1
|
Ebadi M, Bafort Q, Mizrachi E, Audenaert P, Simoens P, Van Montagu M, Bonte D, Van de Peer Y. The duplication of genomes and genetic networks and its potential for evolutionary adaptation and survival during environmental turmoil. Proc Natl Acad Sci U S A 2023; 120:e2307289120. [PMID: 37788315 PMCID: PMC10576144 DOI: 10.1073/pnas.2307289120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/07/2023] [Indexed: 10/05/2023] Open
Abstract
The importance of whole-genome duplication (WGD) for evolution is controversial. Whereas some view WGD mainly as detrimental and an evolutionary dead end, there is growing evidence that polyploidization can help overcome environmental change, stressful conditions, or periods of extinction. However, despite much research, the mechanistic underpinnings of why and how polyploids might be able to outcompete or outlive nonpolyploids at times of environmental upheaval remain elusive, especially for autopolyploids, in which heterosis effects are limited. On the longer term, WGD might increase both mutational and environmental robustness due to redundancy and increased genetic variation, but on the short-or even immediate-term, selective advantages of WGDs are harder to explain. Here, by duplicating artificially generated Gene Regulatory Networks (GRNs), we show that duplicated GRNs-and thus duplicated genomes-show higher signal output variation than nonduplicated GRNs. This increased variation leads to niche expansion and can provide polyploid populations with substantial advantages to survive environmental turmoil. In contrast, under stable environments, GRNs might be maladaptive to changes, a phenomenon that is exacerbated in duplicated GRNs. We believe that these results provide insights into how genome duplication and (auto)polyploidy might help organisms to adapt quickly to novel conditions and to survive ecological uproar or even cataclysmic events.
Collapse
Affiliation(s)
- Mehrshad Ebadi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, VIB, Gent9052, Belgium
| | - Quinten Bafort
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, VIB, Gent9052, Belgium
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria0028, South Africa
| | - Pieter Audenaert
- Department of Information Technology–IDLab, Ghent University-IMEC, Gent9052, Belgium
| | - Pieter Simoens
- Department of Information Technology–IDLab, Ghent University-IMEC, Gent9052, Belgium
| | - Marc Van Montagu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, VIB, Gent9052, Belgium
| | - Dries Bonte
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Ghent9000, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, VIB, Gent9052, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
2
|
Moreno DF, Acar M. Phenotypic selection during laboratory evolution of yeast populations leads to a genome-wide sustainable chromatin compaction shift. Front Microbiol 2022; 13:974055. [PMID: 36312917 PMCID: PMC9615041 DOI: 10.3389/fmicb.2022.974055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
In a previous study, we have shown how microbial evolution has resulted in a persistent reduction in expression after repeatedly selecting for the lowest PGAL1-YFP-expressing cells. Applying the ATAC-seq assay on samples collected from this 28-day evolution experiment, here we show how genome-wide chromatin compaction changes during evolution under selection pressure. We found that the chromatin compaction was altered not only on GAL network genes directly impacted by the selection pressure, showing an example of selection-induced non-genetic memory, but also at the whole-genome level. The GAL network genes experienced chromatin compaction accompanying the reduction in PGAL1-YFP reporter expression. Strikingly, the fraction of global genes with differentially compacted chromatin states accounted for about a quarter of the total genome. Moreover, some of the ATAC-seq peaks followed well-defined temporal dynamics. Comparing peak intensity changes on consecutive days, we found most of the differential compaction to occur between days 0 and 3 when the selection pressure was first applied, and between days 7 and 10 when the pressure was lifted. Among the gene sets enriched for the differential compaction events, some had increased chromatin availability once selection pressure was applied and decreased availability after the pressure was lifted (or vice versa). These results intriguingly show that, despite the lack of targeted selection, transcriptional availability of a large fraction of the genome changes in a very diverse manner during evolution, and these changes can occur in a relatively short number of generations.
Collapse
Affiliation(s)
- David F. Moreno
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, United States
- Systems Biology Institute, Yale University, West Haven, CT, United States
| | - Murat Acar
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, United States
- Systems Biology Institute, Yale University, West Haven, CT, United States
- Department of Medical Biology, School of Medicine, Koc University, Istanbul, Turkey
- *Correspondence: Murat Acar,
| |
Collapse
|
3
|
Bacteriophage self-counting in the presence of viral replication. Proc Natl Acad Sci U S A 2021; 118:2104163118. [PMID: 34916284 DOI: 10.1073/pnas.2104163118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
When host cells are in low abundance, temperate bacteriophages opt for dormant (lysogenic) infection. Phage lambda implements this strategy by increasing the frequency of lysogeny at higher multiplicity of infection (MOI). However, it remains unclear how the phage reliably counts infecting viral genomes even as their intracellular number increases because of replication. By combining theoretical modeling with single-cell measurements of viral copy number and gene expression, we find that instead of hindering lambda's decision, replication facilitates it. In a nonreplicating mutant, viral gene expression simply scales with MOI rather than diverging into lytic (virulent) and lysogenic trajectories. A similar pattern is followed during early infection by wild-type phage. However, later in the infection, the modulation of viral replication by the decision genes amplifies the initially modest gene expression differences into divergent trajectories. Replication thus ensures the optimal decision-lysis upon single-phage infection and lysogeny at higher MOI.
Collapse
|
4
|
Palme J, Wang J, Springer M. Variation in the modality of a yeast signaling pathway is mediated by a single regulator. eLife 2021; 10:69974. [PMID: 34369878 PMCID: PMC8373380 DOI: 10.7554/elife.69974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/10/2021] [Indexed: 11/13/2022] Open
Abstract
Bimodal gene expression by genetically identical cells is a pervasive feature of signaling networks and has been suggested to allow organisms to hedge their ‘bets’ in uncertain conditions. In the galactose-utilization (GAL) pathway of Saccharomyces cerevisiae, gene induction is unimodal or bimodal depending on natural genetic variation and pre-induction conditions. Here, we find that this variation in modality arises from regulation of two features of the pathway response: the fraction of cells that show induction and their level of expression. GAL3, the galactose sensor, controls the fraction of induced cells, and titrating its expression is sufficient to control modality; moreover, all the observed differences in modality between different pre-induction conditions and among natural isolates can be explained by changes in GAL3’s regulation and activity. The ability to switch modality by tuning the activity of a single protein may allow rapid adaptation of bet hedging to maximize fitness in complex environments.
Collapse
Affiliation(s)
- Julius Palme
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Jue Wang
- Department of Chemical Engineering, University of Washington, Seattle, United States
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
5
|
Yang J, Lee J, Land MA, Lai S, Igoshin OA, St-Pierre F. A synthetic circuit for buffering gene dosage variation between individual mammalian cells. Nat Commun 2021; 12:4132. [PMID: 34226556 PMCID: PMC8257781 DOI: 10.1038/s41467-021-23889-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Precise control of gene expression is critical for biological research and biotechnology. However, transient plasmid transfections in mammalian cells produce a wide distribution of copy numbers per cell, and consequently, high expression heterogeneity. Here, we report plasmid-based synthetic circuits - Equalizers - that buffer copy-number variation at the single-cell level. Equalizers couple a transcriptional negative feedback loop with post-transcriptional incoherent feedforward control. Computational modeling suggests that the combination of these two topologies enables Equalizers to operate over a wide range of plasmid copy numbers. We demonstrate experimentally that Equalizers outperform other gene dosage compensation topologies and produce as low cell-to-cell variation as chromosomally integrated genes. We also show that episome-encoded Equalizers enable the rapid generation of extrachromosomal cell lines with stable and uniform expression. Overall, Equalizers are simple and versatile devices for homogeneous gene expression and can facilitate the engineering of synthetic circuits that function reliably in every cell.
Collapse
Affiliation(s)
- Jin Yang
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jihwan Lee
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
| | - Michelle A Land
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shujuan Lai
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, Houston, TX, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - François St-Pierre
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Ricci-Tam C, Ben-Zion I, Wang J, Palme J, Li A, Savir Y, Springer M. Decoupling transcription factor expression and activity enables dimmer switch gene regulation. Science 2021; 372:292-295. [PMID: 33859035 PMCID: PMC8173539 DOI: 10.1126/science.aba7582] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/05/2021] [Indexed: 12/16/2022]
Abstract
Gene-regulatory networks achieve complex mappings of inputs to outputs through mechanisms that are poorly understood. We found that in the galactose-responsive pathway in Saccharomyces cerevisiae, the decision to activate the transcription of genes encoding pathway components is controlled independently from the expression level, resulting in behavior resembling that of a mechanical dimmer switch. This was not a direct result of chromatin regulation or combinatorial control at galactose-responsive promoters; rather, this behavior was achieved by hierarchical regulation of the expression and activity of a single transcription factor. Hierarchical regulation is ubiquitous, and thus dimmer switch regulation is likely a key feature of many biological systems. Dimmer switch gene regulation may allow cells to fine-tune their responses to multi-input environments on both physiological and evolutionary time scales.
Collapse
Affiliation(s)
- C Ricci-Tam
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - I Ben-Zion
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - J Wang
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - J Palme
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - A Li
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Y Savir
- Department of Physiology, Biophysics, and Systems Biology, Technion, Haifa, Israel
| | - M Springer
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Martin-Pascual M, Batianis C, Bruinsma L, Asin-Garcia E, Garcia-Morales L, Weusthuis RA, van Kranenburg R, Martins Dos Santos VAP. A navigation guide of synthetic biology tools for Pseudomonas putida. Biotechnol Adv 2021; 49:107732. [PMID: 33785373 DOI: 10.1016/j.biotechadv.2021.107732] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
Pseudomonas putida is a microbial chassis of huge potential for industrial and environmental biotechnology, owing to its remarkable metabolic versatility and ability to sustain difficult redox reactions and operational stresses, among other attractive characteristics. A wealth of genetic and in silico tools have been developed to enable the unravelling of its physiology and improvement of its performance. However, the rise of this microbe as a promising platform for biotechnological applications has resulted in diversification of tools and methods rather than standardization and convergence. As a consequence, multiple tools for the same purpose have been generated, whilst most of them have not been embraced by the scientific community, which has led to compartmentalization and inefficient use of resources. Inspired by this and by the substantial increase in popularity of P. putida, we aim herein to bring together and assess all currently available (wet and dry) synthetic biology tools specific for this microbe, focusing on the last 5 years. We provide information on the principles, functionality, advantages and limitations, with special focus on their use in metabolic engineering. Additionally, we compare the tool portfolio for P. putida with those for other bacterial chassis and discuss potential future directions for tool development. Therefore, this review is intended as a reference guide for experts and new 'users' of this promising chassis.
Collapse
Affiliation(s)
- Maria Martin-Pascual
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Christos Batianis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Lyon Bruinsma
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Luis Garcia-Morales
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Richard van Kranenburg
- Corbion, Gorinchem 4206 AC, The Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, the Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands; LifeGlimmer GmbH, Berlin 12163, Germany.
| |
Collapse
|
8
|
Chromatin regulatory genes differentially interact in networks to facilitate distinct GAL1 activity and noise profiles. Curr Genet 2020; 67:267-281. [PMID: 33159551 DOI: 10.1007/s00294-020-01124-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
Controlling chromatin state constitutes a major regulatory step in gene expression regulation across eukaryotes. While global cellular features or processes are naturally impacted by chromatin state alterations, little is known about how chromatin regulatory genes interact in networks to dictate downstream phenotypes. Using the activity of the canonical galactose network in yeast as a model, here, we measured the impact of the disruption of key chromatin regulatory genes on downstream gene expression, genetic noise and fitness. Using Trichostatin A and nicotinamide, we characterized how drug-based modulation of global histone deacetylase activity affected these phenotypes. Performing epistasis analysis, we discovered phenotype-specific genetic interaction networks of chromatin regulators. Our work provides comprehensive insights into how the galactose network activity is affected by protein interaction networks formed by chromatin regulators.
Collapse
|
9
|
Epigenetic Mechanisms Contribute to Evolutionary Adaptation of Gene Network Activity under Environmental Selection. Cell Rep 2020; 33:108306. [PMID: 33113358 PMCID: PMC7656290 DOI: 10.1016/j.celrep.2020.108306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/17/2019] [Accepted: 10/02/2020] [Indexed: 11/30/2022] Open
Abstract
How evolution can be facilitated by epigenetic mechanisms has received refreshed attention recently. To explore the role epigenetic inheritance plays in evolution, we subject isogenic wild-type yeast cells expressing PGAL1-YFP (yellow fluorescent protein) to selection by daily sorting based on reporter expression. We observe expression-level reductions in multiple replicates sorted for the lowest expression that persist for several days, even after lifting the selection pressure. Reduced expression is due to factors in the galactose (GAL) network rather than global factors. Results using a constitutively active GAL network are in overall agreement with findings with the wild-type network. We find that the local chromatin environment of the reporter has a significant effect on the observed phenotype. Genome sequencing, chromatin immunoprecipitation (ChIP)-qPCR, and sporulation analysis provide further insights into the epigenetic and genetic contributors to the expression changes observed. Our work provides a comprehensive example of the role played by epigenetic mechanisms on gene network evolution. Luo et al. demonstrate how epigenetic mechanisms contribute to the evolution of gene network activity. Subjecting yeast cells to repeated environmental selection based on the activity of the galactose network, they observe sustained changes in reporter expression level. They characterize the epigenetic and genetic factors contributing to the observed phenotypes.
Collapse
|
10
|
Elison GL, Xue Y, Song R, Acar M. Insights into Bidirectional Gene Expression Control Using the Canonical GAL1/GAL10 Promoter. Cell Rep 2019; 25:737-748.e4. [PMID: 30332652 PMCID: PMC6263159 DOI: 10.1016/j.celrep.2018.09.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/31/2018] [Accepted: 09/14/2018] [Indexed: 11/25/2022] Open
Abstract
Despite advances made in understanding the effects of promoter structure on transcriptional activity, limited knowledge exists regarding the role played by chromatin architecture in transcription. Previous work hypothesized that transcription from the bidirectional GAL1/GAL10 promoter is controlled through looping of its UAS region around a nonstandard nucleosome. Here, by editing the GAL1/GAL10 promoter at high resolution, we provide insights into bidirectional expression control. We demonstrate that the first and fourth Gal4 binding sites within the UAS do not functionally contribute to promoter activation. Instead, these sites, along with nearby regulatory regions, contribute to the directional regulation of gene expression. Furthermore, Gal4 binding to the third binding site is critical for gene expression, while binding to the other three sites is not sufficient for transcriptional activation. Because the GAL1/GAL10 UAS can activate gene expression in many eukaryotes, the regulatory mechanism presented is expected to operate broadly across the eukaryotic clade.
Collapse
Affiliation(s)
- Gregory L Elison
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Yuan Xue
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Ruijie Song
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA; Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, CT 06511, USA
| | - Murat Acar
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA; Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, CT 06511, USA; Department of Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA.
| |
Collapse
|
11
|
Xu H, Liu JJ, Liu Z, Li Y, Jin YS, Zhang J. Synchronization of stochastic expressions drives the clustering of functionally related genes. SCIENCE ADVANCES 2019; 5:eaax6525. [PMID: 31633028 PMCID: PMC6785257 DOI: 10.1126/sciadv.aax6525] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/10/2019] [Indexed: 05/18/2023]
Abstract
Functionally related genes tend to be chromosomally clustered in eukaryotic genomes even after the exclusion of tandem duplicates, but the biological significance of this widespread phenomenon is unclear. We propose that stochastic expression fluctuations of neighboring genes resulting from chromatin dynamics are more or less synchronized such that their expression ratio is more stable than that for unlinked genes. Consequently, chromosomal clustering could be advantageous when the expression ratio of the clustered genes needs to stay constant, for example, because of the accumulation of toxic compounds when this ratio is altered. Evidence from manipulative experiments on the yeast GAL cluster, comprising three chromosomally adjacent genes encoding enzymes catalyzing consecutive reactions in galactose catabolism, unequivocally supports this hypothesis and elucidates how disorder in one biological phenomenon-gene expression noise-could prompt the emergence of order in another-genome organization.
Collapse
Affiliation(s)
- Haiqing Xu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jing-Jing Liu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhen Liu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ying Li
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Iida K, Obata N, Kimura Y. Quantifying heterogeneity of stochastic gene expression. J Theor Biol 2019; 465:56-62. [PMID: 30611711 DOI: 10.1016/j.jtbi.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/27/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022]
Abstract
The heterogeneity of stochastic gene expression, which refers to the temporal fluctuation in a gene product and its cell-to-cell variation, has attracted considerable interest from biologists, physicists, and mathematicians. The dynamics of protein production and degradation have been modeled as random processes with transition probabilities. However, there is a gap between theory and phenomena, particularly in terms of analytical formulation and parameter estimation. In this study, we propose a theoretical framework in which we present a basic model of a gene regulatory system, derive a steady-state solution, and provide a Bayesian approach for estimating the model parameters from single-cell experimental data. The proposed framework is demonstrated to be applicable for various scales of single-cell experiments at both the mRNA and protein levels and is useful for comparing kinetic parameters across species, genomes, and cell strains.
Collapse
Affiliation(s)
- Keita Iida
- Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.
| | - Nobuaki Obata
- Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan.
| | - Yoshitaka Kimura
- Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.
| |
Collapse
|
13
|
Perez-Samper G, Cerulus B, Jariani A, Vermeersch L, Barrajón Simancas N, Bisschops MMM, van den Brink J, Solis-Escalante D, Gallone B, De Maeyer D, van Bael E, Wenseleers T, Michiels J, Marchal K, Daran-Lapujade P, Verstrepen KJ. The Crabtree Effect Shapes the Saccharomyces cerevisiae Lag Phase during the Switch between Different Carbon Sources. mBio 2018; 9:e01331-18. [PMID: 30377274 PMCID: PMC6212832 DOI: 10.1128/mbio.01331-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/20/2018] [Indexed: 12/16/2022] Open
Abstract
When faced with environmental changes, microbes often enter a temporary growth arrest during which they reprogram the expression of specific genes to adapt to the new conditions. A prime example of such a lag phase occurs when microbes need to switch from glucose to other, less-preferred carbon sources. Despite its industrial relevance, the genetic network that determines the duration of the lag phase has not been studied in much detail. Here, we performed a genome-wide Bar-Seq screen to identify genetic determinants of the Saccharomyces cerevisiae glucose-to-galactose lag phase. The results show that genes involved in respiration, and specifically those encoding complexes III and IV of the electron transport chain, are needed for efficient growth resumption after the lag phase. Anaerobic growth experiments confirmed the importance of respiratory energy conversion in determining the lag phase duration. Moreover, overexpression of the central regulator of respiration, HAP4, leads to significantly shorter lag phases. Together, these results suggest that the glucose-induced repression of respiration, known as the Crabtree effect, is a major determinant of microbial fitness in fluctuating carbon environments.IMPORTANCE The lag phase is arguably one of the prime characteristics of microbial growth. Longer lag phases result in lower competitive fitness in variable environments, and the duration of the lag phase is also important in many industrial processes where long lag phases lead to sluggish, less efficient fermentations. Despite the immense importance of the lag phase, surprisingly little is known about the exact molecular processes that determine its duration. Our study uses the molecular toolbox of S. cerevisiae combined with detailed growth experiments to reveal how the transition from fermentative to respirative metabolism is a key bottleneck for cells to overcome the lag phase. Together, our findings not only yield insight into the key molecular processes and genes that influence lag duration but also open routes to increase the efficiency of industrial fermentations and offer an experimental framework to study other types of lag behavior.
Collapse
Affiliation(s)
- Gemma Perez-Samper
- VIB - KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
| | - Bram Cerulus
- VIB - KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
| | - Abbas Jariani
- VIB - KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
| | - Lieselotte Vermeersch
- VIB - KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
| | | | - Markus M M Bisschops
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Joost van den Brink
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Brigida Gallone
- VIB - KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
| | - Dries De Maeyer
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Elise van Bael
- VIB - KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jan Michiels
- VIB - KU Leuven Center for Microbiology, Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Kathleen Marchal
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | | | - Kevin J Verstrepen
- VIB - KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Song R, Sarnoski EA, Acar M. The Systems Biology of Single-Cell Aging. iScience 2018; 7:154-169. [PMID: 30267677 PMCID: PMC6153419 DOI: 10.1016/j.isci.2018.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/30/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022] Open
Abstract
Aging is a leading cause of human morbidity and mortality, but efforts to slow or reverse its effects are hampered by an incomplete understanding of its multi-faceted origins. Systems biology, the use of quantitative and computational methods to understand complex biological systems, offers a toolkit well suited to elucidating the root cause of aging. We describe the known components of the aging network and outline innovative techniques that open new avenues of investigation to the aging research community. We propose integration of the systems biology and aging fields, identifying areas of complementarity based on existing and impending technological capabilities.
Collapse
Affiliation(s)
- Ruijie Song
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Ethan A Sarnoski
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA
| | - Murat Acar
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Department of Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA.
| |
Collapse
|
15
|
Luo X, Song R, Acar M. Multi-component gene network design as a survival strategy in diverse environments. BMC SYSTEMS BIOLOGY 2018; 12:85. [PMID: 30257679 PMCID: PMC6158886 DOI: 10.1186/s12918-018-0609-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/12/2018] [Indexed: 11/28/2022]
Abstract
Background Gene-environment interactions are often mediated though gene networks in which gene expression products interact with other network components to dictate network activity levels, which in turn determines the fitness of the host cell in specific environments. Even though a gene network is the right context for studying gene-environment interactions, we have little understanding on how systematic genetic perturbations affects fitness in the context of a gene network. Results Here we examine the effect of combinatorial gene dosage alterations on gene network activity and cellular fitness. Using the galactose utilization pathway as a model network in diploid yeast, we reduce the copy number of four regulatory genes (GAL2, GAL3, GAL4, GAL80) from two to one, and measure the activity of the perturbed networks. We integrate these results with competitive fitness measurements made in six different rationally-designed environments containing different galactose concentrations representing the natural induction spectrum of the galactose network. In the lowest galactose environment, we find a nonlinear relationship between gene expression and fitness while high galactose environments lead to a linear relationship between the two with a saturation regime reached at a sufficiently high galactose concentration. We further uncover environment-specific relevance of the different network components for dictating the relationship between the network activity and organismal fitness, indicating that none of the network components are redundant. Conclusions These results provide experimental support to the hypothesis that dynamic changes in the environment throughout natural evolution is key to structuring natural gene networks in a multi-component fashion, which robustly provides protection against population extinction in different environments. Electronic supplementary material The online version of this article (10.1186/s12918-018-0609-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinyue Luo
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA.,Systems Biology Institute, Yale University, 850 West Campus Drive, Room 122, West Haven, CT, 06516, USA
| | - Ruijie Song
- Systems Biology Institute, Yale University, 850 West Campus Drive, Room 122, West Haven, CT, 06516, USA.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, CT, 06511, USA
| | - Murat Acar
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA. .,Systems Biology Institute, Yale University, 850 West Campus Drive, Room 122, West Haven, CT, 06516, USA. .,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, CT, 06511, USA. .,Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, 06511, USA.
| |
Collapse
|
16
|
Shao Q, Trinh JT, Zeng L. High-resolution studies of lysis-lysogeny decision-making in bacteriophage lambda. J Biol Chem 2018; 294:3343-3349. [PMID: 30242122 DOI: 10.1074/jbc.tm118.003209] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cellular decision-making guides complex development such as cell differentiation and disease progression. Much of our knowledge about decision-making is derived from simple models, such as bacteriophage lambda infection, in which lambda chooses between the vegetative lytic fate and the dormant lysogenic fate. This paradigmatic system is broadly understood but lacking mechanistic details, partly due to limited resolution of past studies. Here, we discuss how modern technologies have enabled high-resolution examination of lambda decision-making to provide new insights and exciting possibilities in studying this classical system. The advent of techniques for labeling specific DNA, RNA, and proteins in cells allows for molecular-level characterization of events in lambda development. These capabilities yield both new answers and new questions regarding how the isolated lambda genetic circuit acts, what biological events transpire among phages in their natural context, and how the synergy of simple phage macromolecules brings about complex behaviors.
Collapse
Affiliation(s)
- Qiuyan Shao
- From the Department of Biochemistry and Biophysics and.,the Center for Phage Technology, Texas A&M University, College Station, Texas 77843
| | - Jimmy T Trinh
- From the Department of Biochemistry and Biophysics and.,the Center for Phage Technology, Texas A&M University, College Station, Texas 77843
| | - Lanying Zeng
- From the Department of Biochemistry and Biophysics and .,the Center for Phage Technology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
17
|
Shao Q, Cortes MG, Trinh JT, Guan J, Balázsi G, Zeng L. Coupling of DNA Replication and Negative Feedback Controls Gene Expression for Cell-Fate Decisions. iScience 2018; 6:1-12. [PMID: 30240603 PMCID: PMC6137276 DOI: 10.1016/j.isci.2018.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/21/2018] [Accepted: 07/09/2018] [Indexed: 11/16/2022] Open
Abstract
Cellular decision-making arises from the expression of genes along a regulatory cascade, which leads to a choice between distinct phenotypic states. DNA dosage variations, often introduced by replication, can significantly affect gene expression to ultimately bias decision outcomes. The bacteriophage lambda system has long served as a paradigm for cell-fate determination, yet the effect of DNA replication remains largely unknown. Here, through single-cell studies and mathematical modeling we show that DNA replication drastically boosts cI expression to allow lysogenic commitment by providing more templates. Conversely, expression of CII, the upstream regulator of cI, is surprisingly robust to DNA replication due to the negative autoregulation of the Cro repressor. Our study exemplifies how living organisms can not only utilize DNA replication for gene expression control but also implement mechanisms such as negative feedback to allow the expression of certain genes to be robust to dosage changes resulting from DNA replication.
Collapse
Affiliation(s)
- Qiuyan Shao
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Michael G Cortes
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA; Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Jimmy T Trinh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Jingwen Guan
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA; Molecular and Environmental Plant Science, Texas A&M University, College Station, TX 77843, USA
| | - Gábor Balázsi
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA; Molecular and Environmental Plant Science, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
18
|
Rapid regulatory evolution of a nonrecombining autosome linked to divergent behavioral phenotypes. Proc Natl Acad Sci U S A 2018; 115:2794-2799. [PMID: 29483264 PMCID: PMC5856536 DOI: 10.1073/pnas.1717721115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the white-throated sparrow (Zonotrichia albicollis), the second chromosome bears a striking resemblance to sex chromosomes. First, within each breeding pair of birds, one bird is homozygous for the standard arrangement of the chromosome (ZAL2/ZAL2) and its mate is heterozygous for a different version (ZAL2/ZAL2m). Second, recombination is profoundly suppressed between the two versions, leading to genetic differentiation between them. Third, the ZAL2m version is linked with phenotypic traits, such as bright plumage, high aggression, and low parental behavior, which are usually associated with males. These similarities to sex chromosomes suggest that the evolutionary mechanisms that shape sex chromosomes, in particular genetic degeneration of the heterogametic version due to the suppression of recombination, are likely important in this system as well. Here, we investigated patterns of protein sequence evolution and gene expression evolution between the ZAL2 and ZAL2m chromosomes by whole-genome sequencing and transcriptome analyses. Patterns of protein evolution exhibited only weak signals of genetic degeneration, and few genes harbored signatures of positive selection. We found substantial evidence of transcriptome evolution, such as significant expression divergence between ZAL2 and ZAL2m alleles and signatures of dosage compensation for highly expressed genes. These results suggest that, early in the evolution of heteromorphic chromosomes, gene expression divergence and dosage compensation can prevail before large-scale genetic degeneration. Our results show further that suppression of recombination between heteromorphic chromosomes can lead to the evolution of alternative (sex-like) behavioral phenotypes before substantial genetic degeneration.
Collapse
|
19
|
Quarton T, Ehrhardt K, Lee J, Kannan S, Li Y, Ma L, Bleris L. Mapping the operational landscape of microRNAs in synthetic gene circuits. NPJ Syst Biol Appl 2018; 4:6. [PMID: 29354284 PMCID: PMC5765153 DOI: 10.1038/s41540-017-0043-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are a class of short, noncoding RNAs that are ubiquitous modulators of gene expression, with roles in development, homeostasis, and disease. Engineered microRNAs are now frequently used as regulatory modules in synthetic biology. Moreover, synthetic gene circuits equipped with engineered microRNA targets with perfect complementarity to endogenous microRNAs establish an interface with the endogenous milieu at the single-cell level. The function of engineered microRNAs and sensor systems is typically optimized through extensive trial-and-error. Here, using a combination of synthetic biology experimentation in human embryonic kidney cells and quantitative analysis, we investigate the relationship between input genetic template abundance, microRNA concentration, and output under microRNA control. We provide a framework that employs the complete operational landscape of a synthetic gene circuit and enables the stepwise development of mathematical models. We derive a phenomenological model that recapitulates experimentally observed nonlinearities and contains features that provide insight into the microRNA function at various abundances. Our work facilitates the characterization and engineering of multi-component genetic circuits and specifically points to new insights on the operation of microRNAs as mediators of endogenous information and regulators of gene expression in synthetic biology.
Collapse
Affiliation(s)
- Tyler Quarton
- 1Bioengineering Department, University of Texas at Dallas, Richardson, TX USA.,2Center for Systems Biology, University of Texas at Dallas, Richardson, TX USA
| | - Kristina Ehrhardt
- 1Bioengineering Department, University of Texas at Dallas, Richardson, TX USA.,2Center for Systems Biology, University of Texas at Dallas, Richardson, TX USA
| | - James Lee
- 3Department of Biological Sciences, University of Texas at Dallas, Richardson, TX USA
| | - Srijaa Kannan
- 4School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX USA
| | - Yi Li
- 1Bioengineering Department, University of Texas at Dallas, Richardson, TX USA.,2Center for Systems Biology, University of Texas at Dallas, Richardson, TX USA
| | - Lan Ma
- 1Bioengineering Department, University of Texas at Dallas, Richardson, TX USA
| | - Leonidas Bleris
- 1Bioengineering Department, University of Texas at Dallas, Richardson, TX USA.,2Center for Systems Biology, University of Texas at Dallas, Richardson, TX USA.,3Department of Biological Sciences, University of Texas at Dallas, Richardson, TX USA
| |
Collapse
|
20
|
A Precise Genome Editing Method Reveals Insights into the Activity of Eukaryotic Promoters. Cell Rep 2017; 18:275-286. [PMID: 28052256 DOI: 10.1016/j.celrep.2016.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/02/2016] [Accepted: 12/05/2016] [Indexed: 11/22/2022] Open
Abstract
Despite the availability of whole-genome sequences for almost all model organisms, making faithful predictions of gene expression levels based solely on the corresponding promoter sequences remains a challenge. Plasmid-based approaches and methods involving selection markers are not ideal due to copy-number fluctuations and their disruptive nature. Here, we present a genome editing method using the CRISPR/Cas9 complex and elucidate insights into the activity of canonical promoters in live yeast cells. The method involves the introduction of a novel cut site into a specific genomic location, followed by the integration of an edited sequence into the same location in a scarless manner. Using this method to edit the GAL1 and GAL80 promoter sequences, we found that the relative positioning of promoter elements was critically important for setting promoter activity levels in single cells. The method can be extended to other organisms to decode genotype-phenotype relationships in various gene networks.
Collapse
|
21
|
Cho CY, Motta FC, Kelliher CM, Deckard A, Haase SB. Reconciling conflicting models for global control of cell-cycle transcription. Cell Cycle 2017; 16:1965-1978. [PMID: 28934013 PMCID: PMC5638368 DOI: 10.1080/15384101.2017.1367073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 10/18/2022] Open
Abstract
Models for the control of global cell-cycle transcription have advanced from a CDK-APC/C oscillator, a transcription factor (TF) network, to coupled CDK-APC/C and TF networks. Nonetheless, current models were challenged by a recent study that concluded that the cell-cycle transcriptional program is primarily controlled by a CDK-APC/C oscillator in budding yeast. Here we report an analysis of the transcriptome dynamics in cyclin mutant cells that were not queried in the previous study. We find that B-cyclin oscillation is not essential for control of phase-specific transcription. Using a mathematical model, we demonstrate that the function of network TFs can be retained in the face of significant reductions in transcript levels. Finally, we show that cells arrested at mitotic exit with non-oscillating levels of B-cyclins continue to cycle transcriptionally. Taken together, these findings support a critical role of a TF network and a requirement for CDK activities that need not be periodic.
Collapse
Affiliation(s)
- Chun-Yi Cho
- Department of Biology, Duke University, Durham, NC, USA
| | | | | | | | | |
Collapse
|
22
|
Noise reduction as an emergent property of single-cell aging. Nat Commun 2017; 8:680. [PMID: 28947742 PMCID: PMC5613028 DOI: 10.1038/s41467-017-00752-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/25/2017] [Indexed: 11/08/2022] Open
Abstract
Noise-induced heterogeneity in gene expression is an inherent reality for cells. However, it is not well understood how noise strength changes for a single gene while the host cell is aging. Using a state-of-the-art microfluidic platform, we measure noise dynamics in aging yeast cells by tracking the generation-specific activity of the canonical GAL1 promoter. We observe noise reduction during normal aging of a cell, followed by a short catastrophe phase in which noise increased. We hypothesize that aging-associated increases in chromatin state transitions are behind the observed noise reduction and a stochastic model provides quantitative support to the proposed mechanism. Noise trends measured from strains with altered GAL1 promoter dynamics (constitutively active, synthetic with nucleosome-disfavoring sequences, and in the absence of RPD3, a global remodeling regulator) lend further support to our hypothesis. Observing similar noise dynamics from a different promoter (HHF2) provides support to the generality of our findings. Gene expression is a noisy process, but it is not known how noise in gene expression changes during the aging of single cells. Here the authors show that noise decreases during normal aging, and provide support for aging-associated increases in chromatin state transitions governing noise reduction.
Collapse
|
23
|
Shopera T, He L, Oyetunde T, Tang YJ, Moon TS. Decoupling Resource-Coupled Gene Expression in Living Cells. ACS Synth Biol 2017; 6:1596-1604. [PMID: 28459541 DOI: 10.1021/acssynbio.7b00119] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synthetic biology aspires to develop frameworks that enable the construction of complex and reliable gene networks with predictable functionalities. A key limitation is that increasing network complexity increases the demand for cellular resources, potentially causing resource-associated interference among noninteracting circuits. Although recent studies have shown the effects of resource competition on circuit behaviors, mechanisms that decouple such interference remain unclear. Here, we constructed three systems in Escherichia coli, each consisting of two independent circuit modules where the complexity of one module (Circuit 2) was systematically increased while the other (Circuit 1) remained identical. By varying the expression level of Circuit 1 and measuring its effect on the expression level of Circuit 2, we demonstrated computationally and experimentally that indirect coupling between these seemingly unconnected genetic circuits can occur in three different regulatory topologies. More importantly, we experimentally verified the computational prediction that negative feedback can significantly reduce resource-coupled interference in regulatory circuits. Our results reveal a design principle that enables cells to reliably multitask while tightly controlling cellular resources.
Collapse
Affiliation(s)
- Tatenda Shopera
- Department of Energy, Environmental
and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Lian He
- Department of Energy, Environmental
and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tolutola Oyetunde
- Department of Energy, Environmental
and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Yinjie J. Tang
- Department of Energy, Environmental
and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tae Seok Moon
- Department of Energy, Environmental
and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
24
|
Lee KB, Wang J, Palme J, Escalante-Chong R, Hua B, Springer M. Polymorphisms in the yeast galactose sensor underlie a natural continuum of nutrient-decision phenotypes. PLoS Genet 2017; 13:e1006766. [PMID: 28542190 PMCID: PMC5464677 DOI: 10.1371/journal.pgen.1006766] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 06/08/2017] [Accepted: 04/19/2017] [Indexed: 01/26/2023] Open
Abstract
In nature, microbes often need to "decide" which of several available nutrients to utilize, a choice that depends on a cell's inherent preference and external nutrient levels. While natural environments can have mixtures of different nutrients, phenotypic variation in microbes' decisions of which nutrient to utilize is poorly studied. Here, we quantified differences in the concentration of glucose and galactose required to induce galactose-responsive (GAL) genes across 36 wild S. cerevisiae strains. Using bulk segregant analysis, we found that a locus containing the galactose sensor GAL3 was associated with differences in GAL signaling in eight different crosses. Using allele replacements, we confirmed that GAL3 is the major driver of GAL induction variation, and that GAL3 allelic variation alone can explain as much as 90% of the variation in GAL induction in a cross. The GAL3 variants we found modulate the diauxic lag, a selectable trait. These results suggest that ecological constraints on the galactose pathway may have led to variation in a single protein, allowing cells to quantitatively tune their response to nutrient changes in the environment.
Collapse
Affiliation(s)
- Kayla B. Lee
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Jue Wang
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Systems Biology Graduate Program, Harvard University, Cambridge, Massachusetts, United States of America
- Ginkgo Bioworks, Boston, Massachusetts, United States of America
| | - Julius Palme
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technische Universität, München, Freising, Germany
| | | | - Bo Hua
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Systems Biology Graduate Program, Harvard University, Cambridge, Massachusetts, United States of America
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
25
|
Peng W, Song R, Acar M. Noise reduction facilitated by dosage compensation in gene networks. Nat Commun 2016; 7:12959. [PMID: 27694830 PMCID: PMC5063963 DOI: 10.1038/ncomms12959] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/18/2016] [Indexed: 12/18/2022] Open
Abstract
Genetic noise together with genome duplication and volume changes during cell cycle are significant contributors to cell-to-cell heterogeneity. How can cells buffer the effects of these unavoidable epigenetic and genetic variations on phenotypes that are sensitive to such variations? Here we show that a simple network motif that is essential for network-dosage compensation can reduce the effects of extrinsic noise on the network output. Using natural and synthetic gene networks with and without the network motif, we measure gene network activity in single yeast cells and find that the activity of the compensated network is significantly lower in noise compared with the non-compensated network. A mathematical analysis provides intuitive insights into these results and a novel stochastic model tracking cell-volume and cell-cycle predicts the experimental results. Our work implies that noise is a selectable trait tunable by evolution.
Collapse
Affiliation(s)
- Weilin Peng
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, USA.,Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA
| | - Ruijie Song
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, Connecticut 06511, USA
| | - Murat Acar
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, USA.,Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, Connecticut 06511, USA.,Department of Physics, Yale University, 217 Prospect Street, New Haven, Connecticut 06511, USA
| |
Collapse
|
26
|
Mitre TM, Mackey MC, Khadra A. Mathematical model of galactose regulation and metabolic consumption in yeast. J Theor Biol 2016; 407:238-258. [DOI: 10.1016/j.jtbi.2016.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
|
27
|
Abstract
InDrosophila, homologous chromosome pairing leads to "transvection," in which the enhancer of a gene can regulate the allelic transcription intrans.Interallelic interactions were also observed in vegetative diploid budding yeast, but their functional significance is unknown. Here, we show that aGAL1reporter can interact with its homologous allele and affect its expression. By ectopically inserting two allelic reporters, one driven by wild-typeGAL1promoter (WTGAL1pr) and the other by a mutant promoter with delayed response to galactose induction, we found that the two reporters physically associate, and the WTGAL1prtriggers synchronized firing of the defective promoter and accelerates its activation without affecting its steady-state expression level. This interaction and the transregulatory effect disappear when the same reporters are located at nonallelic sites. We further demonstrated that the activator Gal4 is essential for the interallelic interaction, and the transregulation requires fully activated WTGAL1prtranscription. The mechanism of this phenomenon was further discussed. Taken together, our data revealed the existence of interallelic gene regulation in yeast, which serves as a starting point for understanding long-distance gene regulation in this genetically tractable system.
Collapse
|
28
|
Mestek Boukhibar L, Barkoulas M. The developmental genetics of biological robustness. ANNALS OF BOTANY 2016; 117:699-707. [PMID: 26292993 PMCID: PMC4845795 DOI: 10.1093/aob/mcv128] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/07/2015] [Accepted: 06/29/2015] [Indexed: 05/10/2023]
Abstract
BACKGROUND Living organisms are continuously confronted with perturbations, such as environmental changes that include fluctuations in temperature and nutrient availability, or genetic changes such as mutations. While some developmental systems are affected by such challenges and display variation in phenotypic traits, others continue consistently to produce invariable phenotypes despite perturbation. This ability of a living system to maintain an invariable phenotype in the face of perturbations is termed developmental robustness. Biological robustness is a phenomenon observed across phyla, and studying its mechanisms is central to deciphering the genotype-phenotype relationship. Recent work in yeast, animals and plants has shown that robustness is genetically controlled and has started to reveal the underlying mechinisms behind it. SCOPE AND CONCLUSIONS Studying biological robustness involves focusing on an important property of developmental traits, which is the phenotypic distribution within a population. This is often neglected because the vast majority of developmental biology studies instead focus on population aggregates, such as trait averages. By drawing on findings in animals and yeast, this Viewpoint considers how studies on plant developmental robustness may benefit from strict definitions of what is the developmental system of choice and what is the relevant perturbation, and also from clear distinctions between gene effects on the trait mean and the trait variance. Recent advances in quantitative developmental biology and high-throughput phenotyping now allow the design of targeted genetic screens to identify genes that amplify or restrict developmental trait variance and to study how variation propagates across different phenotypic levels in biological systems. The molecular characterization of more quantitative trait loci affecting trait variance will provide further insights into the evolution of genes modulating developmental robustness. The study of robustness mechanisms in closely related species will address whether mechanisms of robustness are evolutionarily conserved.
Collapse
Affiliation(s)
- Lamia Mestek Boukhibar
- Imperial College London, Department of Life Sciences, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | - Michalis Barkoulas
- Imperial College London, Department of Life Sciences, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
29
|
Walker N, Nghe P, Tans SJ. Generation and filtering of gene expression noise by the bacterial cell cycle. BMC Biol 2016; 14:11. [PMID: 26867568 PMCID: PMC4750204 DOI: 10.1186/s12915-016-0231-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/21/2016] [Indexed: 11/25/2022] Open
Abstract
Background Gene expression within cells is known to fluctuate stochastically in time. However, the origins of gene expression noise remain incompletely understood. The bacterial cell cycle has been suggested as one source, involving chromosome replication, exponential volume growth, and various other changes in cellular composition. Elucidating how these factors give rise to expression variations is important to models of cellular homeostasis, fidelity of signal transmission, and cell-fate decisions. Results Using single-cell time-lapse microscopy, we measured cellular growth as well as fluctuations in the expression rate of a fluorescent protein and its concentration. We found that, within the population, the mean expression rate doubles throughout the cell cycle with a characteristic cell cycle phase dependent shape which is different for slow and fast growth rates. At low growth rate, we find the mean expression rate was initially flat, and then rose approximately linearly by a factor two until the end of the cell cycle. The mean concentration fluctuated at low amplitude with sinusoidal-like dependence on cell cycle phase. Traces of individual cells were consistent with a sudden two-fold increase in expression rate, together with other non-cell cycle noise. A model was used to relate the findings and to explain the cell cycle-induced variations for different chromosomal positions. Conclusions We found that the bacterial cell cycle contribution to expression noise consists of two parts: a deterministic oscillation in synchrony with the cell cycle and a stochastic component caused by variable timing of gene replication. Together, they cause half of the expression rate noise. Concentration fluctuations are partially suppressed by a noise cancelling mechanism that involves the exponential growth of cellular volume. A model explains how the functional form of the concentration oscillations depends on chromosome position. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0231-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Noreen Walker
- FOM Institute AMOLF, Amsterdam, 1098 XG, The Netherlands.
| | - Philippe Nghe
- FOM Institute AMOLF, Amsterdam, 1098 XG, The Netherlands.
| | - Sander J Tans
- FOM Institute AMOLF, Amsterdam, 1098 XG, The Netherlands.
| |
Collapse
|
30
|
Song R, Peng W, Liu P, Acar M. A cell size- and cell cycle-aware stochastic model for predicting time-dynamic gene network activity in individual cells. BMC SYSTEMS BIOLOGY 2015; 9:91. [PMID: 26646617 PMCID: PMC4673848 DOI: 10.1186/s12918-015-0240-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/02/2015] [Indexed: 11/29/2022]
Abstract
Background Despite the development of various modeling approaches to predict gene network activity, a time dynamic stochastic model taking into account real-time changes in cell volume and cell cycle stages is still missing. Results Here we present a stochastic single-cell model that can be applied to any eukaryotic gene network with any number of components. The model tracks changes in cell volume, DNA replication, and cell division, and dynamically adjusts rates of stochastic reactions based on this information. By tracking cell division, the model can maintain cell lineage information, allowing the researcher to trace the descendants of any single cell and therefore study cell lineage effects. To test the predictive power of our model, we applied it to the canonical galactose network of the yeast Saccharomyces cerevisiae. Using a minimal set of free parameters and across several galactose induction conditions, the model effectively captured several details of the experimentally-obtained single-cell network activity levels as well as phenotypic switching rates. Conclusion Our model can readily be customized to model any gene network in any of the commonly used cells types, offering a novel and user-friendly stochastic modeling capability to the systems biology field. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0240-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruijie Song
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, CT, 06511, USA. .,Systems Biology Institute, Yale University, 840 West Campus Drive, West Haven, CT, 06516, USA.
| | - Weilin Peng
- Systems Biology Institute, Yale University, 840 West Campus Drive, West Haven, CT, 06516, USA. .,Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA.
| | - Ping Liu
- Systems Biology Institute, Yale University, 840 West Campus Drive, West Haven, CT, 06516, USA. .,Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA.
| | - Murat Acar
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, CT, 06511, USA. .,Systems Biology Institute, Yale University, 840 West Campus Drive, West Haven, CT, 06516, USA. .,Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA. .,Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, 06511, USA.
| |
Collapse
|
31
|
Liu P, Young TZ, Acar M. Yeast Replicator: A High-Throughput Multiplexed Microfluidics Platform for Automated Measurements of Single-Cell Aging. Cell Rep 2015; 13:634-644. [PMID: 26456818 DOI: 10.1016/j.celrep.2015.09.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/12/2015] [Accepted: 09/03/2015] [Indexed: 12/23/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is a model organism for replicative aging studies; however, conventional lifespan measurement platforms have several limitations. Here, we present a microfluidics platform that facilitates simultaneous lifespan and gene expression measurements of aging yeast cells. Our multiplexed high-throughput platform offers the capability to perform independent lifespan experiments using different yeast strains or growth media. Using this platform in minimal media environments containing glucose, we measured the full lifespan of individual yeast cells in wild-type and canonical gene deletion backgrounds. Compared to glucose, in galactose we observed a 16.8% decrease in replicative lifespan accompanied by an ∼2-fold increase in single-cell oxidative stress levels reported by PSOD1-mCherry. Using PGAL1-YFP to measure the activity of the bistable galactose network, we saw that OFF and ON cells are similar in their lifespan. Our work shows that aging cells are committed to a single phenotypic state throughout their lifespan.
Collapse
Affiliation(s)
- Ping Liu
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 840 West Campus Drive, West Haven, CT 06516, USA
| | - Thomas Z Young
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 840 West Campus Drive, West Haven, CT 06516, USA
| | - Murat Acar
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 840 West Campus Drive, West Haven, CT 06516, USA; Department of Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA.
| |
Collapse
|
32
|
Abstract
In growing cells, protein synthesis and cell growth are typically not synchronous, and, thus, protein concentrations vary over the cell division cycle. We have developed a theoretical description of genetic regulatory systems in bacteria that explicitly considers the cell division cycle to investigate its impact on gene expression. We calculate the cell-to-cell variations arising from cells being at different stages in the division cycle for unregulated genes and for basic regulatory mechanisms. These variations contribute to the extrinsic noise observed in single-cell experiments, and are most significant for proteins with short lifetimes. Negative autoregulation buffers against variation of protein concentration over the division cycle, but the effect is found to be relatively weak. Stronger buffering is achieved by an increased protein lifetime. Positive autoregulation can strongly amplify such variation if the parameters are set to values that lead to resonance-like behaviour. For cooperative positive autoregulation, the concentration variation over the division cycle diminishes the parameter region of bistability and modulates the switching times between the two stable states. The same effects are seen for a two-gene mutual-repression toggle switch. By contrast, an oscillatory circuit, the repressilator, is only weakly affected by the division cycle.
Collapse
Affiliation(s)
- Veronika Bierbaum
- IST Austria, A-3400 Klosterneuburg, Austria. Max Planck Institute of Colloids and Interfaces, Science Park Golm, D-14424 Potsdam, Germany
| | | |
Collapse
|
33
|
Different Mechanisms Confer Gradual Control and Memory at Nutrient- and Stress-Regulated Genes in Yeast. Mol Cell Biol 2015; 35:3669-83. [PMID: 26283730 DOI: 10.1128/mcb.00729-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/11/2015] [Indexed: 11/20/2022] Open
Abstract
Cells respond to environmental stimuli by fine-tuned regulation of gene expression. Here we investigated the dose-dependent modulation of gene expression at high temporal resolution in response to nutrient and stress signals in yeast. The GAL1 activity in cell populations is modulated in a well-defined range of galactose concentrations, correlating with a dynamic change of histone remodeling and RNA polymerase II (RNAPII) association. This behavior is the result of a heterogeneous induction delay caused by decreasing inducer concentrations across the population. Chromatin remodeling appears to be the basis for the dynamic GAL1 expression, because mutants with impaired histone dynamics show severely truncated dose-response profiles. In contrast, the GRE2 promoter operates like a rapid off/on switch in response to increasing osmotic stress, with almost constant expression rates and exclusively temporal regulation of histone remodeling and RNAPII occupancy. The Gal3 inducer and the Hog1 mitogen-activated protein (MAP) kinase seem to determine the different dose-response strategies at the two promoters. Accordingly, GAL1 becomes highly sensitive and dose independent if previously stimulated because of residual Gal3 levels, whereas GRE2 expression diminishes upon repeated stimulation due to acquired stress resistance. Our analysis reveals important differences in the way dynamic signals create dose-sensitive gene expression outputs.
Collapse
|
34
|
Armstrong JPK, Shakur R, Horne JP, Dickinson SC, Armstrong CT, Lau K, Kadiwala J, Lowe R, Seddon A, Mann S, Anderson JLR, Perriman AW, Hollander AP. Artificial membrane-binding proteins stimulate oxygenation of stem cells during engineering of large cartilage tissue. Nat Commun 2015; 6:7405. [PMID: 26080734 PMCID: PMC4557285 DOI: 10.1038/ncomms8405] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/06/2015] [Indexed: 01/08/2023] Open
Abstract
Restricted oxygen diffusion can result in central cell necrosis in engineered tissue, a problem that is exacerbated when engineering large tissue constructs for clinical application. Here we show that pre-treating human mesenchymal stem cells (hMSCs) with synthetic membrane-active myoglobin-polymer–surfactant complexes can provide a reservoir of oxygen capable of alleviating necrosis at the centre of hyaline cartilage. This is achieved through the development of a new cell functionalization methodology based on polymer–surfactant conjugation, which allows the delivery of functional proteins to the hMSC membrane. This new approach circumvents the need for cell surface engineering using protein chimerization or genetic transfection, and we demonstrate that the surface-modified hMSCs retain their ability to proliferate and to undergo multilineage differentiation. The functionalization technology is facile, versatile and non-disruptive, and in addition to tissue oxygenation, it should have far-reaching application in a host of tissue engineering and cell-based therapies. Avoiding central cell necrosis at the centre of large engineered tissue constructs is an important issue for in vitro tissue engineering. Here, the authors demonstrate that this problem may be overcome by oxygenating human mesenchymal stem cells with artificial membrane-binding proteins.
Collapse
Affiliation(s)
- James P K Armstrong
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol BS8 1FD, UK.,Centre for Organized Matter Chemistry and Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.,School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Rameen Shakur
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK.,Laboratory for Regenerative Medicine, Department of Surgery, School of Clinical Medicine, University of Cambridge, Cambridge CB2 OQQ, UK.,School of Dentistry and Medicine, University of Central Lancashire, Fylde Road, Preston PR1 2HE, UK
| | - Joseph P Horne
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Sally C Dickinson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | | | - Katherine Lau
- Renishaw plc, Spectroscopy Products Division, Wotton-Under-Edge GL12 7DW, UK
| | - Juned Kadiwala
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK.,Laboratory for Regenerative Medicine, Department of Surgery, School of Clinical Medicine, University of Cambridge, Cambridge CB2 OQQ, UK
| | - Robert Lowe
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Annela Seddon
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol BS8 1FD, UK.,HH Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK
| | - Stephen Mann
- Centre for Organized Matter Chemistry and Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | - Adam W Perriman
- Centre for Organized Matter Chemistry and Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.,School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Anthony P Hollander
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK.,Present address: Institute of Integrative Biology, Biosciences Building, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
35
|
Peng W, Liu P, Xue Y, Acar M. Evolution of gene network activity by tuning the strength of negative-feedback regulation. Nat Commun 2015; 6:6226. [PMID: 25670371 DOI: 10.1038/ncomms7226] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/06/2015] [Indexed: 01/20/2023] Open
Abstract
Despite the examples of protein evolution via mutations in coding sequences, we have very limited understanding on gene network evolution via changes in cis-regulatory elements. Using the galactose network as a model, here we show how the regulatory promoters of the network contribute to the evolved network activity between two yeast species. In Saccharomyces cerevisiae, we combinatorially replace all regulatory network promoters by their counterparts from Saccharomyces paradoxus, measure the resulting network inducibility profiles, and model the results. Lowering relative strength of GAL80-mediated negative feedback by replacing GAL80 promoter is necessary and sufficient to have high network inducibility levels as in S. paradoxus. This is achieved by increasing OFF-to-ON phenotypic switching rates. Competitions performed among strains with or without the GAL80 promoter replacement show strong relationships between network inducibility and fitness. Our results support the hypothesis that gene network activity can evolve by optimizing the strength of negative-feedback regulation.
Collapse
Affiliation(s)
- Weilin Peng
- 1] Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, USA [2] Systems Biology Institute, Yale University, 840 West Campus Drive, West Haven, Connecticut 06516, USA
| | - Ping Liu
- 1] Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, USA [2] Systems Biology Institute, Yale University, 840 West Campus Drive, West Haven, Connecticut 06516, USA
| | - Yuan Xue
- 1] Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, USA [2] Systems Biology Institute, Yale University, 840 West Campus Drive, West Haven, Connecticut 06516, USA
| | - Murat Acar
- 1] Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, USA [2] Systems Biology Institute, Yale University, 840 West Campus Drive, West Haven, Connecticut 06516, USA [3] Department of Physics, Yale University, 217 Prospect Street, New Haven, Connecticut 06511, USA
| |
Collapse
|
36
|
Venturelli OS, Zuleta I, Murray RM, El-Samad H. Population diversification in a yeast metabolic program promotes anticipation of environmental shifts. PLoS Biol 2015; 13:e1002042. [PMID: 25626086 PMCID: PMC4307983 DOI: 10.1371/journal.pbio.1002042] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/03/2014] [Indexed: 01/28/2023] Open
Abstract
Detailed study of the dynamic response of yeast to combinations of sugars reveals an anticipatory population diversification strategy that allows rapid adaptation to shifts in environmental carbon source availability. To survive in resource-limited and dynamic environments, microbial populations implement a diverse repertoire of regulatory strategies. These strategies often rely on anticipating impending environmental shifts, enabling the population to be prepared for a future change in conditions. It has long been known that cells optimize nutritional value from mixtures of carbon sources, for example glucose and galactose, by sequential activation of regulatory programs that allow for metabolizing the preferred carbon source first before metabolizing the secondary carbon source. Using automated flow-cytometry, we mapped the dynamical behavior of populations simultaneously presented with a large panel of different glucose and galactose concentrations. We show that, counter to expectations, in populations presented with glucose and galactose simultaneously, the galactose regulatory pathway is activated in a fraction of the cell population hours before glucose is fully consumed. We demonstrate that the size of this fraction of cells is tuned by the concentration of the two sugars. This population diversification may constitute a tradeoff between the benefit of rapid galactose consumption once glucose is depleted and the cost of expressing the galactose pathway. Delineating the strategies by which cells contend with combinatorial changing environments is crucial for understanding cellular regulatory organization. When presented with two carbon sources, microorganisms first consume the carbon substrate that supports the highest growth rate (e.g., glucose) and then switch to the secondary carbon source (e.g., galactose), a paradigm known as the Monod model. Sequential sugar utilization has been attributed to transcriptional repression of the secondary metabolic pathway, followed by activation of this pathway upon depletion of the preferred carbon source. In this work, we demonstrate that although Saccharomyces cerevisiae cells consume glucose before galactose, the galactose regulatory pathway is activated in a fraction of the cell population hours before glucose is fully consumed. This early activation reduces the time required for the population to transition between the two metabolic programs and provides a fitness advantage that might be crucial in competitive environments.
Collapse
Affiliation(s)
- Ophelia S. Venturelli
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- The California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
| | - Ignacio Zuleta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- The California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
| | - Richard M. Murray
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Hana El-Samad
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- The California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
37
|
Wang J, Atolia E, Hua B, Savir Y, Escalante-Chong R, Springer M. Natural variation in preparation for nutrient depletion reveals a cost-benefit tradeoff. PLoS Biol 2015; 13:e1002041. [PMID: 25626068 PMCID: PMC4308108 DOI: 10.1371/journal.pbio.1002041] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 12/03/2014] [Indexed: 11/18/2022] Open
Abstract
Yeast can anticipate the depletion of a preferred nutrient by preemptively activating genes for alternative nutrients; the degree of this preparation varies across natural strains and is subject to a fitness tradeoff. Maximizing growth and survival in the face of a complex, time-varying environment is a common problem for single-celled organisms in the wild. When offered two different sugars as carbon sources, microorganisms first consume the preferred sugar, then undergo a transient growth delay, the “diauxic lag,” while inducing genes to metabolize the less preferred sugar. This delay is commonly assumed to be an inevitable consequence of selection to maximize use of the preferred sugar. Contrary to this view, we found that many natural isolates of Saccharomyces cerevisiae display short or nonexistent diauxic lags when grown in mixtures of glucose (preferred) and galactose. These strains induce galactose utilization (GAL) genes hours before glucose exhaustion, thereby “preparing” for the transition from glucose to galactose metabolism. The extent of preparation varies across strains, and seems to be determined by the steady-state response of GAL genes to mixtures of glucose and galactose rather than by induction kinetics. Although early GAL gene induction gives strains a competitive advantage once glucose runs out, it comes at a cost while glucose is still present. Costs and benefits correlate with the degree of preparation: strains with higher expression of GAL genes prior to glucose exhaustion experience a larger upfront growth cost but also a shorter diauxic lag. Our results show that classical diauxic growth is only one extreme on a continuum of growth strategies constrained by a cost–benefit tradeoff. This type of continuum is likely to be common in nature, as similar tradeoffs can arise whenever cells evolve to use mixtures of nutrients. When microorganisms encounter multiple sugars, they often consume a preferred sugar (such as glucose) before consuming alternative sugars (such as galactose). In experiments on laboratory strains of yeast, cells typically stop growing when the preferred sugar runs out, and start growing again only after taking time to turn on genes for alternative sugar utilization. This pause in growth, the “diauxic lag,” is a classic example of the ability of cells to make decisions based on environmental signals. Here we find, however, that when different natural yeast strains are grown in a mix of glucose and galactose, some strains do not exhibit a diauxic lag, or have a very short one. These “short lag” strains are able to turn on galactose utilization—or GAL—genes up to four hours before the glucose runs out, in effect preparing for the transition to galactose consumption. Although such preparation helps strains avoid the diauxic lag, it causes them to grow slower before glucose runs out, presumably because of the metabolic burden of expressing GAL genes. These observations suggest that microbes in nature may commonly face a tradeoff between growing efficiently on their preferred nutrient and being ready to consume alternative nutrients should the preferred nutrient run out.
Collapse
Affiliation(s)
- Jue Wang
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Systems Biology Graduate Program, Harvard University, Cambridge, Massachusetts, United States of America
| | - Esha Atolia
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bo Hua
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Systems Biology Graduate Program, Harvard University, Cambridge, Massachusetts, United States of America
| | - Yonatan Savir
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Renan Escalante-Chong
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Systems Biology Graduate Program, Harvard University, Cambridge, Massachusetts, United States of America
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
38
|
Galactose metabolic genes in yeast respond to a ratio of galactose and glucose. Proc Natl Acad Sci U S A 2015; 112:1636-41. [PMID: 25605920 DOI: 10.1073/pnas.1418058112] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Natural environments are filled with multiple, often competing, signals. In contrast, biological systems are often studied in "well-controlled" environments where only a single input is varied, potentially missing important interactions between signals. Catabolite repression of galactose by glucose is one of the best-studied eukaryotic signal integration systems. In this system, it is believed that galactose metabolic (GAL) genes are induced only when glucose levels drop below a threshold. In contrast, we show that GAL gene induction occurs at a constant external galactose:glucose ratio across a wide range of sugar concentrations. We systematically perturbed the components of the canonical galactose/glucose signaling pathways and found that these components do not account for ratio sensing. Instead we provide evidence that ratio sensing occurs upstream of the canonical signaling pathway and results from the competitive binding of the two sugars to hexose transporters. We show that a mutant that behaves as the classical model expects (i.e., cannot use galactose above a glucose threshold) has a fitness disadvantage compared with wild type. A number of common biological signaling motifs can give rise to ratio sensing, typically through negative interactions between opposing signaling molecules. We therefore suspect that this previously unidentified nutrient sensing paradigm may be common and overlooked in biology.
Collapse
|
39
|
Murakami Y, Matsumoto Y, Tsuru S, Ying BW, Yomo T. Global coordination in adaptation to gene rewiring. Nucleic Acids Res 2015; 43:1304-16. [PMID: 25564530 PMCID: PMC4333410 DOI: 10.1093/nar/gku1366] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Gene rewiring is a common evolutionary phenomenon in nature that may lead to extinction for living organisms. Recent studies on synthetic biology demonstrate that cells can survive genetic rewiring. This survival (adaptation) is often linked to the stochastic expression of rewired genes with random transcriptional changes. However, the probability of adaptation and the underlying common principles are not clear. We performed a systematic survey of an assortment of gene-rewired Escherichia coli strains to address these questions. Three different cell fates, designated good survivors, poor survivors and failures, were observed when the strains starved. Large fluctuations in the expression of the rewired gene were commonly observed with increasing cell size, but these changes were insufficient for adaptation. Cooperative reorganizations in the corresponding operon and genome-wide gene expression largely contributed to the final success. Transcriptome reorganizations that generally showed high-dimensional dynamic changes were restricted within a one-dimensional trajectory for adaptation to gene rewiring, indicating a general path directed toward cellular plasticity for a successful cell fate. This finding of global coordination supports a mechanism of stochastic adaptation and provides novel insights into the design and application of complex genetic or metabolic networks.
Collapse
Affiliation(s)
- Yoshie Murakami
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuki Matsumoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Saburo Tsuru
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Bei-Wen Ying
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Tetsuya Yomo
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| |
Collapse
|
40
|
Stockwell SR, Landry CR, Rifkin SA. The yeast galactose network as a quantitative model for cellular memory. MOLECULAR BIOSYSTEMS 2014; 11:28-37. [PMID: 25328105 DOI: 10.1039/c4mb00448e] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent experiments have revealed surprising behavior in the yeast galactose (GAL) pathway, one of the preeminent systems for studying gene regulation. Under certain circumstances, yeast cells display memory of their prior nutrient environments. We distinguish two kinds of cellular memory discovered by quantitative investigations of the GAL network and present a conceptual framework for interpreting new experiments and current ideas on GAL memory. Reinduction memory occurs when cells respond transcriptionally to one environment, shut down the response during several generations in a second environment, then respond faster and with less cell-to-cell variation when returned to the first environment. Persistent memory describes a long-term, arguably stable response in which cells adopt a bimodal or unimodal distribution of induction levels depending on their preceding environment. Deep knowledge of how the yeast GAL pathway responds to different sugar environments has enabled rapid progress in uncovering the mechanisms behind GAL memory, which include cytoplasmic inheritance of inducer proteins and positive feedback loops among regulatory genes. This network of genes, long used to study gene regulation, is now emerging as a model system for cellular memory.
Collapse
Affiliation(s)
- Sarah R Stockwell
- Section of Ecology, Behavior, and Evolution, Division of Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA.
| | | | | |
Collapse
|
41
|
Robb ML, Shahrezaei V. Stochastic cellular fate decision making by multiple infecting lambda phage. PLoS One 2014; 9:e103636. [PMID: 25105971 PMCID: PMC4126663 DOI: 10.1371/journal.pone.0103636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/29/2014] [Indexed: 11/19/2022] Open
Abstract
Bacteriophage lambda is a classic system for the study of cellular decision making. Both experiments and mathematical models have demonstrated the importance of viral concentration in the lysis-lysogeny decision outcome in lambda phage. However, a recent experimental study using single cell and single phage resolution reported that cells with the same viral concentrations but different numbers of infecting phage (multiplicity of infection) can have markedly different rates of lysogeny. Thus the decision depends on not only viral concentration, but also directly on the number of infecting phage. Here, we attempt to provide a mechanistic explanation of these results using a simple stochastic model of the lambda phage genetic network. Several potential factors including intrinsic gene expression noise, spatial dynamics and cell-cycle effects are investigated. We find that interplay between the level of intrinsic noise and viral protein decision threshold is a major factor that produces dependence on multiplicity of infection. However, simulations suggest spatial segregation of phage particles does not play a significant role. Cellular image processing is used to re-analyse the original time-lapse movies from the recent study and it is found that higher numbers of infecting phage reduce the cell elongation rate. This could also contribute to the observed phenomena as cellular growth rate can affect transcription rates. Our model further predicts that rate of lysogeny is dependent on bacterial growth rate, which can be experimentally tested. Our study provides new insight on the mechanisms of individual phage decision making. More generally, our results are relevant for the understanding of gene-dosage compensation in cellular systems.
Collapse
Affiliation(s)
- Matthew L. Robb
- Department of Mathematics, Imperial College, London, United Kingdom
| | - Vahid Shahrezaei
- Department of Mathematics, Imperial College, London, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Kar RK, Qureshi MT, DasAdhikari AK, Zahir T, Venkatesh KV, Bhat PJ. Stochastic galactokinase expression underlies GAL gene induction in a GAL3 mutant of Saccharomyces cerevisiae. FEBS J 2014; 281:1798-817. [PMID: 24785355 DOI: 10.1111/febs.12741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
GAL1 and GAL3 are paralogous signal transducers that functionally inactivate Gal80p to activate the Gal4p-dependent transcriptional activation of GAL genes in Saccharomyces cerevisiae in response to galactose. Unlike a wild-type strain, the gal3∆ strain shows delayed growth kinetics as a result of the signaling function of GAL1. The mechanism ensuring that GAL1 is eventually expressed to turn on the GAL switch in the gal3∆ strain remains a paradox. Using galactose and histidine growth complementation assays, we demonstrate that 0.3% of the gal3∆ cell population responds to galactose. This is corroborated by flow cytometry and microscopic analysis. The galactose responders and nonresponders isolated from the galactose-adapted population attain the original bimodal state and this phenotype is found to be as hard wired as a genetic trait. Computational analysis suggests that the log-normal distribution in GAL4 synthesis can lead to bimodal expression of GAL80, resulting in the bimodal expression of GAL genes. Heterozygosity at the GAL80 but not at the GAL1, GAL2 or GAL4 locus alters the extent of bimodality of the gal3∆ cell population. We suggest that the asymmetric expression pattern between GAL1 and GAL3 results in the ability of S. cerevisiae to activate the GAL pathway by conferring nongenetic heterogeneity.
Collapse
Affiliation(s)
- Rajesh Kumar Kar
- Molecular Genetics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | | | | | | | | |
Collapse
|
43
|
Song R, Liu P, Acar M. Network-dosage compensation topologies as recurrent network motifs in natural gene networks. BMC SYSTEMS BIOLOGY 2014; 8:69. [PMID: 24929807 PMCID: PMC4071340 DOI: 10.1186/1752-0509-8-69] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/09/2014] [Indexed: 11/14/2022]
Abstract
Background Global noise in gene expression and chromosome duplication during cell-cycle progression cause inevitable fluctuations in the effective number of copies of gene networks in cells. These indirect and direct alterations of network copy numbers have the potential to change the output or activity of a gene network. For networks whose specific activity levels are crucial for optimally maintaining cellular functions, cells need to implement mechanisms to robustly compensate the effects of network dosage fluctuations. Results Here, we determine the necessary conditions for generalized N-component gene networks to be network-dosage compensated and show that the compensation mechanism can robustly operate over large ranges of gene expression levels. Furthermore, we show that the conditions that are necessary for network-dosage compensation are also sufficient. Finally, using genome-wide protein-DNA and protein-protein interaction data, we search the yeast genome for the abundance of specific dosage-compensation motifs and show that a substantial percentage of the natural networks identified contain at least one dosage-compensation motif. Conclusions Our results strengthen the hypothesis that the special network topologies that are necessary for network-dosage compensation may be recurrent network motifs in eukaryotic genomes and therefore may be an important design principle in gene network assembly in cells.
Collapse
Affiliation(s)
| | | | - Murat Acar
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect Street, P,O, Box 27391, New Haven, CT 06511, USA.
| |
Collapse
|
44
|
Neumann S, Løvdok L, Bentele K, Meisig J, Ullner E, Paldy FS, Sourjik V, Kollmann M. Exponential signaling gain at the receptor level enhances signal-to-noise ratio in bacterial chemotaxis. PLoS One 2014; 9:e87815. [PMID: 24736435 PMCID: PMC3988002 DOI: 10.1371/journal.pone.0087815] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 01/01/2014] [Indexed: 11/18/2022] Open
Abstract
Cellular signaling systems show astonishing precision in their response to external stimuli despite strong fluctuations in the molecular components that determine pathway activity. To control the effects of noise on signaling most efficiently, living cells employ compensatory mechanisms that reach from simple negative feedback loops to robustly designed signaling architectures. Here, we report on a novel control mechanism that allows living cells to keep precision in their signaling characteristics – stationary pathway output, response amplitude, and relaxation time – in the presence of strong intracellular perturbations. The concept relies on the surprising fact that for systems showing perfect adaptation an exponential signal amplification at the receptor level suffices to eliminate slowly varying multiplicative noise. To show this mechanism at work in living systems, we quantified the response dynamics of the E. coli chemotaxis network after genetically perturbing the information flux between upstream and downstream signaling components. We give strong evidence that this signaling system results in dynamic invariance of the activated response regulator against multiplicative intracellular noise. We further demonstrate that for environmental conditions, for which precision in chemosensing is crucial, the invariant response behavior results in highest chemotactic efficiency. Our results resolve several puzzling features of the chemotaxis pathway that are widely conserved across prokaryotes but so far could not be attributed any functional role.
Collapse
Affiliation(s)
- Silke Neumann
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Linda Løvdok
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Kajetan Bentele
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Johannes Meisig
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Ekkehard Ullner
- Department of Physics and Institute for Complex Systems and Mathematical Biology (ICSMB), Aberdeen, United Kingdom
| | - Ferencz S. Paldy
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Victor Sourjik
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Markus Kollmann
- Department Biologie, Heinrich-Heine-Universität, Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
45
|
Suppression of expression between adjacent genes within heterologous modules in yeast. G3-GENES GENOMES GENETICS 2014; 4:109-16. [PMID: 24281423 PMCID: PMC3887525 DOI: 10.1534/g3.113.007922] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent studies have shown that proximal arrangement of multiple genes can have complex effects on gene expression. For example, in the case of heterologous gene expression modules, certain arrangements of the selection marker and the gene expression cassette may have unintended consequences that limit the predictability and interpretability of module behaviors. The relationship between arrangement and expression has not been systematically characterized within heterologous modules to date. In this study, we quantitatively measured gene expression patterns of the selection marker (KlURA3 driven by the promoter, pKlURA) and the gene expression cassette (GFP driven by the galactose-inducible GAL1 promoter, pGAL1) in all their possible relative arrangements in Saccharomyces cerevisiae. First, we observed that pKlURA activity depends strongly on the relative arrangement and the activity of pGAL1. Most notably, we observed transcriptional suppression in the case of divergent arrangements: pKlURA activity was reduced when pGAL1 was inactive. Based on our nucleosome occupancy data, we attribute the observed transcriptional reduction to nucleosome repositioning. Second, we observed that pGAL1 activity also depends on the relative arrangement of pKlURA. In particular, strains with divergent promoters showed significantly different pGAL1 activation patterns from other strains, but only when their growth was compromised by lack of uracil. We reasoned that this difference in pGAL1 activation patterns arises from arrangement-dependent pKlURA activity that can affect the overall cell physiology (i.e., cell growth and survival in the uracil-depleted condition). Our results underscore the necessity to consider ramifications of promoter arrangement when using synthetic gene expression modules.
Collapse
|
46
|
Hether TD, Hohenlohe PA. Genetic regulatory network motifs constrain adaptation through curvature in the landscape of mutational (co)variance. Evolution 2013; 68:950-64. [PMID: 24219635 DOI: 10.1111/evo.12313] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 10/29/2013] [Indexed: 01/02/2023]
Abstract
Systems biology is accumulating a wealth of understanding about the structure of genetic regulatory networks, leading to a more complete picture of the complex genotype-phenotype relationship. However, models of multivariate phenotypic evolution based on quantitative genetics have largely not incorporated a network-based view of genetic variation. Here we model a set of two-node, two-phenotype genetic network motifs, covering a full range of regulatory interactions. We find that network interactions result in different patterns of mutational (co)variance at the phenotypic level (the M-matrix), not only across network motifs but also across phenotypic space within single motifs. This effect is due almost entirely to mutational input of additive genetic (co)variance. Variation in M has the effect of stretching and bending phenotypic space with respect to evolvability, analogous to the curvature of space-time under general relativity, and similar mathematical tools may apply in each case. We explored the consequences of curvature in mutational variation by simulating adaptation under divergent selection with gene flow. Both standing genetic variation (the G-matrix) and rate of adaptation are constrained by M, so that G and adaptive trajectories are curved across phenotypic space. Under weak selection the phenotypic mean at migration-selection balance also depends on M.
Collapse
Affiliation(s)
- Tyler D Hether
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, 83844-3051
| | | |
Collapse
|
47
|
Niesner B, Maheshri N. Using the cre-lox system to randomize target gene expression states and generate diverse phenotypes. Biotechnol Bioeng 2013; 110:2677-86. [DOI: 10.1002/bit.24952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/03/2013] [Accepted: 04/22/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Bradley Niesner
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge; Massachusetts; 02139
| | - Narendra Maheshri
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge; Massachusetts; 02139
| |
Collapse
|
48
|
Abstract
The deleterious effects of different X-chromosome dosage in males and females are buffered by a process called dosage compensation, which in Drosophila is achieved through a doubling of X-linked transcription in males. The male-specific lethal complex mediates this process, but is known to act only after gastrulation. Recent work has shown that the transcription of X-linked genes is also upregulated in males prior to gastrulation; whether it results in functional dosage compensation is not known. Absent or partial early dosage compensation raises the possibility of sex-biased expression of key developmental genes, such as the segmentation genes controlling anteroposterior patterning. We assess the functional output of early dosage compensation by measuring the expression of even-skipped (eve) with high spatiotemporal resolution in male and female embryos. We show that eve has a sexually dimorphic pattern, suggesting an interaction with either X-chromosome dose or the sex determination system. By manipulating the gene copy number of an X-linked transcription factor, giant (gt), we traced sex-biased eve patterning to gt dose, indicating that early dosage compensation is functionally incomplete. Despite sex-biased eve expression, the gene networks downstream of eve are able to produce sex-independent segmentation, a point that we establish by measuring the proportions of segments in elongated germ-band embryos. Finally, we use a whole-locus eve transgene with modified cis regulation to demonstrate that segment proportions have a sex-dependent sensitivity to subtle changes in Eve expression. The sex independence of downstream segmentation despite this sensitivity to Eve expression implies that additional autosomal gene- or pathway-specific mechanisms are required to ameliorate the effects of partial early dosage compensation.
Collapse
|
49
|
Estrada J, Guantes R. Dynamic and structural constraints in signal propagation by regulatory networks. ACTA ACUST UNITED AC 2013; 9:268-84. [DOI: 10.1039/c2mb25243k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
50
|
Escape from Adaptive Conflict follows from weak functional trade-offs and mutational robustness. Proc Natl Acad Sci U S A 2012; 109:14888-93. [PMID: 22927372 DOI: 10.1073/pnas.1115620109] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A fundamental question in molecular evolution is how proteins can adapt to new functions while being conserved for an existing function at the same time. Several theoretical models have been put forward to explain this apparent paradox. The most popular models include neofunctionalization, subfunctionalization (SUBF) by degenerative mutations, and dosage models. All of these models focus on adaptation after gene duplication. A newly proposed model named "Escape from Adaptive Conflict" (EAC) includes adaptive processes before and after gene duplication that lead to multifunctional proteins, and divergence (SUBF). Support for the importance of multifunctionality for the evolution of new protein functions comes from two experimental observations. First, many enzymes have highly evolvable promiscuous side activities. Second, different structural states of the same protein can be associated with different functions. How these observations may be related to the EAC model, under which conditions EAC is possible, and how the different models relate to each other is still unclear. Here, we present a theoretical framework that uses biophysical principles to infer the roles of functional promiscuity, gene dosage, gene duplication, point mutations, and selection pressures in the evolution of proteins. We find that selection pressures can determine whether neofunctionalization or SUBF is the more likely evolutionary process. Multifunctional proteins, arising during EAC evolution, allow rapid adaptation independent of gene duplication. This becomes a crucial advantage when gene duplications are rare. Finally, we propose that an increase in mutational robustness, not necessarily functional optimization, can be the sole driving force behind SUBF.
Collapse
|