1
|
Cofre J. The first embryo, the origin of cancer and animal phylogeny. V. Cancer stem cells as the unifying biomechanical principle between embryology and oncology. MECHANOBIOLOGY IN MEDICINE 2025; 3:100110. [PMID: 40396136 PMCID: PMC12082149 DOI: 10.1016/j.mbm.2024.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 05/22/2025]
Abstract
The role of embryology in metazoan evolution is rooted deeply in the history of science. Viewing Neoplasia as an evolutionary engine provides a scientific basis for reexamining the disease cancer. Once the embryo is understood as a benign tumor with a pivotal role in the evolution of all animal forms, there will be an immediate paradigm shift in the search for cancer cure, potentially revealing insights that may be buried within the great developmental transitions of metazoans. This article discusses one of the unifying principles between embryology and oncology, namely cancer stem cells. Some considerations are also provided on the central role of physics and biomechanics in the assembly of the first embryo, which can be regarded as a differentiated benign tumor. Mechanical impregnation of the nucleus of a stem cell, culminating in a totipotent/multipotent cell, was a major event safeguarding the success of embryogenesis throughout evolution. Germ cells in the earliest ctenophore embryos underwent delayed differentiation, subsequent to the mechanical assembly of the embryo. Finally, a discussion is presented on the concept that cancer and embryogenesis (cancer and healthy stem cells) are two sides of the same coin, that is, of the same process. The only difference is that cancer stem cells reveal themselves in inappropriate contexts. Neoplasia is a free force, whereas cancer is a force contained by animal organization.
Collapse
Affiliation(s)
- Jaime Cofre
- Laboratório de Embriologia Molecular e Câncer, Federal University of Santa Catarina, Sala 313b, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
2
|
Alizada A, Hannon GJ, Nicholson BC. Transcriptional regulation of the piRNA pathway by Ovo in animal ovarian germ cells. Genes Dev 2025; 39:221-241. [PMID: 39797761 PMCID: PMC11789646 DOI: 10.1101/gad.352120.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/11/2024] [Indexed: 01/13/2025]
Abstract
The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using Drosophila as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells. Ectopic expression of Ovo in ovarian somatic cells activates germline piRNA pathway components, including the ping-pong factors Aubergine, Argonaute-3, and Vasa, leading to assembly of perinuclear cellular structures resembling nuage bodies of germ cells. We found that in ovarian somatic cells, transcription of ovo is repressed by l(3)mbt, thus preventing expression of germline piRNA pathway genes in the soma. Cross-species ChIP-seq and motif analyses demonstrate that Ovo is binding to genomic CCGTTA motifs within the promoters of germline piRNA pathway genes, suggesting a regulation by Ovo in ovaries analogous to that of A-MYB in testes. Our results also show consistent engagement of the Ovo transcription factor family at ovarian piRNA clusters across metazoan species, reflecting a deep evolutionary conservation of this regulatory paradigm from insects to humans.
Collapse
Affiliation(s)
- Azad Alizada
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Benjamin Czech Nicholson
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
3
|
Canosa S, Silvestris E, Carosso AR, Ruffa A, Evangelisti B, Gennarelli G, Cormio G, Loizzi V, Rolfo A, Benedetto C, Revelli A. Ovarian Stem Cells: Will the Dream of Neo-Folliculogenesis After Birth Become Real? Obstet Gynecol Surv 2025; 80:112-120. [PMID: 39924337 DOI: 10.1097/ogx.0000000000001360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Importance Ovarian stem cells (OSCs) represent a promising tool in reproductive medicine, particularly for the treatment of premature ovarian failure and fertility preservation. Objectives Herein, we summarize the main characteristics of adult stem cells, their status, needs, and new challenges in the application in reproductive medicine. Evidence Acquisition Clinical studies have shown that OSCs transplantation can restore ovarian function and stimulate neo-folliculogenesis in patients with premature ovarian failure, enabling them to conceive naturally or through in vitro fertilization techniques. Moreover, OSCs gained increasing interest as a chance to preserve fertility in cancer patients undergoing gonadotoxic treatments affecting their fertility, as chemotherapy or radiotherapy. Results The recruitment of OSCs from fresh or thawed ovarian fragments coupled with their capability to differentiate in vitro to mature oocytes could provide a novel opportunity to verify their suitability to be expanded in vitro as oocyte like cells. Conclusions and Relevance Research into OSCs and their applications in reproductive medicine is still in its infancy, but the results so far are promising and offer new possibilities for patients suffering from premature ovarian failure or cancer.
Collapse
Affiliation(s)
- Stefano Canosa
- Obstetrics and Gynecology 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, Sant'Anna Hospital, University of Turin, Turin, Italy
| | - Erica Silvestris
- Gynecologic Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II," Bari, Italy
| | - Andrea Roberto Carosso
- Obstetrics and Gynecology 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, Sant'Anna Hospital, University of Turin, Turin, Italy
| | - Alessandro Ruffa
- Obstetrics and Gynecology 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, Sant'Anna Hospital, University of Turin, Turin, Italy
| | - Bernadette Evangelisti
- Obstetrics and Gynecology 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, Sant'Anna Hospital, University of Turin, Turin, Italy
| | - Gianluca Gennarelli
- Obstetrics and Gynecology 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, Sant'Anna Hospital, University of Turin, Turin, Italy
| | - Gennaro Cormio
- Gynecologic Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II," Bari, Italy; Department of Interdisciplinary Medicine, University of Bari "Aldo Moro," Bari, Italy
| | - Vera Loizzi
- Gynecologic Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II," Bari, Italy; Department of Interdisciplinary Medicine, University of Bari "Aldo Moro," Bari, Italy
| | - Alessandro Rolfo
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Chiara Benedetto
- Obstetrics and Gynecology 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, Sant'Anna Hospital, University of Turin, Turin, Italy
| | - Alberto Revelli
- Gynecology and Obstetrics 2U, Department of Surgical Sciences, S. Anna Hospital, University of Turin, Turin, Italy
| |
Collapse
|
4
|
Connacher R, Roden R, Huang KL, Korte A, Yeruva S, Dittbenner N, DesMarais A, Weidmann C, Randall T, Williams J, Hall TMT, Wagner E, Goldstrohm A. The TRIM-NHL RNA-binding protein Brain Tumor coordinately regulates expression of the glycolytic pathway and vacuolar ATPase complex. Nucleic Acids Res 2024; 52:12669-12688. [PMID: 39351871 PMCID: PMC11551770 DOI: 10.1093/nar/gkae810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 10/03/2024] Open
Abstract
The essential Drosophila RNA-binding protein Brain Tumor (Brat) represses specific genes to control embryogenesis and differentiation of stem cells. In the brain, Brat functions as a tumor suppressor that diminishes neural stem cell proliferation while promoting differentiation. Though important Brat-regulated target mRNAs have been identified in these contexts, the full impact of Brat on gene expression remains to be discovered. Here, we identify the network of Brat-regulated mRNAs by performing RNA sequencing (RNA-seq) following depletion of Brat from cultured cells. We identify 158 mRNAs, with high confidence, that are repressed by Brat. De novo motif analysis identified a functionally enriched RNA motif in the 3' untranslated regions (UTRs) of Brat-repressed mRNAs that matches the biochemically defined Brat binding site. Integrative data analysis revealed a high-confidence list of Brat-repressed and Brat-bound mRNAs containing 3'UTR Brat binding motifs. Our RNA-seq and reporter assays show that multiple 3'UTR motifs promote the strength of Brat repression, whereas motifs in the 5'UTR are not functional. Strikingly, we find that Brat regulates expression of glycolytic enzymes and the vacuolar ATPase complex, providing new insight into its role as a tumor suppressor and the coordination of metabolism and intracellular pH.
Collapse
Affiliation(s)
- Robert P Connacher
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Richard T Roden
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 575 Elmwood Avenue, Rochester, NY 14642, USA
| | - Amanda J Korte
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Saathvika Yeruva
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Noel Dittbenner
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Anna J DesMarais
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Chase A Weidmann
- Department of Biological Chemistry, Center for RNA Biomedicine, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Thomas A Randall
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jason Williams
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Traci M Tanaka Hall
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Eric J Wagner
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 575 Elmwood Avenue, Rochester, NY 14642, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Bonefas KM, Venkatachalam I, Iwase S. KDM5C is a sex-biased brake against germline gene expression programs in somatic lineages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622665. [PMID: 39574581 PMCID: PMC11581037 DOI: 10.1101/2024.11.08.622665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
The division of labor among cellular lineages is a pivotal step in the evolution of multicellularity. In mammals, the soma-germline boundary is formed during early embryogenesis, when genes that drive germline identity are repressed in somatic lineages through DNA and histone modifications at promoter CpG islands (CGIs). Somatic misexpression of germline genes is a signature of cancer and observed in select neurodevelopmental disorders. However, it is currently unclear if all germline genes use the same repressive mechanisms and if factors like development and sex influence their dysregulation. Here, we examine how cellular context influences the formation of somatic tissue identity in mice lacking lysine demethylase 5c (KDM5C), an X chromosome eraser of histone 3 lysine 4 di and tri-methylation (H3K4me2/3). We found male Kdm5c knockout (-KO) mice aberrantly express many tissue-specific genes within the brain, the majority of which are unique to the germline. By developing a comprehensive list of mouse germline-enriched genes, we observed Kdm5c-KO cells aberrantly express key drivers of germline fate during early embryogenesis but late-stage spermatogenesis genes within the mature brain. KDM5C binds CGIs within germline gene promoters to facilitate DNA CpG methylation as embryonic stem cells differentiate into epiblast-like cells (EpiLCs). However, the majority of late-stage spermatogenesis genes expressed within the Kdm5c-KO brain did not harbor promoter CGIs. These CGI-free germline genes were not bound by KDM5C and instead expressed through ectopic activation by RFX transcription factors. Furthermore, germline gene repression is sexually dimorphic, as female EpiLCs require a higher dose of KDM5C to maintain germline silencing. Altogether, these data revealed distinct regulatory classes of germline genes and sex-biased silencing mechanisms in somatic cells.
Collapse
Affiliation(s)
- Katherine M Bonefas
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, Michigan Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ilakkiya Venkatachalam
- Department of Human Genetics, Michigan Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Genetics and Genomics Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shigeki Iwase
- Department of Human Genetics, Michigan Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
6
|
Zhuo S, Yang S, Chen S, Ding Y, Cheng H, Yang L, Wang K, Yang K. Unveiling the significance of cancer-testis antigens and their implications for immunotherapy in glioma. Discov Oncol 2024; 15:602. [PMID: 39472405 PMCID: PMC11522268 DOI: 10.1007/s12672-024-01449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
Glioma has a poor prognosis, which is attributable to its inherent characteristics and lack of specific treatments. Immunotherapy plays a pivotal role in the contemporary management of malignancies. Despite the initiation of numerous immunotherapy-based clinical trials, their effects on enhancing glioma prognosis remain limited, highlighting the need for innovative and effective therapeutic targets and strategies to address this challenge. Since the 1990s, there has been a growing interest in cancer-testis antigens (CTAs) present in normal mammalian testicular germ cells and placental trophoblast cells, which exhibit reactivated expression in various tumor types. Mechanisms such as DNA methylation, histone modification, transcriptional regulation, and alternative splicing influence the expression of CTAs in tumors. The distinct expression patterns and robust immunogenicity of CTAs are promising tumor biomarkers and optimal targets for immunotherapy. Previous reports have shown that multiple CTAs are present in gliomas and are closely related to prognosis. The expression of these antigens is also associated with the immune response in gliomas and the effectiveness of immunotherapy. Significantly, numerous clinical trials, with IL13RA2 as a representative CTA member, have assessed the immunotherapeutic potential of gliomas and have shown favorable clinical efficacy. This review provides a comprehensive overview of the regulation and function of CTAs, summarizes their expression and role in gliomas, emphasizes their importance as immunotherapy targets in gliomas, and discusses related challenges and future interventions.
Collapse
Affiliation(s)
- Shenghua Zhuo
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China.
- International Center for Aging and Cancer, Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China.
| | - Shuo Yang
- International Center for Aging and Cancer, Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Shenbo Chen
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Yueju Ding
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Honglei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Liangwang Yang
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Kai Wang
- International Center for Aging and Cancer, Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China.
| | - Kun Yang
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China.
| |
Collapse
|
7
|
Yu W, Zhang Q, Ali M, Chen B, Sun Q, Wang D. ACTL8 Promotes the Progression of Gastric Cancer Through PI3K/AKT/mTOR Signaling Pathway. Dig Dis Sci 2024; 69:3786-3798. [PMID: 39322809 PMCID: PMC11489201 DOI: 10.1007/s10620-024-08649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Actin-like protein 8 (ACTL8) significantly correlates with tumor growth and prognosis across various cancer types. Nevertheless, the potential relationship between ACTL8 and gastric cancer (GC) remains uncertain. OBJECTIVE This study aimed to elucidate the role of ACTL8 in human GC cells and to explore its mechanism. METHODS Bioinformatics analysis tools, such as GEPIA2, Kaplan-Meier, and STRING, were utilized for a comprehensive investigation of the characteristics and functional roles of ACTL8 in GC, including differential expression, prognostic value, and related signaling pathways. Subsequently, gene expression analyses, cell function assays, and signaling pathway experiments were conducted to verify key findings. RESULTS Bioinformatics analysis showed that ACTL8 was significantly elevated in GC and closely associated with poor prognosis. Gene expression experiments confirmed the bioinformatics results. Furthermore, ACTL8 knockdown markedly reduced GC cell proliferation and inhibited migration and invasion. Mechanistically, a significant increase in the phosphorylation levels of signaling proteins was observed in GC cells following ACTL8 overexpression, and PI3K/Akt/mTOR pathway inhibitors could reverse this effect. CONCLUSION ACTL8 expression is significantly upregulated in GC cells and is closely correlated with poor patient prognosis. Further mechanistic studies revealed that ACTL8 may promote GC cell migration and proliferation through activation of the PI3K/Akt/mTOR signaling pathway. Consequently, ACTL8 emerges as a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Wenhao Yu
- Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, China
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Qi Zhang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Muhammad Ali
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Bangquan Chen
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Qiannan Sun
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Daorong Wang
- Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, China.
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China.
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China.
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, China.
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
- Department of Gastrointestinal Surgery, Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, 98 Nantong West Road, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
8
|
Marhabaie M, Wharton TH, Kim SY, Wharton RP. Widespread regulation of the maternal transcriptome by Nanos in Drosophila. PLoS Biol 2024; 22:e3002840. [PMID: 39401257 PMCID: PMC11501031 DOI: 10.1371/journal.pbio.3002840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 10/24/2024] [Accepted: 09/14/2024] [Indexed: 10/23/2024] Open
Abstract
The translational repressor Nanos (Nos) regulates a single target, maternal hunchback (hb) mRNA, to govern abdominal segmentation in the early Drosophila embryo. Nos is recruited to sites in the 3' UTR of hb mRNA in collaboration with the sequence-specific RNA-binding protein Pumilio (Pum); on its own, Nos has no binding specificity. Nos is expressed at other stages of development, but very few mRNA targets that might mediate its action at these stages have been described. Nor has it been clear whether Nos is targeted to other mRNAs in concert with Pum or via other mechanisms. In this report, we identify mRNAs targeted by Nos via 2 approaches. First, we identify mRNAs depleted upon expression of a chimera bearing Nos fused to the nonsense mediated decay (NMD) factor Upf1. We find that, in addition to hb, Upf1-Nos depletes approximately 2,600 mRNAs from the maternal transcriptome in early embryos. Virtually all of these appear to be targeted in a canonical, hb-like manner in concert with Pum. In a second, more conventional approach, we identify mRNAs that are stabilized during the maternal zygotic transition (MZT) in embryos from nos- females. Most (86%) of the 1,185 mRNAs regulated by Nos are also targeted by Upf1-Nos, validating use of the chimera. Previous work has shown that 60% of the maternal transcriptome is degraded in early embryos. We find that maternal mRNAs targeted by Upf1-Nos are hypoadenylated and inefficiently translated at the ovary-embryo transition; they are subsequently degraded in the early embryo, accounting for 59% of all destabilized maternal mRNAs. We suggest that the late ovarian burst of Nos represses a large fraction of the maternal transcriptome, priming it for later degradation by other factors in the embryo.
Collapse
Affiliation(s)
- Mohammad Marhabaie
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Tammy H. Wharton
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Sung Yun Kim
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Robin P. Wharton
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
9
|
Olotu O, Koskenniemi AR, Ma L, Paramonov V, Laasanen S, Louramo E, Bourgery M, Lehtiniemi T, Laasanen S, Rivero-Müller A, Löyttyniemi E, Sahlgren C, Westermarck J, Ventelä S, Visakorpi T, Poutanen M, Vainio P, Mäkelä JA, Kotaja N. Germline-specific RNA helicase DDX4 forms cytoplasmic granules in cancer cells and promotes tumor growth. Cell Rep 2024; 43:114430. [PMID: 38963760 DOI: 10.1016/j.celrep.2024.114430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/15/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer cells undergo major epigenetic alterations and transcriptomic changes, including ectopic expression of tissue- and cell-type-specific genes. Here, we show that the germline-specific RNA helicase DDX4 forms germ-granule-like cytoplasmic ribonucleoprotein granules in various human tumors, but not in cultured cancer cells. These cancerous DDX4 complexes contain RNA-binding proteins and splicing regulators, including many known germ granule components. The deletion of DDX4 in cancer cells induces transcriptomic changes and affects the alternative splicing landscape of a number of genes involved in cancer growth and invasiveness, leading to compromised capability of DDX4-null cancer cells to form xenograft tumors in immunocompromised mice. Importantly, the occurrence of DDX4 granules is associated with poor survival in patients with head and neck squamous cell carcinoma and higher histological grade of prostate cancer. Taken together, these results show that the germ-granule-resembling cancerous DDX4 granules control gene expression and promote malignant and invasive properties of cancer cells.
Collapse
Affiliation(s)
- Opeyemi Olotu
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Anna-Riina Koskenniemi
- Department of Pathology, Laboratory Division, Turku University Hospital and University of Turku, 20520 Turku, Finland
| | - Lin Ma
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Valeriy Paramonov
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20500 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Sini Laasanen
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Elina Louramo
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Matthieu Bourgery
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, 20520 Turku, Finland
| | - Tiina Lehtiniemi
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Samuli Laasanen
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20500 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jukka Westermarck
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Sami Ventelä
- Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Department for Otorhinolaryngology, Head, and Neck Surgery, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Tapio Visakorpi
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland; Fimlab Laboratories, Tampere University Hospital, 33520 Tampere, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland; Turku Center for Disease Modeling, University of Turku, 20520 Turku, Finland; FICAN West Cancer Center, University of Turku, Turku University Hospital, 20500 Turku, Finland
| | - Paula Vainio
- Department of Pathology, Laboratory Division, Turku University Hospital and University of Turku, 20520 Turku, Finland
| | - Juho-Antti Mäkelä
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Noora Kotaja
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland.
| |
Collapse
|
10
|
Molnar C, Heinen JP, Reina J, Llamazares S, Palumbo E, Pollarolo G, Gonzalez C. TrxT and dhd are dispensable for Drosophila brain development but essential for l(3)mbt brain tumour growth. EMBO Rep 2024; 25:2842-2860. [PMID: 38750349 PMCID: PMC11239866 DOI: 10.1038/s44319-024-00154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 07/13/2024] Open
Abstract
Expression of the Drosophila cancer-germline (CG), X-linked, head-to-head gene pair TrxT and dhd is normally germline-specific but becomes upregulated in brain tumours caused by mutation in l(3)mbt. Here, we show that TrxT and dhd play a major synergistic role in the emergence of l(3)mbt tumour-linked transcriptomic signatures and tumour development, which is remarkable, taking into account that these two genes are never expressed together under normal conditions. We also show that TrxT, but not dhd, is crucial for the growth of l(3)mbt allografts, hence suggesting that the initial stages of tumour development and long-term tumour growth may depend on different molecular pathways. In humans, head-to-head inverted gene pairs are abundant among CG genes that map to the X chromosome. Our results identify a first example of an X-linked, head-to-head CG gene pair in Drosophila, underpinning the potential of such CG genes, dispensable for normal development and homoeostasis of somatic tissue, as targets to curtail malignant growth with minimal impact on overall health.
Collapse
Affiliation(s)
- Cristina Molnar
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Jan Peter Heinen
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Jose Reina
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Salud Llamazares
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Emilio Palumbo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002, Barcelona, Spain
| | - Giulia Pollarolo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac, 10, 08028, Barcelona, Spain
- ISGlobal, Carrer del Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Cayetano Gonzalez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac, 10, 08028, Barcelona, Spain.
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Pg Lluis Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
11
|
Kunnummal M, Raveendran PS, Basu B, Rani SV, Paul RA, Kuppusamy K, Angelin M, Issac J, James J, Das AV. HPV16 E6/E7-mediated regulation of PiwiL1 expression induces tumorigenesis in cervical cancer cells. Cell Oncol (Dordr) 2024; 47:917-937. [PMID: 38036929 DOI: 10.1007/s13402-023-00904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/02/2023] Open
Abstract
PURPOSE PiwiL1 has been reported to be over-expressed in many cancers. However, the molecular mechanism by which these proteins contribute to tumorigenesis and their regulation in cancer cells is still unclear. We intend to understand the role of PiwiL1 in tumorigenesis and also its regulation in cervical cells. METHODS We studied the effect of loss of PiwiL1 function on tumor properties of cervical cancer cells in vitro and in vivo. Also we have looked into the effect of PiwiL1 overexpression in the malignant transformation of normal cells both in vitro and in vivo. Further RNA-seq and RIP-seq analyses were done to get insight of the direct and indirect targets of PiwiL1 in the cervical cancer cells. RESULTS Here, we report that PiwiL1 is not only over-expressed, but also play a major role in tumor induction and progression. Abolition of PiwiL1 in CaSki cells led to a decrease in the tumor-associated properties, whereas, its upregulation conferred malignant transformation of normal HaCaT cells. Our study delineates a new link between HPV oncogenes, E6 and E7 with PiwiL1. p53 and E2F1 directly bind and differentially regulate PiwiL1 promoter in a context-dependant manner. Further, RNA-seq together with RIP-RNA-seq suggested a strong and direct role for PiwiL1 in promoting metastasis in cervical cancer cells. CONCLUSION Our study demonstrates that PiwiL1 act as an oncogene in cervical cancer by inducing tumor-associated properties and EMT pathway. The finding that HPV oncogenes, E6/E7 can positively regulate PiwiL1 suggests a possible mechanism behind HPV-mediated tumorigenesis in cervical cancer.
Collapse
Affiliation(s)
- Midhunaraj Kunnummal
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O., Thiruvananthapuram-14, Kerala, India
- Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal, Karnataka, 576104, India
| | - Pooja Sherly Raveendran
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O., Thiruvananthapuram-14, Kerala, India
- Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal, Karnataka, 576104, India
| | - Budhaditya Basu
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thiruvananthapuram, Kerala, 695 014, India
- Regional Centre for Biotechnology (DBT-RCB), Faridabad, Haryana, 121001, India
| | - Sheri Vidya Rani
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O., Thiruvananthapuram-14, Kerala, India
| | - Riya Ann Paul
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thiruvananthapuram, Kerala, 695 014, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, 695011, Kerala, India
| | - Krithiga Kuppusamy
- Bioscience Research and Training Centre, Kerala Veterinary and Animal Science University, Thonnakkal, Thiruvananthapuram, 695317, Kerala, India
| | - Mary Angelin
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O., Thiruvananthapuram-14, Kerala, India
| | - Joby Issac
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O., Thiruvananthapuram-14, Kerala, India
| | - Jackson James
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thiruvananthapuram, Kerala, 695 014, India
| | - Ani V Das
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O., Thiruvananthapuram-14, Kerala, India.
| |
Collapse
|
12
|
Moulton C, Murri A, Benotti G, Fantini C, Duranti G, Ceci R, Grazioli E, Cerulli C, Sgrò P, Rossi C, Magno S, Di Luigi L, Caporossi D, Parisi A, Dimauro I. The impact of physical activity on promoter-specific methylation of genes involved in the redox-status and disease progression: A longitudinal study on post-surgery female breast cancer patients undergoing medical treatment. Redox Biol 2024; 70:103033. [PMID: 38211440 PMCID: PMC10821067 DOI: 10.1016/j.redox.2024.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Most anticancer treatments act on oxidative-stress pathways by producing reactive oxygen species (ROS) to kill cancer cells, commonly resulting in consequential drug-induced systemic cytotoxicity. Physical activity (PA) has arisen as an integrative cancer therapy, having positive health effects, including in redox-homeostasis. Here, we investigated the impact of an online supervised PA program on promoter-specific DNA methylation, and corresponding gene expression/activity, in 3 antioxidants- (SOD1, SOD2, and CAT) and 3 breast cancer (BC)-related genes (BRCA1, L3MBTL1 and RASSF1A) in a population-based sample of women diagnosed with primary BC, undergoing medical treatment. We further examined mechanisms involved in methylating and demethylating pathways, predicted biological pathways and interactions of exercise-modulated molecules, and the functional relevance of modulated antioxidant markers on parameters related to aerobic capacity/endurance, physical fatigue and quality of life (QoL). PA maintained levels of SOD activity in blood plasma, and at the cellular level significantly increased SOD2 mRNA (≈+77 %), contrary to their depletion due to medical treatment. This change was inversely correlated with DNA methylation in SOD2 promoter (≈-20 %). Similarly, we found a significant effect of PA only on L3MBTL1 promoter methylation (≈-25 %), which was inversely correlated with its mRNA (≈+43 %). Finally, PA increased TET1 mRNA levels (≈+15 %) and decreased expression of DNMT3B mRNA (≈-28 %). Our results suggest that PA-modulated DNA methylation affects several signalling pathways/biological activities involved in the cellular oxidative stress response, chromatin organization/regulation, antioxidant activity and DNA/protein binding. These changes may positively impact clinical outcomes and improve the response to cancer treatment in post-surgery BC patients.
Collapse
Affiliation(s)
- Chantalle Moulton
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Arianna Murri
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Gianmarco Benotti
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Cristina Fantini
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Guglielmo Duranti
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Roberta Ceci
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Elisa Grazioli
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Claudia Cerulli
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Paolo Sgrò
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Cristina Rossi
- Center for Integrative Oncology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Italy
| | - Stefano Magno
- Center for Integrative Oncology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Italy
| | - Luigi Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Attilio Parisi
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy.
| |
Collapse
|
13
|
Crain AT, Butler MB, Hill CA, Huynh M, McGinty RK, Duronio RJ. Drosophila melanogaster Set8 and L(3)mbt function in gene expression independently of histone H4 lysine 20 methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584710. [PMID: 38559189 PMCID: PMC10980064 DOI: 10.1101/2024.03.12.584710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Mono-methylation of Lysine 20 of histone H4 (H4K20me1) is catalyzed by Set8 and thought to play important roles in many aspects of genome function that are mediated by H4K20me-binding proteins. We interrogated this model in a developing animal by comparing in parallel the transcriptomes of Set8 null , H4 K20R/A , and l(3)mbt mutant Drosophila melanogaster . We found that the gene expression profiles of H4 K20A and H4 K20R larvae are markedly different than Set8 null larvae despite similar reductions in H4K20me1. Set8 null mutant cells have a severely disrupted transcriptome and fail to proliferate in vivo , but these phenotypes are not recapitulated by mutation of H4 K20 indicating that the developmental defects of Set8 null animals are largely due to H4K20me1-independent effects on gene expression. Further, the H4K20me1 binding protein L(3)mbt is recruited to the transcription start sites of most genes independently of H4K20me even though genes bound by L(3)mbt have high levels of H4K20me1. Moreover, both Set8 and L(3)mbt bind to purified H4K20R nucleosomes in vitro. We conclude that gene expression changes in Set8 null and H4 K20 mutants cannot be explained by loss of H4K20me1 or L(3)mbt binding to chromatin, and therefore that H4K20me1 does not play a large role in gene expression.
Collapse
|
14
|
Wortinger LA, Stavrum AK, Shadrin AA, Szabo A, Rukke SH, Nerland S, Smelror RE, Jørgensen KN, Barth C, Andreou D, Weibell MA, Djurovic S, Andreassen OA, Thoresen M, Ursini G, Agartz I, Le Hellard S. Divergent epigenetic responses to perinatal asphyxia in severe mental disorders. Transl Psychiatry 2024; 14:16. [PMID: 38191519 PMCID: PMC10774425 DOI: 10.1038/s41398-023-02709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Epigenetic modifications influenced by environmental exposures are molecular sources of phenotypic heterogeneity found in schizophrenia and bipolar disorder and may contribute to shared etiopathogenetic mechanisms of these two disorders. Newborns who experienced perinatal asphyxia have suffered reduced oxygen delivery to the brain around the time of birth, which increases the risk of later psychiatric diagnosis. This study aimed to investigate DNA methylation in blood cells for associations with a history of perinatal asphyxia, a neurologically harmful condition occurring within the biological environment of birth. We utilized prospective data from the Medical Birth Registry of Norway to identify incidents of perinatal asphyxia in 643 individuals with schizophrenia or bipolar disorder and 676 healthy controls. We performed an epigenome wide association study to distinguish differentially methylated positions associated with perinatal asphyxia. We found an interaction between methylation and exposure to perinatal asphyxia on case-control status, wherein having a history of perinatal asphyxia was associated with an increase of methylation in healthy controls and a decrease of methylation in patients on 4 regions of DNA important for brain development and function. The differentially methylated regions were observed in genes involved in oligodendrocyte survival and axonal myelination and functional recovery (LINGO3); assembly, maturation and maintenance of the brain (BLCAP;NNAT and NANOS2) and axonal transport processes and neural plasticity (SLC2A14). These findings are consistent with the notion that an opposite epigenetic response to perinatal asphyxia, in patients compared with controls, may contribute to molecular mechanisms of risk for schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Laura A Wortinger
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Anne-Kristin Stavrum
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Alexey A Shadrin
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Attila Szabo
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | | | - Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Runar Elle Smelror
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kjetil Nordbø Jørgensen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dimitrios Andreou
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Melissa A Weibell
- TIPS-Network for Clinical Research in Psychosis, Department of Psychiatry, Stavanger University Hospital, Stavanger, Norway
- Faculty of Health, Network for Medical Sciences, University of Stavanger, Stavanger, Norway
| | - Srdjan Djurovic
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Marianne Thoresen
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Neonatal Neuroscience, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Gianluca Ursini
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Stephanie Le Hellard
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
15
|
Marhabaie M, Wharton TH, Kim SY, Wharton RP. Widespread regulation of the maternal transcriptome by Nanos in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555109. [PMID: 37693559 PMCID: PMC10491125 DOI: 10.1101/2023.08.28.555109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The translational repressor Nanos (Nos) regulates a single target, maternal hunchback (hb) mRNA, to govern abdominal segmentation in the early Drosophila embryo. Nos is recruited specifically to sites in the 3'-UTR of hb mRNA in collaboration with the sequence-specific RNA-binding protein Pumilio (Pum); on its own, Nos has no binding specificity. Nos is expressed at other stages of development, but very few mRNA targets that might mediate its action at these stages have been described. Nor has it been clear whether Nos is targeted to other mRNAs in concert with Pum or via other mechanisms. In this report, we identify mRNAs targeted by Nos via two approaches. In the first method, we identify mRNAs depleted upon expression of a chimera bearing Nos fused to the nonsense mediated decay (NMD) factor Upf1. We find that, in addition to hb, Upf1-Nos depletes ~2600 mRNAs from the maternal transcriptome in early embryos. Virtually all of these appear to be targeted in a canonical, hb-like manner in concert with Pum. In a second, more conventional approach, we identify mRNAs that are stabilized during the maternal zygotic transition (MZT) in embryos from nos- females. Most (86%) of the 1185 mRNAs regulated by Nos are also targeted by Upf1-Nos, validating use of the chimera. Approximately 60% of mRNAs targeted by Upf1-Nos are not stabilized in the absence of Nos. However, Upf1-Nos mRNA targets are hypo-adenylated and inefficiently translated at the ovary-embryo transition, whether or not they suffer Nos-dependent degradation in the embryo. We suggest that the late ovarian burst of Nos represses a large fraction of the maternal transcriptome, priming it for later degradation by other factors during the MZT in the embryo.
Collapse
|
16
|
Pieplow C, Wessel G. Functional annotation of a hugely expanded nanos repertoire in Lytechinus variegatus, the green sea urchin. Mol Reprod Dev 2023; 90:310-322. [PMID: 37039283 PMCID: PMC10225336 DOI: 10.1002/mrd.23684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/17/2023] [Accepted: 03/18/2023] [Indexed: 04/12/2023]
Abstract
Nanos genes encode essential RNA-binding proteins involved in germline determination and germline stem cell maintenance. When examining diverse classes of echinoderms, typically three, sometimes four, nanos genes are present. In this analysis, we identify and annotate nine nanos orthologs in the green sea urchin, Lytechinus variegatus (Lv). All nine genes are transcribed and grouped into three distinct classes. Class one includes the germline Nanos, with one member: Nanos2. Class two includes Nanos3-like genes, with significant sequence similarity to Nanos3 in the purple sea urchin, Strongylocentrotus purpuratus (Sp), but with wildly variable expression patterns. The third class includes several previously undescribed nanos zinc-finger genes that may be the result of duplications of Nanos2. All nine nanos transcripts occupy unique genomic loci and are expressed with unique temporal profiles during development. Importantly, here we describe and characterize the unique genomic location, conservation, and phylogeny of the Lv ortholog of the well-studied Sp Nanos2. However, in addition to the conserved germline functioning Nanos2, the green sea urchin appears to be an outlier in the echinoderm phyla with eight additional nanos genes. We hypothesize that this expansion of nanos gene members may be the result of a previously uncharacterized L1-class transposon encoded on the opposite strand of a nanos2 pseudogene present on chromosome 12 in this species. The expansion of nanos genes described here represents intriguing insights into germline specification and nanos evolution in this species of sea urchin.
Collapse
Affiliation(s)
- Cosmo Pieplow
- MCB Department, Division of Biomedicine, Brown University, Providence RI 02912
| | - Gary Wessel
- MCB Department, Division of Biomedicine, Brown University, Providence RI 02912
| |
Collapse
|
17
|
Yushkova E, Moskalev A. Transposable elements and their role in aging. Ageing Res Rev 2023; 86:101881. [PMID: 36773759 DOI: 10.1016/j.arr.2023.101881] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Transposable elements (TEs) are an important part of eukaryotic genomes. The role of somatic transposition in aging, carcinogenesis, and other age-related diseases has been determined. This review discusses the fundamental properties of TEs and their complex interactions with cellular processes, which are crucial for understanding the diverse effects of their activity on the genetics and epigenetics of the organism. The interactions of TEs with recombination, replication, repair, and chromosomal regulation; the ability of TEs to maintain a balance between their own activity and repression, the involvement of TEs in the creation of new or alternative genes, the expression of coding/non-coding RNA, and the role in DNA damage and modification of regulatory networks are reviewed. The contribution of the derepressed TEs to age-dependent effects in individual cells/tissues in different organisms was assessed. Conflicting information about TE activity under stress as well as theories of aging mechanisms related to TEs is discussed. On the one hand, transposition activity in response to stressors can lead to organisms acquiring adaptive innovations of great importance for evolution at the population level. On the other hand, the TE expression can cause decreased longevity and stress tolerance at the individual level. The specific features of TE effects on aging processes in germline and soma and the ways of their regulation in cells are highlighted. Recent results considering somatic mutations in normal human and animal tissues are indicated, with the emphasis on their possible functional consequences. In the context of aging, the correlation between somatic TE activation and age-related changes in the number of proteins required for heterochromatin maintenance and longevity regulation was analyzed. One of the original features of this review is a discussion of not only effects based on the TEs insertions and the associated consequences for the germline cell dynamics and somatic genome, but also the differences between transposon- and retrotransposon-mediated structural genome changes and possible phenotypic characteristics associated with aging and various age-related pathologies. Based on the analysis of published data, a hypothesis about the influence of the species-specific features of number, composition, and distribution of TEs on aging dynamics of different animal genomes was formulated.
Collapse
Affiliation(s)
- Elena Yushkova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russian Federation
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russian Federation; Laboratory of Genetics and Epigenetics of Aging, Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow 129226, Russian Federation; Longaevus Technologies, London, UK.
| |
Collapse
|
18
|
Nin DS, Deng LW. Biology of Cancer-Testis Antigens and Their Therapeutic Implications in Cancer. Cells 2023; 12:cells12060926. [PMID: 36980267 PMCID: PMC10047177 DOI: 10.3390/cells12060926] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Tumour-specific antigens have been an area of interest in cancer therapy since their discovery in the middle of the 20th century. In the era of immune-based cancer therapeutics, redirecting our immune cells to target these tumour-specific antigens has become even more relevant. Cancer-testis antigens (CTAs) are a class of antigens with an expression specific to the testis and cancer cells. CTAs have also been demonstrated to be expressed in a wide variety of cancers. Due to their frequency and specificity of expression in a multitude of cancers, CTAs have been particularly attractive as cancer-specific therapeutic targets. There is now a rapid expansion of CTAs being identified and many studies have been conducted to correlate CTA expression with cancer and therapy-resistant phenotypes. Furthermore, there is an increasing number of clinical trials involving using some of these CTAs as molecular targets in pharmacological and immune-targeted therapeutics for various cancers. This review will summarise the current knowledge of the biology of known CTAs in tumorigenesis and the regulation of CTA genes. CTAs as molecular targets and the therapeutic implications of these CTA-targeted anticancer strategies will also be discussed.
Collapse
Affiliation(s)
- Dawn Sijin Nin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD 7, 8 Medical Drive, Singapore 117596, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Lih-Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD 7, 8 Medical Drive, Singapore 117596, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- National University Cancer Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| |
Collapse
|
19
|
Santos D, Feng M, Kolliopoulou A, Taning CNT, Sun J, Swevers L. What Are the Functional Roles of Piwi Proteins and piRNAs in Insects? INSECTS 2023; 14:insects14020187. [PMID: 36835756 PMCID: PMC9962485 DOI: 10.3390/insects14020187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/01/2023]
Abstract
Research on Piwi proteins and piRNAs in insects has focused on three experimental models: oogenesis and spermatogenesis in Drosophila melanogaster, the antiviral response in Aedes mosquitoes and the molecular analysis of primary and secondary piRNA biogenesis in Bombyx mori-derived BmN4 cells. Significant unique and complementary information has been acquired and has led to a greater appreciation of the complexity of piRNA biogenesis and Piwi protein function. Studies performed in other insect species are emerging and promise to add to the current state of the art on the roles of piRNAs and Piwi proteins. Although the primary role of the piRNA pathway is genome defense against transposons, particularly in the germline, recent findings also indicate an expansion of its functions. In this review, an extensive overview is presented of the knowledge of the piRNA pathway that so far has accumulated in insects. Following a presentation of the three major models, data from other insects were also discussed. Finally, the mechanisms for the expansion of the function of the piRNA pathway from transposon control to gene regulation were considered.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| | - Clauvis N. T. Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| |
Collapse
|
20
|
Noyes C, Kitajima S, Li F, Suita Y, Miriyala S, Isaac S, Ahsan N, Knelson E, Vajdi A, Tani T, Thai TC, Xu D, Murai J, Tapinos N, Takahashi C, Barbie DA, Yajima M. The germline factor DDX4 contributes to the chemoresistance of small cell lung cancer cells. Commun Biol 2023; 6:65. [PMID: 36653474 PMCID: PMC9849207 DOI: 10.1038/s42003-023-04444-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Human cancers often re-express germline factors, yet their mechanistic role in oncogenesis and cancer progression remains unknown. Here we demonstrate that DEAD-box helicase 4 (DDX4), a germline factor and RNA helicase conserved in all multicellular organisms, contributes to increased cell motility and cisplatin-mediated drug resistance in small cell lung cancer (SCLC) cells. Proteomic analysis suggests that DDX4 expression upregulates proteins related to DNA repair and immune/inflammatory response. Consistent with these trends in cell lines, DDX4 depletion compromised in vivo tumor development while its overexpression enhanced tumor growth even after cisplatin treatment in nude mice. Further, the relatively higher DDX4 expression in SCLC patients correlates with decreased survival and shows increased expression of immune/inflammatory response markers. Taken together, we propose that DDX4 increases SCLC cell survival, by increasing the DNA damage and immune response pathways, especially under challenging conditions such as cisplatin treatment.
Collapse
Affiliation(s)
- Christopher Noyes
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Shunsuke Kitajima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Fengkai Li
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yusuke Suita
- Laboratory of Cancer Epigenetics and Plasticity, Department of Neurosurgery, Brown University, Providence, RI, 02903, USA
| | - Saradha Miriyala
- Laboratory of Cancer Epigenetics and Plasticity, Department of Neurosurgery, Brown University, Providence, RI, 02903, USA
| | - Shakson Isaac
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Nagib Ahsan
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK, 73019, USA
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, The University of Oklahoma, Norman, OK, 73019, USA
| | - Erik Knelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Amir Vajdi
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Tetsuo Tani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Tran C Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Derek Xu
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Junko Murai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Nikos Tapinos
- Laboratory of Cancer Epigenetics and Plasticity, Department of Neurosurgery, Brown University, Providence, RI, 02903, USA
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Mamiko Yajima
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA.
| |
Collapse
|
21
|
Cofre J, Saalfeld K. The first embryo, the origin of cancer and animal phylogeny. I. A presentation of the neoplastic process and its connection with cell fusion and germline formation. Front Cell Dev Biol 2023; 10:1067248. [PMID: 36684435 PMCID: PMC9846517 DOI: 10.3389/fcell.2022.1067248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/16/2022] [Indexed: 01/05/2023] Open
Abstract
The decisive role of Embryology in understanding the evolution of animal forms is founded and deeply rooted in the history of science. It is recognized that the emergence of multicellularity would not have been possible without the formation of the first embryo. We speculate that biophysical phenomena and the surrounding environment of the Ediacaran ocean were instrumental in co-opting a neoplastic functional module (NFM) within the nucleus of the first zygote. Thus, the neoplastic process, understood here as a biological phenomenon with profound embryologic implications, served as the evolutionary engine that favored the formation of the first embryo and cancerous diseases and allowed to coherently create and recreate body shapes in different animal groups during evolution. In this article, we provide a deep reflection on the Physics of the first embryogenesis and its contribution to the exaptation of additional NFM components, such as the extracellular matrix. Knowledge of NFM components, structure, dynamics, and origin advances our understanding of the numerous possibilities and different innovations that embryos have undergone to create animal forms via Neoplasia during evolutionary radiation. The developmental pathways of Neoplasia have their origins in ctenophores and were consolidated in mammals and other apical groups.
Collapse
Affiliation(s)
- Jaime Cofre
- Laboratório de Embriologia Molecular e Câncer, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil,*Correspondence: Jaime Cofre,
| | - Kay Saalfeld
- Laboratório de Filogenia Animal, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
22
|
Bruggeman JW, Koster J, van Pelt AMM, Speijer D, Hamer G. How germline genes promote malignancy in cancer cells. Bioessays 2023; 45:e2200112. [PMID: 36300921 DOI: 10.1002/bies.202200112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 02/01/2023]
Abstract
Cancers often express hundreds of genes otherwise specific to germ cells, the germline/cancer (GC) genes. Here, we present and discuss the hypothesis that activation of a "germline program" promotes cancer cell malignancy. We do so by proposing four hallmark processes of the germline: meiosis, epigenetic plasticity, migration, and metabolic plasticity. Together, these hallmarks enable replicative immortality of germ cells as well as cancer cells. Especially meiotic genes are frequently expressed in cancer, implying that genes unique to meiosis may play a role in oncogenesis. Because GC genes are not expressed in healthy somatic tissues, they form an appealing source of specific treatment targets with limited side effects besides infertility. Although it is still unclear why germ cell specific genes are so abundantly expressed in cancer, from our hypothesis it follows that the germline's reproductive program is intrinsic to cancer development.
Collapse
Affiliation(s)
- Jan Willem Bruggeman
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Reproduction and Development research institute, Amsterdam, The Netherlands
| | - Jan Koster
- Center for Experimental and Molecular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Ans M M van Pelt
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Reproduction and Development research institute, Amsterdam, The Netherlands
| | - Dave Speijer
- Medical Biochemistry, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Geert Hamer
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Reproduction and Development research institute, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Saito D, Tadokoro R, Nagasaka A, Yoshino D, Teramoto T, Mizumoto K, Funamoto K, Kidokoro H, Miyata T, Tamura K, Takahashi Y. Stiffness of primordial germ cells is required for their extravasation in avian embryos. iScience 2022; 25:105629. [PMID: 36465120 PMCID: PMC9713369 DOI: 10.1016/j.isci.2022.105629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
Unlike mammals, primordial germ cells (PGCs) in avian early embryos exploit blood circulation to translocate to the somatic gonadal primordium, but how circulating PGCs undergo extravasation remains elusive. We demonstrate with single-cell level live-imaging analyses that the PGCs are arrested at a specific site in the capillary plexus, which is predominantly governed by occlusion at a narrow path in the vasculature. The occlusion is enabled by a heightened stiffness of the PGCs mediated by actin polymerization. Following the occlusion, PGCs reset their stiffness to soften in order to squeeze through the endothelial lining as they transmigrate. Our discovery also provides a model for the understanding of metastasizing cancer extravasation occurring mainly by occlusion.
Collapse
Affiliation(s)
- Daisuke Saito
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Fukuoka 819-0395, Japan
| | - Ryosuke Tadokoro
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Kyoto 606-8502, Japan
- Department of Bioscience, Okayama University of Science, Okayama, Okayama 700-0005, Japan
| | - Arata Nagasaka
- Division of Histology, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Daisuke Yoshino
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Takayuki Teramoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Fukuoka 819-0395, Japan
| | - Kanta Mizumoto
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Kenichi Funamoto
- Institute of Fluid Science, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Hinako Kidokoro
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Organization for Research Initiatives and Development, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Yoshiko Takahashi
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| |
Collapse
|
24
|
Ma Z, Zhang F, Xiong J, Zhang H, Lin HK, Liu C. Activation of embryonic/germ cell-like axis links poor outcomes of gliomas. Cancer Cell Int 2022; 22:371. [DOI: 10.1186/s12935-022-02792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022] Open
Abstract
Abstract
Background
It is unclear which core events drive the malignant progression of gliomas. Earlier studies have revealed that the embryonic stem (ES) cell/early PGC state is associated with tumourigenicity. This study was designed to investigate the role of ES/PGC state in poor outcomes of gliomas.
Methods
Crispr-Cas9 technology, RT–PCR and animal experiments were used to investigate whether PGC-like cell formation play crucial roles in the tumorigenicity of human glioma cells. Bioinformatic analysis was used to address the link between ES/PGC developmental axis and glioma overall outcomes.
Results
Here, our findings showed that germ cell-like cells were present in human gliomas and cultured glioma cells and that the formation of germ cell-like cells was essential for glioma tumours. Bioinformatic analysis showed that the mRNA levels of genes related to embryonic/germ cell development could be detected in most gliomas. Our findings showed that the activation of genes related to reprogramming or the germ cell-like state alone seemed to be insufficient to lead to a malignant prognosis, whereas increased mRNA levels of genes related to the activation of the embryonic/germ cell-like cycle (somatic PGC-EGC-like cycle and somatic parthenogenetic embryo-like cycle) were positively correlated with malignant prognoses and poor clinical outcomes of gliomas. Genes related to the embryonic/germ cell cycle alone or in combination with the WHO grade or 1p19q codeletion status could be used to subdivide gliomas with distinct clinical behaviours.
Conclusion
Together, our findings indicated that a crucial role of germ cell-like cell formation in glioma initiation as well as activation of genes related with the parthenogenetic embryo-like cycle and PGC-EGC-like cycle link to the malignant prognosis and poor outcomes of gliomas, which might provide a novel way to better understand the nature of and develop targeted therapies for gliomas as well as important markers for predicting clinical outcomes in gliomas.
Collapse
|
25
|
Yamamoto‐Matsuda H, Miyoshi K, Moritoh M, Yoshitane H, Fukada Y, Saito K, Yamanaka S, Siomi MC. Lint‐O
cooperates with L(3)mbt in target gene suppression to maintain homeostasis in fly ovary and brain. EMBO Rep 2022; 23:e53813. [PMID: 35993198 PMCID: PMC9535798 DOI: 10.15252/embr.202153813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Loss‐of‐function mutations in Drosophila lethal(3)malignant brain tumor [l(3)mbt] cause ectopic expression of germline genes and brain tumors. Loss of L(3)mbt function in ovarian somatic cells (OSCs) aberrantly activates germ‐specific piRNA amplification and leads to infertility. However, the underlying mechanism remains unclear. Here, ChIP‐seq for L(3)mbt in cultured OSCs and RNA‐seq before and after L(3)mbt depletion shows that L(3)mbt genomic binding is not necessarily linked to gene regulation and that L(3)mbt controls piRNA pathway genes in multiple ways. Lack of known L(3)mbt co‐repressors, such as Lint‐1, has little effect on the levels of piRNA amplifiers. Identification of L(3)mbt interactors in OSCs and subsequent analysis reveals CG2662 as a novel co‐regulator of L(3)mbt, termed “L(3)mbt interactor in OSCs” (Lint‐O). Most of the L(3)mbt‐bound piRNA amplifier genes are also bound by Lint‐O in a similar fashion. Loss of Lint‐O impacts the levels of piRNA amplifiers, similar to the lack of L(3)mbt. The lint‐O‐deficient flies exhibit female sterility and tumorous brains. Thus, L(3)mbt and its novel co‐suppressor Lint‐O cooperate in suppressing target genes to maintain homeostasis in the ovary and brain.
Collapse
Affiliation(s)
- Hitomi Yamamoto‐Matsuda
- Department of Biological Sciences, Graduate School of Science The University of Tokyo Tokyo Japan
| | - Keita Miyoshi
- Department of Chromosome Science National Institute of Genetics, Research Organization of Information and Systems Shizuoka Japan
- Department of Genetics School of Life Science, SOKENDAI Shizuoka Japan
| | - Mai Moritoh
- Department of Biological Sciences, Graduate School of Science The University of Tokyo Tokyo Japan
| | - Hikari Yoshitane
- Department of Biological Sciences, Graduate School of Science The University of Tokyo Tokyo Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, Graduate School of Science The University of Tokyo Tokyo Japan
| | - Kuniaki Saito
- Department of Chromosome Science National Institute of Genetics, Research Organization of Information and Systems Shizuoka Japan
- Department of Genetics School of Life Science, SOKENDAI Shizuoka Japan
| | - Soichiro Yamanaka
- Department of Biological Sciences, Graduate School of Science The University of Tokyo Tokyo Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science The University of Tokyo Tokyo Japan
| |
Collapse
|
26
|
Oxidative Stress Is Associated with Overgrowth in Drosophila l(3)mbt Mutant Imaginal Discs. Cells 2022; 11:cells11162542. [PMID: 36010619 PMCID: PMC9406541 DOI: 10.3390/cells11162542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
The loss-of-function conditions for an l(3)malignant brain tumour (l(3)mbt) in larvae reared at 29 °C results in malignant brain tumours and hyperplastic imaginal discs. Unlike the former that have been extensively characterised, little is known about the latter. Here we report the results of a study of the hyperplastic l(3)mbt mutant wing imaginal discs. We identify the l(3)mbt wing disc tumour transcriptome and find it to include genes involved in reactive oxygen species (ROS) metabolism. Furthermore, we show the presence of oxidative stress in l(3)mbt hyperplastic discs, even in apoptosis-blocked conditions, but not in l(3)mbt brain tumours. We also find that chemically blocking oxidative stress in l(3)mbt wing discs reduces the incidence of wing disc overgrowths. Our results reveal the involvement of oxidative stress in l(3)mbt wing discs hyperplastic growth.
Collapse
|
27
|
Liu C, Moten A, Ma Z, Lin HK. The foundational framework of tumors: Gametogenesis, p53, and cancer. Semin Cancer Biol 2022; 81:193-205. [PMID: 33940178 PMCID: PMC9382687 DOI: 10.1016/j.semcancer.2021.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022]
Abstract
The completion-of-tumor hypothesis involved in the dynamic interplay between the initiating oncogenic event and progression is essential to better recognize the foundational framework of tumors. Here we review and extend the gametogenesis-related hypothesis of tumors, because high embryonic/germ cell traits are common in tumors. The century-old gametogenesis-related hypothesis of tumors postulated that tumors arise from displaced/activated trophoblasts, displaced (lost) germ cells, and the reprogramming/reactivation of gametogenic program in somatic cells. Early primordial germ cells (PGCs), embryonic stem (ES) cells, embryonic germ cells (EGCs), and pre-implantation embryos at the stage from two-cell stage to blastocysts originating from fertilization or parthenogenesis have the potential to develop teratomas/teratocarcinomas. In addition, the teratomas/teratocarcinomas/germ cells occur in gonads and extra-gonads. Undoubtedly, the findings provide strong support for the hypothesis. However, it was thought that these tumor types were an exception rather than verification. In fact, there are extensive similarities between somatic tumor types and embryonic/germ cell development, such as antigens, migration, invasion, and immune escape. It was documented that embryonic/germ cell genes play crucial roles in tumor behaviors, e.g. tumor initiation and metastasis. Of note, embryonic/germ cell-like tumor cells at different developmental stages including PGC and oocyte to the early embryo-like stage were identified in diverse tumor types by our group. These embryonic/germ cell-like cancer cells resemble the natural embryonic/germ cells in morphology, gene expression, the capability of teratoma formation, and the ability to undergo the process of oocyte maturation and parthenogenesis. These embryonic/germ cell-like cancer cells are derived from somatic cells and contribute to tumor formation, metastasis, and drug resistance, establishing asexual meiotic embryonic life cycle. p53 inhibits the reactivation of embryonic/germ cell state in somatic cells and oocyte-like cell maturation. Based on earlier and our recent studies, we propose a novel model to complete the gametogenesis-related hypothesis of tumors, which can be applied to certain somatic tumors. That is, tumors tend to establish a somatic asexual meiotic embryonic cycle through the activation of somatic female gametogenesis and parthenogenesis in somatic tumor cells during the tumor progression, thus passing on corresponding embryonic/germ cell traits leading to the malignant behaviors and enhancing the cells' independence. This concept may be instrumental to better understand the nature and evolution of tumors. We rationalize that targeting the key events of somatic pregnancy is likely a better therapeutic strategy for cancer treatment than directly targeting cell mitotic proliferation, especially for those tumors with p53 inactivation.
Collapse
Affiliation(s)
- Chunfang Liu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| | - Asad Moten
- Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK
| | - Zhan Ma
- Department of Laboratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
28
|
Marnik EA, Almeida MV, Cipriani PG, Chung G, Caspani E, Karaulanov E, Gan HH, Zinno J, Isolehto IJ, Kielisch F, Butter F, Sharp CS, Flanagan RM, Bonnet FX, Piano F, Ketting RF, Gunsalus KC, Updike DL. The Caenorhabditis elegans TDRD5/7-like protein, LOTR-1, interacts with the helicase ZNFX-1 to balance epigenetic signals in the germline. PLoS Genet 2022; 18:e1010245. [PMID: 35657999 PMCID: PMC9200344 DOI: 10.1371/journal.pgen.1010245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 06/15/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
LOTUS and Tudor domain containing proteins have critical roles in the germline. Proteins that contain these domains, such as Tejas/Tapas in Drosophila, help localize the Vasa helicase to the germ granules and facilitate piRNA-mediated transposon silencing. The homologous proteins in mammals, TDRD5 and TDRD7, are required during spermiogenesis. Until now, proteins containing both LOTUS and Tudor domains in Caenorhabditis elegans have remained elusive. Here we describe LOTR-1 (D1081.7), which derives its name from its LOTUS and Tudor domains. Interestingly, LOTR-1 docks next to P granules to colocalize with the broadly conserved Z-granule helicase, ZNFX-1. The Tudor domain of LOTR-1 is required for its Z-granule retention. Like znfx-1 mutants, lotr-1 mutants lose small RNAs from the 3' ends of WAGO and mutator targets, reminiscent of the loss of piRNAs from the 3' ends of piRNA precursor transcripts in mouse Tdrd5 mutants. Our work shows that LOTR-1 acts with ZNFX-1 to bring small RNA amplifying mechanisms towards the 3' ends of its RNA templates.
Collapse
Affiliation(s)
- Elisabeth A. Marnik
- The MDI Biological Laboratory, Bar Harbor, Maine, United States of America
- Husson University, Bangor, Maine, United States of America
| | - Miguel V. Almeida
- Institute of Molecular Biology, Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | - P. Giselle Cipriani
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - George Chung
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - Edoardo Caspani
- Institute of Molecular Biology, Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | | | - Hin Hark Gan
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - John Zinno
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - Ida J. Isolehto
- Institute of Molecular Biology, Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | | | - Falk Butter
- Institute of Molecular Biology, Mainz, Germany
| | - Catherine S. Sharp
- The MDI Biological Laboratory, Bar Harbor, Maine, United States of America
| | - Roisin M. Flanagan
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - Frederic X. Bonnet
- The MDI Biological Laboratory, Bar Harbor, Maine, United States of America
| | - Fabio Piano
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Kristin C. Gunsalus
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Dustin L. Updike
- The MDI Biological Laboratory, Bar Harbor, Maine, United States of America
| |
Collapse
|
29
|
Bonefas KM, Iwase S. Soma-to-germline transformation in chromatin-linked neurodevelopmental disorders? FEBS J 2022; 289:2301-2317. [PMID: 34514717 PMCID: PMC8918023 DOI: 10.1111/febs.16196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/16/2021] [Accepted: 09/10/2021] [Indexed: 01/22/2023]
Abstract
Mutations in numerous chromatin regulators cause neurodevelopmental disorders (NDDs) with unknown mechanisms. Understandably, most research has focused on how chromatin regulators control gene expression that is directly relevant to brain development and function, such as synaptic genes. However, some NDD models surprisingly show ectopic expression of germline genes in the brain. These germline genes are usually expressed only in the primordial germ cells, testis, and ovaries for germ cell development and sexual reproduction. Such ectopic germline gene expression has been reported in several NDDs, including immunodeficiency, centromeric instability, facial anomalies syndrome 1; Kleefstra syndrome 1; MeCP2 duplication syndrome; and mental retardation, X-linked syndromic, Claes-Jensen type. The responsible genes, DNMT3B, G9A/GLP, MECP2, and KDM5C, all encode chromatin regulators for gene silencing. These mutations may therefore lead to germline gene derepression and, in turn, a severe identity crisis of brain cells-potentially interfering with normal brain development. Thus, the ectopic expression of germline genes is a unique hallmark defining this NDD subset and further implicates the importance of germline gene silencing during brain development. The functional impact of germline gene expression on brain development, however, remains undetermined. This perspective article explores how this apparent soma-to-germline transformation arises and how it may interfere with neurodevelopment through genomic instability and impaired sensory cilium formation. Furthermore, we also discuss how to test these hypotheses experimentally to ultimately determine the contribution of ectopic germline transcripts to chromatin-linked NDDs.
Collapse
Affiliation(s)
- Katherine M. Bonefas
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109,The University of Michigan Neuroscience Graduate Program,Corresponding authors: Please address correspondence to: , and
| | - Shigeki Iwase
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109,The University of Michigan Neuroscience Graduate Program,Corresponding authors: Please address correspondence to: , and
| |
Collapse
|
30
|
Arkov AL. Looking at the Pretty "Phase" of Membraneless Organelles: A View From Drosophila Glia. Front Cell Dev Biol 2022; 10:801953. [PMID: 35198559 PMCID: PMC8859445 DOI: 10.3389/fcell.2022.801953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Membraneless granules assemble in different cell types and cellular loci and are the focus of intense research due to their fundamental importance for cellular organization. These dynamic organelles are commonly assembled from RNA and protein components and exhibit soft matter characteristics of molecular condensates currently characterized with biophysical approaches and super-resolution microscopy imaging. In addition, research on the molecular mechanisms of the RNA-protein granules assembly provided insights into the formation of abnormal granules and molecular aggregates, which takes place during many neurodegenerative disorders including Parkinson's diseases (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). While these disorders are associated with formation of abnormal granules, membraneless organelles are normally assembled in neurons and contribute to translational control and affect stability of neuronal RNAs. More recently, a new subtype of membraneless granules was identified in Drosophila glia (glial granules). Interestingly, glial granules were found to contain proteins which are the principal components of the membraneless granules in germ cells (germ granules), indicating some similarity in the functional assembly of these structures in glia and germline. This mini review highlights recent research on glial granules in the context of other membraneless organelles, including their assembly mechanisms and potential functions in the nervous system.
Collapse
Affiliation(s)
- Alexey L. Arkov
- Department of Biological Sciences, Murray State University, Murray, KY, United States
| |
Collapse
|
31
|
Actin-like protein 8, a member of cancer/testis antigens, supports the aggressive development of oral squamous cell carcinoma cells via activating cell cycle signaling. Tissue Cell 2022; 75:101708. [PMID: 35051678 DOI: 10.1016/j.tice.2021.101708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 11/10/2021] [Accepted: 12/07/2021] [Indexed: 01/21/2023]
Abstract
Due to the malignancy of oral squamous cell carcinoma (OSCC), investigations of novel therapeutic targets and prognostic biomarkers are urgently needed. In our present study, significant up-regulation of Actin-like protein 8 (ACTL8) in OSCC patients was observed by bioinformatics analysis with RNA sequencing data obtained from The Cancer Genome Atlas (TCGA) database. The results of Chi-square test revealed that there was a significant correlation between ACTL8 expression and tumor status (T1 + T2/T3+T4) (P = 0.004). Survival analysis indicated a negative correlation between ACTL8 overexpression and prognosis in OSCC (P = 3.984e-02). An ACTL8 knockdown experiment was conducted to evaluate the function of ACTL8 on OSCC cell biological behaviors. The results revealed that knockdown of ACTL8 significantly inhibited the growth and mobility, arrested cell cycle and promoted apoptosis of TCA-83 and CAL27 cells. Moreover, Gene Set Enrichment Analysis (GSEA) and western blots demonstrated that activation of cell cycle signaling pathway was inhibited by knockdown of ACTL8, as we observed the down-regulation of 4 key proteins (CDK1, cyclin E1, cyclin B2 and c-Myc) in this pathway. The present investigation indicates that ACTL8 plays an oncogenic role in the pathogenesis of OSCC, suggesting that ACTL8 may be a promising therapeutic target and prognosis marker for human OSCC.
Collapse
|
32
|
Mochizuki K, Sharif J, Shirane K, Uranishi K, Bogutz AB, Janssen SM, Suzuki A, Okuda A, Koseki H, Lorincz MC. Repression of germline genes by PRC1.6 and SETDB1 in the early embryo precedes DNA methylation-mediated silencing. Nat Commun 2021; 12:7020. [PMID: 34857746 PMCID: PMC8639735 DOI: 10.1038/s41467-021-27345-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023] Open
Abstract
Silencing of a subset of germline genes is dependent upon DNA methylation (DNAme) post-implantation. However, these genes are generally hypomethylated in the blastocyst, implicating alternative repressive pathways before implantation. Indeed, in embryonic stem cells (ESCs), an overlapping set of genes, including germline "genome-defence" (GGD) genes, are upregulated following deletion of the H3K9 methyltransferase SETDB1 or subunits of the non-canonical PRC1 complex PRC1.6. Here, we show that in pre-implantation embryos and naïve ESCs (nESCs), hypomethylated promoters of germline genes bound by the PRC1.6 DNA-binding subunits MGA/MAX/E2F6 are enriched for RING1B-dependent H2AK119ub1 and H3K9me3. Accordingly, repression of these genes in nESCs shows a greater dependence on PRC1.6 than DNAme. In contrast, GGD genes are hypermethylated in epiblast-like cells (EpiLCs) and their silencing is dependent upon SETDB1, PRC1.6/RING1B and DNAme, with H3K9me3 and DNAme establishment dependent upon MGA binding. Thus, GGD genes are initially repressed by PRC1.6, with DNAme subsequently engaged in post-implantation embryos.
Collapse
Affiliation(s)
- Kentaro Mochizuki
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jafar Sharif
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Kenjiro Shirane
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Kousuke Uranishi
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Aaron B Bogutz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sanne M Janssen
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ayumu Suzuki
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Akihiko Okuda
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo ward, Chiba, Japan
| | - Matthew C Lorincz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
33
|
Gong S, Zhang Y, Tian A, Deng W. Tumor models in various Drosophila tissues. WIREs Mech Dis 2021; 13:e1525. [PMID: 34730289 PMCID: PMC8566734 DOI: 10.1002/wsbm.1525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/07/2023]
Abstract
The development of cancer is a complex multistage process. Over the past few decades, the model organism Drosophila melanogaster has been crucial in identifying cancer-related genes and pathways and elucidating mechanisms underlying growth regulation in development. Investigations using Drosophila has yielded new insights into the molecular mechanisms involved in tumor initiation and progression. In this review, we describe various tumor models that have been developed in recent years using different Drosophila tissues, such as the imaginal tissue, the neural tissue, the gut, the ovary, and hematopoietic cells. We discuss underlying genetic alterations, cancer-like characteristics, as well as similarities and key differences among these models. We also discuss how disruptions in stem cell division and differentiation result in tumor formation in diverse tissues, and highlight new concepts developed using the fly model to understand context-dependent tumorigenesis. We further discuss the progress made in Drosophila to explore tumor-host interactions that involve the innate immune response to tumor growth and the cachexia wasting phenotype. This article is categorized under: Cancer > Genetics/Genomics/Epigenetics Cancer > Stem Cells and Development Cancer > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Shangyu Gong
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Yichi Zhang
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Aiguo Tian
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Wu‐Min Deng
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLouisianaUSA
| |
Collapse
|
34
|
Huang S, Yoshitake K, Asakawa S. A Review of Discovery Profiling of PIWI-Interacting RNAs and Their Diverse Functions in Metazoans. Int J Mol Sci 2021; 22:ijms222011166. [PMID: 34681826 PMCID: PMC8538981 DOI: 10.3390/ijms222011166] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs (sncRNAs) that perform crucial biological functions in metazoans and defend against transposable elements (TEs) in germ lines. Recently, ubiquitously expressed piRNAs were discovered in soma and germ lines using small RNA sequencing (sRNA-seq) in humans and animals, providing new insights into the diverse functions of piRNAs. However, the role of piRNAs has not yet been fully elucidated, and sRNA-seq studies continue to reveal different piRNA activities in the genome. In this review, we summarize a set of simplified processes for piRNA analysis in order to provide a useful guide for researchers to perform piRNA research suitable for their study objectives. These processes can help expand the functional research on piRNAs from previously reported sRNA-seq results in metazoans. Ubiquitously expressed piRNAs have been discovered in the soma and germ lines in Annelida, Cnidaria, Echinodermata, Crustacea, Arthropoda, and Mollusca, but they are limited to germ lines in Chordata. The roles of piRNAs in TE silencing, gene expression regulation, epigenetic regulation, embryonic development, immune response, and associated diseases will continue to be discovered via sRNA-seq.
Collapse
Affiliation(s)
- Songqian Huang
- Correspondence: (S.H.); (S.A.); Tel.: +81-3-5841-5296 (S.A.); Fax: +81-3-5841-8166 (S.A.)
| | | | - Shuichi Asakawa
- Correspondence: (S.H.); (S.A.); Tel.: +81-3-5841-5296 (S.A.); Fax: +81-3-5841-8166 (S.A.)
| |
Collapse
|
35
|
Ow MC, Hall SE. piRNAs and endo-siRNAs: Small molecules with large roles in the nervous system. Neurochem Int 2021; 148:105086. [PMID: 34082061 PMCID: PMC8286337 DOI: 10.1016/j.neuint.2021.105086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 04/23/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023]
Abstract
Since their discovery, small non-coding RNAs have emerged as powerhouses in the regulation of numerous cellular processes. In addition to guarding the integrity of the reproductive system, small non-coding RNAs play critical roles in the maintenance of the soma. Accumulating evidence indicates that small non-coding RNAs perform vital functions in the animal nervous system such as restricting the activity of deleterious transposable elements, regulating nerve regeneration, and mediating learning and memory. In this review, we provide an overview of the current understanding of the contribution of two major classes of small non-coding RNAs, piRNAs and endo-siRNAs, to the nervous system development and function, and present highlights on how the dysregulation of small non-coding RNA pathways can assist in understanding the neuropathology of human neurological disorders.
Collapse
Affiliation(s)
- Maria C Ow
- Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.
| | - Sarah E Hall
- Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.
| |
Collapse
|
36
|
Kunnummal M, Angelin M, Das AV. PIWI proteins and piRNAs in cervical cancer: a propitious dart in cancer stem cell-targeted therapy. Hum Cell 2021; 34:1629-1641. [PMID: 34374035 DOI: 10.1007/s13577-021-00590-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/02/2021] [Indexed: 11/27/2022]
Abstract
Any form of cancer is a result of uncontrolled cell growth caused by mutations and/or epigenetic alterations, implying that a balance of chromatin remodeling activities and epigenetic regulators is crucial to prevent the transformation of a normal cell to a cancer cell. Many of the chromatin remodelers do not recognize any specific sites on their targets and require guiding molecules to reach the respective targets. PIWI proteins and their interacting small non-coding RNAs (piRNAs) have proved to act as a guiding signal for such molecules. While epigenetic alterations lead to tumorigenesis, the stemness of cancer cells contributes to recurrence and metastasis of cancer. Various studies have propounded that the PIWI-piRNA complex also promotes stemness of cancer cells, providing new doors for target-mediated anti-cancer therapies. Despite the progress in diagnosis and development of vaccines, cervical cancer remains to be the second most prevalent cancer among women, due to the lack of cost-effective and accessible diagnostic and prevention methods. With the emergence of liquid biopsy, there is a significant demand for the ideal biomarker in the diagnosis of cancer. PIWI and piRNAs have been recommended to serve as prognostic and diagnostic markers, to differentiate early and later stages of cancer, including cervical cancer. This review discusses how PIWIs and piRNAs are involved in disease progression as well as their potential role in diagnostics and therapeutics in cervical cancer.
Collapse
Affiliation(s)
- Midhunaraj Kunnummal
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology, Thycaud, Thiruvananthapuram, Kerala, P.O. 695 014, India
- Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal, Karnataka, 576104, India
| | - Mary Angelin
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology, Thycaud, Thiruvananthapuram, Kerala, P.O. 695 014, India
| | - Ani V Das
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology, Thycaud, Thiruvananthapuram, Kerala, P.O. 695 014, India.
| |
Collapse
|
37
|
Wang XF, Yang SA, Gong S, Chang CH, Portilla JM, Chatterjee D, Irianto J, Bao H, Huang YC, Deng WM. Polyploid mitosis and depolyploidization promote chromosomal instability and tumor progression in a Notch-induced tumor model. Dev Cell 2021; 56:1976-1988.e4. [PMID: 34146466 DOI: 10.1016/j.devcel.2021.05.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/18/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Ploidy variation is a cancer hallmark and is frequently associated with poor prognosis in high-grade cancers. Using a Drosophila solid-tumor model where oncogenic Notch drives tumorigenesis in a transition-zone microenvironment in the salivary gland imaginal ring, we find that the tumor-initiating cells normally undergo endoreplication to become polyploid. Upregulation of Notch signaling, however, induces these polyploid transition-zone cells to re-enter mitosis and undergo tumorigenesis. Growth and progression of the transition-zone tumor are fueled by a combination of polyploid mitosis, endoreplication, and depolyploidization. Both polyploid mitosis and depolyploidization are error prone, resulting in chromosomal copy-number variation and polyaneuploidy. Comparative RNA-seq and epistasis analysis reveal that the DNA-damage response genes, also active during meiosis, are upregulated in these tumors and are required for the ploidy-reduction division. Together, these findings suggest that polyploidy and associated cell-cycle variants are critical for increased tumor-cell heterogeneity and genome instability during cancer progression.
Collapse
Affiliation(s)
- Xian-Feng Wang
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA
| | - Sheng-An Yang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Shangyu Gong
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA
| | - Chih-Hsuan Chang
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA
| | - Juan Martin Portilla
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Deeptiman Chatterjee
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA
| | - Jerome Irianto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Hongcun Bao
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA
| | - Yi-Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA; Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
38
|
Abstract
AbstractIn the developing Drosophila CNS, two pools of neural stem cells, the symmetrically dividing progenitors in the neuroepithelium (NE) and the asymmetrically dividing neuroblasts (NBs) generate the majority of the neurons that make up the adult central nervous system (CNS). The generation of a correct sized brain depends on maintaining the fine balance between neural stem cell self-renewal and differentiation, which are regulated by cell-intrinsic and cell-extrinsic cues. In this review, we will discuss our current understanding of how self-renewal and differentiation are regulated in the two neural stem cell pools, and the consequences of the deregulation of these processes.
Collapse
Affiliation(s)
- Francesca Froldi
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, 3010, Australia
| | - Milán Szuperák
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, 3010, Australia
| | - Louise Y. Cheng
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
39
|
Climent-Cantó P, Carbonell A, Tamirisa S, Henn L, Pérez-Montero S, Boros IM, Azorín F. The tumour suppressor brain tumour (Brat) regulates linker histone dBigH1 expression in the Drosophila female germline and the early embryo. Open Biol 2021; 11:200408. [PMID: 33947246 PMCID: PMC8097206 DOI: 10.1098/rsob.200408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Linker histones H1 are essential chromatin components that exist as multiple developmentally regulated variants. In metazoans, specific H1s are expressed during germline development in a tightly regulated manner. However, the mechanisms governing their stage-dependent expression are poorly understood. Here, we address this question in Drosophila, which encodes for a single germline-specific dBigH1 linker histone. We show that during female germline lineage differentiation, dBigH1 is expressed in germ stem cells and cystoblasts, becomes silenced during transit-amplifying (TA) cystocytes divisions to resume expression after proliferation stops and differentiation starts, when it progressively accumulates in the oocyte. We find that dBigH1 silencing during TA divisions is post-transcriptional and depends on the tumour suppressor Brain tumour (Brat), an essential RNA-binding protein that regulates mRNA translation and stability. Like other oocyte-specific variants, dBigH1 is maternally expressed during early embryogenesis until it is replaced by somatic dH1 at the maternal-to-zygotic transition (MZT). Brat also mediates dBigH1 silencing at MZT. Finally, we discuss the situation in testes, where Brat is not expressed, but dBigH1 is translationally silenced too.
Collapse
Affiliation(s)
- Paula Climent-Cantó
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona 08028, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona 08028, Spain
| | - Albert Carbonell
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona 08028, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona 08028, Spain
| | - Srividya Tamirisa
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona 08028, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona 08028, Spain
| | - Laszlo Henn
- Institute of Biochemistry, Biological Research Centre of Szeged, Szeged 6726, Hungary
| | - Salvador Pérez-Montero
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona 08028, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona 08028, Spain
| | - Imre M Boros
- Institute of Biochemistry, Biological Research Centre of Szeged, Szeged 6726, Hungary.,Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged 6726, Hungary
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona 08028, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona 08028, Spain
| |
Collapse
|
40
|
Abbaszadegan MR, Taghehchian N, Aarabi A, Akbari F, Saburi E, Moghbeli M. MAEL as a diagnostic marker for the early detection of esophageal squamous cell carcinoma. Diagn Pathol 2021; 16:36. [PMID: 33902648 PMCID: PMC8077922 DOI: 10.1186/s13000-021-01098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/13/2021] [Indexed: 11/10/2022] Open
Abstract
Background Esophageal cancer is one of the most common malignancies among Iranians and is categorized as adenocarcinoma and squamous cell carcinoma. Various environmental and genetic factors are involved in this malignancy. Despite the recent advances in therapeutic modalities there is still a noticeable mortality rate among such patients which can be related to the late diagnosis. Regarding high ratio of esophageal squamous cell carcinoma (ESCC) in Iran, therefore it is required to assess molecular biology of ESCC to introduce novel diagnostic markers. In present study we assessed the role of Maelstrom (MAEL) cancer testis gene in biology of ESCC among Iranian patients. Methods Forty-five freshly normal and tumor tissues were enrolled to evaluate the levels of MAEL mRNA expression using Real time polymerase chain reaction. Results MAEL under and over expressions were observed in 12 (26.7%) and 9 (20%) of patients, respectively. MAEL fold changes were ranged between -4.33 to -1.87 (mean SD: -2.90± 0.24) and 1.92 to 7.72 (mean SD: 3.97± 0.69) in under and over expressed cases, respectively. There was a significant association between stage and MAEL expression in which majority of MAEL over expressed tumors (8/9, 88.9%) were in stage I/II (p<0.001). There was also a significant correlation between MAEL expression and depth of invasion in which tumor with T1/2 had higher levels of MAEL expression compared with T3/4 tumors (p=0.017). Moreover, there were significant correlations between MAEL expression, tumor size (p=0.028), and grade (p=0.003) among male patients. Conclusions Our data showed that the MAEL was mainly involved in primary stages of tumor progression and it has a declining expression levels toward the advanced stages and higher depth of tumor invasions. Therefore, MAEL can be efficiently introduced as an early detection marker among Iranian ESCC patients.
Collapse
Affiliation(s)
| | - Negin Taghehchian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Azadeh Aarabi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faride Akbari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Freier R, Aragón E, Bagiński B, Pluta R, Martin-Malpartida P, Ruiz L, Condeminas M, Gonzalez C, Macias MJ. Structures of the germline-specific Deadhead and thioredoxin T proteins from Drosophila melanogaster reveal unique features among thioredoxins. IUCRJ 2021; 8:281-294. [PMID: 33708404 PMCID: PMC7924233 DOI: 10.1107/s2052252521000221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Thioredoxins (Trxs) are ubiquitous enzymes that regulate the redox state in cells. In Drosophila, there are two germline-specific Trxs, Deadhead (Dhd) and thioredoxin T (TrxT), that belong to the lethal(3)malignant brain tumor signature genes and to the 'survival network' of genes that mediate the cellular response to DNA damage. Dhd is a maternal protein required for early embryogenesis that promotes protamine-histone exchange in fertilized eggs and midblastula transition. TrxT is testis-specific and associates with the lampbrush loops of the Y chromosome. Here, the first structures of Dhd and TrxT are presented, unveiling new features of these two thioredoxins. Dhd has positively charged patches on its surface, in contrast to the negatively charged surfaces commonly found in most Trxs. This distinctive charge distribution helps to define initial encounter complexes with DNA/RNA that will lead to final specific interactions with cofactors to promote chromatin remodeling. TrxT contains a C-terminal extension, which is mostly unstructured and highly flexible, that wraps the conserved core through a closed conformation. It is believed that these new structures can guide future work aimed at understanding embryo development and redox homeostasis in Drosophila. Moreover, due to their restricted presence in Schizophora (a section of the true flies), these structures can help in the design of small-molecular binders to modulate native redox homeostasis, thereby providing new applications for the control of plagues that cause human diseases and/or bring about economic losses by damaging crop production.
Collapse
Affiliation(s)
- Regina Freier
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Eric Aragón
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Błażej Bagiński
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Radoslaw Pluta
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Pau Martin-Malpartida
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Lidia Ruiz
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Miriam Condeminas
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Cayetano Gonzalez
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Maria J. Macias
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
42
|
Magadi SS, Voutyraki C, Anagnostopoulos G, Zacharioudaki E, Poutakidou IK, Efraimoglou C, Stapountzi M, Theodorou V, Nikolaou C, Koumbanakis KA, Fullard JF, Delidakis C. Dissecting Hes-centred transcriptional networks in neural stem cell maintenance and tumorigenesis in Drosophila. Development 2020; 147:147/22/dev191544. [PMID: 33229432 DOI: 10.1242/dev.191544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/05/2020] [Indexed: 01/26/2023]
Abstract
Neural stem cells divide during embryogenesis and juvenile life to generate the entire complement of neurons and glia in the nervous system of vertebrates and invertebrates. Studies of the mechanisms controlling the fine balance between neural stem cells and more differentiated progenitors have shown that, in every asymmetric cell division, progenitors send a Delta-Notch signal to their sibling stem cells. Here, we show that excessive activation of Notch or overexpression of its direct targets of the Hes family causes stem-cell hyperplasias in the Drosophila larval central nervous system, which can progress to malignant tumours after allografting to adult hosts. We combined transcriptomic data from these hyperplasias with chromatin occupancy data for Dpn, a Hes transcription factor, to identify genes regulated by Hes factors in this process. We show that the Notch/Hes axis represses a cohort of transcription factor genes. These are excluded from the stem cells and promote early differentiation steps, most likely by preventing the reversion of immature progenitors to a stem-cell fate. We describe the impact of two of these 'anti-stemness' factors, Zfh1 and Gcm, on Notch/Hes-triggered tumorigenesis.
Collapse
Affiliation(s)
- Srivathsa S Magadi
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece.,Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Chrysanthi Voutyraki
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece.,Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Gerasimos Anagnostopoulos
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece.,Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Evanthia Zacharioudaki
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece
| | - Ioanna K Poutakidou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece.,Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Christina Efraimoglou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece.,Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Margarita Stapountzi
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece
| | - Vasiliki Theodorou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece
| | - Christoforos Nikolaou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece.,Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Konstantinos A Koumbanakis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece.,Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - John F Fullard
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece
| | - Christos Delidakis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece .,Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| |
Collapse
|
43
|
Tamtaji OR, Behnam M, Pourattar MA, Hamblin MR, Mahjoubin-Tehran M, Mirzaei H, Asemi Z. PIWI-interacting RNAs and PIWI proteins in glioma: molecular pathogenesis and role as biomarkers. Cell Commun Signal 2020; 18:168. [PMID: 33109195 PMCID: PMC7590611 DOI: 10.1186/s12964-020-00657-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/06/2020] [Indexed: 12/12/2022] Open
Abstract
Glioma is the most common primary brain tumor, and is a major health problem throughout the world. Today, researchers have discovered many risk factors that are associated with the initiation and progression of gliomas. Studies have shown that PIWI-interacting RNAs (piRNAs) and PIWI proteins are involved in tumorigenesis by epigenetic mechanisms. Hence, it seems that piRNAs and PIWI proteins may be potential prognostic, diagnostic or therapeutic biomarkers in the treatment of glioma. Previous studies have demonstrated a relationship between piRNAs and PIWI proteins and some of the molecular and cellular pathways in glioma. Here, we summarize recent evidence and evaluate the molecular mechanisms by which piRNAs and PIWI proteins are involved in glioma. Video abstract
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
44
|
Kulkarni A, Lopez DH, Extavour CG. Shared Cell Biological Functions May Underlie Pleiotropy of Molecular Interactions in the Germ Lines and Nervous Systems of Animals. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
45
|
Zhang F, Liu R, Zhang H, Liu C, Liu C, Lu Y. Suppressing Dazl modulates tumorigenicity and stemness in human glioblastoma cells. BMC Cancer 2020; 20:673. [PMID: 32682409 PMCID: PMC7368788 DOI: 10.1186/s12885-020-07155-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/08/2020] [Indexed: 01/20/2023] Open
Abstract
Background Glioblastoma is devastating cancer with a high frequency of occurrence and poor survival rate and it is urgent to discover novel glioblastoma-specific antigens for the therapy. Cancer-germline genes are known to be related to the formation and progression of several cancer types by promoting tumor transformation. Dazl is one such germline gene and is up-regulated in a few germ cell cancers. In this study, we analyzed the expression of Dazl in human glioblastoma tissues and cells, and investigated its significance in proliferation, migration, invasion and chemoresistance of the glioblastoma cell lines. Methods We evaluated the expression of Dazl in different pathologic grades of glioblastoma tissues by immunohistochemistry. We assessed the expression of Dazl in glioblastoma cells and normal human astrocytes (NHA) cells by western blotting and RT-qPCR. Then we generated Dazl knockout glioblastoma cell lines using the CRISPR/Cas9 gene-editing technology to explore the cellular function of Dazl. We detected the proliferation and germline traits via CCK-8 assays and alkaline phosphatase staining, respectively. Boyden chamber assays were performed to measure glioblastoma cell migration and invasion. Crystal violet staining was used to determine the number of viable cells after the treatment of Doxorubicin and Temozolomide. Finally, we used subcutaneous xenograft studies to measure the growth of tumors in vivo. Results We found that Dazl was upregulated in glioblastoma tissues and glioblastoma cell lines. Dazl knockdown glioblastoma cells showed decreased cellular proliferation, migration, invasion, and resistance in vitro, and inhibited the initiation of glioblastoma in vivo. The glioblastoma cell lines A172, U251, and LN229 were found to express stem cell markers CD133, Oct4, Nanog, and Sox2. The expression of these markers was downregulated in Dazl-deficient cells. Conclusions Our results indicated that Dazl contributes to the tumorigenicity of glioblastoma via reducing cell stemness. Therefore, cancer-germline genes might represent a new paradigm of glioblastoma-initiating cells in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Fengyu Zhang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Road, Jing-an District, Shanghai, 200040, China.,Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, 85 Wujin Road, Hongkou District, Shanghai, 200080, China
| | - Ruilai Liu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Road, Jing-an District, Shanghai, 200040, China
| | - Haishi Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Jing-an District, Shanghai, 200040, China
| | - Cheng Liu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Road, Jing-an District, Shanghai, 200040, China
| | - Chunfang Liu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Road, Jing-an District, Shanghai, 200040, China.
| | - Yuan Lu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Road, Jing-an District, Shanghai, 200040, China.
| |
Collapse
|
46
|
Zhang F, Liu R, Liu C, Zhang H, Lu Y. Nanos3, a cancer-germline gene, promotes cell proliferation, migration, chemoresistance, and invasion of human glioblastoma. Cancer Cell Int 2020; 20:197. [PMID: 32508533 PMCID: PMC7249350 DOI: 10.1186/s12935-020-01272-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background Radiotherapy, chemotherapy, and surgery have made crucial strides in glioblastoma treatment, yet they often fail; thus, new treatment and new detection methods are needed. Aberrant expression of Nanos3 has been functionally associated with various cancers. Here, we sought to identify the clinical significance and potential mechanisms of Nanos3 in human glioblastoma. Methods Nanos3 expression was studied in nude mouse glioblastoma tissues and glioblastoma cell lines by immunohistochemistry, Western blot, and RT-PCR. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing assay was performed to generate the Nanos3 knockdown glioblastoma cell lines. The effects of Nanos3 on glioblastoma cells proliferation, migration, invasion, chemoresistance, germ cell characteristics, and tumor formation were analyzed by CCK8, transwell, cell survival experiments and alkaline phosphatase staining in vitro and in nude mouse models in vivo. Correlation between the expression of stemness proteins and the expression of Nanos3 was evaluated by Western blot. Results We found that Nanos3 was strongly expressed in both glioblastoma cell lines and tissues. Western blot and sequencing assays showed that the Nanos3 knockdown glioblastoma cell lines were established successfully, and we discovered that Nanos3 deletion reduced the proliferation, migration, and invasion of glioblastoma cells in vitro (P < 0.05). Nanos3 knockdown enhanced the sensitivity of glioblastoma cells to doxorubicin (DOX) and temozolomide (TMZ) (P < 0.05), and Nanos3+/- glioblastoma cell lines did not show the characteristics of the germline cells. In addition, Nanos3 deletion inhibited subcutaneous xenograft tumor growth in vivo (P < 0.001). Moreover, the oncogenesis germline protein levels of CD133, Oct4, Ki67, and Dazl decreased significantly in glioblastoma cells following Nanos3 knockdown. Conclusions Both in vitro and in vivo assays suggest that Nanos3, which is a cancer-germline gene, initiates the tumorigenesis of glioblastoma via acquiring the oncogenesis germline traits. These data demonstrate that ectopic germline traits are necessary for glioblastoma growth.
Collapse
Affiliation(s)
- Fengyu Zhang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Jing-an District, Shanghai, 200040 China
| | - Ruilai Liu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Jing-an District, Shanghai, 200040 China
| | - Cheng Liu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Jing-an District, Shanghai, 200040 China
| | - Haishi Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Jing-an District, Shanghai, 200040 China
| | - Yuan Lu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Jing-an District, Shanghai, 200040 China
| |
Collapse
|
47
|
Liu C, Ma Z, Cai Z, Zhang F, Liu C, Chen T, Peng D, Xu X, Lin HK. Identification of primordial germ cell-like cells as liver metastasis initiating cells in mouse tumour models. Cell Discov 2020; 6:15. [PMID: 32218989 PMCID: PMC7090051 DOI: 10.1038/s41421-020-0145-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/09/2020] [Indexed: 12/29/2022] Open
Abstract
Liver metastasis, characterized by the spread of tumors to the liver from other areas, represents a deadly disease with poor prognosis. Currently, there is no effective therapeutic strategies and/or agents to combat liver metastasis primarily due to the insufficient understanding of liver metastasis. To develop a promising strategy for targeting liver metastasis, understanding of a cell origin responsible for liver metastasis and how this cell can be pharmacologically eliminated are therefore crucial. Using diverse tumor models including p53 -/- genetic mouse model and syngeneic tumor models, we identified primordial germ cell (PGC)-like tumor cells, which are enriched in earliest liver micro-metastasis (up to 99%), as a cell origin of liver metastasis. PGC-like tumor cells formed earliest micro-metastasis in liver and gradually differentiated into non-PGC-like tumor cells to constitute late macro-metastasis in the course of tumor metastasis. The liver metastasis-initiating cells (PGC-like tumor cells) display cell renewal and differentiation capabilities, resemble primordial germ cells (PGCs) in morphology and PGC marker gene expression, and express higher level of the genes linked to metastasis and immune escape compared with non-PGC-like tumor cells. Of note, Stellarhigh PGC-like tumor cells, but not Stellarlow non-PGC-like cells, sorted from primary tumors of p53 -/- mice readily form liver metastasis. Depletion of PGC-like tumor cells through genetic depletion of any of key germ cell genes impairs liver metastasis, while increased PGC-like tumor cells by SMAD2 knockout is correlated with markedly enhanced liver metastasis. Finally, we present the proof of principle evidence that pharmacologically targeting BMP pathways serves as a promising strategy to eliminate PGC-like tumor cells leading to abrogating liver metastasis. Collectively, our study identifies PGC-like tumor cells as a cell origin of liver metastasis, whose depletion by genetically targeting core PGC developmental genes or pharmacologically inhibiting BMP pathways serves a promising strategy for targeting liver metastasis.
Collapse
Affiliation(s)
- Chunfang Liu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040 China
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Zhan Ma
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040 China
| | - Zhen Cai
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Fengyu Zhang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040 China
| | - Cheng Liu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040 China
| | - Tingjin Chen
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Danni Peng
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Xiaohong Xu
- Department of breast surgery, First Affiliated Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, 310006 China
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|
48
|
Lejong M, Choa-Duterre M, Vanmuylder N, Louryan S. Is Vasa such a highly specific marker for primordial germ cells? A comparison of VASA and HSP90 proteins expression in young chicken embryos. Morphologie 2020; 104:20-26. [PMID: 32057659 DOI: 10.1016/j.morpho.2020.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Primordial germ cells (PGCs) have been studied since the 19th century with several different methods. The earliest works were based on the morphological criteria of these cells associated or not with a particular staining. Different markers have been proposed in immunohistochemistry among which we can quote the Stage-specific embryonic antigene-1 (SSEA-1), the embryonic mouse antigen-1 (EMA-1) or the heat shock protein 90. Unfortunately, none of them are germline specific. The VASA protein is considered as one of the most reliable marker for PGCs by some authors with its expression being considered to limited to the germ cells. However, other studies have reported its expression in somatic cells. Here, we described the expression of the heat shock protein, HSP90, and the VASA protein in the early chick embryo. MATERIAL AND METHODS Embryos from stages Hamburger-Hamilton (HH) 19, 21 and 28 were collected. Embryos were dissected and fixed in Serra's medium. Sections were placed on slides for PAS staining and for double immunohistochemistry with HSP90 and VASA. RESULTS VASA and HSP90 expression have been observed in germ cells but as well in other cell lineages with a spatio-temporal gradient in respect to the characteristics of development of each organ. The conclusion is that VASA expression is not limited to the germ line in chick embryo.
Collapse
Affiliation(s)
- M Lejong
- Laboratoire d'anatomie, biomécanique et organogenèse, faculté de médecine, université Libre de Bruxelles, route de Lennik, 808, 1070 Bruxelles, Belgium
| | - M Choa-Duterre
- Laboratoire d'anatomie, biomécanique et organogenèse, faculté de médecine, université Libre de Bruxelles, route de Lennik, 808, 1070 Bruxelles, Belgium
| | - N Vanmuylder
- Laboratoire d'anatomie, biomécanique et organogenèse, faculté de médecine, université Libre de Bruxelles, route de Lennik, 808, 1070 Bruxelles, Belgium
| | - S Louryan
- Laboratoire d'anatomie, biomécanique et organogenèse, faculté de médecine, université Libre de Bruxelles, route de Lennik, 808, 1070 Bruxelles, Belgium.
| |
Collapse
|
49
|
Mačinković I, Theofel I, Hundertmark T, Kovač K, Awe S, Lenz J, Forné I, Lamp B, Nist A, Imhof A, Stiewe T, Renkawitz-Pohl R, Rathke C, Brehm A. Distinct CoREST complexes act in a cell-type-specific manner. Nucleic Acids Res 2019; 47:11649-11666. [PMID: 31701127 PMCID: PMC7145674 DOI: 10.1093/nar/gkz1050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 01/10/2023] Open
Abstract
CoREST has been identified as a subunit of several protein complexes that generate transcriptionally repressive chromatin structures during development. However, a comprehensive analysis of the CoREST interactome has not been carried out. We use proteomic approaches to define the interactomes of two dCoREST isoforms, dCoREST-L and dCoREST-M, in Drosophila. We identify three distinct histone deacetylase complexes built around a common dCoREST/dRPD3 core: A dLSD1/dCoREST complex, the LINT complex and a dG9a/dCoREST complex. The latter two complexes can incorporate both dCoREST isoforms. By contrast, the dLSD1/dCoREST complex exclusively assembles with the dCoREST-L isoform. Genome-wide studies show that the three dCoREST complexes associate with chromatin predominantly at promoters. Transcriptome analyses in S2 cells and testes reveal that different cell lineages utilize distinct dCoREST complexes to maintain cell-type-specific gene expression programmes: In macrophage-like S2 cells, LINT represses germ line-related genes whereas other dCoREST complexes are largely dispensable. By contrast, in testes, the dLSD1/dCoREST complex prevents transcription of germ line-inappropriate genes and is essential for spermatogenesis and fertility, whereas depletion of other dCoREST complexes has no effect. Our study uncovers three distinct dCoREST complexes that function in a lineage-restricted fashion to repress specific sets of genes thereby maintaining cell-type-specific gene expression programmes.
Collapse
Affiliation(s)
- Igor Mačinković
- Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Ina Theofel
- Department of Biology, Philipps-University, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Tim Hundertmark
- Department of Biology, Philipps-University, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Kristina Kovač
- Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Stephan Awe
- Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Jonathan Lenz
- Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Ignasi Forné
- Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, Großhadernerstrasse 9, 82152 Martinsried, Germany
| | - Boris Lamp
- Genomics Core Facility, Institute of Molecular Oncology, Philipps-University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Philipps-University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Axel Imhof
- Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, Großhadernerstrasse 9, 82152 Martinsried, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Philipps-University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Renate Renkawitz-Pohl
- Department of Biology, Philipps-University, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Christina Rathke
- Department of Biology, Philipps-University, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Alexander Brehm
- Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| |
Collapse
|
50
|
Chow EYC, Zhang J, Qin H, Chan TF. Characterization of Hepatocellular Carcinoma Cell Lines Using a Fractionation-Then-Sequencing Approach Reveals Nuclear-Enriched HCC-Associated lncRNAs. Front Genet 2019; 10:1081. [PMID: 31781161 PMCID: PMC6857473 DOI: 10.3389/fgene.2019.01081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Advances in sequencing technologies have greatly improved our understanding of long noncoding RNA (lncRNA). These transcripts with lengths of >200 nucleotides may play significant regulatory roles in various biological processes. Importantly, the dysregulation of better characterized lncRNAs has been associated with multiple types of cancers, including hepatocellular carcinoma (HCC). There are many studies on altered lncRNA expression levels, very few, however, have focused on their subcellular localizations, from which accumulating evidences have indicated their close relationships to lncRNA functions. A transcriptome-wide investigation of the subcellular distributions of lncRNAs might thus provide new insights into their roles and functions in cancers. Results: In this study, we subjected eight patient-derived HCC cell lines to subcellular fractionation and independently sequenced RNAs from the nuclear and cytoplasmic compartments. With the integration of tumor and tumor-adjacent RNA-seq datasets of liver hepatocellular carcinoma (LIHC) from The Cancer Genome Atlas (TCGA), de novo transcriptome assembly and differential expression analysis were conducted successively and identified 26 nuclear-enriched HCC-associated lncRNAs shared between the HCC samples and the TCGA datasets, including the reported cancer driver PXN-AS1. The majority of nuclear-enriched HCC-associated lncRNAs were associated with the survival outcomes of HCC patients, exhibited characteristics similar to those of many experimentally supported HCC prognostic lncRNAs, and were co-expressed with protein-coding genes that have been linked to disease progression in various cancer types. Conclusion: We adopted a fractionation-then-sequencing approach on multiple patient-derived HCC samples and identified nuclear-enriched, HCC-associated lncRNAs that could serve as important targets for HCC diagnosis and therapeutic development. This approach could be widely applicable to other studies into the disease etiologies of lncRNA.
Collapse
Affiliation(s)
| | - Jizhou Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hao Qin
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|