1
|
Yang S, Li Z, Ren X, Yue J. A Compound Heterozygous Pathogenic Variant in ZP2 Gene Causes Female Infertility. Reprod Sci 2025; 32:1557-1565. [PMID: 39443359 DOI: 10.1007/s43032-024-01729-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The oocyte maturation defect 6 is an autosomal recessive hereditary disease caused by a homozygous variant in ZP2 gene. It is characterized by female primary infertility due to an abnormally thin zona pellucida (ZP) and defective sperm binding. Here we identified a compound heterozygous variant (c.1924C > T and c.1695-2A > G) in ZP2 gene in a Chinese Han family. Quantitative real-time PCR showed that the variant c.1924C > T significantly decreased the expression of truncated ZP2 message RNA by the nonsense-mediated decay pathway. Minigene assays showed the c.1695-2A > G variant led to an extra-61-nt preservation of intron 15 at the junction between exons 15 and 16 during transcription. Both variants (c.1924C > T and c.1695-2A > G) resulted in truncated ZP2 proteins (p.R642X and p.C566Hfs*2) that lost the transmembrane domain, which prevented the secretion of the mutant ZP2 proteins and produced a structurally abnormal ZP, thus resulting in female infertility. This study further elucidated the pathogenic mechanism of these two variants and provided new support for the genetic diagnosis of female infertility.
Collapse
Affiliation(s)
- Shulin Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zongzhe Li
- Division of Cardiology, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinling Ren
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Jing Yue
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
2
|
Tang L, Zhang J, Oumata N, Mignet N, Sollogoub M, Zhang Y. Sialyl Lewis X (sLe x):Biological functions, synthetic methods and therapeutic implications. Eur J Med Chem 2025; 287:117315. [PMID: 39919437 DOI: 10.1016/j.ejmech.2025.117315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/09/2025]
Abstract
Carbohydrates are shown to be crucial to several biological processes. They are essential mediators of cell-cell recognition processes. Among them, Sialyl Lewis X (sLex) is a very significant structure in the human body. It is a critical tetrasaccharide that plays a pivotal role in various biological processes, including cell adhesion, immune response, and cancer metastasis. Known as the blood group antigen, sLex is also referred to as cluster of differentiation 15s (CD15s) or stage-specific embryonic antigen 1 (SSEA-1). sLex is not only a prominent blood group antigen, but also involved in the attraction of sperm to the egg during fertilization, prominently displayed at the terminus of glycolipids on the cell surface. By describing the synthetic methods and biological functions of sLex, this review underscores the importance of sLex in both fundamental and applied sciences and its potential to impact clinical practice.
Collapse
Affiliation(s)
- Leyu Tang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Jiaxu Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Nassima Oumata
- Université Paris Cité, UCTBS, Inserm U 1267, CNRS, UMR 8258, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Nathalie Mignet
- Université Paris Cité, UCTBS, Inserm U 1267, CNRS, UMR 8258, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France; Fuyang Institute & School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311422, Zhejiang, China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
3
|
Wang K, Ma W, Meng X, Xu Z, Zhao W, Li T. Chemoenzymatic Synthesis of Core-Fucosylated Asymmetrical N-Glycans with Different-Length Oligo-N-Acetyllactosamine Motifs and Their Sialylated Extensions. Chemistry 2025; 31:e202500183. [PMID: 40079522 DOI: 10.1002/chem.202500183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
An efficient chemoenzymatic approach for the diversity-oriented synthesis of core-fucosylated asymmetrical N-glycans bearing different lengths of oligo-N-acetyllactosamine (LacNAc) and their sialylated extensions is described. Two oligosaccharide precursors were chemically synthesized by length-controlled introduction of oligo-LacNAc motifs through stereoselectively iterative glycosylation of a common hexasaccharide intermediate. Both oligosaccharide precursors can be well recognized by α1,6-fucosyltransferase FUT8 to generate core-fucosylated N-glycans, which were subjected to divergent enzymatic extension using a galactosyltransferase module and two sialyltransferase modules to provide a wide array of core-fucosylated asymmetrical biantennary N-glycans having different-length oligo-LacNAc motifs capped by various sialic acid linkages.
Collapse
Affiliation(s)
- Kaixuan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenjing Ma
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Meng
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuojia Xu
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Wu Y, Zhang Z, Xu Y, Zhang Y, Chen L, Zhang Y, Hou K, Yang M, Jin Z, Cai Y, Zhao J, Sun S. A high-resolution N-glycoproteome landscape of aging mouse ovary. Redox Biol 2025; 81:103584. [PMID: 40073759 PMCID: PMC11938160 DOI: 10.1016/j.redox.2025.103584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Ovarian aging typically precedes the decline of other organ systems, yet its molecular mechanisms remain poorly understood. Glycosylation as one of the most important protein modifications has been especially unexplored in this context. Here, we present the first high-resolution glycoproteomic landscape of aging mouse ovaries, uncovering site-specific N-glycan signatures across subcellular components such as high proportions of complex glycans, core fucosylation, and LacdiNAc branches at the zone pellucida. We report three major glycosylation alterations in aged ovaries: the frequently changed core-fucosylation associated with cell adhesion and immune responses, the decreased LacdiNAc glycans on zona pellucida (ZP) responsible for fertility decline, and the increased sialylated glycans modified by Neu5Ac and Neu5Gc playing different roles in immune activation and responses. Integrated multi-omic analyses further highlight the unique role of glycosylation, distinct from phosphorylation, in regulating key signaling pathways, antigen processing and presentation, complement coagulation cascades, ROS biosynthetic and metabolic processes, as well as cell death. This study offers a novel glycobiological perspective on ovarian aging, broadening our understanding of its molecular mechanisms beyond traditional multi-omic approaches.
Collapse
Affiliation(s)
- Yongqi Wu
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Zhida Zhang
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Yongchao Xu
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Yingjie Zhang
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Lin Chen
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Yiwen Zhang
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Ke Hou
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Muyao Yang
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Zhehui Jin
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Yinli Cai
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Jiayu Zhao
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Shisheng Sun
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an, 710069, PR China.
| |
Collapse
|
5
|
Liu K, Delbianco M. A glycan foldamer that uses carbohydrate-aromatic interactions to perform catalysis. Nat Chem 2025:10.1038/s41557-025-01763-6. [PMID: 40011712 DOI: 10.1038/s41557-025-01763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/29/2025] [Indexed: 02/28/2025]
Abstract
In nature, the ability to catalyse reactions is primarily associated with proteins and ribozymes. Inspired by these systems, peptide-based catalysts have been designed to accelerate chemical reactions and/or ensure regio- and stereoselective transformations. We wondered whether other biomolecules (such as glycans) could be designed to perform catalytic functions, expanding the portfolio of synthetic functional oligomers. Here we report a glycan foldamer inspired by the natural Sialyl Lewis X antigen that acts as catalyst in a chemical reaction. This glycan-based catalyst benefits from structural rigidity and modular adaptability, incorporating a substrate-recognition motif alongside a catalytic active site. Leveraging the inherent ability of carbohydrates to engage in CH-π interactions with aromatic substrates, we demonstrate the recruitment and functionalization of a tryptophan via a Pictet-Spengler transformation. Our modular glycan catalyst accelerates the reaction kinetics, enabling the modification of tryptophan-containing peptides in aqueous environments. Our findings pave the way for the development of glycan-based catalysts and suggest the possibility of catalytic capabilities of glycans in biological contexts.
Collapse
Affiliation(s)
- Kaimeng Liu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| |
Collapse
|
6
|
Litscher ES, Wassarman PM. The mammalian egg's zona pellucida, fertilization, and fertility. Curr Top Dev Biol 2025; 162:207-258. [PMID: 40180510 DOI: 10.1016/bs.ctdb.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The zona pellucida (ZP) is a relatively thick extracellular matrix (ECM) that surrounds all mammalian eggs and plays vital roles during oogenesis, fertilization, and preimplantation development. The ZP is a semi-permeable, viscous ECM that consists of three or four glycosylated proteins, called ZP1-4, that differ from proteoglycans and proteins of somatic cell ECM. Mammalian ZP proteins are encoded by single-copy genes on different chromosomes and synthesized and secreted by growing oocytes arrested in meiosis. Secreted ZP proteins assemble in the extracellular space into long fibrils that are crosslinked polymers of ZP proteins and exhibit a structural repeat. Several regions of nascent ZP proteins, the signal-sequence, ZP domain, internal and external hydrophobic patches, transmembrane domain, and consensus furin cleavage-site regulate secretion and assembly of the proteins. The ZP domain is required for assembly of ZP fibrils, as well as for assembly of other kinds of ZP domain-containing proteins. ZP proteins adopt immunoglobulin (Ig)-like folds that resemble C- and V-type Ig-like domains, but represent new immunoglobulin-superfamily subtype structures. Interference with synthesis, processing, or secretion of ZP proteins by either gene-targeting in mice or mutations in human ZP genes can result in failure to assemble a ZP and female infertility. ZP2 and ZP3 must be present to assemble a ZP during oocyte growth and both serve as receptors for binding of free-swimming sperm to ovulated eggs. Acrosome-reacted sperm bind to ZP2 polypeptide by inner-acrosomal membrane and acrosome-intact sperm bind to ZP3 oligosaccharides by plasma membrane overlying the sperm head. Binding of acrosome-intact sperm to ZP3 induces them to undergo cellular exocytosis, the acrosome reaction. Only acrosome-reacted sperm can penetrate the ZP, bind to, and then fuse with the egg's plasma membrane to produce a zygote. Following sperm-egg fusion (fertilization) the ZP undergoes structural and functional changes (zona reaction) induced by cortical granule components (cortical reaction) deposited into the ZP. The latter include zinc and ovastacin, a metalloendoprotease that cleaves ZP2 near its amino-terminus and hardens the egg's ZP. The changes prevent penetration of bound sperm through and binding of supernumerary sperm to the ZP of fertilized eggs as part of a secondary or slow block to polyspermy. Therefore, ZP proteins act as structural proteins and sperm receptors, and help to prevent fertilization by more than one sperm. Here we review some of this information and provide details about several key features of ZP proteins, ZP matrix, and mammalian fertilization.
Collapse
Affiliation(s)
- Eveline S Litscher
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Paul M Wassarman
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
7
|
He P, Liu S, Shi X, Huang C, Li W, Wu J, Li H, Liu J, Wen Y, Zhang W, Qiu Z, Luo C, Hua R. A Novel Homozygous Missense ZP1 Variant Result in Human Female Empty Follicle Syndrome. Clin Genet 2025; 107:147-156. [PMID: 39380244 DOI: 10.1111/cge.14624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
Empty follicle syndrome (EFS) is a disorder characterised by the unsuccessful retrieval of oocytes from matured follicles following ovarian stimulation for in vitro fertilisation (IVF). Genetic factors significantly contribute to this pathology. To date, an increasing number of genetic mutations associated with GEFS have been documented, however, some cases still remain unexplained by these previously reported mutations. Here, we identified a novel homozygous missense ZP1 variant (c.1096 C > T, p.Arg366Trp) in a female patient with GEFS from a consanguineous family who failed to retrieve any oocytes during two cycles of IVF treatment. We conducted a molecular dynamics simulation analysis on the mutant ZP1 model, revealing that the mutant ZP1 protein has an altered 3D structure, lower fluctuation, higher compactness and higher instability than wild-type ZP1. Immunostaining, immunoblotting and co-immunoprecipitation results showed that the homozygous missense mutation in ZP1 impaired protein secretion and weakened interactions between ZP1 and other ZP proteins, which may affect the ZP assembly. This study contributes to a more comprehensive understanding of the genetic aetiopathogenesis of GEFS.
Collapse
Affiliation(s)
- Pei He
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siping Liu
- The Center for Prenatal and Hereditary Disease Diagnosis, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Shi
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuyu Huang
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenfeng Li
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiamin Wu
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huixi Li
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junting Liu
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuyuan Wen
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiqing Zhang
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhuolin Qiu
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Luo
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Hua
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Yang Y, Holck J, Thorhallsson AT, Hunt CJ, Yang H, Morth JP, Meyer AS, Zeuner B. Structural elucidation and characterization of GH29A α-l-fucosidases and the effect of pH on their transglycosylation. FEBS J 2025; 292:653-680. [PMID: 39658312 PMCID: PMC11796335 DOI: 10.1111/febs.17347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/11/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
GH29A α-l-fucosidases (EC 3.2.1.51) catalyze the release of α-l-fucosyl moieties from the nonreducing end of glycoconjugates by hydrolysis and some also catalyze transglycosylation. The latter is particularly interesting with regard to designing enzymatic synthesis of human milk oligosaccharides (HMOs). We combined the bioinformatics tool conserved unique peptide patterns (CUPP) and phylogenetic clustering to discover new microbial GH29A α-l-fucosidases of the underexplored CUPP group GH29:13.1. Three uncharacterized bacterial enzymes (EaGH29, SeGH29, and PmGH29) and two previously identified GH29A α-l-fucosidases (BF3242 and TfFuc1) were selected for reaction optimization, biochemical, and structural characterization. Kinetics, pH-temperature optima, and substrate preference for 2-chloro-4-nitrophenyl-α-l-fucopyranoside (CNP-α-l-Fuc) and 2'-fucosyllactose (2'FL) were determined. Transglycosylation was favored at high neutral to alkaline pH, especially for EaGH29, SeGH29, TfFuc1, and BF3242, mainly because hydrolysis was decreased. The α-l-fucosidases exhibited medium regioselectivity in transglycosylation, generally forming two out of five detected lacto-N-fucopentaose (LNFP) isomers from 2'FL and lacto-N-tetraose (LNT). Alkaline pH also affected the transglycosylation product regioselectivity of SeGH29, which was also affected by a Leu/Phe exchange in the acceptor binding site. New crystal structures of TfFuc1 and BF3242 showed congruence in active site topology between these two enzymes and contributed to understanding the function of GH29A α-l-fucosidases. Notably, the structural data provide new insight into the role of an Asn residue located between the two catalytic residues in the active site.
Collapse
Affiliation(s)
- Yaya Yang
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, DTU BioengineeringTechnical University of DenmarkKgs. LyngbyDenmark
| | - Jesper Holck
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, DTU BioengineeringTechnical University of DenmarkKgs. LyngbyDenmark
| | - Albert Thor Thorhallsson
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, DTU BioengineeringTechnical University of DenmarkKgs. LyngbyDenmark
| | - Cameron J. Hunt
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, DTU BioengineeringTechnical University of DenmarkKgs. LyngbyDenmark
| | - Huan Yang
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Jens Preben Morth
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, DTU BioengineeringTechnical University of DenmarkKgs. LyngbyDenmark
| | - Anne S. Meyer
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, DTU BioengineeringTechnical University of DenmarkKgs. LyngbyDenmark
| | - Birgitte Zeuner
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, DTU BioengineeringTechnical University of DenmarkKgs. LyngbyDenmark
| |
Collapse
|
9
|
Yan D, Zhou M, Tian T, Wu C. Study repair function of mucin-2 on the tight junction protein of uterine epithelial cells under bacterial endotoxins. Toxicon 2024; 252:108162. [PMID: 39522658 DOI: 10.1016/j.toxicon.2024.108162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
To analysis repair function of mucin-2(MUC2) and glycoprotein particles on the tight junction protein of uterus under bacterial endotoxins. In this experiment, we showed that the thicker mucus layer of the uterus is used to prevent the translocation of endotoxin at 21d postdelivery. When endotoxin acts on the uterus to thin its mucous layer, the cells in the lamina propria of the uterus secrete a large number of glycoprotein particles at 27d postdelivery. Due to a significantly decrease in the expression of glycosyltransferase, the glycoprotein particles are incompletely glycosylation MUC2, which can interact with the cell membrane and are released in large quantities in the form of exocytosis. These glycoprotein particles can significantly repair tight junction proteins in the inter-cellular space and significantly increase the expression of Claudin-1, JAM (Junction adhesion molecule-A), E-cadherin, ZO-1(Zonula occludens-1) and desmosome proteins after endotoxin treatment. The results of the present study show that endotoxins can thin the uterine mucus layer and accelerate the release of incompletely glycosylated MUC2 from lamina propria cells. In inter-cellular spaces, MUC2 can increase its expression levels and distribution area to repair the tight junction structure of cells with larger gaps. Further strengthening of the barrier prevents endotoxin translocation by repairing the tight junction structure of uterine epithelial cells.
Collapse
Affiliation(s)
- Dujian Yan
- Department of Biotechnology, Aks Vocational and Technical College, Akesu, Xinjiang 843000, China
| | - Mengru Zhou
- College of Animal Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tian Tian
- College of Animal Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chenchen Wu
- College of Animal Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
10
|
Dong S, Fan C, Wang M, Patil S, Li J, Huang L, Chen Y, Guo H, Liu Y, Pan M, Ma L, Chen F. Development of a carbohydrate-binding protein prediction algorithm using structural features of stacking aromatic rings. Int J Biol Macromol 2024; 281:136553. [PMID: 39401628 DOI: 10.1016/j.ijbiomac.2024.136553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/20/2024]
Abstract
Carbohydrate-protein interactions play fundamental roles in numerous aspects of biological activities, and the search for new carbohydrate (CHO)-binding proteins (CBPs) has long been a research focus. In this study, through the analysis of CBP structures, we identified significant enrichment of aromatic residues in CHO-binding regions. We further summarized the structural features of these aromatic rings within the CHO-stacking region, namely "exposing" and "proximity" features, and developed a screening algorithm that can identify CHO-stacking Trp (tryptophan) residues based on these two features. Our Trp screening algorithm can achieve high accuracy in both CBP (specificity score 0.93) and CBS (Carbohydrate binding site, precision score 0.77) prediction using experimentally determined protein structures. We also applied our screening algorithm on AlphaGO pan-species predicted models and observed significant enrichment of carbohydrate-related functions in predicted CBP candidates across different species. Moreover, through carbohydrate arrays, we experimentally verified the CHO-binding ability of four candidate proteins, which further confirms the robustness of the algorithm. This study provides another perspective on proteome-wide CBP and CBS prediction. Our results not only help to reveal the structural mechanism of CHO-binding, but also provide a pan-species CBP dataset for future CHO-protein interaction exploration.
Collapse
Affiliation(s)
- Shaowei Dong
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China; Department of Obstetrics and Gynecology, Department of Pediatrics, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Chuiqin Fan
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Manna Wang
- Department of Obstetrics and Gynecology, Department of Pediatrics, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sandip Patil
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Jun Li
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Liangping Huang
- Department of Obstetrics and Gynecology, Department of Pediatrics, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanguo Chen
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Huijie Guo
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Yanbing Liu
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Mengwen Pan
- Department of Obstetrics and Gynecology, Department of Pediatrics, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Lian Ma
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China.
| | - Fuyi Chen
- Department of Obstetrics and Gynecology, Department of Pediatrics, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Xu L, Zhao W, Wang R, Hong M, Wang H, Sun Y, Zhong T, Hang D, Xie R, Chen L, Yao B, Ding L, Ju H. Aglycone Analysis and Quantitative Tracking of Correlated Terminal Glycan Pair on Spermatozoa. Anal Chem 2024; 96:16186-16194. [PMID: 39361617 DOI: 10.1021/acs.analchem.4c02792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Mammalian sperm glycans directly mediate several key life events. However, previous studies have not focused on two key factors that regulate these processes, the terminal glycan pattern and the anchoring sites. Herein, we group the capping monosaccharide sialic acid (Sia) and its capping substrates galactose/N-acetylgalactosamine (Gal/GalNAc) into a "correlated terminal glycan pair" (glycopair) and, for the first time, reveal the differences in the aglycone pattern of this pair on spermatozoa using glyco-selective in situ covalent labeling techniques. Sia is mainly found in glycoproteins, whereas terminal Gal/GalNAc is mainly found in glycolipids. We quantitatively track the dynamic changes of the glycopair during sperm epididymal migration and find that the Sia capping ratio decreases with the increased expression of the glycopair; caudal upswim spermatozoa also show a lower Sia capping ratio than down spermatozoa. We thus propose two new parameters reflecting the terminal glycoforms of spermatozoa, which can well distinguish the maturity of spermatozoa. By fluorescence imaging of the glycopair in different regions of the sperm, we find that different parts of the sperm contribute differently to the overall glycan changes.
Collapse
Affiliation(s)
- Lijia Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Changshu Foreign Language School, Suzhou 215000, China
| | - Wei Zhao
- Department of Reproductive Medical Center, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
- Center of Clinical Laboratory Science, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Ruiyuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Min Hong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haiqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tong Zhong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dong Hang
- Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer, Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ran Xie
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Li Chen
- Department of Reproductive Medical Center, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Bing Yao
- Department of Reproductive Medical Center, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Mehta D, Sanhueza CA. Interglycosidic C5-C6 rotamer distributions of alkyl O-rutinosides. Carbohydr Res 2024; 544:109251. [PMID: 39208606 DOI: 10.1016/j.carres.2024.109251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The conformational study of carbohydrates is critical to understand the molecular recognition mechanisms underlying their biological functions. Moreover, the systematic study of their conformational patterns can unlock useful tools to design optimized glycomimetics and drug candidates. Using nuclear magnetic resonance, we studied the interglycosidic rotamer equilibria of ester-protected and deprotected alkyl O-rutinosides (α-L-Rha(1,6)β-D-GlcOR). In the protected series, the equilibrium about the C5-C6 bond distributes among the three possible rotamers gg, gt, and tg, being gt the predominant conformer. In these series, the flexibility about C5-C6 shows a marked dependency on the aglycone's structure, where the increase on the aglycone's volume leads to a progressive increment on the tg contributions at the expense of gt, with gg remaining practically constant along the series. The removal of the protective groups results in rutinosides displaying an equilibrium equally distributed between gg and gt with no tg contributions regardless of the aglycone's structure.
Collapse
Affiliation(s)
- Dhwani Mehta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Carlos A Sanhueza
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| |
Collapse
|
13
|
Gal J, Johnson SM. An Exopolysaccharide from the Cyanobacterium Arthrospira platensis May Utilize CH-π Bonding: A Review of the Isolation, Purification, and Chemical Structure of Calcium-Spirulan. ACS OMEGA 2024; 9:35243-35255. [PMID: 39184464 PMCID: PMC11339812 DOI: 10.1021/acsomega.4c05066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
The CH-π bonding potential of a saccharide is determined primarily by the number of hydrogen atoms available for bonding and is reduced by side groups that interfere with the CH-π bond. Each hydrogen bond increases the total bond energy, while interfering hydroxyl groups and other side groups reduce the bond energy by repulsion. The disaccharide repeating units of Calcium-Spirulan (Ca-SP), a large exopolysaccharide sub fractionated from the supernatant of the cyanobacterium Arthrospira platensis, contain a unique monosaccharide that is completely devoid of hydroxyl groups and side groups on its entire beta surface, leaving five hydrogen atoms available for CH-π bonding in the planar conformation. While planar conformations of independent pyranose rings are rare-to-nonexistent, due to ring strain associated with that conformation, the binding site of a protein could provide the conformational energy needed to overcome that energy barrier. By enabling a planar conformation, a protein could also enable the sugar to form a novel 5-hydrogen CH-π bond configuration. One study of the anticoagulant property of Ca-SP shows that the molecule acts as an activator of Heparin Cofactor II (HC-II), boosting its anticoagulant kinetics by 104. In comparison, the longstanding anticoagulant drug Heparin boosts the HC-II kinetics by 103. The difference may be explained by this unique CH-π configuration. Here, we review current knowledge and experience on the isolation techniques, analytical methods, and chemical structures of Ca-SP. We emphasize a discussion of the CH-π bonding potential of this unique polysaccharide because it is a topic that has not yet been addressed. By introducing the topic of CH-π bonding to the cyanobacterial research community, this review may help to set the stage for further investigation of these unique molecules, their genetics, their biosynthetic pathways, their chemistry, and their biological functions.
Collapse
Affiliation(s)
- Jonathan
L. Gal
- Department of Microbiology
and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, Utah 84602, United States
| | - Steven M. Johnson
- Department of Microbiology
and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
14
|
Dong X, Wang H, Cai J, Wang Y, Chai D, Sun Z, Chen J, Li M, Xiao T, Shan C, Zhang JV, Yu M. ST6GALNAC1-mediated sialylation in uterine endometrial epithelium facilitates the epithelium-embryo attachment. J Adv Res 2024:S2090-1232(24)00306-0. [PMID: 39111624 DOI: 10.1016/j.jare.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
INTRODUCTION Embryo implantation requires synergistic interaction between the embryo and the receptive endometrium. Glycoproteins and glycan-binding proteins are involved in endometrium-embryo attachment. Sialyl Tn (sTn), a truncated O-glycan, is catalyzed by ST6 N-Acetylgalactosaminide Alpha-2,6-Sialyltransferase 1 (ST6GALNAC1) and can be detected by specific Sialic-acid-binding immunoglobulin-like lectins (Siglecs). Whether the sTn-Siglecs axis supports embryo implantation remains unknown. OBJECTIVES This paper aims to study the role of ST6GALNAC1/sTn-Siglecs axis in embryo implantation. METHODS ST6GALNAC1 and sTn in human endometrium were analyzed by immunohistochemistry. An in vitro implantation model was conducted to evaluate the effects of ST6GALNAC1/sTn on the receptivity of human endometrial AN3CA cells to JAR spheroids. Immunoprecipitation combined with mass spectrometry analysis was carried out to identify the key proteins modified by sTn in endometrial cells. Siglec-6 in human embryos was analyzed by published single-cell RNA sequencing (scRNA-seq) datasets. Protein interaction assay was applied to verify the bond between the Siglec-6 with sTn-modified CD44. St6galnac1 siRNAs and anti-sTn antibodies were injected into the uterine horn of the mouse at the pre-implantation stage to evaluate the role of endometrial St6galnac1/sTn in embryo implantation. Siglec-G in murine embryos was analyzed by immunofluorescence staining. The function of Siglec-G is evidenced by uterine horn injection and protein interaction assay. RESULTS Both human and murine endometrium at the receptive stage exhibit higher ST6GALNAC1 and sTn levels compared to the non-receptive stage. Overexpression of ST6GALNAC1 significantly enhanced the receptivity of AN3CA cells to JAR spheroids. Inhibition of endometrial ST6GALNAC1/sTn substantially impaired embryo implantation in vivo. CD44 was identified as a carrier for sTn in the endometrial cells of both species. Siglec-6 and Siglec-G, expressed in the embryonic trophectoderm, were found to promote embryo attachment, which may be achieved through binding with sTn-modified CD44. CONCLUSION ST6GALNAC1-regulated sTn in the endometrium aids in embryo attachment through interaction with trophoblastic Siglecs.
Collapse
Affiliation(s)
- Xinyue Dong
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China; College of Life Science, Northeast Forestry University, Harbin, China
| | - Hao Wang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Jinxuan Cai
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Yichun Wang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China; Department of Medical Oncology, The Fourth Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dezhi Chai
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Zichen Sun
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Jie Chen
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Mengxia Li
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Tianxia Xiao
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Chunhua Shan
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jian V Zhang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China; Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, China.
| | - Ming Yu
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China.
| |
Collapse
|
15
|
Xin M, Li C, You S, Zhu B, Shen J, Dong W, Xue X, Shi W, Xiong Y, Shi J, Sun S. Site-specific N-glycoproteomic analysis reveals up-regulated fucosylation in seminal plasma of asthenozoospermia. Glycobiology 2024; 34:cwae054. [PMID: 39073901 DOI: 10.1093/glycob/cwae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024] Open
Abstract
N-linked glycoproteins are rich in seminal plasma, playing essential roles in supporting sperm function and fertilization process. The alteration of seminal plasma glycans and its correspond glycoproteins may lead to sperm dysfunction and even infertility. In present study, an integrative analysis of glycoproteomic and proteomic was performed to investigate the changes of site-specific glycans and glycoptoteins in seminal plasma of asthenozoospermia. By large scale profiling and quantifying 5,018 intact N-glycopeptides in seminal plasma, we identified 92 intact N-glycopeptides from 34 glycoproteins changed in asthenozoospermia. Especially, fucosylated glycans containing lewis x, lewis y and core fucosylation were significantly up-regulated in asthenozoospermia compared to healthy donors. The up-regulation of fucosylated glycans in seminal plasma may interfere sperm surface compositions and regulation of immune response, which subsequently disrupts sperm function. Three differentiated expression of seminal vesicle-specific glycoproteins (fibronectin, seminogelin-2, and glycodelin) were also detected with fucosylation alteration in seminal plasma of asthenozoospermia. The interpretation of the altered site-specific glycan structures provides data for the diagnosis and etiology analysis of male infertility, as well as providing new insights into the potential therapeutic targets for male infertility.
Collapse
Affiliation(s)
- Miaomiao Xin
- The Assisted Reproduction Center, Northwest Women and Children's Hospital, NO. 73, houzaimen, Xincheng Zone, Xi'an 710003, China
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Cheng Li
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Shanshan You
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Bojing Zhu
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiechen Shen
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Wenbo Dong
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Xia Xue
- The Assisted Reproduction Center, Northwest Women and Children's Hospital, NO. 73, houzaimen, Xincheng Zone, Xi'an 710003, China
| | - Wenhao Shi
- The Assisted Reproduction Center, Northwest Women and Children's Hospital, NO. 73, houzaimen, Xincheng Zone, Xi'an 710003, China
| | - Yao Xiong
- The Assisted Reproduction Center, Northwest Women and Children's Hospital, NO. 73, houzaimen, Xincheng Zone, Xi'an 710003, China
| | - Juanzi Shi
- The Assisted Reproduction Center, Northwest Women and Children's Hospital, NO. 73, houzaimen, Xincheng Zone, Xi'an 710003, China
| | - Shisheng Sun
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
16
|
Zhu Q, Geng D, Li J, Zhang J, Sun H, Fan Z, He J, Hao N, Tian Y, Wen L, Li T, Qin W, Chu X, Wang Y, Yi W. A Computational and Chemical Design Strategy for Manipulating Glycan-Protein Recognition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308522. [PMID: 38582526 PMCID: PMC11199974 DOI: 10.1002/advs.202308522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Glycans are complex biomolecules that encode rich information and regulate various biological processes, such as fertilization, host-pathogen binding, and immune recognition, through interactions with glycan-binding proteins. A key driving force for glycan-protein recognition is the interaction between the π electron density of aromatic amino acid side chains and polarized C─H groups of the pyranose (termed the CH-π interaction). However, the relatively weak binding affinity between glycans and proteins has hindered the application of glycan detection and imaging. Here, computational modeling and molecular dynamics simulations are employed to design a chemical strategy that enhances the CH-π interaction between glycans and proteins by genetically incorporating electron-rich tryptophan derivatives into a lectin PhoSL, which specifically recognizes core fucosylated N-linked glycans. This significantly enhances the binding affinity of PhoSL with the core fucose ligand and enables sensitive detection and imaging of core fucosylated glycans in vitro and in xenograft tumors in mice. Further, the study showed that this strategy is applicable to improve the binding affinity of GafD lectin for N-acetylglucosamine-containing glycans. The approach thus provides a general and effective way to manipulate glycan-protein recognition for glycoscience applications.
Collapse
Affiliation(s)
- Qiang Zhu
- Departments of Biochemistry & BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310012China
| | - Didi Geng
- Departments of Biochemistry & BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310012China
| | - Jingchao Li
- Departments of Biochemistry & BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310012China
| | - Jinqiu Zhang
- Departments of Biochemistry & BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310012China
| | - Haofan Sun
- National Center for Protein Sciences BeijingState Key Laboratory of ProteomicsBeijing Proteome Research CenterBeijing Institute of LifeomicsBeijing100026China
| | - Zhiya Fan
- National Center for Protein Sciences BeijingState Key Laboratory of ProteomicsBeijing Proteome Research CenterBeijing Institute of LifeomicsBeijing100026China
| | - Jiahui He
- Departments of Biochemistry & BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310012China
| | - Ninghui Hao
- The Provincial International Science and Technology Cooperation Base on Engineering BiologyShanghai Institute for Advanced StudyInstitute of Quantitative BiologyInternational Campus of Zhejiang UniversityHaining314499China
| | - Yinping Tian
- Carbohydrate‐Based Drug Research CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Liuqing Wen
- Carbohydrate‐Based Drug Research CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Tiehai Li
- Carbohydrate‐Based Drug Research CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Weijie Qin
- National Center for Protein Sciences BeijingState Key Laboratory of ProteomicsBeijing Proteome Research CenterBeijing Institute of LifeomicsBeijing100026China
| | - Xiakun Chu
- Advanced Materials ThrustFunction HubThe Hong Kong University of Science and TechnologyGuangzhou511400China
| | - Yong Wang
- Departments of Biochemistry & BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310012China
- The Provincial International Science and Technology Cooperation Base on Engineering BiologyShanghai Institute for Advanced StudyInstitute of Quantitative BiologyInternational Campus of Zhejiang UniversityHaining314499China
| | - Wen Yi
- Departments of Biochemistry & BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310012China
- Cancer CentreZhejiang UniversityHangzhou310012China
| |
Collapse
|
17
|
Fazelzadeh Haghighi M, Jafari Khamirani H, Fallahi J, Monfared AA, Ashrafi Dehkordi K, Tabei SMB. Novel insight into FCSK-congenital disorder of glycosylation through a CRISPR-generated cell model. Mol Genet Genomic Med 2024; 12:e2445. [PMID: 38722107 PMCID: PMC11080630 DOI: 10.1002/mgg3.2445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND FCSK-congenital disorder of glycosylation (FCSK-CDG) is a recently discovered rare autosomal recessive genetic disorder with defective fucosylation due to mutations in the fucokinase encoding gene, FCSK. Despite the essential role of fucokinase in the fucose salvage pathway and severe multisystem manifestations of FCSK-CDG patients, it is not elucidated which cells or which types of fucosylation are affected by its deficiency. METHODS In this study, CRISPR/Cas9 was employed to construct an FCSK-CDG cell model and explore the molecular mechanisms of the disease by lectin flow cytometry and real-time PCR analyses. RESULTS Comparison of cellular fucosylation by lectin flow cytometry in the created CRISPR/Cas9 FCSK knockout and the same unedited cell lines showed no significant change in the amount of cell surface fucosylated glycans, which is consistent with the only documented previous study on different cell types. It suggests a probable effect of this disease on secretory glycoproteins. Investigating O-fucosylation by analysis of the NOTCH3 gene expression as a potential target revealed a significant decrease in the FCSK knockout cells compared with the same unedited ones, proving the effect of fucokinase deficiency on EGF-like repeats O-fucosylation. CONCLUSION This study expands insight into the FCSK-CDG molecular mechanism; to the best of our knowledge, it is the first research conducted to reveal a gene whose expression level alters due to this disease.
Collapse
Affiliation(s)
- Maryam Fazelzadeh Haghighi
- Department of Molecular Medicine, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
| | | | - Jafar Fallahi
- Molecular Medicine Department, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Ali Arabi Monfared
- Central Research LaboratoryShiraz University of Medical SciencesShirazIran
| | - Korosh Ashrafi Dehkordi
- Department of Molecular Medicine, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
| | - Seyed Mohammad Bagher Tabei
- Department of Medical GeneticsShiraz University of Medical SciencesShirazIran
- Maternal‐Fetal Medicine Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
18
|
Wei Y, Wang J, Qu R, Zhang W, Tan Y, Sha Y, Li L, Yin T. Genetic mechanisms of fertilization failure and early embryonic arrest: a comprehensive review. Hum Reprod Update 2024; 30:48-80. [PMID: 37758324 DOI: 10.1093/humupd/dmad026] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/07/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Infertility and pregnancy loss are longstanding problems. Successful fertilization and high-quality embryos are prerequisites for an ongoing pregnancy. Studies have proven that every stage in the human reproductive process is regulated by multiple genes and any problem, at any step, may lead to fertilization failure (FF) or early embryonic arrest (EEA). Doctors can diagnose the pathogenic factors involved in FF and EEA by using genetic methods. With the progress in the development of new genetic technologies, such as single-cell RNA analysis and whole-exome sequencing, a new approach has opened up for us to directly study human germ cells and reproductive development. These findings will help us to identify the unique mechanism(s) that leads to FF and EEA in order to find potential treatments. OBJECTIVE AND RATIONALE The goal of this review is to compile current genetic knowledge related to FF and EEA, clarifying the mechanisms involved and providing clues for clinical diagnosis and treatment. SEARCH METHODS PubMed was used to search for relevant research articles and reviews, primarily focusing on English-language publications from January 1978 to June 2023. The search terms included fertilization failure, early embryonic arrest, genetic, epigenetic, whole-exome sequencing, DNA methylation, chromosome, non-coding RNA, and other related keywords. Additional studies were identified by searching reference lists. This review primarily focuses on research conducted in humans. However, it also incorporates relevant data from animal models when applicable. The results were presented descriptively, and individual study quality was not assessed. OUTCOMES A total of 233 relevant articles were included in the final review, from 3925 records identified initially. The review provides an overview of genetic factors and mechanisms involved in the human reproductive process. The genetic mutations and other genetic mechanisms of FF and EEA were systematically reviewed, for example, globozoospermia, oocyte activation failure, maternal effect gene mutations, zygotic genome activation abnormalities, chromosome abnormalities, and epigenetic abnormalities. Additionally, the review summarizes progress in treatments for different gene defects, offering new insights for clinical diagnosis and treatment. WIDER IMPLICATIONS The information provided in this review will facilitate the development of more accurate molecular screening tools for diagnosing infertility using genetic markers and networks in human reproductive development. The findings will also help guide clinical practice by identifying appropriate interventions based on specific gene mutations. For example, when an individual has obvious gene mutations related to FF, ICSI is recommended instead of IVF. However, in the case of genetic defects such as phospholipase C zeta1 (PLCZ1), actin-like7A (ACTL7A), actin-like 9 (ACTL9), and IQ motif-containing N (IQCN), ICSI may also fail to fertilize. We can consider artificial oocyte activation technology with ICSI to improve fertilization rate and reduce monetary and time costs. In the future, fertility is expected to be improved or restored by interfering with or supplementing the relevant genes.
Collapse
Affiliation(s)
- Yiqiu Wei
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingxuan Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Qu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiqian Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiling Tan
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanwei Sha
- Department of Andrology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Schmitz D, Li Z, Lo Faro V, Rask-Andersen M, Ameur A, Rafati N, Johansson Å. Copy number variations and their effect on the plasma proteome. Genetics 2023; 225:iyad179. [PMID: 37793096 PMCID: PMC10697815 DOI: 10.1093/genetics/iyad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/25/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
Structural variations, including copy number variations (CNVs), affect around 20 million bases in the human genome and are common causes of rare conditions. CNVs are rarely investigated in complex disease research because most CNVs are not targeted on the genotyping arrays or the reference panels for genetic imputation. In this study, we characterize CNVs in a Swedish cohort (N = 1,021) using short-read whole-genome sequencing (WGS) and use long-read WGS for validation in a subcohort (N = 15), and explore their effect on 438 plasma proteins. We detected 184,182 polymorphic CNVs and identified 15 CNVs to be associated with 16 proteins (P < 8.22×10-10). Of these, 5 CNVs could be perfectly validated using long-read sequencing, including a CNV which was associated with measurements of the osteoclast-associated immunoglobulin-like receptor (OSCAR) and located upstream of OSCAR, a gene important for bone health. Two other CNVs were identified to be clusters of many short repetitive elements and another represented a complex rearrangement including an inversion. Our findings provide insights into the structure of common CNVs and their effects on the plasma proteome, and highlights the importance of investigating common CNVs, also in relation to complex diseases.
Collapse
Affiliation(s)
- Daniel Schmitz
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Zhiwei Li
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Valeria Lo Faro
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Nima Rafati
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| |
Collapse
|
20
|
Macauley MS. Editorial overview: Glycobiology (2023). Curr Opin Chem Biol 2023; 77:102406. [PMID: 37956566 DOI: 10.1016/j.cbpa.2023.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Affiliation(s)
- Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|
21
|
Singh Y, Escopy S, Shadrick M, Bandara MD, Stine KJ, Demchenko AV. Chemical Synthesis of Human Milk Oligosaccharides: para-Lacto-N-hexaose and para-Lacto-N-neohexaose. Chemistry 2023; 29:e202302288. [PMID: 37639512 PMCID: PMC11370726 DOI: 10.1002/chem.202302288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Human milk oligosaccharides (HMO) have emerged as a very active area of research in glycoscience and nutrition. HMO are involved in the early development of infants and may help to prevent certain diseases. The development of chemical methods for obtaining individual HMO aids the global effort dedicated to understanding the roles of these biomolecules. Reported herein is the chemical synthesis of two common core hexasaccharides found in human milk, i. e. para-lacto-N-hexaose (pLNH) and para-lacto-N-neohexaose (pLNnH). After screening multiple leaving groups and temporary protecting group combinations, a 3+3 convergent coupling strategy was found to work best for obtaining these linear glycans.
Collapse
Affiliation(s)
- Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Samira Escopy
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Melanie Shadrick
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Mithila D Bandara
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
- Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| |
Collapse
|
22
|
Liu SL, Zuo HY, Zhao BW, Guo JN, Liu WB, Lei WL, Li YY, Ouyang YC, Hou Y, Han ZM, Wang WZ, Sun QY, Wang ZB. A heterozygous ZP2 mutation causes zona pellucida defects and female infertility in mouse and human. iScience 2023; 26:107828. [PMID: 37736051 PMCID: PMC10509300 DOI: 10.1016/j.isci.2023.107828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
The zona pellucida (ZP) is an extracellular glycoprotein matrix surrounding mammalian oocytes. Recently, numerous mutations in genes encoding ZP proteins have been shown to be possibly related to oocyte abnormality and female infertility; few reports have confirmed the functions of these mutations in living animal models. Here, we identified a novel heterozygous missense mutation (NM_001376231.1:c.1616C>T, p.Thr539Met) in ZP2 from a primary infertile female. We showed that the mutation reduced ZP2 expression and impeded ZP2 secretion in cell lines. Furthermore, we constructed the mouse model with the mutation (Zp2T541M) using CRISPR-Cas9. Zp2WT/T541M female mice had normal fertility though generated oocytes with the thin ZP, whereas Zp2T541M female mice were completely infertile due to degeneration of oocytes without ZP. Additionally, ZP deletion impaired folliculogenesis and caused female infertility in Zp2T541M mice. Our study not only expands the spectrum of ZP2 mutation sites but also, more importantly, increases the understanding of pathogenic mechanisms of ZP2 mutations.
Collapse
Affiliation(s)
- Sai-Li Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hai-Yang Zuo
- The Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100048, China
| | - Bing-Wang Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jia-Ni Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wen-Bo Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Ming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Wei-Zhou Wang
- The Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100048, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
23
|
Chen Y, Chen H, Zheng Q. Siglecs family used by pathogens for immune escape may engaged in immune tolerance in pregnancy. J Reprod Immunol 2023; 159:104127. [PMID: 37572430 DOI: 10.1016/j.jri.2023.104127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
The Siglecs family is a group of type I sialic acid-binding immunoglobulin-like receptors that regulate cellular signaling by recognizing sialic acid epitopes. Siglecs are predominantly expressed on the surface of leukocytes, where they play a crucial role in regulating immune activity. Pathogens can exploit inhibitory Siglecs by utilizing their sialic acid components to promote invasion or suppress immune functions, facilitating immune evasion. The establishing of an immune-balanced maternal-fetal interface microenvironment is essential for a successful pregnancy. Dysfunctional immune cells may lead to adverse pregnancy outcomes. Siglecs are important for inducing a phenotypic switch in leukocytes at the maternal-fetal interface toward a less toxic and more tolerant phenotype. Recent discoveries regarding Siglecs in the reproductive system have drawn further attention to their potential roles in reproduction. In this review, we primarily discuss the latest advances in understanding the impact of Siglecs as immune regulators on infections and pregnancy.
Collapse
Affiliation(s)
- Ying Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518033, PR China
| | - Huan Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518033, PR China
| | - Qingliang Zheng
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518033, PR China.
| |
Collapse
|
24
|
Yi S, Feng Y, Wang Y, Ma F. Sialylation: fate decision of mammalian sperm development, fertilization, and male fertility†. Biol Reprod 2023; 109:137-155. [PMID: 37379321 DOI: 10.1093/biolre/ioad067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
Sperm development, maturation, and successful fertilization within the female reproductive tract are intricate and orderly processes that involve protein translation and post-translational modifications. Among these modifications, sialylation plays a crucial role. Any disruptions occurring throughout the sperm's life cycle can result in male infertility, yet our current understanding of this process remains limited. Conventional semen analysis often fails to diagnose some infertility cases associated with sperm sialylation, emphasizing the need to comprehend and investigate the characteristics of sperm sialylation. This review reanalyzes the significance of sialylation in sperm development and fertilization and evaluates the impact of sialylation damage on male fertility under pathological conditions. Sialylation serves a vital role in the life journey of sperm, providing a negatively charged glycocalyx and enriching the molecular structure of the sperm surface, which is beneficial to sperm reversible recognition and immune interaction. These characteristics are particularly crucial during sperm maturation and fertilization within the female reproductive tract. Moreover, enhancing the understanding of the mechanism underlying sperm sialylation can promote the development of relevant clinical indicators for infertility detection and treatment.
Collapse
Affiliation(s)
- Shiqi Yi
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Zemet R, Du H, Gambin T, Lupski JR, Liu P, Stankiewicz P. SNV/indel hypermutator phenotype in biallelic RAD51C variant: Fanconi anemia. Hum Genet 2023; 142:721-733. [PMID: 37031326 PMCID: PMC10996436 DOI: 10.1007/s00439-023-02550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023]
Abstract
We previously reported a fetus with Fanconi anemia (FA), complementation group O due to compound heterozygous variants involving RAD51C. Interestingly, the trio exome sequencing analysis also detected eight apparent de novo mosaic variants with variant allele fraction (VAF) ranging between 11.5 and 37%. Here, using whole genome sequencing and a 'home-brew' variant filtering pipeline and DeepMosaic module, we investigated the number and signature of de novo heterozygous and mosaic variants and the hypothesis of a rare phenomenon of hypermutation. Eight-hundred-thirty apparent de novo SNVs and 21 de novo indels had VAFs below 37.41% and were considered postzygotic somatic mosaic variants. The VAFs showed a bimodal distribution, with one component having an average VAF of 25% (range: 18.7-37.41%) (n = 446), representing potential postzygotic first mitotic events, and the other component with an average VAF of 12.5% (range 9.55-18.69%) (n = 384), describing potential second mitotic events. No increased rate of CNV formation was observed. The mutational pattern analysis for somatic single base substitution showed SBS40, SBS5, and SBS3 as the top recognized signatures. SBS3 is a known signature associated with homologous recombination-based DNA damage repair error. Our data demonstrate that biallelic RAD51C variants show evidence for defective genomic DNA damage repair and thereby result in a hypermutator phenotype with the accumulation of postzygotic de novo mutations, at least in the prenatal period. This 'genome hypermutator phenomenon' might contribute to the observed hematological manifestations and the predisposition to tumors in patients with FA. We propose that other FA groups should be investigated for genome-wide de novo variants.
Collapse
Affiliation(s)
- Roni Zemet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Baylor Genetics, Houston, TX, USA.
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
26
|
Soto-Heras S, Sakkas D, Miller DJ. Sperm selection by the oviduct: perspectives for male fertility and assisted reproductive technologies†. Biol Reprod 2023; 108:538-552. [PMID: 36625382 PMCID: PMC10106845 DOI: 10.1093/biolre/ioac224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
The contribution of sperm to embryogenesis is gaining attention with up to 50% of infertility cases being attributed to a paternal factor. The traditional methods used in assisted reproductive technologies for selecting and assessing sperm quality are mainly based on motility and viability parameters. However, other sperm characteristics, including deoxyribonucleic acid integrity, have major consequences for successful live birth. In natural reproduction, sperm navigate the male and female reproductive tract to reach and fertilize the egg. During transport, sperm encounter many obstacles that dramatically reduce the number arriving at the fertilization site. In humans, the number of sperm is reduced from tens of millions in the ejaculate to hundreds in the Fallopian tube (oviduct). Whether this sperm population has higher fertilization potential is not fully understood, but several studies in animals indicate that many defective sperm do not advance to the site of fertilization. Moreover, the oviduct plays a key role in fertility by modulating sperm transport, viability, and maturation, providing sperm that are ready to fertilize at the appropriate time. Here we present evidence of sperm selection by the oviduct with emphasis on the mechanisms of selection and the sperm characteristics selected. Considering the sperm parameters that are essential for healthy embryonic development, we discuss the use of novel in vitro sperm selection methods that mimic physiological conditions. We propose that insight gained from understanding how the oviduct selects sperm can be translated to assisted reproductive technologies to yield high fertilization, embryonic development, and pregnancy rates.
Collapse
Affiliation(s)
- Sandra Soto-Heras
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - David J Miller
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
27
|
Bobbili KB, Sivaji N, Priya B, Suguna K, Surolia A. Structure and interactions of the phloem lectin (phloem protein 2) Cus17 from Cucumis sativus. Structure 2023; 31:464-479.e5. [PMID: 36882058 DOI: 10.1016/j.str.2023.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/28/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023]
Abstract
Phloem protein 2 (PP2) contributes crucially to phloem-based defense in plants by binding to carbohydrates displayed by pathogens. However, its three-dimensional structure and the sugar binding site remained unexplored. Here, we report the crystal structure of the dimeric PP2 Cus17 from Cucumis sativus in its apo form and complexed with nitrobenzene, N-acetyllactosamine, and chitotriose. Each protomer of Cus17 consists of two antiparallel four-stranded twisted β sheets, a β hairpin, and three short helices forming a β sandwich architectural fold. This structural fold has not been previously observed in other plant lectin families. Structure analysis of the lectin-carbohydrate complexes reveals an extended carbohydrate binding site in Cus17, composed mostly of aromatic amino acids. Our studies suggest a highly conserved tertiary structure and a versatile binding site capable of recognizing motifs common to diverse glycans on plant pathogens/pests, which makes the PP2 family suited for phloem-based plant defense.
Collapse
Affiliation(s)
- Kishore Babu Bobbili
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Nukathoti Sivaji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Badma Priya
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Kaza Suguna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
28
|
Nixon B, Schjenken JE, Burke ND, Skerrett-Byrne DA, Hart HM, De Iuliis GN, Martin JH, Lord T, Bromfield EG. New horizons in human sperm selection for assisted reproduction. Front Endocrinol (Lausanne) 2023; 14:1145533. [PMID: 36909306 PMCID: PMC9992892 DOI: 10.3389/fendo.2023.1145533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Male infertility is a commonly encountered pathology that is estimated to be a contributory factor in approximately 50% of couples seeking recourse to assisted reproductive technologies. Upon clinical presentation, such males are commonly subjected to conventional diagnostic andrological practices that rely on descriptive criteria to define their fertility based on the number of morphologically normal, motile spermatozoa encountered within their ejaculate. Despite the virtual ubiquitous adoption of such diagnostic practices, they are not without their limitations and accordingly, there is now increasing awareness of the importance of assessing sperm quality in order to more accurately predict a male's fertility status. This realization raises the important question of which characteristics signify a high-quality, fertilization competent sperm cell. In this review, we reflect on recent advances in our mechanistic understanding of sperm biology and function, which are contributing to a growing armory of innovative approaches to diagnose and treat male infertility. In particular we review progress toward the implementation of precision medicine; the robust clinical adoption of which in the setting of fertility, currently lags well behind that of other fields of medicine. Despite this, research shows that the application of advanced technology platforms such as whole exome sequencing and proteomic analyses hold considerable promise in optimizing outcomes for the management of male infertility by uncovering and expanding our inventory of candidate infertility biomarkers, as well as those associated with recurrent pregnancy loss. Similarly, the development of advanced imaging technologies in tandem with machine learning artificial intelligence are poised to disrupt the fertility care paradigm by advancing our understanding of the molecular and biological causes of infertility to provide novel avenues for future diagnostics and treatments.
Collapse
Affiliation(s)
- Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- *Correspondence: Brett Nixon,
| | - John E. Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Nathan D. Burke
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - David A. Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Hanah M. Hart
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Geoffry N. De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jacinta H. Martin
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Tessa Lord
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Elizabeth G. Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
29
|
Leung ETY, Lee BKM, Lee CL, Tian X, Lam KKW, Li RHW, Ng EHY, Yeung WSB, Ou JP, Chiu PCN. The role of spermatozoa-zona pellucida interaction in selecting fertilization-competent spermatozoa in humans. Front Endocrinol (Lausanne) 2023; 14:1135973. [PMID: 37020592 PMCID: PMC10067631 DOI: 10.3389/fendo.2023.1135973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/07/2023] [Indexed: 03/22/2023] Open
Abstract
Human fertilization begins when a capacitated spermatozoon binds to the zona pellucida (ZP) surrounding a mature oocyte. Defective spermatozoa-ZP interaction contributes to male infertility and is a leading cause of reduced fertilization rates in assisted reproduction treatments (ARTs). Human ejaculate contains millions of spermatozoa with varying degrees of fertilization potential and genetic quality, of which only thousands of motile spermatozoa can bind to the ZP at the fertilization site. This observation suggests that human ZP selectively interacts with competitively superior spermatozoa characterized by high fertilizing capability and genetic integrity. However, direct evidence for ZP-mediated sperm selection process is lacking. This study aims to demonstrate that spermatozoa-ZP interaction represents a crucial step in selecting fertilization-competent spermatozoa in humans. ZP-bound and unbound spermatozoa were respectively collected by a spermatozoa-ZP coincubation assay. The time-course data demonstrated that ZP interacted with a small proportion of motile spermatozoa. Heat shock 70 kDa protein 2 (HSPA2) and sperm acrosome associated 3 (SPACA 3) are two protein markers associated with the sperm ZP-binding ability. Immunofluorescent staining indicated that the ZP-bound spermatozoa had significantly higher expression levels of HSPA2 and SPACA3 than the unbound spermatozoa. ZP-bound spermatozoa had a significantly higher level of normal morphology, DNA integrity, chromatin integrity, protamination and global methylation when compared to the unbound spermatozoa. The results validated the possibility of applying spermatozoa-ZP interaction to select fertilization-competent spermatozoa in ART. This highly selective interaction might also provide diagnostic information regarding the fertilization potential and genetic qualities of spermatozoa independent of those derived from the standard semen analysis.
Collapse
Affiliation(s)
- Erica T. Y. Leung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Brayden K. M. Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
| | - Xinyi Tian
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kevin K. W. Lam
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
| | - Raymond H. W. Li
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
| | - Ernest H. Y. Ng
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
| | - William S. B. Yeung
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
| | - Jian-Ping Ou
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Philip C. N. Chiu, ; Jian-Ping Ou,
| | - Philip C. N. Chiu
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
- *Correspondence: Philip C. N. Chiu, ; Jian-Ping Ou,
| |
Collapse
|
30
|
Zhou J, Wang M, Yang Q, Li D, Li Z, Hu J, Jin L, Zhu L. Can successful pregnancy be achieved and predicted from patients with identified ZP mutations? A literature review. Reprod Biol Endocrinol 2022; 20:166. [PMID: 36476320 PMCID: PMC9730648 DOI: 10.1186/s12958-022-01046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In mammals, normal fertilization depends on the structural and functional integrity of the zona pellucida (ZP), which is an extracellular matrix surrounding oocytes. Mutations in ZP may affect oogenesis, fertilization and early embryonic development, which may cause female infertility. METHODS A PubMed literature search using the keywords 'zona pellucida', 'mutation' and 'variant' limited to humans was performed, with the last research on June 30, 2022. The mutation types, clinical phenotypes and pregnancy outcomes were summarized and analyzed. The naive Bayes classifier was used to predict clinical pregnancy outcomes for patients with ZP mutations. RESULTS A total of 29 publications were included in the final analysis. Sixty-nine mutations of the ZP genes were reported in 87 patients with different clinical phenotypes, including empty follicle syndrome (EFS), ZP-free oocytes (ZFO), ZP-thin oocytes (ZTO), degenerated and immature oocytes. The phenotypes of patients were influenced by the types and location of the mutations. The most common effects of ZP mutations are protein truncation and dysfunction. Three patients with ZP1 mutations, two with ZP2 mutations, and three with ZP4 mutations had successful pregnancies through Intracytoplasmic sperm injection (ICSI) from ZFO or ZTO. A prediction model of pregnancy outcome in patients with ZP mutation was constructed to assess the chance of pregnancy with the area under the curve (AUC) of 0.898. The normalized confusion matrix showed the true positive rate was 1.00 and the true negative rate was 0.38. CONCLUSION Phenotypes in patients with ZP mutations might be associated with mutation sites or the degree of protein dysfunction. Successful pregnancy outcomes could be achieved in some patients with identified ZP mutations. Clinical pregnancy prediction model based on ZP mutations and clinical characteristics will be helpful to precisely evaluate pregnancy chance and provide references and guidance for the clinical treatment of relevant patients.
Collapse
Affiliation(s)
- Juepu Zhou
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Meng Wang
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Qiyu Yang
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Dan Li
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Zhou Li
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Juan Hu
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Lei Jin
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Lixia Zhu
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| |
Collapse
|
31
|
Zou T, Xi Q, Liu Z, Li Z, Hou M, Zhu L, Jin L, Zhang X. A Novel Homozygous Nonsense Mutation in ZP1 Causes Female Infertility due to Empty Follicle Syndrome. Reprod Sci 2022; 29:3516-3520. [PMID: 35773450 DOI: 10.1007/s43032-022-01024-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
Abstract
ZP1 is a critical glycoprotein in the formation of the zona pellucida. It plays an indispensable role in the maturation of oocytes. To identify the causative gene of empty follicle syndrome (EFS) in a patient from a consanguineous family, whole-exome sequencing was performed in the proband. We identified a novel homozygous nonsense mutation c.1260C > G (p. Tyr420X) in the ZP1 gene from two primary infertile patients. Western blot showed that Y420X mutation in ZP1 gene produced a truncated protein. However, the mutation had no significant effect on subcellular localization of the mutant protein. Our findings confirmed the important role of the ZP1 gene in human female reproduction, enriched the mutation spectrums of ZP1 gene, and expanded its applications in the clinical and molecular diagnoses of EFS.
Collapse
Affiliation(s)
- Tingting Zou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Qingsong Xi
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Zhenxing Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Zhou Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Meiqi Hou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China.
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Xianqin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China.
| |
Collapse
|
32
|
Xu M, Wu W, Zhao M, Chung JPW, Li TC, Chan DYL. Common dysmorphic oocytes and embryos in assisted reproductive technology laboratory in association with gene alternations. Int J Biochem Cell Biol 2022; 152:106298. [PMID: 36122887 DOI: 10.1016/j.biocel.2022.106298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
Abstract
Amorphic or defected oocytes and embryos are commonly observed in assisted reproductive technology (ART) laboratories. It is believed that a proper gene expression at each stage of embryo development contributes to the possibility of a decent-quality embryo leading to successful implantation. Many studies reported that several defects in embryo morphology are associated with gene expressions during in vitro fertilization (IVF) treatment. There is lacking literature review on summarizing common morphological defects about gene alternations. In this review, we summarized the current literature. We selected 64 genes that have been reported to be involved in embryo morphological abnormalities in animals and humans, 30 of which were identified in humans and might be the causes of embryonic changes. Five papers focusing on associations of multiple gene expressions and embryo abnormalities using RNA transcriptomes were also included during the search. We have also reviewed our time-lapse image database with over 3000 oocytes/embryos to show morphological defects possibly related to gene alternations reported previously in the literature. This holistic review can better understand the associations between gene alternations and morphological changes. It is also beneficial to select important biomarkers with strong evidence in IVF practice and reveal their potential application in embryo selection. Also, identifying genes may help patients with genetic disorders avoid unnecessary treatments by providing preimplantation genetic testing for monogenic/single gene defects (PGT-M), reduce embryo replacements by less potential, and help scientists develop new methods for oocyte/embryo research in the near future.
Collapse
Affiliation(s)
- Murong Xu
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Waner Wu
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingpeng Zhao
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Reproductive Medicine, Department of Obstetrics and Gynaecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jacqueline Pui Wah Chung
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Tin Chiu Li
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - David Yiu Leung Chan
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
33
|
Fliniaux I, Marchand G, Molinaro C, Decloquement M, Martoriati A, Marin M, Bodart JF, Harduin-Lepers A, Cailliau K. Diversity of sialic acids and sialoglycoproteins in gametes and at fertilization. Front Cell Dev Biol 2022; 10:982931. [PMID: 36340022 PMCID: PMC9630641 DOI: 10.3389/fcell.2022.982931] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/10/2022] [Indexed: 09/22/2023] Open
Abstract
Sialic acids are a family of 9-carbon monosaccharides with particular physicochemical properties. They modulate the biological functions of the molecules that carry them and are involved in several steps of the reproductive process. Sialoglycoproteins participate in the balance between species recognition and specificity, and the mechanisms of these aspects remain an issue in gametes formation and binding in metazoan reproduction. Sialoglycoproteins form a specific coat at the gametes surface and specific polysialylated chains are present on marine species oocytes. Spermatozoa are submitted to critical sialic acid changes in the female reproductive tract facilitating their migration, their survival through the modulation of the female innate immune response, and the final oocyte-binding event. To decipher the role of sialic acids in gametes and at fertilization, the dynamical changes of enzymes involved in their synthesis and removal have to be further considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
34
|
N-glycosylation of cervicovaginal fluid reflects microbial community, immune activity, and pregnancy status. Sci Rep 2022; 12:16948. [PMID: 36216861 PMCID: PMC9551102 DOI: 10.1038/s41598-022-20608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/15/2022] [Indexed: 12/29/2022] Open
Abstract
Human cervicovaginal fluid (CVF) is a complex, functionally important and glycan rich biological fluid, fundamental in mediating physiological events associated with reproductive health. Using a comprehensive glycomic strategy we reveal an extremely rich and complex N-glycome in CVF of pregnant and non-pregnant women, abundant in paucimannose and high mannose glycans, complex glycans with 2-4 N-Acetyllactosamine (LacNAc) antennae, and Poly-LacNAc glycans decorated with fucosylation and sialylation. N-glycosylation profiles were observed to differ in relation to pregnancy status, microbial composition, immune activation, and pregnancy outcome. Compared to CVF from women experiencing term birth, CVF from women who subsequently experienced preterm birth showed lower sialylation, which correlated to the presence of a diverse microbiome, and higher fucosylation, which correlated positively to pro-inflammatory cytokine concentration. This study is the first step towards better understanding the role of cervicovaginal glycans in reproductive health, their contribution to the mechanism of microbial driven preterm birth, and their potential for preventative therapy.
Collapse
|
35
|
Armstrong Z, Meek RW, Wu L, Blaza JN, Davies GJ. Cryo-EM structures of human fucosidase FucA1 reveal insight into substrate recognition and catalysis. Structure 2022; 30:1443-1451.e5. [PMID: 35907402 PMCID: PMC9548408 DOI: 10.1016/j.str.2022.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/10/2022] [Accepted: 07/04/2022] [Indexed: 01/08/2023]
Abstract
Enzymatic hydrolysis of α-L-fucose from fucosylated glycoconjugates is consequential in bacterial infections and the neurodegenerative lysosomal storage disorder fucosidosis. Understanding human α-L-fucosidase catalysis, in an effort toward drug design, has been hindered by the absence of three-dimensional structural data for any animal fucosidase. Here, we have used cryoelectron microscopy (cryo-EM) to determine the structure of human lysosomal α-L-fucosidase (FucA1) in both an unliganded state and in complex with the inhibitor deoxyfuconojirimycin. These structures, determined at 2.49 Å resolution, reveal the homotetrameric structure of FucA1, the architecture of the catalytic center, and the location of both natural population variations and disease-causing mutations. Furthermore, this work has conclusively identified the hitherto contentious identity of the catalytic acid/base as aspartate-276, representing a shift from both the canonical glutamate acid/base residue and a previously proposed glutamate residue. These findings have furthered our understanding of how FucA1 functions in both health and disease.
Collapse
Affiliation(s)
- Zachary Armstrong
- Department of Chemistry, Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, UK
| | - Richard W Meek
- Department of Chemistry, Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, UK
| | - Liang Wu
- Department of Chemistry, Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, UK; The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, UK
| | - James N Blaza
- Department of Chemistry, Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, UK
| | - Gideon J Davies
- Department of Chemistry, Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
36
|
Xie X, Li Y, Lian S, Lu Y, Jia L. Cancer metastasis chemoprevention prevents circulating tumour cells from germination. Signal Transduct Target Ther 2022; 7:341. [PMID: 36184654 PMCID: PMC9526788 DOI: 10.1038/s41392-022-01174-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/19/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
The war against cancer traces back to the signature event half-a-century ago when the US National Cancer Act was signed into law. The cancer crusade costs trillions with disappointing returns, teasing the possibility of a new breakthrough. Cure for cancer post-metastases still seems tantalisingly out of reach. Once metastasized, cancer-related death is extremely difficult, if not impossible, to be reversed. Here we present cancer pre-metastasis chemoprevention strategy that can prevent circulating tumour cells (CTCs) from initiating metastases safely and effectively, and is disparate from the traditional cancer chemotherapy and cancer chemoprevention. Deep learning of the biology of CTCs and their disseminating organotropism, complexity of their adhesion to endothelial niche reveals that if the adhesion of CTCs to their metastasis niche (the first and the most important part in cancer metastatic cascade) can be pharmaceutically interrupted, the lethal metastatic cascade could be prevented from getting initiated. We analyse the key inflammatory and adhesive factors contributing to CTC adhesion/germination, provide pharmacological fundamentals for abortifacients to intervene CTC adhesion to the distant metastasis sites. The adhesion/inhibition ratio (AIR) is defined for selecting the best cancer metastasis chemopreventive candidates. The successful development of such new therapeutic modalities for cancer metastasis chemoprevention has great potential to revolutionise the current ineffective post-metastasis treatments.
Collapse
Affiliation(s)
- Xiaodong Xie
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Yumei Li
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Shu Lian
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Yusheng Lu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Lee Jia
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China. .,Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
37
|
Rim-differentiation vs. mixture of constitutional isomers: A binding study between pillar[5]arene-based glycoclusters and lectins from pathogenic bacteria. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Żeberkiewicz M, Hyc A, Iwan A, Zwierzchowska A, Ścieżyńska A, Kalaszczyńska I, Barcz E, Malejczyk J. Expression of Fucosyltransferase 4 ( FUT4) mRNA Is Increased in Endometrium from Women with Endometriosis. J Clin Med 2022; 11:jcm11195606. [PMID: 36233470 PMCID: PMC9572337 DOI: 10.3390/jcm11195606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Endometriosis is a common gynecological disorder defined as the presence of endometrial-like tissue (glands and stroma) outside the uterus. The etiopathogenesis of endometriosis is still poorly recognized. It is speculated that stage-specific embryonic antigen 1 (SSEA-1)-positive stem-like glandular epithelial cells may contribute to the development of the disease. The synthesis of SSEA-1 is mediated by fucosyltransferase 4 encoded by the FUT4 gene. Therefore, this study aimed to evaluate the specific expression of FUT4 mRNA in biopsies of the endometrium from women with and without endometriosis. FUT4 mRNA levels were examined in 49 women with laparoscopically confirmed endometriosis and 28 controls by means of quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The expression of FUT4 mRNA was significantly increased in the endometrium of patients with endometriosis when compared to the controls (p < 0.0001). Expression of FUT4 mRNA in the endometrium was correlated with the severity of endometriosis (rs = 0.5579, p < 0.0001); however, there were no differences in endometrial FUT4 mRNA expression when comparing endometriotic lesions from various locations. The discriminatory ability of FUT4 mRNA expression was evaluated by receiver-operating characteristics (ROC), which showed high statistical significance (AUC = 0.90, p < 0.0001), thus indicating that an increased level of endometrial FUT4 mRNA may serve as a specific marker for endometriosis.
Collapse
Affiliation(s)
- Marta Żeberkiewicz
- Department of Histology and Embryology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Hyc
- Department of Histology and Embryology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
| | - Anna Iwan
- Department of Histology and Embryology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
| | - Aneta Zwierzchowska
- Chair and Clinic of Gynecology and Obstetrics, Faculty of Medicine, Collegium Medicum, Cardinale Stefan Wyszyński University, 04-749 Warsaw, Poland
- Department of Obstetrics and Gynecology, Multidisciplinary Hospital Warsaw-Miedzylesie, 04-749 Warsaw, Poland
| | - Aneta Ścieżyńska
- Department of Histology and Embryology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
| | - Ilona Kalaszczyńska
- Department of Histology and Embryology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
- Diagendo Ltd., 05-504 Bobrowiec, Poland
| | - Ewa Barcz
- Chair and Clinic of Gynecology and Obstetrics, Faculty of Medicine, Collegium Medicum, Cardinale Stefan Wyszyński University, 04-749 Warsaw, Poland
- Department of Obstetrics and Gynecology, Multidisciplinary Hospital Warsaw-Miedzylesie, 04-749 Warsaw, Poland
| | - Jacek Malejczyk
- Department of Histology and Embryology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
- Diagendo Ltd., 05-504 Bobrowiec, Poland
- Correspondence: ; Tel./Fax: +48-22-6295282
| |
Collapse
|
39
|
The Influence of Clusterin Glycosylation Variability on Selected Pathophysiological Processes in the Human Body. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7657876. [PMID: 36071866 PMCID: PMC9441386 DOI: 10.1155/2022/7657876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
The present review gathers together the most important information about variability in clusterin molecular structure, its profile, and the degree of glycosylation occurring in human tissues and body fluids in the context of the utility of these characteristics as potential diagnostic biomarkers of selected pathophysiological conditions. The carbohydrate part of clusterin plays a crucial role in many biological processes such as endocytosis and apoptosis. Many pathologies associated with neurodegeneration, carcinogenesis, metabolic diseases, and civilizational diseases (e.g., cardiovascular incidents and male infertility) have been described as causes of homeostasis disturbance, in which the glycan part of clusterin plays a very important role. The results of the discussed studies suggest that glycoproteomic analysis of clusterin may help differentiate the severity of hippocampal atrophy, detect the causes of infertility with an immune background, and monitor the development of cancer. Understanding the mechanism of clusterin (CLU) action and its binding epitopes may enable to indicate new therapeutic goals. The carbohydrate part of clusterin is considered necessary to maintain its proper molecular conformation, structural stability, and proper systemic and/or local biological activity. Taking into account the wide spectrum of CLU action and its participation in many processes in the human body, further studies on clusterin glycosylation variability are needed to better understand the molecular mechanisms of many pathophysiological conditions. They can also provide the opportunity to find new biomarkers and enrich the panel of diagnostic parameters for diseases that still pose a challenge for modern medicine.
Collapse
|
40
|
Olejnik B, Ferens-Sieczkowska M. Seminal Plasma Glycoproteins as Potential Ligands of Lectins Engaged in Immunity Regulation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10489. [PMID: 36078205 PMCID: PMC9518496 DOI: 10.3390/ijerph191710489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution, chronic stress, and unhealthy lifestyle are factors that negatively affect reproductive potential. Currently, 15-20% of couples in industrialized countries face the problem of infertility. This growing health and social problem prompts researchers to explore the regulatory mechanisms that may be important for successful fertilization. In recent years, more attention has been paid to male infertility factors, including the impact of seminal plasma components on regulation of the female immune response to allogenic sperm, embryo and fetal antigens. Directing this response to the tolerogenic pathway is crucial to achieve a healthy pregnancy. According to the fetoembryonic defense hypothesis, the regulatory mechanism may be associated with the interaction of lectins and immunomodulatory glycoepitopes. Such interactions may involve lectins of dendritic cells and macrophages, recruited to the cervical region immediately after intercourse. Carbohydrate binding receptors include C type lectins, such as DC-SIGN and MGL, as well as galectins and siglecs among others. In this article we discuss the expression of the possible lectin ligands, highly fucosylated and high mannose structures, which may be recognized by DC-SIGN, glycans of varying degrees of sialylation, which may differ in their interaction with siglecs, as well as T and Tn antigens in O-glycans.
Collapse
|
41
|
Abstract
Glycoscience assembles all the scientific disciplines involved in studying various molecules and macromolecules containing carbohydrates and complex glycans. Such an ensemble involves one of the most extensive sets of molecules in quantity and occurrence since they occur in all microorganisms and higher organisms. Once the compositions and sequences of these molecules are established, the determination of their three-dimensional structural and dynamical features is a step toward understanding the molecular basis underlying their properties and functions. The range of the relevant computational methods capable of addressing such issues is anchored by the specificity of stereoelectronic effects from quantum chemistry to mesoscale modeling throughout molecular dynamics and mechanics and coarse-grained and docking calculations. The Review leads the reader through the detailed presentations of the applications of computational modeling. The illustrations cover carbohydrate-carbohydrate interactions, glycolipids, and N- and O-linked glycans, emphasizing their role in SARS-CoV-2. The presentation continues with the structure of polysaccharides in solution and solid-state and lipopolysaccharides in membranes. The full range of protein-carbohydrate interactions is presented, as exemplified by carbohydrate-active enzymes, transporters, lectins, antibodies, and glycosaminoglycan binding proteins. A final section features a list of 150 tools and databases to help address the many issues of structural glycobioinformatics.
Collapse
Affiliation(s)
- Serge Perez
- Centre de Recherche sur les Macromolecules Vegetales, University of Grenoble-Alpes, Centre National de la Recherche Scientifique, Grenoble F-38041, France
| | - Olga Makshakova
- FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Kazan 420111, Russia
| |
Collapse
|
42
|
Composition and effects of seminal plasma in the female reproductive tracts on implantation of human embryos. Biomed Pharmacother 2022; 151:113065. [PMID: 35550527 DOI: 10.1016/j.biopha.2022.113065] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
The function of seminal plasma involves acting as a transport medium for sperm and as a means of communication between the reproductive tissues of the male and female. It is also a vital factor to prime the reproductive tracts of the female for optimal pregnancy. When the reproductive tract of the female is exposed to seminal plasma, serious alterations take place, enhancing pathogen and debris clearance observed in the uterus throughout mating. It is also capable of supporting embryo growth, promoting the receptivity of the uterus, and establishing tolerance to the semi-allogenic embryo. Moreover, seminal plasma is capable of regulating the functions of several female reproductive organs and providing an ideal condition for effective embryo implantation and pregnancy. It is believed that the health state of the offspring is affected by exposure to seminal plasma. For the treatment of infertility, assisted reproductive technologies have been extensively employed. The application of seminal plasma as a therapeutic approach to enhance the development of embryo competency and rate of implantation, receptivity of endometrium, and establishment of maternal immune tolerance in cycles of ART appears possible. Herein, current knowledge on the composition of seminal plasma and the physiological roles it possesses on various parts of the female reproductive tract are summarized. Moreover, the role of seminal plasma in the development of embryos, implantation, and the following fetal growth and survival have been reviewed in this article.
Collapse
|
43
|
Zhong C, Lu Y, Li Y, Xie H, Zhou G, Jia L. Similarities and differences between embryonic implantation and CTC invasion: Exploring the roles of abortifacients in cancer metastasis chemoprevention. Eur J Med Chem 2022; 237:114416. [DOI: 10.1016/j.ejmech.2022.114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 11/03/2022]
|
44
|
Ma Z, Yang H, Kessler M, Sperandio M, Mahner S, Jeschke U, von Schönfeldt V. Targeting Aberrantly Elevated Sialyl Lewis A as a Potential Therapy for Impaired Endometrial Selection Ability in Unexplained Recurrent Miscarriage. Front Immunol 2022; 13:919193. [PMID: 35837404 PMCID: PMC9273867 DOI: 10.3389/fimmu.2022.919193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022] Open
Abstract
Background Carbohydrate Lewis antigens including sialyl Lewis A (sLeA), sialyl Lewis X (sLeX), Lewis X (LeX), and Lewis Y (LeY) are the commonest cell surface glycoconjugates that play pivotal roles in multiple biological processes, including cell adhesion and cell communication events during embryogenesis. SLeX, LeY, and associated glycosyltransferases ST3GAL3 and FUT4 have been reported to be involved in human embryo implantation. While the expression pattern of Lewis antigens in the decidua of unexplained recurrent miscarriage (uRM) patients remains unclear. Methods Paraffin-embedded placental tissue slides collected from patients experiencing early miscarriages (6–12 weeks) were analyzed using immunohistochemical (IHC) and immunofluorescent (IF) staining. An in vitro assay was developed using endometrial cell line RL95-2 and trophoblast cell line HTR-8/SVneo. Modulatory effect of potential glycosyltransferase on Lewis antigens expression was investigated by target-specific small interfering RNA (siRNA) knockdown in RL95-2 cells. HTR-8/SVneo cells spheroids adhesion assay was applied to investigate the intrinsic role of Lewis antigens in the abnormal implantation process of uRM. The expression of Lewis antigens in RL95-2 cells in response to the treatment with pro-implantation cytokine IL-1β was further measured by flow cytometry and immunocytochemical (ICC) staining. Results IHC staining revealed that Lewis antigens are mainly expressed in the luminal and glandular epithelium, IF staining further indicated the cellular localization at the apical membrane of the epithelial cells. FUTs, ST3GALs, and NEU1 located in both stromal and epithelial cells. We have found that the expression of sLeA, LeX, FUT3/4, and ST3GAL3/4 are significantly upregulated in the RM group, while FUT1 is downregulated. SLeX, LeY, ST3GAL6, and NEU1 showed no significant differences between groups. FUT3 knockdown in RL95-2 cells significantly decreased the expression of sLeA and the spheroids adhesion to endometrial monolayer. Anti-sLeA antibody can remarkably suppress both the basal and IL-1β induced adhesion of HTR-8/SVneo spheroids to RL95-2 cells monolayer. While further flow cytometry and ICC detection indicated that the treatment of RL95-2 cells with IL-1β significantly increases the surface expression of LeX, but not sLeA. Conclusions SLeA, LeX, and pertinent glycosyltransferase genes FUT1/3/4 and ST3GAL3/4 are notably dysregulated in the decidua of uRM patients. FUT3 accounts for the synthesis of sLeA in RL95-2 cells and affects the endometrial receptivity. Targeting aberrantly elevated sLeA may be a potential therapy for the inappropriate implantation in uRM.
Collapse
Affiliation(s)
- Zhi Ma
- Department of Obstetrics and Gynaecology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Huixia Yang
- Department of Obstetrics and Gynaecology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Mirjana Kessler
- Department of Obstetrics and Gynaecology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Markus Sperandio
- Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynaecology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynaecology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
- Department of Obstetrics and Gynaecology, University Hospital Augsburg, Augsburg, Germany
- *Correspondence: Udo Jeschke,
| | - Viktoria von Schönfeldt
- Department of Obstetrics and Gynaecology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| |
Collapse
|
45
|
Rajput N, Gahlay GK. Identification and in silico Characterization of Deleterious Single Nucleotide Variations in Human ZP2 Gene. Front Cell Dev Biol 2021; 9:763166. [PMID: 34869353 PMCID: PMC8635754 DOI: 10.3389/fcell.2021.763166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
ZP2, an important component of the zona matrix, surrounds mammalian oocytes and facilitates fertilization. Recently, some studies have documented the association of mutations in genes encoding the zona matrix with the infertile status of human females. Single nucleotide polymorphisms are the most common type of genetic variations observed in a population and as per the dbSNP database, around 5,152 SNPs are reported to exist in the human ZP2 (hZP2) gene. Although a wide range of computational tools are publicly available, yet no computational studies have been done to date to identify and analyze structural and functional effects of deleterious SNPs on hZP2. In this study, we conducted a comprehensive in silico analysis of all the SNPs found in hZP2. Six different computational tools including SIFT and PolyPhen-2 predicted 18 common nsSNPs as deleterious of which 12 were predicted to most likely affect the structure/functional properties. These were either present in the N-term region crucial for sperm-zona interaction or in the zona domain. 31 additional SNPs in both coding and non-coding regions were also identified. Interestingly, some of these SNPs have been found to be present in infertile females in some recent studies.
Collapse
Affiliation(s)
- Neha Rajput
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, INDIA
| | - Gagandeep Kaur Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, INDIA
| |
Collapse
|
46
|
Abstract
Sperm selection in the female reproductive tract (FRT) is sophisticated. Only about 1,000 sperm out of millions in an ejaculate reach the fallopian tube and thus have a chance of fertilizing an oocyte. In assisted reproduction techniques, sperm are usually selected using their density or motility, characteristics that do not reflect their fertilization competence and, therefore, might result in failure to fertilize the oocyte. Although sperm processing in in vitro fertilization (IVF) and intrauterine insemination (IUI) bypasses many of the selection processes in the FRT, selection by the cumulus mass and the zona pellucida remain intact. By contrast, the direct injection of a sperm into an oocyte in intracytoplasmic sperm injection (ICSI) bypasses all natural selection barriers and, therefore, increases the risk of transferring paternal defects such as fragmented DNA and genomic abnormalities in sperm to the resulting child. Research into surrogate markers of fertilization potential and into simulating the natural sperm selection processes has progressed. However, methods of sperm isolation - such as hyaluronic acid-based selection and microfluidic isolation based on sperm tactic responses - use only one or two parameters and are not comparable with the multistep sperm selection processes naturally occurring within the FRT. Fertilization-competent sperm require a panel of molecules, including zona pellucida-binding proteins and ion channel proteins, that enable them to progress through the FRT to achieve fertilization. The optimal artificial sperm selection method will, therefore, probably need to use a multiparameter tool that incorporates the molecular signature of sperm with high fertilization potential, and their responses to external cues, within a microfluidic system that can replicate the physiological processes of the FRT in vitro.
Collapse
|
47
|
Abstract
The surface of every eukaryotic cell is coated in a dense layer of structurally diverse glycans that together comprise the glycocalyx, a key interface between intracellular biochemistry and the external environment. Many of the glycans within the glycocalyx terminate in anionic monosaccharides belonging to the sialic acid family. Advances in our understanding of the biological processes mediated by sialic acids at the interfaces between cells have catalyzed interest in metabolic, enzymatic, and chemical strategies to edit the total complement of cellular sialic acids-the sialome. Here, we review strategies for altering the composition of the sialome with particular focus on glycan structures and state-of-the-art tools.
Collapse
Affiliation(s)
- Landon J. Edgar
- Department of Pharmacology and Toxicology, The University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| |
Collapse
|
48
|
Abstract
Carbohydrate recognition is crucial for biological processes ranging from development to immune system function to host-pathogen interactions. The proteins that bind glycans are faced with a daunting task: to coax these hydrophilic species out of water and into a binding site. Here, we examine the forces underlying glycan recognition by proteins. Our previous bioinformatic study of glycan-binding sites indicated that the most overrepresented side chains are electron-rich aromatic residues, including tyrosine and tryptophan. These findings point to the importance of CH-π interactions for glycan binding. Studies of CH-π interactions show a strong dependence on the presence of an electron-rich π system, and the data indicate binding is enhanced by complementary electronic interactions between the electron-rich aromatic ring and the partial positive charge of the carbohydrate C-H protons. This electronic dependence means that carbohydrate residues with multiple aligned highly polarized C-H bonds, such as β-galactose, form strong CH-π interactions, whereas less polarized residues such as α-mannose do not. This information can guide the design of proteins to recognize sugars and the generation of ligands for proteins, small molecules, or catalysts that bind sugars.
Collapse
Affiliation(s)
- Laura L. Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Roger C. Diehl
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
49
|
Siu KK, Serrão VHB, Ziyyat A, Lee JE. The cell biology of fertilization: Gamete attachment and fusion. J Cell Biol 2021; 220:e202102146. [PMID: 34459848 PMCID: PMC8406655 DOI: 10.1083/jcb.202102146] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
Fertilization is defined as the union of two gametes. During fertilization, sperm and egg fuse to form a diploid zygote to initiate prenatal development. In mammals, fertilization involves multiple ordered steps, including the acrosome reaction, zona pellucida penetration, sperm-egg attachment, and membrane fusion. Given the success of in vitro fertilization, one would think that the mechanisms of fertilization are understood; however, the precise details for many of the steps in fertilization remain a mystery. Recent studies using genetic knockout mouse models and structural biology are providing valuable insight into the molecular basis of sperm-egg attachment and fusion. Here, we review the cell biology of fertilization, specifically summarizing data from recent structural and functional studies that provide insights into the interactions involved in human gamete attachment and fusion.
Collapse
Affiliation(s)
- Karen K. Siu
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vitor Hugo B. Serrão
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ahmed Ziyyat
- Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris, France
- Service d’Histologie, d’Embryologie, Biologie de la Reproduction, Assistance Publique - Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Jeffrey E. Lee
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Schaapkens X, van Sluis RN, Bobylev EO, Reek JNH, Mooibroek TJ. A Water Soluble Pd 2 L 4 Cage for Selective Binding of Neu5Ac. Chemistry 2021; 27:13719-13724. [PMID: 34486179 PMCID: PMC8518546 DOI: 10.1002/chem.202102176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 11/30/2022]
Abstract
The sialic acid N-acetylneuraminic acid (Neu5Ac) and its derivatives are involved in many biological processes including cell-cell recognition and infection by influenza. Molecules that can recognize Neu5Ac might thus be exploited to intervene in or monitor such events. A key obstacle in this development is the sparse availability of easily prepared molecules that bind to this carbohydrate in its natural solvent; water. Here, we report that the carbohydrate binding pocket of an organic soluble [Pd2 L4 ]4+ cage could be equipped with guanidinium-terminating dendrons to give the water soluble [Pd2 L4 ][NO3 ]16 cage 7. It was shown by means of NMR spectroscopy that 7 binds selectively to anionic monosaccharides and strongest to Neu5Ac with Ka =24 M-1 . The cage had low to no affinity for the thirteen neutral saccharides studied. Aided by molecular modeling, the selectivity for anionic carbohydrates such as Neu5Ac could be rationalized by the presence of charge assisted hydrogen bonds and/or the presence of a salt bridge with a guanidinium solubilizing arm of 7. Establishing that a simple coordination cage such as 7 can already selectively bind to Neu5Ac in water paves the way to improve the stability, affinity and/or selectivity properties of M2 L4 cages for carbohydrates and other small molecules.
Collapse
Affiliation(s)
- Xander Schaapkens
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| | - Roy N. van Sluis
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| | - Eduard O. Bobylev
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| | - Joost N. H. Reek
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| | - Tiddo J. Mooibroek
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| |
Collapse
|