1
|
E S, Vega F, Khanlari M, Fang H, Xu J, Li S, Hu S, Wang SA, Wei Q, Wang WJ, Medeiros LJ, Wang W. BCL11B helps to define T-lineage in lymphomas/leukaemias with a mixed/ambiguous immunophenotype. Pathology 2025:S0031-3025(25)00130-8. [PMID: 40318959 DOI: 10.1016/j.pathol.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/05/2025] [Accepted: 01/28/2025] [Indexed: 05/07/2025]
Abstract
BCL11B is a pan-T-cell transcription factor that plays a pivotal role in guiding T-cell differentiation and maturation. BCL11B is lineage specific, and its expression is confined to T cells; B, NK and myeloid cells are usually negative. In this study, we aim to explore the value of BCL11B in the diagnosis and differential diagnosis of lymphomas/leukaemias exhibiting an ambiguous immunophenotype or which simultaneously express both T- and B-cell markers. The study cohort included 23 cases with a mixed/ambiguous immunophenotype, including five cases of T-lymphoblastic leukaemia (T-ALL) with B-marker expression, 10 mature T-cell lymphomas either with B-marker expression or lacking the expression of most T markers, three diffuse large B-cell lymphomas with T-marker expression, one classic Hodgkin lymphoma positive for T-cell antigens, and four plasma cell neoplasms expressing T markers. Immunohistochemistry (IHC) analysis for BCL11B was performed using formalin-fixed, paraffin-embedded tissue sections. All five cases of T-ALL were positive for BCL11B, confirming T-lineage. Amongst 10 cases of mature T-cell lymphoma, eight were BCL11 positive, and the remaining two BCL11B-negative cases were anaplastic large-cell lymphoma (ALCL). All cases of B-cell lymphoma, classic Hodgkin lymphoma, and plasma cell neoplasm were negative for BCL11B, consistent with their non-T-lineage. In conclusion, BCL11B IHC is valuable in designating T-lineage in neoplasms with a mixed/ambiguous immunophenotype. As observed in this study, BCL11B expression is highly specific for T-cell lineage. Of note, the absence of BCL11B does not completely exclude a diagnosis of T-cell lymphoma or leukaemia, especially in cases with a potential diagnosis of ALCL.
Collapse
Affiliation(s)
- Shuyu E
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mahsa Khanlari
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Hong Fang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shimin Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qing Wei
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei J Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Trujillo-Ochoa JL, Kazemian M, Afzali B. The role of transcription factors in shaping regulatory T cell identity. Nat Rev Immunol 2023; 23:842-856. [PMID: 37336954 PMCID: PMC10893967 DOI: 10.1038/s41577-023-00893-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
Forkhead box protein 3-expressing (FOXP3+) regulatory T cells (Treg cells) suppress conventional T cells and are essential for immunological tolerance. FOXP3, the master transcription factor of Treg cells, controls the expression of multiples genes to guide Treg cell differentiation and function. However, only a small fraction (<10%) of Treg cell-associated genes are directly bound by FOXP3, and FOXP3 alone is insufficient to fully specify the Treg cell programme, indicating a role for other accessory transcription factors operating upstream, downstream and/or concurrently with FOXP3 to direct Treg cell specification and specialized functions. Indeed, the heterogeneity of Treg cells can be at least partially attributed to differential expression of transcription factors that fine-tune their trafficking, survival and functional properties, some of which are niche-specific. In this Review, we discuss the emerging roles of accessory transcription factors in controlling Treg cell identity. We specifically focus on members of the basic helix-loop-helix family (AHR), basic leucine zipper family (BACH2, NFIL3 and BATF), CUT homeobox family (SATB1), zinc-finger domain family (BLIMP1, Ikaros and BCL-11B) and interferon regulatory factor family (IRF4), as well as lineage-defining transcription factors (T-bet, GATA3, RORγt and BCL-6). Understanding the imprinting of Treg cell identity and specialized function will be key to unravelling basic mechanisms of autoimmunity and identifying novel targets for drug development.
Collapse
Affiliation(s)
- Jorge L Trujillo-Ochoa
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
3
|
Forkel H, Grabarczyk P, Depke M, Troschke-Meurer S, Simm S, Hammer E, Michalik S, Hentschker C, Corleis B, Loyal L, Zumpe M, Siebert N, Dorhoi A, Thiel A, Lode H, Völker U, Schmidt CA. BCL11B depletion induces the development of highly cytotoxic innate T cells out of IL-15 stimulated peripheral blood αβ CD8+ T cells. Oncoimmunology 2022; 11:2148850. [PMID: 36507091 PMCID: PMC9728472 DOI: 10.1080/2162402x.2022.2148850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BCL11B, an essential transcription factor for thymopoiesis, regulates also vital processes in post-thymic lymphocytes. Increased expression of BCL11B was recently correlated with the maturation of NK cells, whereas reduced BCL11B levels were observed in native and induced T cell subsets displaying NK cell features. We show that BCL11B-depleted CD8+ T cells stimulated with IL-15 acquired remarkable innate characteristics. These induced innate CD8+ (iiT8) cells expressed multiple innate receptors like NKp30, CD161, and CD16 as well as factors regulating migration and tissue homing while maintaining their T cell phenotype. The iiT8 cells effectively killed leukemic cells spontaneously and neuroblastoma spheroids in the presence of a tumor-specific monoclonal antibody mediated by CD16 receptor activation. These iiT8 cells integrate the innate natural killer cell activity with adaptive T cell longevity, promising an interesting therapeutic potential. Our study demonstrates that innate T cells, albeit of limited clinical applicability given their low frequency, can be efficiently generated from peripheral blood and applied for adoptive transfer, CAR therapy, or combined with therapeutic antibodies.
Collapse
Affiliation(s)
- Hannes Forkel
- Internal Medicine Clinic C, University Medicine Greifswald, Greifswald, Germany
| | - Piotr Grabarczyk
- Internal Medicine Clinic C, University Medicine Greifswald, Greifswald, Germany
| | - Maren Depke
- Internal Medicine Clinic C, University Medicine Greifswald, Greifswald, Germany
| | - Sascha Troschke-Meurer
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Christian Hentschker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Björn Corleis
- Institute for Immunology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Lucie Loyal
- Si-M/“Der Simulierte Mensch” a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Maxi Zumpe
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Nikolai Siebert
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Anca Dorhoi
- Institute for Immunology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Andreas Thiel
- Si-M/“Der Simulierte Mensch” a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Holger Lode
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Christian A. Schmidt
- Internal Medicine Clinic C, University Medicine Greifswald, Greifswald, Germany,CONTACT Christian A. Schmidt Internal Medicine Clinic C, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Abstract
Arterial stiffness, a leading marker of risk in hypertension, can be measured at material or structural levels, with the latter combining effects of the geometry and composition of the wall, including intramural organization. Numerous studies have shown that structural stiffness predicts outcomes in models that adjust for conventional risk factors. Elastic arteries, nearer to the heart, are most sensitive to effects of blood pressure and age, major determinants of stiffness. Stiffness is usually considered as an index of vascular aging, wherein individuals excessively affected by risk factor exposure represent early vascular aging, whereas those resistant to risk factors represent supernormal vascular aging. Stiffness affects the function of the brain and kidneys by increasing pulsatile loads within their microvascular beds, and the heart by increasing left ventricular systolic load; excessive pressure pulsatility also decreases diastolic pressure, necessary for coronary perfusion. Stiffness promotes inward remodeling of small arteries, which increases resistance, blood pressure, and in turn, central artery stiffness, thus creating an insidious feedback loop. Chronic antihypertensive treatments can reduce stiffness beyond passive reductions due to decreased blood pressure. Preventive drugs, such as lipid-lowering drugs and antidiabetic drugs, have additional effects on stiffness, independent of pressure. Newer anti-inflammatory drugs also have blood pressure independent effects. Reduction of stiffness is expected to confer benefit beyond the lowering of pressure, although this hypothesis is not yet proven. We summarize different steps for making arterial stiffness measurement a keystone in hypertension management and cardiovascular prevention as a whole.
Collapse
Affiliation(s)
- Pierre Boutouyrie
- Faculté de Médecine, Université de Paris, INSERM U970, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, France (P.B.)
| | - Phil Chowienczyk
- King's College London British Heart Foundation Centre, Department of Clinical Pharmacology, St Thomas' Hospital, London, United Kingdom (P.C.)
| | - Jay D Humphrey
- Department of Biomedical Engineering and Vascular Biology and Therapeutics Program, Yale University, New Haven, CT (J.D.H.)
| | | |
Collapse
|
5
|
Dolens A, Durinck K, Lavaert M, Van der Meulen J, Velghe I, De Medts J, Weening K, Roels J, De Mulder K, Volders P, De Preter K, Kerre T, Vandekerckhove B, Leclercq G, Vandesompele J, Mestdagh P, Van Vlierberghe P, Speleman F, Taghon T. Distinct Notch1 and BCL11B requirements mediate human γδ/αβ T cell development. EMBO Rep 2020; 21:e49006. [PMID: 32255245 PMCID: PMC7202205 DOI: 10.15252/embr.201949006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 12/22/2022] Open
Abstract
γδ and αβ T cells have unique roles in immunity and both originate in the thymus from T-lineage committed precursors through distinct but unclear mechanisms. Here, we show that Notch1 activation is more stringently required for human γδ development compared to αβ-lineage differentiation and performed paired mRNA and miRNA profiling across 11 discrete developmental stages of human T cell development in an effort to identify the potential Notch1 downstream mechanism. Our data suggest that the miR-17-92 cluster is a Notch1 target in immature thymocytes and that miR-17 can restrict BCL11B expression in these Notch-dependent T cell precursors. We show that enforced miR-17 expression promotes human γδ T cell development and, consistently, that BCL11B is absolutely required for αβ but less for γδ T cell development. This study suggests that human γδ T cell development is mediated by a stage-specific Notch-driven negative feedback loop through which miR-17 temporally restricts BCL11B expression and provides functional insights into the developmental role of the disease-associated genes BCL11B and the miR-17-92 cluster in a human context.
Collapse
Affiliation(s)
| | - Kaat Durinck
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Marieke Lavaert
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | | | - Imke Velghe
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | - Jelle De Medts
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | - Karin Weening
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | - Juliette Roels
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | | | | | | | - Tessa Kerre
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | | | | | - Jo Vandesompele
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Pieter Mestdagh
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | | | - Frank Speleman
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Tom Taghon
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| |
Collapse
|
6
|
Hasan SN, Sharma A, Ghosh S, Hong SW, Roy-Chowdhuri S, Im SH, Kang K, Rudra D. Bcl11b prevents catastrophic autoimmunity by controlling multiple aspects of a regulatory T cell gene expression program. SCIENCE ADVANCES 2019; 5:eaaw0706. [PMID: 31457081 PMCID: PMC6685721 DOI: 10.1126/sciadv.aaw0706] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/26/2019] [Indexed: 05/15/2023]
Abstract
Foxp3 and its protein partners establish a regulatory T (Treg) cell transcription profile and promote immunological tolerance. However, molecular features contributing to a Treg-specific gene expression program are still incompletely understood. We find that the transcription factor Bcl11b is a prominent Foxp3 cofactor with multifaceted functions in Treg biology. Optimal genomic recruitment of Foxp3 and Bcl11b is critically interdependent. Genome-wide occupancy studies coupled with gene expression profiling reveal that Bcl11b, in association with Foxp3, is primarily responsible in establishing a Treg-specific gene activation program. Furthermore, Bcl11b restricts misdirected recruitment of Foxp3 to sites, which would otherwise result in an altered Treg transcriptome profile. Consequently, Treg-specific ablation of Bcl11b results in marked breakdown of immune tolerance, leading to aggressive systemic autoimmunity. Our study provides previously underappreciated mechanistic insights into molecular events contributing to basic aspects of Treg function. Furthermore, it establishes a therapeutic target with potential implications in autoimmunity and cancer.
Collapse
Affiliation(s)
- Syed Nurul Hasan
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Amit Sharma
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sayantani Ghosh
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sung-Wook Hong
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Sinchita Roy-Chowdhuri
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sin-Hyeog Im
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan 31116, Republic of Korea
| | - Dipayan Rudra
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Corresponding author.
| |
Collapse
|
7
|
Fu W, Yi S, Qiu L, Sun J, Tu P, Wang Y. BCL11B-Mediated Epigenetic Repression Is a Crucial Target for Histone Deacetylase Inhibitors in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2017; 137:1523-1532. [PMID: 28288848 DOI: 10.1016/j.jid.2017.02.980] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/13/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
Abstract
The treatment options for advanced cutaneous T-cell lymphoma (CTCL) are limited because of its unclear pathogenesis. Histone deacetylase (HDAC) inhibitors (HDACis) are recently developed therapeutics approved for refractory CTCL. However, the response rate is relatively low and unpredictable. Previously, we discovered that BCL11B, a key T-cell development regulator, was aberrantly overexpressed in mycosis fungoides, the most common CTCL, as compared with benign inflammatory skin. In this study, we identified a positive correlation between BCL11B expression and sensitivity to HDACi in CTCL lines. BCL11B suppression in BCL11B-high cells induced cell apoptosis by de-repressing apoptotic pathways and showed synergistic effects with suberoylanilide hydroxamic acid (SAHA), a pan-HDACi. Next, we identified the physical interaction and shared downstream genes between BCL11B and HDAC1/2 in CTCL lines. This interaction was essential in the anti-apoptosis effect of BCL11B, and the synergism between BCL11B suppression and HDACi treatment. Further, in clinical samples from 46 mycosis fungoides patients, BCL11B showed increased but varied expression in advanced tumor stage. Analysis of four patients receiving SAHA treatment suggested a positive correlation between BCL11B expression and favorable response to SAHA treatment. In conclusion, BCL11B may serve as a therapeutic target and a useful marker for improving HDACi efficacy in advanced CTCL.
Collapse
Affiliation(s)
- Wenjing Fu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China; Department of Dermatology and Venerology, Binzhou Medical University Hospital, Binzhou, China
| | - Shengguo Yi
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Lei Qiu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Jingru Sun
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Ping Tu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Yang Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
8
|
Dubuissez M, Loison I, Paget S, Vorng H, Ait-Yahia S, Rohr O, Tsicopoulos A, Leprince D. Protein Kinase C-Mediated Phosphorylation of BCL11B at Serine 2 Negatively Regulates Its Interaction with NuRD Complexes during CD4+ T-Cell Activation. Mol Cell Biol 2016; 36:1881-98. [PMID: 27161321 PMCID: PMC4911745 DOI: 10.1128/mcb.00062-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/16/2016] [Accepted: 05/03/2016] [Indexed: 12/17/2022] Open
Abstract
The transcription factor BCL11B/CTIP2 is a major regulatory protein implicated in various aspects of development, function and survival of T cells. Mitogen-activated protein kinase (MAPK)-mediated phosphorylation and SUMOylation modulate BCL11B transcriptional activity, switching it from a repressor in naive murine thymocytes to a transcriptional activator in activated thymocytes. Here, we show that BCL11B interacts via its conserved N-terminal MSRRKQ motif with endogenous MTA1 and MTA3 proteins to recruit various NuRD complexes. Furthermore, we demonstrate that protein kinase C (PKC)-mediated phosphorylation of BCL11B Ser2 does not significantly impact BCL11B SUMOylation but negatively regulates NuRD recruitment by dampening the interaction with MTA1 or MTA3 (MTA1/3) and RbAp46 proteins. We detected increased phosphorylation of BCL11B Ser2 upon in vivo activation of transformed and primary human CD4(+) T cells. We show that following activation of CD4(+) T cells, BCL11B still binds to IL-2 and Id2 promoters but activates their transcription by recruiting P300 instead of MTA1. Prolonged stimulation results in the direct transcriptional repression of BCL11B by KLF4. Our results unveil Ser2 phosphorylation as a new BCL11B posttranslational modification linking PKC signaling pathway to T-cell receptor (TCR) activation and define a simple model for the functional switch of BCL11B from a transcriptional repressor to an activator during TCR activation of human CD4(+) T cells.
Collapse
Affiliation(s)
- Marion Dubuissez
- Université Lille, CNRS, Institut Pasteur de Lille, UMR 8161, Mechanisms of Tumorigenesis and Targeted Therapies (M3T), Lille, France
| | - Ingrid Loison
- Université Lille, CNRS, Institut Pasteur de Lille, UMR 8161, Mechanisms of Tumorigenesis and Targeted Therapies (M3T), Lille, France
| | - Sonia Paget
- Université Lille, CNRS, Institut Pasteur de Lille, UMR 8161, Mechanisms of Tumorigenesis and Targeted Therapies (M3T), Lille, France
| | - Han Vorng
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019, UMR8204, Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Saliha Ait-Yahia
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019, UMR8204, Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Olivier Rohr
- University of Strasbourg, IUT Louis Pasteur, EA7292, Dynamic of Host Pathogen Interactions, Institute of Parasitology and Tropical Pathology, Strasbourg, France Institut Universitaire de France, Paris, France
| | - Anne Tsicopoulos
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019, UMR8204, Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Dominique Leprince
- Université Lille, CNRS, Institut Pasteur de Lille, UMR 8161, Mechanisms of Tumorigenesis and Targeted Therapies (M3T), Lille, France
| |
Collapse
|
9
|
Illegitimate V(D)J recombination-mediated deletions in Notch1 and Bcl11b are not sufficient for extensive clonal expansion and show minimal age or sex bias in frequency or junctional processing. Mutat Res 2014; 761:34-48. [PMID: 24530429 DOI: 10.1016/j.mrfmmm.2014.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/23/2013] [Accepted: 01/28/2014] [Indexed: 01/22/2023]
Abstract
Illegitimate V(D)J recombination at oncogenes and tumor suppressor genes is implicated in formation of several T cell malignancies. Notch1 and Bcl11b, genes involved in developing T cell specification, selection, proliferation, and survival, were previously shown to contain hotspots for deletional illegitimate V(D)J recombination associated with radiation-induced thymic lymphoma. Interestingly, these deletions were also observed in wild-type animals. In this study, we conducted frequency, clonality, and junctional processing analyses of Notch1 and Bcl11b deletions during mouse development and compared results to published analyses of authentic V(D)J rearrangements at the T cell receptor beta (TCRβ) locus and illegitimate V(D)J deletions observed at the human, nonimmune HPRT1 locus not involved in T cell malignancies. We detect deletions in Notch1 and Bcl11b in thymic and splenic T cell populations, consistent with cells bearing deletions in the circulating lymphocyte pool. Deletions in thymus can occur in utero, increase in frequency between fetal and postnatal stages, are detected at all ages examined between fetal and 7 months, exhibit only limited clonality (contrasting with previous results in radiation-sensitive mouse strains), and consistent with previous reports are more frequent in Bcl11b, partially explained by relatively high Recombination Signal Information Content (RIC) scores. Deletion junctions in Bcl11b exhibit greater germline nucleotide loss, while in Notch1 palindromic (P) nucleotides are more abundant, although average P nucleotide length is similar for both genes and consistent with results at the TCRβ locus. Non-templated (N) nucleotide insertions appear to increase between fetal and postnatal stages for Notch1, consistent with normal terminal deoxynucleotidyl transferase (TdT) activity; however, neonatal Bcl11b junctions contain elevated levels of N insertions. Finally, contrasting with results at the HPRT1 locus, we find no obvious age or gender bias in junctional processing, and inverted repeats at recessed coding ends (Pr nucleotides) correspond mostly to single-base additions consistent with normal TdT activity.
Collapse
|
10
|
Ma D, Wei Y, Liu F. Regulatory mechanisms of thymus and T cell development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:91-102. [PMID: 22227346 DOI: 10.1016/j.dci.2011.12.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 12/22/2011] [Accepted: 12/22/2011] [Indexed: 05/31/2023]
Abstract
The thymus is a central hematopoietic organ which produces mature T lymphocytes with diverse antigen specificity. During development, the thymus primordium is derived from the third pharyngeal endodermal pouch, and then differentiates into cortical and medullary thymic epithelial cells (TECs). TECs represent the primary functional cell type that forms the unique thymic epithelial microenvironment which is essential for intrathymic T-cell development, including positive selection, negative selection and emigration out of the thymus. Our understanding of thymopoiesis has been greatly advanced by using several important animal models. This review will describe progress on the molecular mechanisms involved in thymus and T cell development with particular focus on the signaling and transcription factors involved in this process in mouse and zebrafish.
Collapse
Affiliation(s)
- Dongyuan Ma
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
11
|
Billiard F, Lobry C, Darrasse-Jèze G, Waite J, Liu X, Mouquet H, DaNave A, Tait M, Idoyaga J, Leboeuf M, Kyratsous CA, Burton J, Kalter J, Klinakis A, Zhang W, Thurston G, Merad M, Steinman RM, Murphy AJ, Yancopoulos GD, Aifantis I, Skokos D. Dll4-Notch signaling in Flt3-independent dendritic cell development and autoimmunity in mice. ACTA ACUST UNITED AC 2012; 209:1011-28. [PMID: 22547652 PMCID: PMC3348095 DOI: 10.1084/jem.20111615] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Delta-like ligand 4 (Dll4)-Notch signaling is essential for T cell development and alternative thymic lineage decisions. How Dll4-Notch signaling affects pro-T cell fate and thymic dendritic cell (tDC) development is unknown. We found that Dll4 pharmacological blockade induces accumulation of tDCs and CD4(+)CD25(+)FoxP3(+) regulatory T cells (T(reg) cells) in the thymic cortex. Both genetic inactivation models and anti-Dll4 antibody (Ab) treatment promote de novo natural T(reg) cell expansion by a DC-dependent mechanism that requires major histocompatibility complex II expression on DCs. Anti-Dll4 treatment converts CD4(-)CD8(-)c-kit(+)CD44(+)CD25(-) (DN1) T cell progenitors to immature DCs that induce ex vivo differentiation of naive CD4(+) T cells into T(reg) cells. Induction of these tolerogenic DN1-derived tDCs and the ensuing expansion of T(reg) cells are Fms-like tyrosine kinase 3 (Flt3) independent, occur in the context of transcriptional up-regulation of PU.1, Irf-4, Irf-8, and CSF-1, genes critical for DC differentiation, and are abrogated in thymectomized mice. Anti-Dll4 treatment fully prevents type 1 diabetes (T1D) via a T(reg) cell-mediated mechanism and inhibits CD8(+) T cell pancreatic islet infiltration. Furthermore, a single injection of anti-Dll4 Ab reverses established T1D. Disease remission and recurrence are correlated with increased T(reg) cell numbers in the pancreas-draining lymph nodes. These results identify Dll4-Notch as a novel Flt3-alternative pathway important for regulating tDC-mediated T(reg) cell homeostasis and autoimmunity.
Collapse
|
12
|
Xiong Y, Bosselut R. CD4-CD8 differentiation in the thymus: connecting circuits and building memories. Curr Opin Immunol 2012; 24:139-45. [PMID: 22387323 PMCID: PMC3773541 DOI: 10.1016/j.coi.2012.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/22/2012] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
Abstract
The proper choice of the CD4-helper or CD8-cytotoxic lineages by developing T cells is crucial for the generation of an antigen-responsive and functionally fit T cell repertoire. Here we present a brief overview of the transcriptional control of this process, with emphasis on two issues. The study of Cd4 expression, that had previously generated important paradigms for transcriptional regulation in eukaryotic cells, now brings new twists to the concept of 'epigenetic memory'. And connections are emerging between transcriptional regulators critical for commitment to either lineage. The present review attempts to integrate these findings and discusses the still elusive mechanisms that match CD4-CD8 lineage differentiation to MHC specificity.
Collapse
Affiliation(s)
- Yumei Xiong
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
13
|
Martín-Fontecha A, Lord GM, Brady HJM. Transcriptional control of natural killer cell differentiation and function. Cell Mol Life Sci 2011; 68:3495-503. [PMID: 21863375 PMCID: PMC11114505 DOI: 10.1007/s00018-011-0800-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 08/08/2011] [Accepted: 08/08/2011] [Indexed: 01/09/2023]
Abstract
Gene expression can be modulated depending on physiological and developmental requirements. A multitude of regulatory genes, which are organized in interdependent networks, guide development and eventually generate specific phenotypes. Transcription factors (TF) are a key element in the regulatory cascade controlling cell fate and effector functions. In this review, we discuss recent data on the diversity of TF that determine natural killer (NK) cell fate and NK cell function.
Collapse
Affiliation(s)
- Alfonso Martín-Fontecha
- Medical Research Council (MRC) Centre for Transplantation, Guy's Hospital, King's College London, 5th floor Tower Wing, London SE1 9RT, UK.
| | | | | |
Collapse
|
14
|
|