotspots of structural variation, including enrichment with inversions in a large recombination desert with characteristics of a supergene. The X-linked macrosatellite DXZ4 evolves more rapidly than 99.5% of the genome clarifying its role in felid hybrid incompatibility. Resolved sensory gene repertoires revealed functional copy number changes associated with ecomorphological adaptations, sociality and domestication. This study highlights the value of gapless genomes to reveal structural mechanisms underpinning karyotypic evolution, reproductive isolation and ecological niche adaptation.
Collapse
Affiliation(s)
- Kevin R Bredemeyer
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| | - LaDeana Hillier
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Andrew J Harris
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| | - Graham M Hughes
- School of Biology & Environmental Sciences, University College Dublin, Dublin, Ireland
| | - Nicole M Foley
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Colleen Lawless
- School of Biology & Environmental Sciences, University College Dublin, Dublin, Ireland
| | - Rachel A Carroll
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | | | - Mark A Batzer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Edward S Rice
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Brian W Davis
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| | - Terje Raudsepp
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| | - Stephen J O'Brien
- Guy Harvey Oceanographic Center, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Leslie A Lyons
- Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, MO, USA
| | - Wesley C Warren
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA.
| | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
17
|
Sun C, Zhang A, Chen J, Schaack S. 'Junk' that matters: the role of transposable elements in bumblebee genome evolution. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101103. [PMID: 37604302 DOI: 10.1016/j.cois.2023.101103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Transposable elements (TEs) are mobile DNA sequences that are widely distributed in eukaryotic genomes, where they are known to serve as a major force in genome evolution. The phenotypic impacts of TEs, while less well-studied, have also been discovered. Bumblebees are globally important pollinators in natural ecosystems and agriculture. Although TEs comprise a small fraction of bumblebee genomes, emerging evidence suggests that TEs are the major contributor of genome size variation across species and are involved in the formation of new coding and regulatory sequences. We review recent discoveries related to TEs in bumblebees, as well as outlining three key questions for the future of the field. In the future, we argue long-read sequencing technologies and genome editing techniques will help us identify TEs in bumblebees, unveil mechanisms that could account for their silencing and limited abundance, and uncover their contributions to phenotypic diversification, ecological adaptation, and speciation.
Collapse
Affiliation(s)
- Cheng Sun
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Aibing Zhang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jinfeng Chen
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, OR 97202, USA
| |
Collapse
|
18
|
Cutter AD. Speciation and development. Evol Dev 2023; 25:289-327. [PMID: 37545126 DOI: 10.1111/ede.12454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/13/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Understanding general principles about the origin of species remains one of the foundational challenges in evolutionary biology. The genomic divergence between groups of individuals can spawn hybrid inviability and hybrid sterility, which presents a tantalizing developmental problem. Divergent developmental programs may yield either conserved or divergent phenotypes relative to ancestral traits, both of which can be responsible for reproductive isolation during the speciation process. The genetic mechanisms of developmental evolution involve cis- and trans-acting gene regulatory change, protein-protein interactions, genetic network structures, dosage, and epigenetic regulation, all of which also have roots in population genetic and molecular evolutionary processes. Toward the goal of demystifying Darwin's "mystery of mysteries," this review integrates microevolutionary concepts of genetic change with principles of organismal development, establishing explicit links between population genetic process and developmental mechanisms in the production of macroevolutionary pattern. This integration aims to establish a more unified view of speciation that binds process and mechanism.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Lollar MJ, Biewer-Heisler TJ, Danen CE, Pool JE. Hybrid breakdown in male reproduction between recently diverged Drosophila melanogaster populations has a complex and variable genetic architecture. Evolution 2023; 77:1550-1563. [PMID: 37071601 PMCID: PMC10309968 DOI: 10.1093/evolut/qpad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/15/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
Secondary contact between formerly isolated populations may result in hybrid breakdown, in which untested allelic combinations in hybrids are maladaptive and limit genetic exchange. Studying early-stage reproductive isolation may yield key insights into the genetic architectures and evolutionary forces underlying the first steps toward speciation. Here, we leverage the recent worldwide expansion of Drosophila melanogaster to test for hybrid breakdown between populations that diverged within the last 13,000 years. We found clear evidence for hybrid breakdown in male reproduction, but not female reproduction or viability, supporting the prediction that hybrid breakdown affects the heterogametic sex first. The frequency of non-reproducing F2 males varied among different crosses involving the same southern African and European populations, as did the qualitative effect of cross direction, implying a genetically variable basis of hybrid breakdown and a role for uniparentally inherited factors. The levels of breakdown observed in F2 males were not recapitulated in backcrossed individuals, consistent with the existence of incompatibilities with at least three partners. Thus, some of the very first steps toward reproductive isolation could involve incompatibilities with complex and variable genetic architectures. Collectively, our findings emphasize this system's potential for future studies on the genetic and organismal basis of early-stage reproductive isolation.
Collapse
Affiliation(s)
- Matthew J Lollar
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | | | - Clarice E Danen
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| |
Collapse
|
20
|
Chang CH, Mejia Natividad I, Malik HS. Expansion and loss of sperm nuclear basic protein genes in Drosophila correspond with genetic conflicts between sex chromosomes. eLife 2023; 12:85249. [PMID: 36763410 PMCID: PMC9917458 DOI: 10.7554/elife.85249] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
Many animal species employ sperm nuclear basic proteins (SNBPs) or protamines to package sperm genomes tightly. SNBPs vary across animal lineages and evolve rapidly in mammals. We used a phylogenomic approach to investigate SNBP diversification in Drosophila species. We found that most SNBP genes in Drosophila melanogaster evolve under positive selection except for genes essential for male fertility. Unexpectedly, evolutionarily young SNBP genes are more likely to be critical for fertility than ancient, conserved SNBP genes. For example, CG30056 is dispensable for male fertility despite being one of three SNBP genes universally retained in Drosophila species. We found 19 independent SNBP gene amplification events that occurred preferentially on sex chromosomes. Conversely, the montium group of Drosophila species lost otherwise-conserved SNBP genes, coincident with an X-Y chromosomal fusion. Furthermore, SNBP genes that became linked to sex chromosomes via chromosomal fusions were more likely to degenerate or relocate back to autosomes. We hypothesize that autosomal SNBP genes suppress meiotic drive, whereas sex-chromosomal SNBP expansions lead to meiotic drive. X-Y fusions in the montium group render autosomal SNBPs dispensable by making X-versus-Y meiotic drive obsolete or costly. Thus, genetic conflicts between sex chromosomes may drive SNBP rapid evolution during spermatogenesis in Drosophila species.
Collapse
Affiliation(s)
- Ching-Ho Chang
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, United States
| | - Isabel Mejia Natividad
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, United States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, United States
| |
Collapse
|
21
|
Malik HS. Driving lessons: a brief (personal) history of centromere drive. Genetics 2022; 222:iyac155. [PMID: 39255401 PMCID: PMC9713404 DOI: 10.1093/genetics/iyac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Affiliation(s)
- Harmit S Malik
- Division of Basic Sciences & Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
22
|
Despot-Slade E, Širca S, Mravinac B, Castagnone-Sereno P, Plohl M, Meštrović N. Satellitome analyses in nematodes illuminate complex species history and show conserved features in satellite DNAs. BMC Biol 2022; 20:259. [PMCID: PMC9673304 DOI: 10.1186/s12915-022-01460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Satellite DNAs (satDNAs) are tandemly repeated non-coding DNA sequences that belong to the most abundant and the fastest evolving parts of the eukaryotic genome. A satellitome represents the collection of different satDNAs in a genome. Due to extreme diversity and methodological difficulties to characterize and compare satDNA collection in complex genomes, knowledge on their putative functional constraints and capacity to participate in genome evolution remains rather elusive. SatDNA transcripts have been detected in many species, however comparative studies of satDNA transcriptome between species are extremely rare.
Results
We conducted a genome-wide survey and comparative analyses of satellitomes among different closely related Meloidogyne spp. nematodes. The evolutionary trends of satDNAs suggest that each round of proposed polyploidization in the evolutionary history is concomitant with the addition of a new set of satDNAs in the satellitome of any particular Meloidogyne species. Successive incorporation of new sets of satDNAs in the genome along the process of polyploidization supports multiple hybridization events as the main factor responsible for the formation of these species. Through comparative analyses of 83 distinct satDNAs, we found a CENP-B box-like sequence motif conserved among 11 divergent satDNAs (similarity ranges from 36 to 74%). We also found satDNAs that harbor a splice leader (SL) sequence which, in spite of overall divergence, shows conservation across species in two putative functional regions, the 25-nt SL exon and the Sm binding site. Intra- and interspecific comparative expression analyses of the complete satDNA set in the analyzed Meloidogyne species revealed transcription profiles including a subset of 14 actively transcribed satDNAs. Among those, 9 show active transcription in every species where they are found in the genome and throughout developmental stages.
Conclusions
Our results demonstrate the feasibility and power of comparative analysis of the non-coding repetitive genome for elucidation of the origin of species with a complex history. Although satDNAs generally evolve extremely quickly, the comparative analyses of 83 satDNAs detected in the analyzed Meloidogyne species revealed conserved sequence features in some satDNAs suggesting sequence evolution under selective pressure. SatDNAs that are actively transcribed in related genomes and throughout nematode development support the view that their expression is not stochastic.
Collapse
|
23
|
Brand CL, Levine MT. Cross-species incompatibility between a DNA satellite and the Drosophila Spartan homolog poisons germline genome integrity. Curr Biol 2022; 32:2962-2971.e4. [PMID: 35643081 PMCID: PMC9283324 DOI: 10.1016/j.cub.2022.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 12/19/2022]
Abstract
Satellite DNA spans megabases of eukaryotic sequence and evolves rapidly.1-6 Paradoxically, satellite-rich genomic regions mediate strictly conserved, essential processes such as chromosome segregation and nuclear structure.7-10 A leading resolution to this paradox posits that satellite DNA and satellite-associated chromosomal proteins coevolve to preserve these essential functions.11 We experimentally test this model of intragenomic coevolution by conducting the first evolution-guided manipulation of both chromosomal protein and DNA satellite. The 359bp satellite spans an 11 Mb array in Drosophila melanogaster that is absent from its sister species, Drosophila simulans.12-14 This species-specific DNA satellite colocalizes with the adaptively evolving, ovary-enriched protein, maternal haploid (MH), the Drosophila homolog of Spartan.15 To determine if MH and 359bp coevolve, we swapped the D. simulans version of MH ("MH[sim]") into D. melanogaster. MH[sim] triggers ovarian cell death, reduced ovary size, and loss of mature eggs. Surprisingly, the D. melanogaster mh-null mutant has no such ovary phenotypes,15 suggesting that MH[sim] is toxic in a D. melanogaster background. Using both cell biology and genetics, we discovered that MH[sim] poisons oogenesis through a DNA-damage pathway. Remarkably, deleting the D. melanogaster-specific 359bp satellite array completely restores mh[sim] germline genome integrity and fertility, consistent with a history of coevolution between these two fast-evolving loci. Germline genome integrity and fertility are also restored by overexpressing topoisomerase II (Top2), suggesting that MH[sim] interferes with Top2-mediated processing of 359bp. The observed 359bp-MH[sim] cross-species incompatibility supports a model under which seemingly inert repetitive DNA and essential chromosomal proteins must coevolve to preserve germline genome integrity.
Collapse
Affiliation(s)
- Cara L Brand
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mia T Levine
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Kotov AA, Bazylev SS, Adashev VE, Shatskikh AS, Olenina LV. Drosophila as a Model System for Studying of the Evolution and Functional Specialization of the Y Chromosome. Int J Mol Sci 2022; 23:4184. [PMID: 35457001 PMCID: PMC9031259 DOI: 10.3390/ijms23084184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
The Y chromosome is one of the sex chromosomes found in males of animals of different taxa, including insects and mammals. Among all chromosomes, the Y chromosome is characterized by a unique chromatin landscape undergoing dynamic evolutionary change. Being entirely heterochromatic, the Y chromosome as a rule preserves few functional genes, but is enriched in tandem repeats and transposons. Due to difficulties in the assembly of the highly repetitive Y chromosome sequence, deep analyses of Y chromosome evolution, structure, and functions are limited to a few species, one of them being Drosophila melanogaster. Despite Y chromosomes exhibiting high structural divergence between even closely related species, Y-linked genes have evolved convergently and are mainly associated with spermatogenesis-related activities. This indicates that male-specific selection is a dominant force shaping evolution of Y chromosomes across species. This review presents our analysis of current knowledge concerning Y chromosome functions, focusing on recent findings in Drosophila. Here we dissect the experimental and bioinformatics data about the Y chromosome accumulated to date in Drosophila species, providing comparative analysis with mammals, and discussing the relevance of our analysis to a wide range of eukaryotic organisms, including humans.
Collapse
Affiliation(s)
| | | | | | | | - Ludmila V. Olenina
- Institute of Molecular Genetics of National Research Center «Kurchatov Institute», 123182 Moscow, Russia; (A.A.K.); (S.S.B.); (V.E.A.); (A.S.S.)
| |
Collapse
|
25
|
A microscopy investigation of the complex problem of infertility of insect hybrids. Studies on the reproductive systems, eggshells, and karyotypes of the representatives of the genus Platymeris (Heteroptera, Reduviidae) and their hybrids. Micron 2022; 158:103248. [DOI: 10.1016/j.micron.2022.103248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/08/2023]
|
26
|
Brändle F, Frühbauer B, Jagannathan M. Principles and functions of pericentromeric satellite DNA clustering into chromocenters. Semin Cell Dev Biol 2022; 128:26-39. [PMID: 35144860 DOI: 10.1016/j.semcdb.2022.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 12/29/2022]
Abstract
Simple non-coding tandem repeats known as satellite DNA are observed widely across eukaryotes. These repeats occupy vast regions at the centromere and pericentromere of chromosomes but their contribution to cellular function has remained incompletely understood. Here, we review the literature on pericentromeric satellite DNA and discuss its organization and functions across eukaryotic species. We specifically focus on chromocenters, DNA-dense nuclear foci that contain clustered pericentromeric satellite DNA repeats from multiple chromosomes. We first discuss chromocenter formation and the roles that epigenetic modifications, satellite DNA transcripts and sequence-specific satellite DNA-binding play in this process. We then review the newly emerging functions of chromocenters in genome encapsulation, the maintenance of cell fate and speciation. We specifically highlight how the rapid divergence of satellite DNA repeats impacts reproductive isolation between closely related species. Together, we underline the importance of this so-called 'junk DNA' in fundamental biological processes.
Collapse
Affiliation(s)
- Franziska Brändle
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, Zürich CH-8093, Switzerland
| | - Benjamin Frühbauer
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, Zürich CH-8093, Switzerland
| | - Madhav Jagannathan
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, Zürich CH-8093, Switzerland.
| |
Collapse
|
27
|
Chang CH, Gregory LE, Gordon KE, Meiklejohn CD, Larracuente AM. Unique structure and positive selection promote the rapid divergence of Drosophila Y chromosomes. eLife 2022; 11:e75795. [PMID: 34989337 PMCID: PMC8794474 DOI: 10.7554/elife.75795] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/18/2021] [Indexed: 02/06/2023] Open
Abstract
Y chromosomes across diverse species convergently evolve a gene-poor, heterochromatic organization enriched for duplicated genes, LTR retrotransposons, and satellite DNA. Sexual antagonism and a loss of recombination play major roles in the degeneration of young Y chromosomes. However, the processes shaping the evolution of mature, already degenerated Y chromosomes are less well-understood. Because Y chromosomes evolve rapidly, comparisons between closely related species are particularly useful. We generated de novo long-read assemblies complemented with cytological validation to reveal Y chromosome organization in three closely related species of the Drosophila simulans complex, which diverged only 250,000 years ago and share >98% sequence identity. We find these Y chromosomes are divergent in their organization and repetitive DNA composition and discover new Y-linked gene families whose evolution is driven by both positive selection and gene conversion. These Y chromosomes are also enriched for large deletions, suggesting that the repair of double-strand breaks on Y chromosomes may be biased toward microhomology-mediated end joining over canonical non-homologous end-joining. We propose that this repair mechanism contributes to the convergent evolution of Y chromosome organization across organisms.
Collapse
Affiliation(s)
- Ching-Ho Chang
- Department of Biology, University of RochesterRochesterUnited States
| | - Lauren E Gregory
- Department of Biology, University of RochesterRochesterUnited States
| | - Kathleen E Gordon
- School of Biological Sciences, University of Nebraska-LincolnLincolnUnited States
| | - Colin D Meiklejohn
- School of Biological Sciences, University of Nebraska-LincolnLincolnUnited States
| | | |
Collapse
|
28
|
Go AC, Civetta A. Divergence of X-linked trans regulatory proteins and the misexpression of gene targets in sterile Drosophila pseudoobscura hybrids. BMC Genomics 2022; 23:30. [PMID: 34991488 PMCID: PMC8740060 DOI: 10.1186/s12864-021-08267-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The genetic basis of hybrid incompatibilities is characterized by pervasive cases of gene interactions. Sex chromosomes play a major role in speciation and X-linked hybrid male sterility (HMS) genes have been identified. Interestingly, some of these genes code for proteins with DNA binding domains, suggesting a capability to act as trans-regulatory elements and disturb the expression of a large number of gene targets. To understand how interactions between trans- and cis-regulatory elements contribute to speciation, we aimed to map putative X-linked trans-regulatory elements and to identify gene targets with disrupted gene expression in sterile hybrids between the subspecies Drosophila pseudoobscura pseudoobscura and D. p. bogotana. RESULTS We find six putative trans-regulatory proteins within previously mapped X chromosome HMS loci with sequence changes that differentiate the two subspecies. Among them, the previously characterized HMS gene Overdrive (Ovd) had the largest number of amino acid changes between subspecies, with some substitutions localized within the protein's DNA binding domain. Using an introgression approach, we detected transcriptional responses associated with a sterility/fertility Ovd allele swap. We found a network of 52 targets of Ovd and identified cis-regulatory effects among target genes with disrupted expression in sterile hybrids. However, a combined analysis of polymorphism and divergence in non-coding sequences immediately upstream of target genes found no evidence of changes in candidate regulatory proximal cis-elements. Finally, peptidases were over-represented among target genes. CONCLUSIONS We provide evidence of divergence between subspecies within the DNA binding domain of the HMS protein Ovd and identify trans effects on the expression of 52 gene targets. Our results identify a network of trans-cis interactions with possible effects on HMS. This network provides molecular evidence of gene × gene incompatibilities as contributors to hybrid dysfunction.
Collapse
Affiliation(s)
- Alwyn C Go
- Department of Biology, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, R3B 2E9, Canada
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, R3B 2E9, Canada.
| |
Collapse
|
29
|
Bredemeyer KR, Seabury CM, Stickney MJ, McCarrey JR, vonHoldt BM, Murphy WJ. Rapid Macrosatellite Evolution Promotes X-Linked Hybrid Male Sterility in a Feline Interspecies Cross. Mol Biol Evol 2021; 38:5588-5609. [PMID: 34519828 PMCID: PMC8662614 DOI: 10.1093/molbev/msab274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The sterility or inviability of hybrid offspring produced from an interspecific mating result from incompatibilities between parental genotypes that are thought to result from divergence of loci involved in epistatic interactions. However, attributes contributing to the rapid evolution of these regions also complicates their assembly, thus discovery of candidate hybrid sterility loci is difficult and has been restricted to a small number of model systems. Here we reported rapid interspecific divergence at the DXZ4 macrosatellite locus in an interspecific cross between two closely related mammalian species: the domestic cat (Felis silvestris catus) and the Jungle cat (Felis chaus). DXZ4 is an interesting candidate due to its structural complexity, copy number variability, and described role in the critical yet complex biological process of X-chromosome inactivation. However, the full structure of DXZ4 was absent or incomplete in nearly every available mammalian genome assembly given its repetitive complexity. We compared highly continuous genomes for three cat species, each containing a complete DXZ4 locus, and discovered that the felid DXZ4 locus differs substantially from the human ortholog, and that it varies in copy number between cat species. Additionally, we reported expression, methylation, and structural conformation profiles of DXZ4 and the X chromosome during stages of spermatogenesis that have been previously associated with hybrid male sterility. Collectively, these findings suggest a new role for DXZ4 in male meiosis and a mechanism for feline interspecific incompatibility through rapid satellite divergence.
Collapse
Affiliation(s)
- Kevin R Bredemeyer
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| | | | - Mark J Stickney
- Veterinary Medical Teaching Hospital, Texas A&M University, College Station, TX, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
30
|
Abstract
Repeat-enriched genomic regions evolve rapidly and yet support strictly conserved functions like faithful chromosome transmission and the preservation of genome integrity. The leading resolution to this paradox is that DNA repeat-packaging proteins evolve adaptively to mitigate deleterious changes in DNA repeat copy number, sequence, and organization. Exciting new research has tested this model of coevolution by engineering evolutionary mismatches between adaptively evolving chromatin proteins of one species and the DNA repeats of a close relative. Here, we review these innovative evolution-guided functional analyses. The studies demonstrate that vital, chromatin-mediated cellular processes, including transposon suppression, faithful chromosome transmission, and chromosome retention depend on species-specific versions of chromatin proteins that package species-specific DNA repeats. In many cases, the ever-evolving repeats are selfish genetic elements, raising the possibility that chromatin is a battleground of intragenomic conflict.
Collapse
Affiliation(s)
- Cara L Brand
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Mia T Levine
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
31
|
Rapid Divergence of Key Spermatogenesis Genes in nasuta-Subgroup of Drosophila. J Mol Evol 2021; 90:2-16. [PMID: 34807291 DOI: 10.1007/s00239-021-10037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
The crosses between closely related Drosophila species usually produce sterile hybrid males with spermatogenesis disrupted at post-meiotic phase, especially in sperm individualization stage than the pre-meiotic stage. This is possibly due to the rapid interspecies divergence of male sex and reproduction-related genes. Here we annotated 11 key spermatogenesis genes in 35 strains of species belonging to nasuta-subgroup of Drosophila, where many interspecies crosses produce sterile males. We characterized the divergence and polymorphism in the protein coding regions by employing gene-wide, codon-wide, and lineage-specific selection analysis to test the mode and strength of selection acting on these genes. Our analysis showed signature of positive selection at bag of marbles (bam) and benign gonial cell neoplasma (bgcn) despite the selection constrains and the absence of endosymbiont infection which could potentially drive rapid divergence due to an arms race while roughex (rux) showed lineage-specific rapid divergence in frontal sheen complex of nasuta-subgroup. cookie monster (comr) showed rapid divergence consistent with the possibility of meiotic arrest observed in sterile hybrids of Drosophila species. Rapid divergence observed at don juan (dj) and Mst98Ca-like was consistent with fused sperm-tail abnormality observed in the hybrids of Drosophila nasuta and Drosophila albomicans. These findings highlight the potential role of rapid nucleotide divergence in bringing about hybrid incompatibility in the form of male sterility; however, additional genetic manipulation studies can widen our understanding of hybrid incompatibilities. Furthermore, our study emphasizes the importance of young species belonging to nasuta-subgroup of Drosophila in studying post-zygotic reproductive isolation mechanisms.
Collapse
|
32
|
Rosser N, Edelman NB, Queste LM, Nelson M, Seixas F, Dasmahapatra KK, Mallet J. Complex basis of hybrid female sterility and Haldane's rule in Heliconius butterflies: Z-linkage and epistasis. Mol Ecol 2021; 31:959-977. [PMID: 34779079 DOI: 10.1111/mec.16272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022]
Abstract
Hybrids between species are often sterile or inviable. Hybrid unfitness usually evolves first in the heterogametic sex-a pattern known as Haldane's rule. The genetics of Haldane's rule have been extensively studied in species where the male is the heterogametic (XX/XY) sex, but its basis in taxa where the female is heterogametic (ZW/ZZ), such as Lepidoptera and birds, is largely unknown. Here, we analyse a new case of female hybrid sterility between geographic subspecies of Heliconius pardalinus. The two subspecies mate freely in captivity, but female F1 hybrids in both directions of cross are sterile. Sterility is due to arrested development of oocytes after they become differentiated from nurse cells, but before yolk deposition. We backcrossed fertile male F1 hybrids to parental females and mapped quantitative trait loci (QTLs) for female sterility. We also identified genes differentially expressed in the ovary as a function of oocyte development. The Z chromosome has a major effect, similar to the 'large X effect' in Drosophila, with strong epistatic interactions between loci at either end of the Z chromosome, and between the Z chromosome and autosomal loci on chromosomes 8 and 20. By intersecting the list of genes within these QTLs with those differentially expressed in sterile and fertile hybrids, we identified three candidate genes with relevant phenotypes. This study is the first to characterize hybrid sterility using genome mapping in the Lepidoptera and shows that it is produced by multiple complex epistatic interactions often involving the sex chromosome, as predicted by the dominance theory of Haldane's rule.
Collapse
Affiliation(s)
- Neil Rosser
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Department of Biology, University of York, York, UK
| | - Nathaniel B Edelman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Yale Institute for Biospheric Studies, Yale University, New Haven, Connecticut, USA.,Yale School for the Environment, Yale University, New Haven, Connecticut, USA
| | | | | | - Fernando Seixas
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
33
|
Herbette M, Wei X, Chang CH, Larracuente AM, Loppin B, Dubruille R. Distinct spermiogenic phenotypes underlie sperm elimination in the Segregation Distorter meiotic drive system. PLoS Genet 2021; 17:e1009662. [PMID: 34228705 PMCID: PMC8284685 DOI: 10.1371/journal.pgen.1009662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/16/2021] [Accepted: 06/10/2021] [Indexed: 12/28/2022] Open
Abstract
Segregation Distorter (SD) is a male meiotic drive system in Drosophila melanogaster. Males heterozygous for a selfish SD chromosome rarely transmit the homologous SD+ chromosome. It is well established that distortion results from an interaction between Sd, the primary distorting locus on the SD chromosome and its target, a satellite DNA called Rsp, on the SD+ chromosome. However, the molecular and cellular mechanisms leading to post-meiotic SD+ sperm elimination remain unclear. Here we show that SD/SD+ males of different genotypes but with similarly strong degrees of distortion have distinct spermiogenic phenotypes. In some genotypes, SD+ spermatids fail to fully incorporate protamines after the removal of histones, and degenerate during the individualization stage of spermiogenesis. In contrast, in other SD/SD+ genotypes, protamine incorporation appears less disturbed, yet spermatid nuclei are abnormally compacted, and mature sperm nuclei are eventually released in the seminal vesicle. Our analyses of different SD+ chromosomes suggest that the severity of the spermiogenic defects associates with the copy number of the Rsp satellite. We propose that when Rsp copy number is very high (> 2000), spermatid nuclear compaction defects reach a threshold that triggers a checkpoint controlling sperm chromatin quality to eliminate abnormal spermatids during individualization.
Collapse
Affiliation(s)
- Marion Herbette
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR 5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Xiaolu Wei
- University of Rochester Medical Center, Department of Biomedical Genetics, Rochester, New York, United States of America
| | - Ching-Ho Chang
- University of Rochester Department of Biology, Rochester, New York, United States of America
| | - Amanda M. Larracuente
- University of Rochester Department of Biology, Rochester, New York, United States of America
| | - Benjamin Loppin
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR 5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Raphaëlle Dubruille
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR 5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| |
Collapse
|
34
|
Presgraves DC, Meiklejohn CD. Hybrid Sterility, Genetic Conflict and Complex Speciation: Lessons From the Drosophila simulans Clade Species. Front Genet 2021; 12:669045. [PMID: 34249091 PMCID: PMC8261240 DOI: 10.3389/fgene.2021.669045] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022] Open
Abstract
The three fruitfly species of the Drosophila simulans clade- D. simulans, D. mauritiana, and D. sechellia- have served as important models in speciation genetics for over 40 years. These species are reproductively isolated by geography, ecology, sexual signals, postmating-prezygotic interactions, and postzygotic genetic incompatibilities. All pairwise crosses between these species conform to Haldane's rule, producing fertile F1 hybrid females and sterile F1 hybrid males. The close phylogenetic proximity of the D. simulans clade species to the model organism, D. melanogaster, has empowered genetic analyses of their species differences, including reproductive incompatibilities. But perhaps no phenotype has been subject to more continuous and intensive genetic scrutiny than hybrid male sterility. Here we review the history, progress, and current state of our understanding of hybrid male sterility among the D. simulans clade species. Our aim is to integrate the available information from experimental and population genetics analyses bearing on the causes and consequences of hybrid male sterility. We highlight numerous conclusions that have emerged as well as issues that remain unresolved. We focus on the special role of sex chromosomes, the fine-scale genetic architecture of hybrid male sterility, and the history of gene flow between species. The biggest surprises to emerge from this work are that (i) genetic conflicts may be an important general force in the evolution of hybrid incompatibility, (ii) hybrid male sterility is polygenic with contributions of complex epistasis, and (iii) speciation, even among these geographically allopatric taxa, has involved the interplay of gene flow, negative selection, and positive selection. These three conclusions are marked departures from the classical views of speciation that emerged from the modern evolutionary synthesis.
Collapse
Affiliation(s)
- Daven C. Presgraves
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Colin D. Meiklejohn
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
35
|
Köhler C, Dziasek K, Del Toro-De León G. Postzygotic reproductive isolation established in the endosperm: mechanisms, drivers and relevance. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200118. [PMID: 33866810 DOI: 10.1098/rstb.2020.0118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The endosperm is a developmental innovation of angiosperms that supports embryo growth and germination. Aside from this essential reproductive function, the endosperm fuels angiosperm evolution by rapidly establishing reproductive barriers between incipient species. Specifically, the endosperm prevents hybridization of newly formed polyploids with their non-polyploid progenitors, a phenomenon termed the triploid block. Furthermore, recently diverged diploid species are frequently reproductively isolated by endosperm-based hybridization barriers. Current genetic approaches have revealed a prominent role for epigenetic processes establishing these barriers. In particular, imprinted genes, which are expressed in a parent-of-origin-specific manner, underpin the interploidy barrier in the model species Arabidopsis. We will discuss the mechanisms establishing hybridization barriers in the endosperm, the driving forces for these barriers and their impact for angiosperm evolution. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Claudia Köhler
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Katarzyna Dziasek
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Gerardo Del Toro-De León
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
36
|
Christmas MJ, Jones JC, Olsson A, Wallerman O, Bunikis I, Kierczak M, Peona V, Whitley KM, Larva T, Suh A, Miller-Struttmann NE, Geib JC, Webster MT. Genetic Barriers to Historical Gene Flow between Cryptic Species of Alpine Bumblebees Revealed by Comparative Population Genomics. Mol Biol Evol 2021; 38:3126-3143. [PMID: 33823537 PMCID: PMC8321533 DOI: 10.1093/molbev/msab086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Evidence is accumulating that gene flow commonly occurs between recently diverged species, despite the existence of barriers to gene flow in their genomes. However, we still know little about what regions of the genome become barriers to gene flow and how such barriers form. Here, we compare genetic differentiation across the genomes of bumblebee species living in sympatry and allopatry to reveal the potential impact of gene flow during species divergence and uncover genetic barrier loci. We first compared the genomes of the alpine bumblebee Bombus sylvicola and a previously unidentified sister species living in sympatry in the Rocky Mountains, revealing prominent islands of elevated genetic divergence in the genome that colocalize with centromeres and regions of low recombination. This same pattern is observed between the genomes of another pair of closely related species living in allopatry (B. bifarius and B. vancouverensis). Strikingly however, the genomic islands exhibit significantly elevated absolute divergence (dXY) in the sympatric, but not the allopatric, comparison indicating that they contain loci that have acted as barriers to historical gene flow in sympatry. Our results suggest that intrinsic barriers to gene flow between species may often accumulate in regions of low recombination and near centromeres through processes such as genetic hitchhiking, and that divergence in these regions is accentuated in the presence of gene flow.
Collapse
Affiliation(s)
- Matthew J Christmas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Julia C Jones
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Anna Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ignas Bunikis
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marcin Kierczak
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Valentina Peona
- Department of Organismal Biology-Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Kaitlyn M Whitley
- Department of Biology, Appalachian State University, Boone, NC, USA.,U.S. Department of Agriculture, Agriculture Research Service, Charleston, SC, USA
| | - Tuuli Larva
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Alexander Suh
- Department of Organismal Biology-Systematic Biology, Uppsala University, Uppsala, Sweden.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | | | - Jennifer C Geib
- Department of Biology, Appalachian State University, Boone, NC, USA
| | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
37
|
Chakraborty M, Chang CH, Khost DE, Vedanayagam J, Adrion JR, Liao Y, Montooth KL, Meiklejohn CD, Larracuente AM, Emerson JJ. Evolution of genome structure in the Drosophila simulans species complex. Genome Res 2021; 31:380-396. [PMID: 33563718 PMCID: PMC7919458 DOI: 10.1101/gr.263442.120] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022]
Abstract
The rapid evolution of repetitive DNA sequences, including satellite DNA, tandem duplications, and transposable elements, underlies phenotypic evolution and contributes to hybrid incompatibilities between species. However, repetitive genomic regions are fragmented and misassembled in most contemporary genome assemblies. We generated highly contiguous de novo reference genomes for the Drosophila simulans species complex (D. simulans, D. mauritiana, and D. sechellia), which speciated ∼250,000 yr ago. Our assemblies are comparable in contiguity and accuracy to the current D. melanogaster genome, allowing us to directly compare repetitive sequences between these four species. We find that at least 15% of the D. simulans complex species genomes fail to align uniquely to D. melanogaster owing to structural divergence-twice the number of single-nucleotide substitutions. We also find rapid turnover of satellite DNA and extensive structural divergence in heterochromatic regions, whereas the euchromatic gene content is mostly conserved. Despite the overall preservation of gene synteny, euchromatin in each species has been shaped by clade- and species-specific inversions, transposable elements, expansions and contractions of satellite and tRNA tandem arrays, and gene duplications. We also find rapid divergence among Y-linked genes, including copy number variation and recent gene duplications from autosomes. Our assemblies provide a valuable resource for studying genome evolution and its consequences for phenotypic evolution in these genetic model species.
Collapse
Affiliation(s)
- Mahul Chakraborty
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
| | - Ching-Ho Chang
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | - Danielle E Khost
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
- FAS Informatics and Scientific Applications, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jeffrey Vedanayagam
- Department of Developmental Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Jeffrey R Adrion
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| | - Yi Liao
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
| | - Kristi L Montooth
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68502, USA
| | - Colin D Meiklejohn
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68502, USA
| | | | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
| |
Collapse
|
38
|
Kulikov AM, Sorokina SY, Melnikov AI, Gornostaev NG, Seleznev DG, Lazebny OE. The effects of the sex chromosomes on the inheritance of species-specific traits of the copulatory organ shape in Drosophila virilis and Drosophila lummei. PLoS One 2020; 15:e0244339. [PMID: 33373382 PMCID: PMC7771703 DOI: 10.1371/journal.pone.0244339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022] Open
Abstract
The shape of the male genitalia in many taxa is the most rapidly evolving morphological structure, often driving reproductive isolation, and is therefore widely used in systematics as a key character to distinguish between sibling species. However, only a few studies have used the genital arch of the male copulatory organ as a model to study the genetic basis of species-specific differences in the Drosophila copulatory system. Moreover, almost nothing is known about the effects of the sex chromosomes on the shape of the male mating organ. In our study, we used a set of crosses between D. virilis and D. lummei and applied the methods of quantitative genetics to assess the variability of the shape of the male copulatory organ and the effects of the sex chromosomes and autosomes on its variance. Our results showed that the male genital shape depends on the species composition of the sex chromosomes and autosomes. Epistatic interactions of the sex chromosomes with autosomes and the species origin of the Y-chromosome in a male in interspecific crosses also influenced the expression of species-specific traits in the shape of the male copulatory system. Overall, the effects of sex chromosomes were comparable to the effects of autosomes despite the great differences in gene numbers between them. It may be reasonably considered that sexual selection for specific genes associated with the shape of the male mating organ prevents the demasculinization of the X chromosome.
Collapse
Affiliation(s)
- Alex M. Kulikov
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Svetlana Yu. Sorokina
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Anton I. Melnikov
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Nick G. Gornostaev
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitriy G. Seleznev
- Department of Ecology of Aquatic Invertebrates, Papanin Institute for Biology of Inland Waters of the Russian Academy of Sciences, Borok village, Yaroslavl Region, Russia
| | - Oleg E. Lazebny
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| |
Collapse
|
39
|
Murphy WJ, Foley NM, Bredemeyer KR, Gatesy J, Springer MS. Phylogenomics and the Genetic Architecture of the Placental Mammal Radiation. Annu Rev Anim Biosci 2020; 9:29-53. [PMID: 33228377 DOI: 10.1146/annurev-animal-061220-023149] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genomes of placental mammals are being sequenced at an unprecedented rate. Alignments of hundreds, and one day thousands, of genomes spanning the rich living and extinct diversity of species offer unparalleled power to resolve phylogenetic controversies, identify genomic innovations of adaptation, and dissect the genetic architecture of reproductive isolation. We highlight outstanding questions about the earliest phases of placental mammal diversification and the promise of newer methods, as well as remaining challenges, toward using whole genome data to resolve placental mammal phylogeny. The next phase of mammalian comparative genomics will see the completion and application of finished-quality, gapless genome assemblies from many ordinal lineages and closely related species. Interspecific comparisons between the most hypervariable genomic loci will likely reveal large, but heretofore mostly underappreciated, effects on population divergence, morphological innovation, and the origin of new species.
Collapse
Affiliation(s)
- William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA;
| | - Nicole M Foley
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA;
| | - Kevin R Bredemeyer
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA;
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Mark S Springer
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, California 92521, USA
| |
Collapse
|
40
|
Liu J, Ali M, Zhou Q. Establishment and evolution of heterochromatin. Ann N Y Acad Sci 2020; 1476:59-77. [PMID: 32017156 PMCID: PMC7586837 DOI: 10.1111/nyas.14303] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/31/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Abstract
The eukaryotic genome is packaged into transcriptionally active euchromatin and silent heterochromatin, with most studies focused on the former encompassing the majority of protein-coding genes. The recent development of various sequencing techniques has refined this classic dichromatic partition and has better illuminated the composition, establishment, and evolution of this genomic and epigenomic "dark matter" in the context of topologically associated domains and phase-separated droplets. Heterochromatin includes genomic regions that can be densely stained by chemical dyes, which have been shown to be enriched for repetitive elements and epigenetic marks, including H3K9me2/3 and H3K27me3. Heterochromatin is usually replicated late, concentrated at the nuclear periphery or around nucleoli, and usually lacks highly expressed genes; and now it is considered to be as neither genetically inert nor developmentally static. Heterochromatin guards genome integrity against transposon activities and exerts important regulatory functions by targeting beyond its contained genes. Both its nucleotide sequences and regulatory proteins exhibit rapid coevolution between species. In addition, there are dynamic transitions between euchromatin and heterochromatin during developmental and evolutionary processes. We summarize here the ever-changing characteristics of heterochromatin and propose models and principles for the evolutionary transitions of heterochromatin that have been mainly learned from studies of Drosophila and yeast. Finally, we highlight the role of sex chromosomes in studying heterochromatin evolution.
Collapse
Affiliation(s)
- Jing Liu
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Department of Molecular Evolution and DevelopmentUniversity of ViennaViennaAustria
| | - Mujahid Ali
- Department of Molecular Evolution and DevelopmentUniversity of ViennaViennaAustria
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Department of Molecular Evolution and DevelopmentUniversity of ViennaViennaAustria
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
41
|
Abstract
It has long been acknowledged that changes in the regulation of gene expression may account for major organismal differences. However, we still do not fully understand how changes in gene expression evolve and how do such changes influence organisms' differences. We are even less aware of the impact such changes might have in restricting gene flow between species. Here, we focus on studies of gene expression and speciation in the Drosophila model. We review studies that have identified gene interactions in post-mating reproductive isolation and speciation, particularly those that modulate male gene expression. We also address studies that have experimentally manipulated changes in gene expression to test their effect in post-mating reproductive isolation. We highlight the need for a more in-depth analysis of the role of selection causing disrupted gene expression of such candidate genes in sterile/inviable hybrids. Moreover, we discuss the relevance to incorporate more routinely assays that simultaneously evaluate the potential effects of environmental factors and genetic background in modulating plastic responses in male genes and their potential role in speciation.
Collapse
Affiliation(s)
- Bahar Patlar
- Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada.,Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| |
Collapse
|
42
|
Morimoto K, Numata K, Daitoku Y, Hamada Y, Kobayashi K, Kato K, Suzuki H, Ayabe S, Yoshiki A, Takahashi S, Murata K, Mizuno S, Sugiyama F. Reverse genetics reveals single gene of every candidate on Hybrid sterility, X Chromosome QTL 2 (Hstx2) are dispensable for spermatogenesis. Sci Rep 2020; 10:9060. [PMID: 32493902 PMCID: PMC7270182 DOI: 10.1038/s41598-020-65986-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/11/2020] [Indexed: 12/03/2022] Open
Abstract
F1 hybrid progenies between related subspecies often show hybrid sterility (HS) or inviability. HS is caused by failure of meiotic chromosome synapsis and sex body formation in house mouse. Previous studies identified two HS critical genomic regions named Hstx2 on Chr X and Hst1 on Chr 17 by murine forward genetic approaches. HS gene on Hst1 was reported to be Prdm9. Intersubspecific polymorphisms of Prdm9 induce HS in hybrids, and Prdm9 null mutation leads to sterility in the inbred strain. However, HS gene on Hstx2 remains unknown. Here, using knock-out studies, we showed that HS candidate genes on Hstx2 are not individually essential for spermatogenesis in B6 strain. We examined 12 genes on Hstx2: Ctag2, 4930447F04Rik, Mir743, Mir465d, Mir465c-2, Mir465b-1, Mir465c-1, Mir465, Gm1140, Gm14692, 4933436I01Rik, and Gm6812. These genes were expressed in adult testes, and showed intersubspecific polymorphisms on expressed regions. This first reverse genetic approach to identify HS gene on Hstx2 suggested that the loss of function of any one HS candidate gene does not cause complete sterility, unlike Prdm9. Thus, the mechanism(s) of HS by the HS gene on Hstx2 might be different from that of Prdm9.
Collapse
Affiliation(s)
- Kento Morimoto
- Laboratory Animal Science, Doctoral Program in Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Koki Numata
- Laboratory Animal Science, Bachelor of Medical Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Department of Clinical Laboratories, University of Tsukuba Hospital, 2-1-1 Amakubo Tsukuba, Ibaraki, 305-8576, Japan
| | - Yoko Daitoku
- Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuko Hamada
- Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Keiko Kobayashi
- Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Developmental Engineering & Embryology Group Genetically Engineered Models and Services Charles River Laboratories Japan, Inc., 955 Kamibayashi, Ishioka, Ibaraki, 315-0138, Japan
| | - Kanako Kato
- Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hayate Suzuki
- Laboratory Animal Science, Doctoral Program in Biomedical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shinya Ayabe
- Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
43
|
Kochanova NY, Schauer T, Mathias GP, Lukacs A, Schmidt A, Flatley A, Schepers A, Thomae AW, Imhof A. A multi-layered structure of the interphase chromocenter revealed by proximity-based biotinylation. Nucleic Acids Res 2020; 48:4161-4178. [PMID: 32182352 PMCID: PMC7192626 DOI: 10.1093/nar/gkaa145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 12/26/2022] Open
Abstract
During interphase centromeres often coalesce into a small number of chromocenters, which can be visualized as distinct, DAPI dense nuclear domains. Intact chromocenters play a major role in maintaining genome stability as they stabilize the transcriptionally silent state of repetitive DNA while ensuring centromere function. Despite its biological importance, relatively little is known about the molecular composition of the chromocenter or the processes that mediate chromocenter formation and maintenance. To provide a deeper molecular insight into the composition of the chromocenter and to demonstrate the usefulness of proximity-based biotinylation as a tool to investigate those questions, we performed super resolution microscopy and proximity-based biotinylation experiments of three distinct proteins associated with the chromocenter in Drosophila. Our work revealed an intricate internal architecture of the chromocenter suggesting a complex multilayered structure of this intranuclear domain.
Collapse
Affiliation(s)
- Natalia Y Kochanova
- Biomedical Center, Chromatin Proteomics Group, Department of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Tamas Schauer
- Biomedical Center, Bioinformatics Core Facility, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Grusha Primal Mathias
- Biomedical Center, Core Facility Bioimaging, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Andrea Lukacs
- Biomedical Center, Chromatin Proteomics Group, Department of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Andreas Schmidt
- Biomedical Center, Protein Analysis Unit, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Andrew Flatley
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility and Research Group Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Aloys Schepers
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility and Research Group Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Andreas W Thomae
- Biomedical Center, Core Facility Bioimaging, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Axel Imhof
- Biomedical Center, Chromatin Proteomics Group, Department of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
- Biomedical Center, Protein Analysis Unit, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
44
|
Mai D, Nalley MJ, Bachtrog D. Patterns of Genomic Differentiation in the Drosophila nasuta Species Complex. Mol Biol Evol 2020; 37:208-220. [PMID: 31556453 PMCID: PMC6984368 DOI: 10.1093/molbev/msz215] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Drosophila nasuta species complex contains over a dozen recently diverged species that are distributed widely across South-East Asia, and which shows varying degrees of pre- and postzygotic isolation. Here, we assemble a high-quality genome for D. albomicans using single-molecule sequencing and chromatin conformation capture, and draft genomes for 11 additional species and 67 individuals across the clade, to infer the species phylogeny and patterns of genetic diversity in this group. Our assembly recovers entire chromosomes, and we date the origin of this radiation ∼2 Ma. Despite low levels of overall differentiation, most species or subspecies show clear clustering into their designated taxonomic groups using population genetics and phylogenetic methods. Local evolutionary history is heterogeneous across the genome, and differs between the autosomes and the X chromosome for species in the sulfurigaster subgroup, likely due to autosomal introgression. Our study establishes the nasuta species complex as a promising model system to further characterize the evolution of pre- and postzygotic isolation in this clade.
Collapse
Affiliation(s)
- Dat Mai
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA
| | - Matthew J Nalley
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA
| |
Collapse
|
45
|
Cooper JC, Lukacs A, Reich S, Schauer T, Imhof A, Phadnis N. Altered Localization of Hybrid Incompatibility Proteins in Drosophila. Mol Biol Evol 2020; 36:1783-1792. [PMID: 31038678 PMCID: PMC6657725 DOI: 10.1093/molbev/msz105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Understanding the molecular basis of hybrid incompatibilities is a fundamental pursuit in evolutionary genetics. In crosses between Drosophila melanogaster females and Drosophila simulans males, an interaction between at least three genes is necessary for hybrid male lethality: Hmr mel, Lhr sim, and gfzf sim. Although HMR and LHR physically bind each other and function together in a single complex, the connection between gfzf and either of these proteins remains mysterious. Here, we show that GFZF localizes to many regions of the genome in both D. melanogaster and D. simulans, including at telomeric retrotransposon repeats. We find that GFZF localization at telomeres is significantly different between these two species, reflecting the rapid evolution of telomeric retrotransposon copy number composition between the two species. Next, we show that GFZF and HMR normally do not colocalize in D. melanogaster. In interspecies hybrids, however, HMR shows extensive mis-localization to GFZF sites, thus uncovering a new molecular interaction between these hybrid incompatibility factors. We find that spreading of HMR to GFZF sites requires gfzf sim but not Lhr sim, suggesting distinct roles for these factors in the hybrid incompatibility. Finally, we find that overexpression of HMR and LHR within species is sufficient to mis-localize HMR to GFZF binding sites, indicating that HMR has a natural low affinity for GFZF sites. Together, these studies provide the first insights into the different properties of gfzf between D. melanogaster and D. simulans, and uncover a molecular interaction between gfzf and Hmr in the form of altered protein localization.
Collapse
Affiliation(s)
| | - Andrea Lukacs
- Faculty of Medicine, Institute for Molecular Biology, Biomedical Center (BMC), LMU Munich, Germany
| | - Shelley Reich
- School of Biological Sciences, University of Utah, Salt Lake City, UT
| | - Tamas Schauer
- Faculty of Medicine, Institute for Molecular Biology, Biomedical Center (BMC), LMU Munich, Germany
| | - Axel Imhof
- Faculty of Medicine, Institute for Molecular Biology, Biomedical Center (BMC), LMU Munich, Germany.,Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität Müchen, Munich, Germany
| | - Nitin Phadnis
- School of Biological Sciences, University of Utah, Salt Lake City, UT
| |
Collapse
|
46
|
Li YC, Wang GW, Xu SR, Zhang XN, Yang QE. The expression of histone methyltransferases and distribution of selected histone methylations in testes of yak and cattle-yak hybrid. Theriogenology 2020; 144:164-173. [PMID: 31972460 DOI: 10.1016/j.theriogenology.2020.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 01/01/2020] [Accepted: 01/01/2020] [Indexed: 01/23/2023]
Abstract
Interspecies hybridization exists widely in nature and plays an important role in animal evolution and adaptation. It is commonly recognized that male offspring of interspecies hybrid are often sterile, which presents a crucial way of reproductive isolation. Currently, the mechanisms underlying interspecies hybrid male sterility are not well understood. Cattle-yak, progeny of yak (Bos grunniens) and cattle (Bos taurus) cross, is a unique animal model for investigating hybrid male sterility. Because histone modifications are vital for spermatogenesis, herein, we examined expressions of histone methyltransferases (HMTs) and distributions of histone methylations in the yak and cattle-yak testis. Histological examination of seminiferous tubules revealed that gonocytes and spermatocytes were established normally, however, spermatogenesis was arrested at the meiosis phase began at 10 months after birth in the hybrids. SUV420H1 was the only HMT examined showing a significant enrichment in cattle-yak testes at 3 months. Relative expressions of MLL5, SETDB1 and SUV420H1 were increased while SETDB2 and EZH2 were decreased in cattle-yak testes at 10 months. Relative concentrations of MLL5 and SUV420H1 were again increased while EHMT2 and PRDM9 expressions were decreased at 24 months. Immunofluorescent detection of selected histone methylations in cross-sections of testicular tissues or meiotic chromosomes demonstrated that depletion of H3K4me3 and significant enrichment of H3K27me3 and H4K20me3 were observed in Sertoli cells of cattle-yak. Levels and localizations of H3K4me3, H3K9me1, H3K9me3 and H4K20me3 were strikingly different in meiotic chromosomes of cattle-yak spermatocytes. These results highlighted the potential roles of histone methylations in spermatogenic failure and hybrid male sterility.
Collapse
Affiliation(s)
- Yong-Chang Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo-Wen Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shang-Rong Xu
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Xining, Qinghai, 810008, China
| | - Xiao-Na Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810001, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
47
|
Khatri BS, Goldstein RA. Biophysics and population size constrains speciation in an evolutionary model of developmental system drift. PLoS Comput Biol 2019; 15:e1007177. [PMID: 31335870 PMCID: PMC6677325 DOI: 10.1371/journal.pcbi.1007177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 08/02/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
Developmental system drift is a likely mechanism for the origin of hybrid incompatibilities between closely related species. We examine here the detailed mechanistic basis of hybrid incompatibilities between two allopatric lineages, for a genotype-phenotype map of developmental system drift under stabilising selection, where an organismal phenotype is conserved, but the underlying molecular phenotypes and genotype can drift. This leads to number of emergent phenomenon not obtainable by modelling genotype or phenotype alone. Our results show that: 1) speciation is more rapid at smaller population sizes with a characteristic, Orr-like, power law, but at large population sizes slow, characterised by a sub-diffusive growth law; 2) the molecular phenotypes under weakest selection contribute to the earliest incompatibilities; and 3) pair-wise incompatibilities dominate over higher order, contrary to previous predictions that the latter should dominate. The population size effect we find is consistent with previous results on allopatric divergence of transcription factor-DNA binding, where smaller populations have common ancestors with a larger drift load because genetic drift favours phenotypes which have a larger number of genotypes (higher sequence entropy) over more fit phenotypes which have far fewer genotypes; this means less substitutions are required in either lineage before incompatibilities arise. Overall, our results indicate that biophysics and population size provide a much stronger constraint to speciation than suggested by previous models, and point to a general mechanistic principle of how incompatibilities arise the under stabilising selection for an organismal phenotype. The process of speciation is of fundamental importance to the field of evolution as it is intimately connected to understanding the immense bio-diversity of life. There is still relatively little understanding of the underlying genetic mechanisms that give rise to hybrid incompatibilities with results suggesting that divergence in transcription factor DNA binding and gene expression play an important role. A key finding from the field of evo-devo is that organismal phenotypes show developmental system drift, where species maintain the same phenotype, but diverge in developmental pathways; this is an important potential source of hybrid incompatibilities. Here, we explore a theoretical framework to understand how incompatibilities arise due to developmental system drift, using a tractable biophysically inspired genotype-phenotype for spatial gene expression. Modelling the evolution of phenotypes in this way has the key advantage that it mirrors how selection works in nature, i.e. that selection acts on phenotypes, but variation (mutation) arise at the level of genotypes. This results, as we demonstrate, in a number of non-trivial and testable predictions concerning speciation due to developmental system drift, which would not be obtainable by modelling evolution of genotypes or phenotypes alone.
Collapse
Affiliation(s)
| | - Richard A. Goldstein
- Division of Infection & Immunity, University College London, London, United Kingdom
| |
Collapse
|
48
|
Helleu Q, Levine MT. Recurrent Amplification of the Heterochromatin Protein 1 (HP1) Gene Family across Diptera. Mol Biol Evol 2019; 35:2375-2389. [PMID: 29924345 PMCID: PMC6188558 DOI: 10.1093/molbev/msy128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The heterochromatic genome compartment mediates strictly conserved cellular processes such as chromosome segregation, telomere integrity, and genome stability. Paradoxically, heterochromatic DNA sequence is wildly unconserved. Recent reports that many hybrid incompatibility genes encode heterochromatin proteins, together with the observation that interspecies hybrids suffer aberrant heterochromatin-dependent processes, suggest that heterochromatic DNA packaging requires species-specific innovations. Testing this model of coevolution between fast-evolving heterochromatic DNA and its packaging proteins begins with defining the latter. Here we describe many such candidates encoded by the Heterochromatin Protein 1 (HP1) gene family across Diptera, an insect Order that encompasses dramatic episodes of heterochromatic sequence turnover. Using BLAST, synteny analysis, and phylogenetic tree building across 64 Diptera genomes, we discovered a staggering 121 HP1 duplication events. In contrast, we observed virtually no gene duplication in gene families that share a common “chromodomain” with HP1s, including Polycomb and Su(var)3-9. The remarkably high number of Dipteran HP1 paralogs arises from distant clades undergoing convergent HP1 family amplifications. These independently derived, young HP1s span diverse ages, domain structures, and rates of molecular evolution, including episodes of positive selection. Moreover, independently derived HP1s exhibit convergent expression evolution. While ancient HP1 parent genes are transcribed ubiquitously, young HP1 paralogs are transcribed primarily in male germline tissue, a pattern typical of young genes. Pervasive gene youth, rapid evolution, and germline specialization implicate heterochromatin-encoded selfish elements driving recurrent HP1 gene family expansions. The 121 young genes offer valuable experimental traction for elucidating the germline processes shaped by Diptera’s many dramatic episodes of heterochromatin turnover.
Collapse
Affiliation(s)
- Quentin Helleu
- Department of Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Mia T Levine
- Department of Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
49
|
Testes Proteases Expression and Hybrid Male Sterility Between Subspecies of Drosophila pseudoobscura. G3-GENES GENOMES GENETICS 2019; 9:1065-1074. [PMID: 30723102 PMCID: PMC6469408 DOI: 10.1534/g3.119.300580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hybrid male sterility (HMS) is a form of postmating postzygotic isolation among closely related species that can act as an effective barrier to gene flow. The Dobzhansky-Muller model provides a framework to explain how gene interactions can cause HMS between species. Genomics highlights the preponderance of non-coding DNA targets that could be involved in gene interactions resulting in gene expression changes and the establishment of isolating barriers. However, we have limited knowledge of changes in gene expression associated with HMS, gene interacting partners linked to HMS, and whether substitutions in DNA regulatory regions (cis) causes misexpression (i.e., expression of genes beyond levels found in parental species) of HMS genes in sterile hybrids. A previous transcriptome survey in a pair of D. pseudoobscura species found male reproductive tract (MRT) proteases as the largest class of genes misregulated in sterile hybrids. Here we assay gene expression in backcross (BC) and introgression (IG) progeny, along with site of expression within the MRT, to identify misexpression of proteases that might directly contribute to HMS. We find limited evidence of an accumulation of cis-regulatory changes upstream of such candidate HMS genes. The expression of four genes was differentially modulated by alleles of the previously characterized HMS gene Ovd.
Collapse
|
50
|
Nishino R, Petri S, Handel MA, Kunieda T, Fujiwara Y. Hybrid Sterility with Meiotic Metaphase Arrest in Intersubspecific Mouse Crosses. J Hered 2019; 110:183-193. [PMID: 30452700 PMCID: PMC6399516 DOI: 10.1093/jhered/esy060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/15/2018] [Indexed: 11/13/2022] Open
Abstract
Although organisms belonging to different species and subspecies sometimes produce fertile offspring, a hallmark of the speciation process is reproductive isolation, characterized by hybrid sterility (HS) due to failure in gametogenesis. In mammals, HS is usually exhibited by males, the heterogametic sex. The phenotypic manifestations of HS are complex. The most frequently observed are abnormalities in both autosomal and sex chromosome interactions that are linked to meiotic prophase arrest or postmeiotic spermiogenesis aberrations and lead to defective or absent gametes. The aim of this study was to determine the HS phenotypes in intersubspecific F1 mice produced by matings between Mus musculus molossinus-derived strains and diverse Mus musculus domesticus-inbred laboratory mouse strains. Most of these crosses produced fertile F1 offspring. However, when female BALB/cJ (domesticus) mice were mated to male JF1/MsJ (molossinus) mice, the (BALBdomxJF1mol)F1 males were sterile, whereas the (JF1molxBALBdom)F1 males produced by the reciprocal crossings were fertile; thus the sterility phenotype was asymmetric. The sterile (BALBdomxJF1mol) F1 males exhibited a high rate of meiotic metaphase arrest with misaligned chromosomes, probably related to a high frequency of XY dissociation. Intriguingly, in the sterile (BALBdomxJF1mol)F1 males we observed aberrant allele-specific expression of several meiotic genes, that play critical roles in important meiotic events including chromosome pairing. Together, these observations of an asymmetrical HS phenotype in intersubspecific F1 males, probably owing to meiotic defects in the meiotic behavior of the XY chromosomes pair and possibly also transcriptional misregulation of meiotic genes, provide new models and directions for understanding speciation mechanisms in mammals.
Collapse
Affiliation(s)
- Risako Nishino
- Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Okayama, Japan
- Institute of Environmental Toxicology, Joso, Ibaraki, Japan
| | | | | | - Tetsuo Kunieda
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, Okayama, Japan
| | - Yasuhiro Fujiwara
- Graduate School of Natural Science and Technology, Okayama University, Kita-ku, Okayama, Okayama, Japan
- The Jackson Laboratory, Bar Harbor, ME, Japan
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|