1
|
Hinsley A, Challender DWS, Masters S, Macdonald DW, Milner-Gulland EJ, Fraser J, Wright J. Early warning of trends in commercial wildlife trade through novel machine-learning analysis of patent filing. Nat Commun 2024; 15:6379. [PMID: 39090097 PMCID: PMC11294592 DOI: 10.1038/s41467-024-49688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/14/2024] [Indexed: 08/04/2024] Open
Abstract
Unsustainable wildlife trade imperils thousands of species, but efforts to identify and reduce these threats are hampered by rapidly evolving commercial markets. Businesses trading wildlife-derived products innovate to remain competitive, and the patents they file to protect their innovations also provide an early-warning of market shifts. Here, we develop a novel machine-learning approach to analyse patent-filing trends and apply it to patents filed from 1970-2020 related to six traded taxa that vary in trade legality, threat level, and use type: rhinoceroses, pangolins, bears, sturgeon, horseshoe crabs, and caterpillar fungus. We found 27,308 patents, showing 130% per-year increases, compared to a background rate of 104%. Innovation led to diversification, including new fertilizer products using illegal-to-trade rhinoceros horn, and novel farming methods for pangolins. Stricter regulation did not generally correlate with reduced patenting. Patents reveal how wildlife-related businesses predict, adapt to, and create market shifts, providing data to underpin proactive wildlife-trade management approaches.
Collapse
Affiliation(s)
- A Hinsley
- Department of Biology, University of Oxford, Oxford, UK.
- Oxford Martin Programme on the Wildlife Trade, Oxford Martin School, Oxford, UK.
| | - D W S Challender
- Department of Biology, University of Oxford, Oxford, UK
- Oxford Martin Programme on the Wildlife Trade, Oxford Martin School, Oxford, UK
| | - S Masters
- Naturalis Biodiversity Centre, Leiden, The Netherlands
| | - D W Macdonald
- Department of Biology, University of Oxford, Oxford, UK
| | - E J Milner-Gulland
- Department of Biology, University of Oxford, Oxford, UK
- Oxford Martin Programme on the Wildlife Trade, Oxford Martin School, Oxford, UK
| | - J Fraser
- Saïd Business School, University of Oxford, Oxford, UK
- Imperial College Business School, Imperial College London, London, UK
| | - J Wright
- Oxford Martin Programme on the Wildlife Trade, Oxford Martin School, Oxford, UK.
- Oxford Internet Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Santana I, Felix M, Bengoechea C. Seaweed as Basis of Eco-Sustainable Plastic Materials: Focus on Alginate. Polymers (Basel) 2024; 16:1662. [PMID: 38932012 PMCID: PMC11207399 DOI: 10.3390/polym16121662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Seaweed, a diverse and abundant marine resource, holds promise as a renewable feedstock for bioplastics due to its polysaccharide-rich composition. This review explores different methods for extracting and processing seaweed polysaccharides, focusing on the production of alginate plastic materials. Seaweed emerges as a promising solution, due to its abundance, minimal environmental impact, and diverse industrial applications, such as feed and food, plant and soil nutrition, nutraceutical hydrocolloids, personal care, and bioplastics. Various manufacturing techniques, such as solvent casting, injection moulding, and extrusion, are discussed for producing seaweed-based bioplastics. Alginate, obtained mainly from brown seaweed, is particularly known for its gel-forming properties and presents versatile applications in many sectors (food, pharmaceutical, agriculture). This review further examines the current state of the bioplastics market, highlighting the growing demand for sustainable alternatives to conventional plastics. The integration of seaweed-derived bioplastics into mainstream markets presents opportunities for reducing plastic pollution and promoting sustainability in material production.
Collapse
Affiliation(s)
| | | | - Carlos Bengoechea
- Escuela Politécnica Superior, Universidad de Sevilla, Calle Virgen de África, 7, 41011 Sevilla, Spain; (I.S.); (M.F.)
| |
Collapse
|
3
|
Hosseini H, Al-Jabri HM, Moheimani NR, Siddiqui SA, Saadaoui I. Marine microbial bioprospecting: Exploitation of marine biodiversity towards biotechnological applications-a review. J Basic Microbiol 2022; 62:1030-1043. [PMID: 35467037 DOI: 10.1002/jobm.202100504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 11/09/2022]
Abstract
The increase in the human population causes an increase in the demand for nutritional supplies and energy resources. Thus, the novel, natural, and renewable resources became of great interest. Here comes the optimistic role of bioprospecting as a promising tool to isolate novel and interesting molecules and microorganisms from the marine environment as alternatives to the existing resources. Bioprospecting of marine metabolites and microorganisms with high biotechnological potentials has gained wide interest due to the variability and richness of the marine environment. Indeed, the existence of extreme conditions that increases the adaptability of marine organisms, especially planktons, allow the presence of interesting biological species that are able to produce novel compounds with multiple health benefits and high economical value. This review aims to provide a comprehensive overview of marine microbial bioprospecting as a growing field of interest. It emphasizes functional bioprospecting that facilitates the discovery of interesting metabolites. Marine bioprospecting was also discussed from a legal aspect for the first time, focusing on the shortcomings of international law. We also summarized the challenges facing bioprospecting in the marine environment including economic feasibility issues.
Collapse
Affiliation(s)
- Hoda Hosseini
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Hareb M Al-Jabri
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar.,Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Navid R Moheimani
- Algae R&D Centre, Harry Buttler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Simil A Siddiqui
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Imen Saadaoui
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar.,Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Singh S, Negi T, Sagar NA, Kumar Y, Tarafdar A, Sirohi R, Sindhu R, Pandey A. Sustainable processes for treatment and management of seafood solid waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152951. [PMID: 34999071 DOI: 10.1016/j.scitotenv.2022.152951] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Seafood processing is an important economical activity worldwide and is an integral part of the food chain system. However, their processing results in solid waste generation whose disposal and management is a serious concern. Proteins, amino acids, lipids with high amounts of polyunsaturated fatty acids (PUFA), carotenoids, and minerals are abundant in the discards, effluents, and by-catch of seafood processing waste. As a result, it causes nutritional loss and poses major environmental risks. To solve the issues, it is critical that the waste be exposed to secondary processing and valorization for recovery of value added products. Although chemical waste treatment technologies are available, the majority of these procedures have inherent flaws. Biological solutions, on the other hand, are safe, efficacious, and ecologically friendly while maintaining the intrinsic bioactivities after waste conversion. Microbial fermentation or the actions of exogenously introduced enzymes on waste components are used in most bioconversion processes. Algal biotechnology has recently developed unique technologies for biotransformation of nutrients, which may be employed as a feedstock for the recovery of important chemicals as well as biofuel. Bioconversion methods combined with a bio-refinery strategy offer the potential to enable environmentally-friendly and cost-effective seafood waste management. The refinement of these wastes through sustainable bioprocessing interventions can give rise to various circular bioeconomies within the seafood processing sector. Moreover, a techno-economic perspective on the developed solid waste processing lines and its subsequent environmental impact could facilitate commercialization. This review aims to provide a comprehensive view and critical analysis of the recent updates in seafood waste processing in terms of bioconversion processes and byproduct development. Various case studies on circular bioeconomy formulated on seafood processing waste along with techno-economic feasibility for the possible development of sustainable seafood biorefineries have also been discussed.
Collapse
Affiliation(s)
- Shikhangi Singh
- Department of Post Harvest Process and Food Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, -263 145, Uttarakhand, India
| | - Taru Negi
- Department of Food Science and Technology(,) G. B. Pant University of Agriculture and Technology, Pantnagar 263 125, Uttarakhand, India
| | - Narashans Alok Sagar
- Food Microbiology Lab, Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Yogesh Kumar
- Department of Food Engineering and Technology, Saint Longwal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Ayon Tarafdar
- Livestock Production and Management Section(,) ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136 713, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research, Lucknow 226 001, Uttar Pradesh, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India.
| |
Collapse
|
5
|
Thomson AI, Archer FI, Coleman MA, Gajardo G, Goodall‐Copestake WP, Hoban S, Laikre L, Miller AD, O’Brien D, Pérez‐Espona S, Segelbacher G, Serrão EA, Sjøtun K, Stanley MS. Charting a course for genetic diversity in the UN Decade of Ocean Science. Evol Appl 2021; 14:1497-1518. [PMID: 34178100 PMCID: PMC8210796 DOI: 10.1111/eva.13224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
The health of the world's oceans is intrinsically linked to the biodiversity of the ecosystems they sustain. The importance of protecting and maintaining ocean biodiversity has been affirmed through the setting of the UN Sustainable Development Goal 14 to conserve and sustainably use the ocean for society's continuing needs. The decade beginning 2021-2030 has additionally been declared as the UN Decade of Ocean Science for Sustainable Development. This program aims to maximize the benefits of ocean science to the management, conservation, and sustainable development of the marine environment by facilitating communication and cooperation at the science-policy interface. A central principle of the program is the conservation of species and ecosystem components of biodiversity. However, a significant omission from the draft version of the Decade of Ocean Science Implementation Plan is the acknowledgment of the importance of monitoring and maintaining genetic biodiversity within species. In this paper, we emphasize the importance of genetic diversity to adaptive capacity, evolutionary potential, community function, and resilience within populations, as well as highlighting some of the major threats to genetic diversity in the marine environment from direct human impacts and the effects of global climate change. We then highlight the significance of ocean genetic diversity to a diverse range of socioeconomic factors in the marine environment, including marine industries, welfare and leisure pursuits, coastal communities, and wider society. Genetic biodiversity in the ocean, and its monitoring and maintenance, is then discussed with respect to its integral role in the successful realization of the 2030 vision for the Decade of Ocean Science. Finally, we suggest how ocean genetic diversity might be better integrated into biodiversity management practices through the continued interaction between environmental managers and scientists, as well as through key leverage points in industry requirements for Blue Capital financing and social responsibility.
Collapse
Affiliation(s)
| | | | - Melinda A. Coleman
- New South Wales FisheriesNational Marine Science CentreCoffs HarbourNSWAustralia
- National Marine Science CentreSouthern Cross UniversityCoffs HarbourNSWAustralia
- Oceans Institute and School of Biological SciencesUniversity of Western AustraliaCrawleyWAAustralia
| | - Gonzalo Gajardo
- Laboratory of Genetics, Aquaculture & BiodiversityUniversidad de Los LagosOsornoChile
| | | | - Sean Hoban
- Centre for Tree ScienceThe Morton ArboretumLisleILUSA
| | - Linda Laikre
- Centre for Tree ScienceThe Morton ArboretumLisleILUSA
- The Wildlife Analysis UnitThe Swedish Environmental Protection AgencyStockholmSweden
| | - Adam D. Miller
- School of Life and Environmental SciencesCentre for Integrative EcologyDeakin UniversityGeelongVicAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVic.Australia
| | | | - Sílvia Pérez‐Espona
- The Royal (Dick) School of Veterinary Studies and The Roslin InstituteMidlothianUK
| | - Gernot Segelbacher
- Chair of Wildlife Ecology and ManagementUniversity FreiburgFreiburgGermany
| | - Ester A. Serrão
- CCMARCentre of Marine SciencesFaculty of Sciences and TechnologyUniversity of AlgarveFaroPortugal
| | - Kjersti Sjøtun
- Department of Biological SciencesUniversity of BergenBergenNorway
| | | |
Collapse
|
6
|
A Systematic Review on Seaweed Functionality: A Sustainable Bio-Based Material. SUSTAINABILITY 2021. [DOI: 10.3390/su13116174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sustainable development is an integrated approach to tackle ongoing global challenges such as resource depletion, environmental degradation, and climate change. However, a paradigm shift from a fossil-based economy to a bio-based economy must accomplish the circularity principles in order to be sustainable as a solution. The exploration of new feedstock possibilities has potential to unlock the bio-based economy’s true potential, wherein a cascading approach would maximize value creation. Seaweed has distinctive chemical properties, a fast growth rate, and other promising benefits beyond its application as food, making it a suitable candidate to substitute fossil-based products. Economic and environmental aspects can make seaweed a lucrative business; however, seasonal variation, cultivation, harvesting, and product development challenges have yet not been considered. Therefore, a clear forward path is needed to consider all aspects, which would lead to the commercialization of financially viable seaweed-based bioproducts. In this article, seaweed’s capability and probable functionality to aid the bio-based economy are systematically discussed. The possible biorefinery approaches, along with its environmental and economic aspects of sustainability, are also dealt with. Ultimately, the developmental process, by-product promotion, financial assistance, and social acceptance approach are summarized, which is essential when considering seaweed-based products’ feasibility. Besides keeping feedstock and innovative technologies at the center of bio-economy transformation, it is imperative to follow sustainable-led management practices to meet sustainable development goals.
Collapse
|
7
|
Abstract
This research deals with the development of capacity-building through marine bioresearch from a scientific standpoint, particularly through a new approach based on publication and authorship metrics. By using a 50-y dataset on the discovery of marine natural products, this study draws verifiable conclusions on capacity-building, a process that is often difficult to quantify. This is a stepping-stone toward evidence-based capacity building for bioprospecting as originally envisioned in the framework of high-level international fora, such as the Convention on Biological Diversity and, more recently, the Nagoya Protocol. The Convention on Biological Diversity, and the Nagoya Protocol in particular, provide a framework for the fair and equitable sharing of benefits arising from the utilization of biological resources and traditional knowledge, and ultimately aim to promote capacity-building in the developing world. However, measuring capacity-building is a challenging task due to its intangible nature. By compiling and analyzing a database of scientific peer-reviewed publications over a period of 50 y (1965 to 2015), we investigated capacity-building in global marine natural product discovery. We used publication and authorship metrics to assess how the capacity to become scientifically proficient, prolific, and independent has changed in bioprospecting countries. Our results show that marine bioprospecting is a dynamically growing field of research with continuously increasing numbers of participating countries, publications, and scientists. Yet despite longstanding efforts to promote equitability and scientific independence, not all countries have similarly increased their capacity to explore marine biodiversity within their national jurisdiction areas. Although developing countries show an increasing trend in the number of publications, a few developed countries still account for almost one-half of all publications in the field. Multiple lines of evidence suggest that economic capacity affects how well countries with species-rich marine ecosystems can scientifically explore those resources. Overall, the capacity-building data analyzed here provides a timely contribution to the ongoing international debate about access to and benefit-sharing of biological resources for countries exploring biodiversity within and outside their national jurisdiction areas.
Collapse
|
8
|
Sun H, Gao L, Xue C, Mao X. Marine-polysaccharide degrading enzymes: Status and prospects. Compr Rev Food Sci Food Saf 2020; 19:2767-2796. [PMID: 33337030 DOI: 10.1111/1541-4337.12630] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
Marine-polysaccharide degrading enzymes have recently been studied extensively. They are particularly interesting as they catalyze the cleavage of glycosidic bonds in polysaccharide macromolecules and produce oligosaccharides with low degrees of polymerization. Numerous findings have demonstrated that marine polysaccharides and their biotransformed products possess beneficial properties including antitumor, antiviral, anticoagulant, and anti-inflammatory activities, and they have great value in healthcare, cosmetics, the food industry, and agriculture. Exploitation of enzymes that can degrade marine polysaccharides is in the ascendant, and is important for high-value use of marine biomass resources. In this review, we describe research and prospects regarding the classification, biochemical properties, and catalytic mechanisms of the main types of marine-polysaccharide degrading enzymes, focusing on chitinase, chitosanase, alginate lyase, agarase, and carrageenase, and their product oligosaccharides. The state-of-the-art discussion of marine-polysaccharide degrading enzymes and their properties offers information that might enable more efficient production of marine oligosaccharides. We also highlight current problems in the field of marine-polysaccharide degrading enzymes and trends in their development. Understanding the properties, catalytic mechanisms, and modification of known enzymes will aid the identification of novel enzymes to degrade marine polysaccharides and facilitation of their use in various biotechnological processes.
Collapse
Affiliation(s)
- Huihui Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Li Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
9
|
Ruhl JB, Posner SM, Ricketts TH. Engaging policy in science writing: Patterns and strategies. PLoS One 2019; 14:e0220497. [PMID: 31369620 PMCID: PMC6675390 DOI: 10.1371/journal.pone.0220497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/17/2019] [Indexed: 11/18/2022] Open
Abstract
Many scientific researchers aspire to engage policy in their writing, but translating scientific research and findings into policy discussion often requires an understanding of the institutional complexities of legal and policy processes and actors. To examine how researchers have undertaken that challenge, we developed a set of metrics and applied them to articles published in one of the principal academic publication venues for science and policy—Science magazine’s Policy Forum. We reviewed each Policy Forum article published over a five-year period (2011–15), 220 in all. For each article, we assessed the level of policy content based on presence of a stated policy proposal or position and identification of the relevant policy actors and actions, and recorded attributes such as field of science, field of policy, number of references to legal and policy sources, number of authors from law and policy institutions, and number of citations. We find that a handful of science fields dominate publication frequency, but that all fields have produced publications with high policy engagement. Of the attributes, number of references to law and policy sources is correlated positively with level of engagement, whereas number of law and policy authors was fairly constant across all depths of engagement. Surprisingly, level of policy engagement was negatively correlated with the number of citations an article subsequently received. We offer possible explanations for these results and thoughts for authors, editors, and research institutions interested in facilitating robust engagement of policy in scientific writing.
Collapse
Affiliation(s)
- J. B. Ruhl
- Vanderbilt University Law School, Nashville, TN, United States of America
- * E-mail:
| | - Stephen M. Posner
- COMPASS, Silver Spring, MD, United States of America
- Gund Institute for Environment, University of Vermont, Burlington, VT, United States of America
| | - Taylor H. Ricketts
- Gund Institute for Environment, University of Vermont, Burlington, VT, United States of America
- Rubenstein School for Environment and Natural Resources, University of Vermont, Burlington, VT, United States of America
| |
Collapse
|
10
|
Blasiak R, Jouffray JB, Wabnitz CCC, Sundström E, Österblom H. Corporate control and global governance of marine genetic resources. SCIENCE ADVANCES 2018; 4:eaar5237. [PMID: 29881777 PMCID: PMC5990308 DOI: 10.1126/sciadv.aar5237] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/27/2018] [Indexed: 05/03/2023]
Abstract
Who owns ocean biodiversity? This is an increasingly relevant question, given the legal uncertainties associated with the use of genetic resources from areas beyond national jurisdiction, which cover half of the Earth's surface. We accessed 38 million records of genetic sequences associated with patents and created a database of 12,998 sequences extracted from 862 marine species. We identified >1600 sequences from 91 species associated with deep-sea and hydrothermal vent systems, reflecting commercial interest in organisms from remote ocean areas, as well as a capacity to collect and use the genes of such species. A single corporation registered 47% of all marine sequences included in gene patents, exceeding the combined share of 220 other companies (37%). Universities and their commercialization partners registered 12%. Actors located or headquartered in 10 countries registered 98% of all patent sequences, and 165 countries were unrepresented. Our findings highlight the importance of inclusive participation by all states in international negotiations and the urgency of clarifying the legal regime around access and benefit sharing of marine genetic resources. We identify a need for greater transparency regarding species provenance, transfer of patent ownership, and activities of corporations with a disproportionate influence over the patenting of marine biodiversity. We suggest that identifying these key actors is a critical step toward encouraging innovation, fostering greater equity, and promoting better ocean stewardship.
Collapse
Affiliation(s)
- Robert Blasiak
- Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, 113-8657 Tokyo, Japan
| | - Jean-Baptiste Jouffray
- Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
- Global Economic Dynamics and the Biosphere Academy Programme, Royal Swedish Academy of Sciences, 104 05 Stockholm, Sweden
| | - Colette C. C. Wabnitz
- Institute for the Oceans and Fisheries, The University of British Columbia, 2202 Main Mall, Vancouver, British Columbia V6T1Z4, Canada
| | - Emma Sundström
- Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
| | - Henrik Österblom
- Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
11
|
Research and Development Strategy in Biological Technologies: A Patent Data Analysis of Japanese Manufacturing Firms. SUSTAINABILITY 2016. [DOI: 10.3390/su8040351] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Marine biotechnologies and synthetic biology, new issues for a fair and equitable profit-sharing commercial use. Mar Genomics 2014; 17:79-83. [DOI: 10.1016/j.margen.2014.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/15/2014] [Accepted: 07/18/2014] [Indexed: 11/19/2022]
|
13
|
Global unbalance in seaweed production, research effort and biotechnology markets. Biotechnol Adv 2014; 32:1028-36. [DOI: 10.1016/j.biotechadv.2014.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 05/09/2014] [Accepted: 05/14/2014] [Indexed: 11/19/2022]
|
14
|
Abstract
Biological diversity in the patent system is an enduring focus of controversy but empirical analysis of the presence of biodiversity in the patent system has been limited. To address this problem we text mined 11 million patent documents for 6 million Latin species names from the Global Names Index (GNI) established by the Global Biodiversity Information Facility (GBIF) and Encyclopedia of Life (EOL). We identified 76,274 full Latin species names from 23,882 genera in 767,955 patent documents. 25,595 species appeared in the claims section of 136,880 patent documents. This reveals that human innovative activity involving biodiversity in the patent system focuses on approximately 4% of taxonomically described species and between 0.8–1% of predicted global species. In this article we identify the major features of the patent landscape for biological diversity by focusing on key areas including pharmaceuticals, neglected diseases, traditional medicines, genetic engineering, foods, biocides, marine genetic resources and Antarctica. We conclude that the narrow focus of human innovative activity and ownership of genetic resources is unlikely to be in the long term interest of humanity. We argue that a broader spectrum of biodiversity needs to be opened up to research and development based on the principles of equitable benefit-sharing, respect for the objectives of the Convention on Biological Diversity, human rights and ethics. Finally, we argue that alternative models of innovation, such as open source and commons models, are required to open up biodiversity for research that addresses actual and neglected areas of human need. The research aims to inform the implementation of the 2010 Nagoya Protocol on Access to Genetic Resources and the Equitable Sharing of Benefits Arising from their Utilization and international debates directed to the governance of genetic resources. Our research also aims to inform debates under the Intergovernmental Committee on Intellectual Property and Genetic Resources, Traditional Knowledge and Folklore at the World Intellectual Property Organization.
Collapse
|
15
|
Rapid growth of seaweed biotechnology provides opportunities for developing nations. Nat Biotechnol 2013; 31:591-2. [DOI: 10.1038/nbt.2636] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Affiliation(s)
- Lisa M. Campbell
- Nicholas School of the Environment; Duke University; 135 Duke Marine Lab Road Beaufort NC 28516 USA
| | - Noella J. Gray
- Department of Geography; University of Guelph; 50 Stone Road East Guelph ON N1G 2W1 Canada
| | - Luke W. Fairbanks
- Nicholas School of the Environment; Duke University; 135 Duke Marine Lab Road Beaufort NC 28516 USA
| | - Jennifer J. Silver
- Department of Geography; University of Guelph; 50 Stone Road East Guelph ON N1G 2W1 Canada
| | - Rebecca L. Gruby
- Nicholas School of the Environment; Duke University; 135 Duke Marine Lab Road Beaufort NC 28516 USA
| |
Collapse
|
17
|
Ritchie RJ, Guy K, Philp JC. Policy to support marine biotechnology-based solutions to global challenges. Trends Biotechnol 2013; 31:128-31. [DOI: 10.1016/j.tibtech.2013.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/10/2013] [Accepted: 01/10/2013] [Indexed: 01/13/2023]
|
18
|
Depauw FA, Rogato A, Ribera d'Alcalá M, Falciatore A. Exploring the molecular basis of responses to light in marine diatoms. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1575-91. [PMID: 22328904 DOI: 10.1093/jxb/ers005] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Light is an essential source of energy for life on Earth and is one of the most important signals that organisms use to obtain information from the surrounding environment, on land and in the oceans. Prominent marine microalgae, such as diatoms, display a suite of sophisticated responses (physiological, biochemical, and behavioural) to optimize their photosynthesis and growth under changing light conditions. However, the molecular mechanisms controlling diatom responses to light are still largely unknown. Recent progress in marine diatom genomics and genetics, combined with well-established (eco) physiological and biophysical approaches, now offers novel opportunities to address these issues. This review provides a description of the molecular components identified in diatom genomes that are involved in light perception and acclimation mechanisms. How the initial functional characterizations of specific light regulators provide the basis to investigate the conservation or diversification of light-mediated processes in diatoms is also discussed. Hypotheses on the role of the identified factors in determining the growth, distribution, and adaptation of diatoms in different marine environments are reported.
Collapse
Affiliation(s)
- Frauke Angelique Depauw
- Université Pierre et Marie Curie, Paris 06, Centre National de la Recherche Scientifique, UMR7238, Laboratoire de Génomique des Microorganismes, 75006 Paris, France
| | | | | | | |
Collapse
|
19
|
Abstract
The structure, robustness, and dynamics of ocean plankton ecosystems remain poorly understood due to sampling, analysis, and computational limitations. The Tara Oceans consortium organizes expeditions to help fill this gap at the global level.
Collapse
|