1
|
Zerbib J, Bloomberg A, Ben-David U. Targeting vulnerabilities of aneuploid cells for cancer therapy. Trends Cancer 2025:S2405-8033(25)00097-4. [PMID: 40368673 DOI: 10.1016/j.trecan.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 05/16/2025]
Abstract
Aneuploidy is a common feature of cancer that drives tumor evolution, but it also creates cellular vulnerabilities that might be exploited therapeutically. Recent advances in genomic technologies and experimental models have uncovered diverse cellular consequences of aneuploidy, revealing dependencies on mitotic regulation, DNA replication and repair, proteostasis, metabolism, and immune interactions. Harnessing aneuploidy for precision oncology requires the combination of genomic, functional, and clinical studies that will enable translation of our improved understanding of aneuploidy to targeted therapies. In this review we discuss approaches to targeting both highly aneuploid cells and cells with specific common aneuploidies, summarize the biological underpinning of these aneuploidy-induced vulnerabilities, and explore their therapeutic implications.
Collapse
Affiliation(s)
- Johanna Zerbib
- Department of Human Molecular Genetics and Biochemistry, Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amit Bloomberg
- Department of Human Molecular Genetics and Biochemistry, Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Raaijmakers JA, Janssen LME, Mazouzi A, Hondema ALH, Borza R, Fish A, Elbatsh AMO, Kazokaitė-Adomaitienė J, Vaquero-Siguero N, Mayayo-Peralta I, Nahidiazar L, Friskes A, Hoekman L, Bleijerveld OB, Hoencamp C, Moser SC, Jonkers J, Jalink K, Zwart W, Celie PHN, Rowland BD, Perrakis A, Brummelkamp TR, Medema RH. SRBD1, a highly conserved gene required for chromosome individualization. Cell Rep 2025; 44:115443. [PMID: 40106440 DOI: 10.1016/j.celrep.2025.115443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/05/2025] [Accepted: 02/26/2025] [Indexed: 03/22/2025] Open
Abstract
Despite significant progress made in functional genomics, the roles of a relatively small number of essential genes remain enigmatic. Here, we characterize S1 RNA-binding domain-containing protein 1 (SRBD1), an essential gene with no previously assigned function. Through genetic, proteomic, and functional approaches, we discovered that SRBD1 is a DNA-binding protein and a key component of the mitotic chromatid axis. The loss of SRBD1 results in a pronounced defect in sister chromatid segregation that strikingly resembles the phenotype observed when sister chromatid decatenation is perturbed by topoisomerase IIα (TOP2A) dysfunction. Using genetic screens, we uncovered that the requirement for SRBD1 depends on the presence of condensin II but not condensin I. Moreover, we found that SRBD1 activity is most critical during prophase, when chromosome condensation is established. Taking these results together, we propose that SRBD1 acts during prophase to safeguard the decatenation process to prevent the formation of difficult-to-resolve DNA structures, thereby averting severe chromosome missegregations.
Collapse
Affiliation(s)
- Jonne A Raaijmakers
- Division of Cell Biology, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Louise M E Janssen
- Division of Cell Biology, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Abdelghani Mazouzi
- Division of Biochemistry, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Amber L H Hondema
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Razvan Borza
- Division of Biochemistry, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Alexander Fish
- Division of Biochemistry, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Ahmed M O Elbatsh
- Division of Cell Biology, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Justina Kazokaitė-Adomaitienė
- Division of Biochemistry, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Nuria Vaquero-Siguero
- Division of Cell Biology, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Isabel Mayayo-Peralta
- Division of Oncogenomics, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Leila Nahidiazar
- Division of Cell Biology, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Anoek Friskes
- Division of Cell Biology, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Liesbeth Hoekman
- Mass Spectrometry and Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Onno B Bleijerveld
- Mass Spectrometry and Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Claire Hoencamp
- Division of Cell Biology, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Sarah C Moser
- Division of Molecular Pathology, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Kees Jalink
- Division of Cell Biology, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Patrick H N Celie
- Division of Biochemistry, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Benjamin D Rowland
- Division of Cell Biology, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Anastassis Perrakis
- Division of Biochemistry, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Thijn R Brummelkamp
- Division of Biochemistry, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - René H Medema
- Division of Cell Biology, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands.
| |
Collapse
|
3
|
Stamatov R, Uzunova S, Kicheva Y, Karaboeva M, Blagoev T, Stoynov S. Supra-second tracking and live-cell karyotyping reveal principles of mitotic chromosome dynamics. Nat Cell Biol 2025; 27:654-667. [PMID: 40185948 PMCID: PMC11991918 DOI: 10.1038/s41556-025-01637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/11/2025] [Indexed: 04/07/2025]
Abstract
Mitotic chromosome dynamics are essential for the three-dimensional organization of the genome during the cell cycle, but the spatiotemporal characteristics of this process remain unclear due to methodological challenges. While Hi-C methods capture interchromosomal contacts, they lack single-cell temporal dynamics, whereas microscopy struggles with bleaching and phototoxicity. Here, to overcome these limitations, we introduce Facilitated Segmentation and Tracking of Chromosomes in Mitosis Pipeline (FAST CHIMP), pairing time-lapse super-resolution microscopy with deep learning. FAST CHIMP tracked all human chromosomes with 8-s resolution from prophase to telophase, identified 15 out of 23 homologue pairs in single cells and compared chromosomal positioning between mother and daughter cells. It revealed a centrosome-motion-dependent flow that governs the mapping between chromosome locations at prophase and their metaphase plate position. In addition, FAST CHIMP measured supra-second dynamics of intra- and interchromosomal contacts. This tool adds a dynamic dimension to the study of chromatin behaviour in live cells, promising advances beyond the scope of existing methods.
Collapse
Affiliation(s)
- Rumen Stamatov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Sonya Uzunova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Yoana Kicheva
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Karaboeva
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tavian Blagoev
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stoyno Stoynov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
4
|
Yang X, Wei R, Meng F, Liu D, Gong X, Ruvkun G, Wei W. Mitochondrial fission surveillance is coupled to Caenorhabditis elegans DNA and chromosome segregation integrity. PLoS Genet 2025; 21:e1011678. [PMID: 40279356 PMCID: PMC12064022 DOI: 10.1371/journal.pgen.1011678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 05/09/2025] [Accepted: 04/05/2025] [Indexed: 04/27/2025] Open
Abstract
Mitochondrial fission and fusion are tightly regulated to specify mitochondrial abundance, localization, and arrangement during cell division as well as in the diverse differentiated cell types and physiological states. However, the regulatory pathways for such mitochondrial dynamics are less explored than the mitochondrial fission and fusion components. Here we report a large-scale screen for genes that regulate mitochondrial fission. Mitochondrial fission defects cause a characteristic uneven fluorescent pattern in embryos carrying mitochondrial stress reporter genes. Using this uneven activation, we performed RNAi screens that identified 3 kinase genes from a ~ 500-kinase library and another 11 genes from 3,300 random genes that function in mitochondrial fission. Many of these identified genes play roles in chromosome segregation. We found that chromosome missegregation and genome instability lead to dysregulation of mitochondrial fission, possibly independent of DRP-1. ATL-1, the C. elegans ATR orthologue, plays a potentially protective role in alleviating the mitochondrial fission defect caused by chromosome missegregation. This establishes a screening paradigm for identifying mitochondrial fission regulators, which reveals the potential role of ATR in surveilling mitochondrial fission to mitigate dysregulation caused by improper chromosome segregation.
Collapse
Affiliation(s)
- Xiaomeng Yang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ruichen Wei
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Fanfan Meng
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Dianchen Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xuan Gong
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wei Wei
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
5
|
Zuazo-Gaztelu I, Lawrence D, Oikonomidi I, Marsters S, Pechuan-Jorge X, Gaspar CJ, Kan D, Segal E, Clark K, Beresini M, Braun MG, Rudolph J, Modrusan Z, Choi M, Sandoval W, Reichelt M, DeWitt DC, Kujala P, van Dijk S, Klumperman J, Ashkenazi A. A nonenzymatic dependency on inositol-requiring enzyme 1 controls cancer cell cycle progression and tumor growth. PLoS Biol 2025; 23:e3003086. [PMID: 40208872 PMCID: PMC12080931 DOI: 10.1371/journal.pbio.3003086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/15/2025] [Accepted: 02/26/2025] [Indexed: 04/12/2025] Open
Abstract
Endoplasmic-reticulum resident inositol-requiring enzyme 1α (IRE1) supports protein homeostasis via its cytoplasmic kinase-RNase module. Known cancer dependency on IRE1 entails its enzymatic activation of the transcription factor XBP1s and of regulated RNA decay. We discovered surprisingly that some cancer cell lines require IRE1 but not its enzymatic activity. IRE1 knockdown but not enzymatic IRE1 inhibition or XBP1 disruption attenuated cell cycle progression and tumor growth. IRE1 silencing led to activation of TP53 and CDKN1A/p21 in conjunction with increased DNA damage and chromosome instability, while decreasing heterochromatin as well as DNA and histone H3K9me3 methylation. Immunoelectron microscopy detected some endogenous IRE1 protein at the nuclear envelope. Thus, cancer cells co-opt IRE1 either enzymatically or nonenzymatically, which has significant implications for IRE1's biological role and therapeutic targeting.
Collapse
Affiliation(s)
- Iratxe Zuazo-Gaztelu
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - David Lawrence
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Ioanna Oikonomidi
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Scot Marsters
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Ximo Pechuan-Jorge
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Catarina J. Gaspar
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - David Kan
- Department of In Vivo Pharmacology, Genentech, Inc., South San Francisco, California, United States of America
| | - Ehud Segal
- Department of In Vivo Pharmacology, Genentech, Inc., South San Francisco, California, United States of America
| | - Kevin Clark
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California, United States of America
| | - Maureen Beresini
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California, United States of America
| | - Marie-Gabrielle Braun
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Joachim Rudolph
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Zora Modrusan
- Department of Proteomic and Genomic Technologies, Genentech, Inc., South San Francisco, California, United States of America
| | - Meena Choi
- Department of Proteomic and Genomic Technologies, Genentech, Inc., South San Francisco, California, United States of America
| | - Wendy Sandoval
- Department of Proteomic and Genomic Technologies, Genentech, Inc., South San Francisco, California, United States of America
| | - Mike Reichelt
- Department of Pathology, Genentech, Inc., South San Francisco, California, United States of America
| | - David C. DeWitt
- Department of Pathology, Genentech, Inc., South San Francisco, California, United States of America
| | - Pekka Kujala
- Center for Molecular Medicine—Cell Biology, University Medical Center, Utrecht, The Netherlands
| | - Suzanne van Dijk
- Center for Molecular Medicine—Cell Biology, University Medical Center, Utrecht, The Netherlands
| | - Judith Klumperman
- Center for Molecular Medicine—Cell Biology, University Medical Center, Utrecht, The Netherlands
| | - Avi Ashkenazi
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| |
Collapse
|
6
|
Hemminki K, Niazi Y, Vodickova L, Vodicka P, Försti A. Genetic and environmental associations of nonspecific chromosomal aberrations. Mutagenesis 2025; 40:30-38. [PMID: 38422374 PMCID: PMC11911008 DOI: 10.1093/mutage/geae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/28/2024] [Indexed: 03/02/2024] Open
Abstract
Nonspecific structural chromosomal aberrations (CAs) are found in around 1% of circulating lymphocytes from healthy individuals but the frequency may be higher after exposure to carcinogenic chemicals or radiation. CAs have been used in the monitoring of persons exposed to genotoxic agents and radiation. Previous studies on occupationally exposed individuals have shown associations between the frequency of CAs in peripheral blood lymphocytes and subsequent cancer risk. The cause for CA formation is believed to be unrepaired or insufficiently repaired DNA double-strand breaks or other DNA damage, and additionally telomere shortening. CAs include chromosome (CSAs) and chromatid type aberrations (CTAs). In the present review, we first describe the types of CAs, the conventional techniques used for their detection and some aspects of interpreting the results. We then focus on germline genetic variation in the frequency and type of CAs measured in a genome-wide association study in healthy individuals in relation to occupational and smoking-related exposure compared to nonexposed referents. The associations (at P < 10-5) on 1473 healthy individuals were broadly classified in candidate genes from functional pathways related to DNA damage response/repair, including PSMA1, UBR5, RRM2B, PMS2P4, STAG3L4, BOD1, COPRS, and FTO; another group included genes related to apoptosis, cell proliferation, angiogenesis, and tumorigenesis, COPB1, NR2C1, COPRS, RHOT1, ITGB3, SYK, and SEMA6A; a third small group mapped to genes KLF7, SEMA5A and ITGB3 which were related to autistic traits, known to manifest frequent CAs. Dedicated studies on 153 DNA repair genes showed associations for some 30 genes, the expression of which could be modified by the implicated variants. We finally point out that monitoring of CAs is so far the only method of assessing cancer risk in healthy human populations, and the use of the technology should be made more attractive by developing automated performance steps and incorporating artificial intelligence methods into the scoring.
Collapse
Affiliation(s)
- Kari Hemminki
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen 32300, Czech Republic
- Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
| | - Yasmeen Niazi
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ludmila Vodickova
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen 32300, Czech Republic
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 14200, Czech Republic
- Institute of Biology and Medical Genetics, Charles University, Albertov 4, Prague 12800, Czech Republic
| | - Pavel Vodicka
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen 32300, Czech Republic
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 14200, Czech Republic
- Institute of Biology and Medical Genetics, Charles University, Albertov 4, Prague 12800, Czech Republic
| | - Asta Försti
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
7
|
Hertel A, Storchová Z. The Role of p53 Mutations in Early and Late Response to Mitotic Aberrations. Biomolecules 2025; 15:244. [PMID: 40001547 PMCID: PMC11852650 DOI: 10.3390/biom15020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Mutations in the TP53 gene and chromosomal instability (CIN) are two of the most common alterations in cancer. CIN, marked by changes in chromosome numbers and structure, drives tumor development, but is poorly tolerated in healthy cells, where developmental and tissue homeostasis mechanisms typically eliminate cells with chromosomal abnormalities. Mechanisms that allow cancer cells to acquire and adapt to CIN remain largely unknown. Tumor suppressor protein p53, often referred to as the "guardian of the genome", plays a critical role in maintaining genomic stability. In cancer, CIN strongly correlates with TP53 mutations, and recent studies suggest that p53 prevents the propagation of cells with abnormal karyotypes arising from mitotic errors. Furthermore, p53 dysfunction is frequent in cells that underwent whole-genome doubling (WGD), a process that facilitates CIN onset, promotes aneuploidy tolerance, and is associated with poor patient prognosis across multiple cancer types. This review summarizes current insights into p53's role in protecting cells from chromosome copy number alterations and discusses the implications of its dysfunction for the adaption and propagation of cancer cells.
Collapse
Affiliation(s)
| | - Zuzana Storchová
- Group Molecular Genetics, Faculty of Biology, RPTU Kaiserslautern-Landau, Paul Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| |
Collapse
|
8
|
Bobbitt JR, Cuellar-Vite L, Weber-Bonk KL, Yancey MR, Majmudar PR, Keri RA. Targeting the mitotic kinase NEK2 enhances CDK4/6 inhibitor efficacy by potentiating genome instability. J Biol Chem 2025; 301:108196. [PMID: 39826695 PMCID: PMC11849632 DOI: 10.1016/j.jbc.2025.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Selective inhibitors that target cyclin-dependent kinases 4 and 6 (CDK4/6i) are approved by the U.S. Food and Drug Administration (FDA) for treatment of a subset of breast cancers and are being evaluated in numerous clinical trials for other cancers. Despite this advance, a subset of tumors are intrinsically resistant to these drugs and acquired resistance is nearly inevitable. Recent mechanistic evidence suggests that in addition to stalling the cell cycle, the antitumor effects of CDK4/6i involve the induction of chromosomal instability (CIN). Here, we exploit this mechanism by combining CDK4/6i with other instability-promoting agents to induce maladaptive CIN and irreversible cell fates. Specifically, dual targeting of CDK4/6 and the mitotic kinase NEK2 in vitro drives centrosome amplification and the accumulation of CIN that induces catastrophic mitoses, cell cycle exit, and cell death. Dual targeting also induces CIN in vivo and significantly decreases mouse tumor volume to a greater extent than either drug alone, without inducing overt toxicity. Importantly, we provide evidence that breast cancer cells are selectively dependent on NEK2, but nontransformed cells are not, in contrast with other mitotic kinases that are commonly essential in all cell types. These findings implicate NEK2 as a potential therapeutic target for breast cancer that could circumvent the dose-limiting toxicities that are commonly observed when blocking other mitotic kinases. Moreover, these data suggest that NEK2 inhibitors could be used to sensitize tumors to FDA-approved CDK4/6i for the treatment of breast cancers, improving their efficacy and providing a foundation for expanding the patient population that could benefit from CDK4/6i.
Collapse
Affiliation(s)
- Jessica R Bobbitt
- Department of Pathology School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Leslie Cuellar-Vite
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kristen L Weber-Bonk
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Marlee R Yancey
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Parth R Majmudar
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ruth A Keri
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
9
|
Bianco JR, Li Y, Petranyi A, Fabian Z. EWSR1::ATF1 Translocation: A Common Tumor Driver of Distinct Human Neoplasms. Int J Mol Sci 2024; 25:13693. [PMID: 39769457 PMCID: PMC11728112 DOI: 10.3390/ijms252413693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Cancer is among the leading causes of mortality in developed countries due to limited available therapeutic modalities and high rate of morbidity. Although malignancies might show individual genetic landscapes, recurring aberrations in the neoplastic genome have been identified in the wide range of transformed cells. These include translocations of frequently affected loci of the human genetic material like the Ewing sarcoma breakpoint region 1 (EWSR1) of chromosome 22 that results in malignancies with mesodermal origin. These cytogenetic defects frequently result in the genesis of fusion genes involving EWSR1 and a number of genes from partner loci. One of these chromosomal rearrangements is the reciprocal translocation between the q13 and q12 loci of chromosome 12 and 22, respectively, that is believed to initiate cancer formation by the genesis of a novel, chimeric transcription factor provoking dysregulated gene expression. Since soft-tissue neoplasms carrying t(12;22)(q13;q12) have very poor prognosis and clinical modalities specifically targeting t(12;22)(q13;q12)-harboring cells are not available to date, understanding this DNA aberration is not only timely but urgent. Here, we review our current knowledge of human malignancies carrying the specific subset of EWSR1 rearrangements that leads to the expression of the EWSR1::ATF1 tumor-driver chimeric protein.
Collapse
Affiliation(s)
- Julia Raffaella Bianco
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (J.R.B.); (Y.L.)
| | - YiJing Li
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (J.R.B.); (Y.L.)
| | - Agota Petranyi
- Centre of Excellence for Pancreatic Diseases, Semmelweis University, 1083 Budapest, Hungary;
| | - Zsolt Fabian
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (J.R.B.); (Y.L.)
- Translocon Biotechnologies PLC, Akademia u. 6, 1056 Budapest, Hungary
| |
Collapse
|
10
|
Regin M, Lei Y, Couvreu De Deckersberg E, Janssens C, Huyghebaert A, Guns Y, Verdyck P, Verheyen G, Van de Velde H, Sermon K, Spits C. Complex aneuploidy triggers autophagy and p53-mediated apoptosis and impairs the second lineage segregation in human preimplantation embryos. eLife 2024; 12:RP88916. [PMID: 39652462 PMCID: PMC11627504 DOI: 10.7554/elife.88916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
About 70% of human cleavage stage embryos show chromosomal mosaicism, falling to 20% in blastocysts. Chromosomally mosaic human blastocysts can implant and lead to healthy new-borns with normal karyotypes. Studies in mouse embryos and human gastruloids showed that aneuploid cells are eliminated from the epiblast by p53-mediated apoptosis while being tolerated in the trophectoderm. These observations suggest a selective loss of aneuploid cells from human embryos, but the underlying mechanisms are not yet fully understood. Here, we investigated the cellular consequences of aneuploidy in a total of 125 human blastocysts. RNA-sequencing of trophectoderm cells showed activated p53 pathway and apoptosis proportionate to the level of chromosomal imbalance. Immunostaining corroborated that aneuploidy triggers proteotoxic stress, autophagy, p53-signaling, and apoptosis independent from DNA damage. Total cell numbers were lower in aneuploid embryos, due to a decline both in trophectoderm and in epiblast/primitive endoderm cell numbers. While lower cell numbers in trophectoderm may be attributed to apoptosis, aneuploidy impaired the second lineage segregation, particularly primitive endoderm formation. This might be reinforced by retention of NANOG. Our findings might explain why fully aneuploid embryos fail to further develop and we hypothesize that the same mechanisms lead to the removal of aneuploid cells from mosaic embryos.
Collapse
Affiliation(s)
- Marius Regin
- Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics Reproduction and Development, Vrije Universiteit BrusselBrusselsBelgium
| | - Yingnan Lei
- Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics Reproduction and Development, Vrije Universiteit BrusselBrusselsBelgium
| | - Edouard Couvreu De Deckersberg
- Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics Reproduction and Development, Vrije Universiteit BrusselBrusselsBelgium
| | - Charlotte Janssens
- Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics Reproduction and Development, Vrije Universiteit BrusselBrusselsBelgium
| | - Anfien Huyghebaert
- Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics Reproduction and Development, Vrije Universiteit BrusselBrusselsBelgium
| | - Yves Guns
- Brussels Health Campus, Brussels IVF, Universitair Ziekenhuis Brussel (UZ Brussel)BrusselsBelgium
| | - Pieter Verdyck
- Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics Reproduction and Development, Vrije Universiteit BrusselBrusselsBelgium
- Brussels Health Campus, Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel)BrusselsBelgium
| | - Greta Verheyen
- Brussels Health Campus, Brussels IVF, Universitair Ziekenhuis Brussel (UZ Brussel)BrusselsBelgium
| | - Hilde Van de Velde
- Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics Reproduction and Development, Vrije Universiteit BrusselBrusselsBelgium
- Brussels Health Campus, Brussels IVF, Universitair Ziekenhuis Brussel (UZ Brussel)BrusselsBelgium
| | - Karen Sermon
- Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics Reproduction and Development, Vrije Universiteit BrusselBrusselsBelgium
| | - Claudia Spits
- Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics Reproduction and Development, Vrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
11
|
Batiuk A, Höpfler M, Almeida AC, Teoh En-Jie D, Vadas O, Vartholomaiou E, Hegde RS, Lin Z, Gasic I. Soluble αβ-tubulins reversibly sequester TTC5 to regulate tubulin mRNA decay. Nat Commun 2024; 15:9963. [PMID: 39551769 PMCID: PMC11570694 DOI: 10.1038/s41467-024-54036-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
Microtubules, built from heterodimers of α- and β-tubulins, control cell shape, mediate intracellular transport, and power cell division. The concentration of αβ-tubulins is tightly controlled through a posttranscriptional mechanism involving selective and regulated degradation of tubulin-encoding mRNAs. Degradation is initiated by TTC5, which recognizes tubulin-synthesizing ribosomes and recruits downstream effectors to trigger mRNA deadenylation. Here, we investigate how cells regulate TTC5 activity. Biochemical and structural proteomic approaches reveal that under normal conditions, soluble αβ-tubulins bind to and sequester TTC5, preventing it from engaging nascent tubulins at translating ribosomes. We identify the flexible C-terminal tail of TTC5 as a molecular switch, toggling between soluble αβ-tubulin-bound and nascent tubulin-bound states. Loss of sequestration by soluble αβ-tubulins constitutively activates TTC5, leading to diminished tubulin mRNA levels and compromised microtubule-dependent chromosome segregation during cell division. Our findings provide a paradigm for how cells regulate the activity of a specificity factor to adapt posttranscriptional regulation of gene expression to cellular needs.
Collapse
Affiliation(s)
- Alina Batiuk
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Markus Höpfler
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Ana C Almeida
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Deryn Teoh En-Jie
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Oscar Vadas
- Proteins, Peptides and RNA to Protein Core Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Ramanujan S Hegde
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Zhewang Lin
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Ivana Gasic
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
12
|
Dedukh D, Majtánová Z, Ráb P, Ezaz T, Unmack PJ. Gradual chromosomal lagging drive programmed genome elimination in hemiclonal fishes from the genus Hypseleotris. Sci Rep 2024; 14:26866. [PMID: 39501046 PMCID: PMC11538498 DOI: 10.1038/s41598-024-78278-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Most eukaryotes maintain the stability of their cellular genome sizes to ensure genome transmission to offspring through sexual reproduction. However, some alter their genome size by selectively eliminating parts or increasing ploidy at specific developmental stages. This phenomenon of genome elimination or whole genome duplication occurs in animal hybrids reproducing asexually. Such genome alterations occur during gonocyte development ensuring successful reproduction of these hybrids. Although multiple examples of genome alterations are known, the underlying molecular and cellular processes involved in selective genome elimination and duplication remain largely unknown. Here, we uncovered the process of selective genome elimination and genome endoreplication in hemiclonal fish hybrids from the genus Hypseleotris. Specifically, we examined parental sexual species H. bucephala and hybrid H. bucephala × H. gymnocephala (HB × HX). We observed micronuclei in the cytoplasm of gonial cells in the gonads of hybrids, but not in the parental sexual species. We also observed misaligned chromosomes during mitosis which were unable to attach to the spindle. Moreover, we found that misaligned chromosomes lag during anaphase and subsequently enclose in the micronuclei. Using whole mount immunofluorescent staining, we showed that chromatid segregation has failed in lagging chromosomes. We also performed three-dimensional comparative genomic hybridization (3D-CGH) using species-specific probes to determine the role of micronuclei in selective genome elimination. We repeatedly observed that misaligned chromosomes of the H. bucephala genome were preferentially enclosed in micronuclei of hybrids. In addition, we detected mitotic cells without a mitotic spindle as a potential cause of genome duplication. We conclude that selective genome elimination in the gonads of hybrids occurs through gradual elimination of individual chromosomes of one parental genome. Such chromosomes, unable to attach to the spindle, lag and become enclosed in micronuclei.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.
| | - Zuzana Majtánová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Tariq Ezaz
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Peter J Unmack
- Centre for Applied Water Science, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
13
|
Hintzen DC, Schubert M, Soto M, Medema RH, Raaijmakers JA. Reduction of chromosomal instability and inflammation is a common aspect of adaptation to aneuploidy. EMBO Rep 2024; 25:5169-5193. [PMID: 39294502 PMCID: PMC11549362 DOI: 10.1038/s44319-024-00252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/20/2024] Open
Abstract
Aneuploidy, while detrimental to untransformed cells, is notably prevalent in cancer. Aneuploidy is found as an early event during tumorigenesis which indicates that cancer cells have the ability to surmount the initial stress responses associated with aneuploidy, enabling rapid proliferation despite aberrant karyotypes. To generate more insight into key cellular processes and requirements underlying adaptation to aneuploidy, we generated a panel of aneuploid clones in p53-deficient RPE-1 cells and studied their behavior over time. As expected, de novo-generated aneuploid clones initially display reduced fitness, enhanced levels of chromosomal instability (CIN), and an upregulated inflammatory response. Intriguingly, after prolonged culturing, aneuploid clones exhibit increased proliferation rates while maintaining aberrant karyotypes, indicative of an adaptive response to the aneuploid state. Interestingly, all adapted clones display reduced CIN and reduced inflammatory signaling, suggesting that these are common aspects of adaptation to aneuploidy. Collectively, our data suggests that CIN and concomitant inflammation are key processes that require correction to allow for fast proliferation in vitro. Finally, we provide evidence that amplification of oncogenic KRAS can promote adaptation.
Collapse
Affiliation(s)
- Dorine C Hintzen
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Michael Schubert
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Mar Soto
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - René H Medema
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Oncode Institute, Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| | - Jonne A Raaijmakers
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Hayashi K, Horisaka K, Harada Y, Ogawa Y, Yamashita T, Kitano T, Wakita M, Fukusumi T, Inohara H, Hara E, Matsumoto T. Polyploidy mitigates the impact of DNA damage while simultaneously bearing its burden. Cell Death Discov 2024; 10:436. [PMID: 39397009 PMCID: PMC11471775 DOI: 10.1038/s41420-024-02206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
Polyploidy is frequently enhanced under pathological conditions, such as tissue injury and cancer in humans. Polyploidization is critically involved in cancer evolution, including cancer initiation and the acquisition of drug resistance. However, the effect of polyploidy on cell fate remains unclear. In this study, we explored the effects of polyploidization on cellular responses to DNA damage and cell cycle progression. Through various comparisons based on ploidy stratifications of cultured cells, we found that polyploidization and the accumulation of genomic DNA damage mutually induce each other, resulting in polyploid cells consistently containing more genomic DNA damage than diploid cells under both physiological and stress conditions. Notably, despite substantial DNA damage, polyploid cells demonstrated a higher tolerance to its impact, exhibiting delayed cell cycle arrest and reduced secretion of inflammatory cytokines associated with DNA damage-induced senescence. Consistently, in mice with ploidy tracing, hepatocytes with high ploidy appeared to potentially persist in the damaged liver, while being susceptible to DNA damage. Polyploidy acts as a reservoir of genomic damage by mitigating the impact of DNA damage, while simultaneously enhancing its accumulation.
Collapse
Affiliation(s)
- Kazuki Hayashi
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan
| | - Kisara Horisaka
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoshiyuki Harada
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuta Ogawa
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan
| | - Takako Yamashita
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan
| | - Taku Kitano
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Wakita
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takahito Fukusumi
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eiji Hara
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
- Laboratory of Aging Biology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| | - Tomonori Matsumoto
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan.
| |
Collapse
|
15
|
Devillers R, Dos Santos A, Destombes Q, Laplante M, Elowe S. Recent insights into the causes and consequences of chromosome mis-segregation. Oncogene 2024; 43:3139-3150. [PMID: 39278989 DOI: 10.1038/s41388-024-03163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
Mitotic cells face the challenging task of ensuring accurate and equal segregation of their duplicated, condensed chromosomes between the nascent daughter cells. Errors in the process result in chromosome missegregation, a significant consequence of which is the emergence of aneuploidy-characterized by an imbalance in chromosome number-and the associated phenomenon of chromosome instability (CIN). Aneuploidy and CIN are common features of cancer, which leverages them to promote genome heterogeneity and plasticity, thereby facilitating rapid tumor evolution. Recent research has provided insights into how mitotic errors shape cancer genomes by inducing both numerical and structural chromosomal changes that drive tumor initiation and progression. In this review, we survey recent findings regarding the mitotic causes and consequences of aneuploidy. We discuss new findings into the types of chromosome segregation errors that lead to aneuploidy and novel pathways that protect genome integrity during mitosis. Finally, we describe new developments in our understanding of the immediate consequences of chromosome mis-segregation on the genome stability of daughter cells.
Collapse
Affiliation(s)
- Romain Devillers
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, L'ingénierie et les Applications des Protéines, Québec, Canada
| | - Alexsandro Dos Santos
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, L'ingénierie et les Applications des Protéines, Québec, Canada
| | - Quentin Destombes
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, L'ingénierie et les Applications des Protéines, Québec, Canada
| | - Mathieu Laplante
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Sabine Elowe
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada.
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC, Canada.
- Regroupement Québécois de Recherche sur la Fonction, L'ingénierie et les Applications des Protéines, Québec, Canada.
- Département de Pédiatrie, Faculté de Médecine, Université Laval, Québec City, QC, Canada.
| |
Collapse
|
16
|
Sargen MR, Kim J, Haley JS, Barker HP, Mundra PA, Ballinger ML, Thomas DM, Carey DJ, Goldstein AM, Stewart DR. Increased frequency of CHEK2 germline pathogenic variants among individuals with dermatofibrosarcoma protuberans. GENETICS IN MEDICINE OPEN 2024; 2:101895. [PMID: 39669616 PMCID: PMC11613564 DOI: 10.1016/j.gimo.2024.101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 12/14/2024]
Abstract
Purpose To identify candidate susceptibility genes for dermatofibrosarcoma protuberans (DFSP). Methods All individuals with DFSP from the International Sarcoma Kindred Study (n = 3767 individuals with sarcoma diagnoses from Australia, Europe, New Zealand, and United States) and cohorts that were not ascertained based on sarcoma status or other phenotypes (Geisinger MyCode, n = 170,503 individuals, United States; UK Biobank, n = 469,789 individuals, United Kingdom) were evaluated for germline pathogenic or likely pathogenic (P/LP) variants in 156 cancer genes. Results There were 92 unrelated individuals with DFSP across the 3 cohorts. The mean age at diagnosis (standard deviation) in the International Sarcoma Kindred Study, Geisinger, and UK Biobank was 40.8 (14.5), 50.3 (9.4), and 49.4 (13.2) years, respectively. Germline P/LP variants were most common in the CHEK2 gene (4/92 [4.3%]). CHEK2-related cases were often associated with early onset disease (age at diagnosis: 30-39 years) and were observed in all 3 cohorts. Among 640,292 individuals in Geisinger and UK Biobank who were not ascertained based on phenotype, there was a significantly increased frequency of CHEK2 P/LP variants among individuals with DFSP (n = 3/65 [4.6%]) compared to those without (n = 6388/640,227 [1.0%]) (Fisher exact, P = .03). Additional genes with P/LP variation (1 case for each gene) included ACD, ERCC5, ERCC1, DOCK8, GBA1, ATM, MUTYH, TP53, RECQL4, and COL7A1. Conclusion This study of multiple cohorts identifies CHEK2 as a candidate susceptibility gene for DFSP. Additional epidemiologic and functional studies are needed to further characterize this potential gene-tumor relationship.
Collapse
Affiliation(s)
- Michael R. Sargen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Jung Kim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Jeremy S. Haley
- Department of Genomic Health, Geisinger Clinic, Geisinger Health System, Danville, PA
| | | | - Piyushkumar A. Mundra
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Mandy L. Ballinger
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - David M. Thomas
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Molecular Oncology, University of New South Wales, Sydney, NSW, Australia
| | - David J. Carey
- Department of Genomic Health, Geisinger Clinic, Geisinger Health System, Danville, PA
| | - Alisa M. Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Douglas R. Stewart
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| |
Collapse
|
17
|
Zerbib J, Ippolito MR, Eliezer Y, De Feudis G, Reuveni E, Savir Kadmon A, Martin S, Viganò S, Leor G, Berstler J, Muenzner J, Mülleder M, Campagnolo EM, Shulman ED, Chang T, Rubolino C, Laue K, Cohen-Sharir Y, Scorzoni S, Taglietti S, Ratti A, Stossel C, Golan T, Nicassio F, Ruppin E, Ralser M, Vazquez F, Ben-David U, Santaguida S. Human aneuploid cells depend on the RAF/MEK/ERK pathway for overcoming increased DNA damage. Nat Commun 2024; 15:7772. [PMID: 39251587 PMCID: PMC11385192 DOI: 10.1038/s41467-024-52176-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
Aneuploidy is a hallmark of human cancer, yet the molecular mechanisms to cope with aneuploidy-induced cellular stresses remain largely unknown. Here, we induce chromosome mis-segregation in non-transformed RPE1-hTERT cells and derive multiple stable clones with various degrees of aneuploidy. We perform a systematic genomic, transcriptomic and proteomic profiling of 6 isogenic clones, using whole-exome DNA, mRNA and miRNA sequencing, as well as proteomics. Concomitantly, we functionally interrogate their cellular vulnerabilities, using genome-wide CRISPR/Cas9 and large-scale drug screens. Aneuploid clones activate the DNA damage response and are more resistant to further DNA damage induction. Aneuploid cells also exhibit elevated RAF/MEK/ERK pathway activity and are more sensitive to clinically-relevant drugs targeting this pathway, and in particular to CRAF inhibition. Importantly, CRAF and MEK inhibition sensitize aneuploid cells to DNA damage-inducing chemotherapies and to PARP inhibitors. We validate these results in human cancer cell lines. Moreover, resistance of cancer patients to olaparib is associated with high levels of RAF/MEK/ERK signaling, specifically in highly-aneuploid tumors. Overall, our study provides a comprehensive resource for genetically-matched karyotypically-stable cells of various aneuploidy states, and reveals a therapeutically-relevant cellular dependency of aneuploid cells.
Collapse
Affiliation(s)
- Johanna Zerbib
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marica Rosaria Ippolito
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Yonatan Eliezer
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Giuseppina De Feudis
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Eli Reuveni
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anouk Savir Kadmon
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sara Martin
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sonia Viganò
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Gil Leor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Julia Muenzner
- Charité Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Michael Mülleder
- Charité Universitätsmedizin Berlin, Core Facility High-Throughput Mass Spectrometry, Berlin, Germany
| | - Emma M Campagnolo
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eldad D Shulman
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiangen Chang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carmela Rubolino
- Center for Genomic Science of IIT@SEMM, Fondazione Instituto Italiano di Technologia, Milan, Italy
| | - Kathrin Laue
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Cohen-Sharir
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Simone Scorzoni
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Silvia Taglietti
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Alice Ratti
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Chani Stossel
- Oncology Institute, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Talia Golan
- Oncology Institute, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Fondazione Instituto Italiano di Technologia, Milan, Italy
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Markus Ralser
- Charité Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Stefano Santaguida
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
18
|
Schreuder A, Wendel TJ, Dorresteijn CGV, Noordermeer SM. (Single-stranded DNA) gaps in understanding BRCAness. Trends Genet 2024; 40:757-771. [PMID: 38789375 DOI: 10.1016/j.tig.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024]
Abstract
The tumour-suppressive roles of BRCA1 and 2 have been attributed to three seemingly distinct functions - homologous recombination, replication fork protection, and single-stranded (ss)DNA gap suppression - and their relative importance is under debate. In this review, we examine the origin and resolution of ssDNA gaps and discuss the recent advances in understanding the role of BRCA1/2 in gap suppression. There are ample data showing that gap accumulation in BRCA1/2-deficient cells is linked to genomic instability and chemosensitivity. However, it remains unclear whether there is a causative role and the function of BRCA1/2 in gap suppression cannot unambiguously be dissected from their other functions. We therefore conclude that the three functions of BRCA1 and 2 are closely intertwined and not mutually exclusive.
Collapse
Affiliation(s)
- Anne Schreuder
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Tiemen J Wendel
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Carlo G V Dorresteijn
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
| | - Sylvie M Noordermeer
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Martin S, Scorzoni S, Cordone S, Mazzagatti A, Beznoussenko GV, Gunn AL, Di Bona M, Eliezer Y, Leor G, Ben-Yishay T, Loffreda A, Cancila V, Rainone MC, Ippolito MR, Martis V, Bedin F, Garrè M, Vaites LP, Vasapolli P, Polo S, Parazzoli D, Tripodo C, Mironov AA, Cuomo A, Ben-David U, Bakhoum SF, Hatch EM, Ly P, Santaguida S. A p62-dependent rheostat dictates micronuclei catastrophe and chromosome rearrangements. Science 2024; 385:eadj7446. [PMID: 39208097 PMCID: PMC11664475 DOI: 10.1126/science.adj7446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/29/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Chromosomal instability (CIN) generates micronuclei-aberrant extranuclear structures that catalyze the acquisition of complex chromosomal rearrangements present in cancer. Micronuclei are characterized by persistent DNA damage and catastrophic nuclear envelope collapse, which exposes DNA to the cytoplasm. We found that the autophagic receptor p62/SQSTM1 modulates micronuclear stability, influencing chromosome fragmentation and rearrangements. Mechanistically, proximity of micronuclei to mitochondria led to oxidation-driven homo-oligomerization of p62, limiting endosomal sorting complex required for transport (ESCRT)-dependent micronuclear envelope repair by triggering autophagic degradation. We also found that p62 levels correlate with increased chromothripsis across human cancer cell lines and with increased CIN in colorectal tumors. Thus, p62 acts as a regulator of micronuclei and may serve as a prognostic marker for tumors with high CIN.
Collapse
Affiliation(s)
- Sara Martin
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Simone Scorzoni
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Cordone
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Amanda L. Gunn
- Division of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Melody Di Bona
- Human Oncology and Pathogenesis Program and Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yonatan Eliezer
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gil Leor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Ben-Yishay
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Alessia Loffreda
- Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro,” University of Palermo, Palermo, Italy
| | - Maria Chiara Rainone
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marica Rosaria Ippolito
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Valentino Martis
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Fabio Bedin
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | | | - Paolo Vasapolli
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Simona Polo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Dario Parazzoli
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Claudio Tripodo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro,” University of Palermo, Palermo, Italy
| | | | - Alessandro Cuomo
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Samuel F. Bakhoum
- Human Oncology and Pathogenesis Program and Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily M. Hatch
- Division of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stefano Santaguida
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
20
|
Kiri S, Ryba T. Cancer, metastasis, and the epigenome. Mol Cancer 2024; 23:154. [PMID: 39095874 PMCID: PMC11295362 DOI: 10.1186/s12943-024-02069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Cancer is the second leading cause of death worldwide and disease burden is expected to increase globally throughout the next several decades, with the majority of cancer-related deaths occurring in metastatic disease. Cancers exhibit known hallmarks that endow them with increased survival and proliferative capacities, frequently as a result of de-stabilizing mutations. However, the genomic features that resolve metastatic clones from primary tumors are not yet well-characterized, as no mutational landscape has been identified as predictive of metastasis. Further, many cancers exhibit no known mutation signature. This suggests a larger role for non-mutational genome re-organization in promoting cancer evolution and dissemination. In this review, we highlight current critical needs for understanding cell state transitions and clonal selection advantages for metastatic cancer cells. We examine links between epigenetic states, genome structure, and misregulation of tumor suppressors and oncogenes, and discuss how recent technologies for understanding domain-scale regulation have been leveraged for a more complete picture of oncogenic and metastatic potential.
Collapse
Affiliation(s)
- Saurav Kiri
- College of Medicine, University of Central Florida, 6850 Lake Nona Blvd., Orlando, 32827, Florida, USA.
| | - Tyrone Ryba
- Department of Natural Sciences, New College of Florida, 5800 Bay Shore Rd., Sarasota, 34243, Florida, USA.
| |
Collapse
|
21
|
Johnson BA, Liu AZ, Bi T, Dong Y, Li T, Zhou D, Narkar A, Wu Y, Sun SX, Larman TC, Zhu J, Li R. Simple aneuploidy evades p53 surveillance and promotes niche factor-independent growth in human intestinal organoids. Mol Biol Cell 2024; 35:br15. [PMID: 38985518 PMCID: PMC11321050 DOI: 10.1091/mbc.e24-04-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Aneuploidy is nearly ubiquitous in tumor genomes, but the role of aneuploidy in the early stages of cancer evolution remains unclear. Here, by inducing heterogeneous aneuploidy in non-transformed human colon organoids (colonoids), we investigated how the effects of aneuploidy on cell growth and differentiation may promote malignant transformation. Previous work implicated p53 activation as a downstream response to aneuploidy induction. We found that simple aneuploidy, characterized by 1-3 gained or lost chromosomes, resulted in little or modest p53 activation and cell cycle arrest when compared with more complex aneuploid cells. Single-cell RNA sequencing analysis revealed that the degree of p53 activation was strongly correlated with karyotype complexity. Single-cell tracking showed that cells could continue to divide despite the observation of one to a few lagging chromosomes. Unexpectedly, colonoids with simple aneuploidy exhibited impaired differentiation after niche factor withdrawal. These findings demonstrate that simple aneuploid cells can escape p53 surveillance and may contribute to niche factor-independent growth of cancer-initiating colon stem cells.
Collapse
Affiliation(s)
- Blake A. Johnson
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Albert Z. Liu
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Tianhao Bi
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Yi Dong
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Taibo Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Dingjingyu Zhou
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Akshay Narkar
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Yufei Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Sean X. Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Tatianna C. Larman
- Department of Pathology, Division of Gastrointestinal/Liver Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Jin Zhu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Rong Li
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| |
Collapse
|
22
|
Hu Q, Espejo Valle-Inclán J, Dahiya R, Guyer A, Mazzagatti A, Maurais EG, Engel JL, Lu H, Davis AJ, Cortés-Ciriano I, Ly P. Non-homologous end joining shapes the genomic rearrangement landscape of chromothripsis from mitotic errors. Nat Commun 2024; 15:5611. [PMID: 38965240 PMCID: PMC11224358 DOI: 10.1038/s41467-024-49985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Mitotic errors generate micronuclei entrapping mis-segregated chromosomes, which are susceptible to catastrophic fragmentation through chromothripsis. The reassembly of fragmented chromosomes by error-prone DNA double-strand break (DSB) repair generates diverse genomic rearrangements associated with human diseases. How specific repair pathways recognize and process these lesions remains poorly understood. Here we use CRISPR/Cas9 to systematically inactivate distinct DSB repair pathways and interrogate the rearrangement landscape of fragmented chromosomes. Deletion of canonical non-homologous end joining (NHEJ) components substantially reduces complex rearrangements and shifts the rearrangement landscape toward simple alterations without the characteristic patterns of chromothripsis. Following reincorporation into the nucleus, fragmented chromosomes localize within sub-nuclear micronuclei bodies (MN bodies) and undergo ligation by NHEJ within a single cell cycle. In the absence of NHEJ, chromosome fragments are rarely engaged by alternative end-joining or recombination-based mechanisms, resulting in delayed repair kinetics, persistent 53BP1-labeled MN bodies, and cell cycle arrest. Thus, we provide evidence supporting NHEJ as the exclusive DSB repair pathway generating complex rearrangements from mitotic errors.
Collapse
Affiliation(s)
- Qing Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jose Espejo Valle-Inclán
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rashmi Dahiya
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alison Guyer
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth G Maurais
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Justin L Engel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huiming Lu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anthony J Davis
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
23
|
Yamada H, Takada M, Ghone D, Yu M, Nagashima T, Fujimoto H, Sakakibara J, Hasegawa Y, Takao S, Yamada A, Narui K, Ishikawa T, Suzuki A, Otsuka M. Eribulin induces micronuclei and enhances the nuclear localization of cGAS in triple-negative breast cancer cells. Sci Rep 2024; 14:14146. [PMID: 38898119 PMCID: PMC11187130 DOI: 10.1038/s41598-024-64651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
Eribulin (ERI), clinically utilized for locally advanced or metastatic breast tumors, has shown potential links to the immune system. Notably, the cGAS-STING pathway, a key component of innate immunity, has gained prominence. Yet, limited reports explore ERI's effects on the cGAS-STING pathway. Additionally, the nuclear presence of cGAS remains poorly understood. This study uniquely delves into ERI's impact on both the cytosolic cGAS-STING pathway and nuclear cGAS. ERI enhances nuclear localization of cGAS, resulting in hyper-activation of the cGAS-STING pathway in triple-negative breast cancer cells. Reduction of cGAS heightened both cell proliferation and ERI sensitivity. In clinical data using ERI in a neo-adjuvant setting, patients with low cGAS cases exhibited reduced likelihood of achieving pathological complete response after ERI treatment. These findings illuminate the potential of cGAS and IFNβ as predictive biomarkers for ERI sensitivity, providing valuable insights for personalized breast cancer treatment strategies.
Collapse
Affiliation(s)
- Hideyuki Yamada
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Mamoru Takada
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan.
| | - Dhaval Ghone
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Muhan Yu
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Takeshi Nagashima
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Hiroshi Fujimoto
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Junta Sakakibara
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Yoshie Hasegawa
- Department of Breast Surgery, Hachinohe City Hospital, Hachinohe, Aomori, Japan
| | - Shintaro Takao
- Department of Breast Surgery, Konan Medical Center, Kobe, Hyogo, Japan
| | - Akimitsu Yamada
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kazutaka Narui
- Department of Breast and Thyroid Surgery, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Takashi Ishikawa
- Department of Breast Oncology and Surgery, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Aussie Suzuki
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Masayuki Otsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| |
Collapse
|
24
|
Carceles-Cordon M, Orme JJ, Domingo-Domenech J, Rodriguez-Bravo V. The yin and yang of chromosomal instability in prostate cancer. Nat Rev Urol 2024; 21:357-372. [PMID: 38307951 PMCID: PMC11156566 DOI: 10.1038/s41585-023-00845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 02/04/2024]
Abstract
Metastatic prostate cancer remains an incurable lethal disease. Studies indicate that prostate cancer accumulates genomic changes during disease progression and displays the highest levels of chromosomal instability (CIN) across all types of metastatic tumours. CIN, which refers to ongoing chromosomal DNA gain or loss during mitosis, and derived aneuploidy, are known to be associated with increased tumour heterogeneity, metastasis and therapy resistance in many tumour types. Paradoxically, high CIN levels are also proposed to be detrimental to tumour cell survival, suggesting that cancer cells must develop adaptive mechanisms to ensure their survival. In the context of prostate cancer, studies indicate that CIN has a key role in disease progression and might also offer a therapeutic vulnerability that can be pharmacologically targeted. Thus, a comprehensive evaluation of the causes and consequences of CIN in prostate cancer, its contribution to aggressive advanced disease and a better understanding of the acquired CIN tolerance mechanisms can translate into new tumour classifications, biomarker development and therapeutic strategies.
Collapse
Affiliation(s)
| | - Jacob J Orme
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Josep Domingo-Domenech
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Veronica Rodriguez-Bravo
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
25
|
Ya A, Deng C, Godek KM. Cell Competition Eliminates Aneuploid Human Pluripotent Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593217. [PMID: 38766106 PMCID: PMC11100710 DOI: 10.1101/2024.05.08.593217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Human pluripotent stem cells (hPSCs) maintain diploid populations for generations despite a persistently high rate of mitotic errors that cause aneuploidy, or chromosome imbalances. Consequently, to maintain genome stability, aneuploidy must inhibit hPSC proliferation, but the mechanisms are unknown. Here, we surprisingly find that homogeneous aneuploid populations of hPSCs proliferate unlike aneuploid non-transformed somatic cells. Instead, in mosaic populations, cell non-autonomous competition between neighboring diploid and aneuploid hPSCs eliminates less fit aneuploid cells. Aneuploid hPSCs with lower Myc or higher p53 levels relative to diploid neighbors are outcompeted but conversely gain a selective advantage when Myc and p53 relative abundance switches. Thus, although hPSCs frequently missegregate chromosomes and inherently tolerate aneuploidy, Myc- and p53-driven cell competition preserves their genome integrity. These findings have important implications for the use of hPSCs in regenerative medicine and for how diploid human embryos are established despite the prevalence of aneuploidy during early development.
Collapse
Affiliation(s)
- Amanda Ya
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Chenhui Deng
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Kristina M. Godek
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Lead contact
| |
Collapse
|
26
|
Yamamoto Y, Takahashi RU, Kinehara M, Yano K, Kuramoto T, Shimamoto A, Tahara H. Downregulation of Histone H3.3 Induces p53-Dependent Cellular Senescence in Human Diploid Fibroblasts. Genes (Basel) 2024; 15:543. [PMID: 38790171 PMCID: PMC11121134 DOI: 10.3390/genes15050543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Cellular senescence is an irreversible growth arrest that acts as a barrier to cancer initiation and progression. Histone alteration is one of the major events during replicative senescence. However, little is known about the function of H3.3 in cellular senescence. Here we found that the downregulation of H3.3 induced growth suppression with senescence-like phenotypes such as senescence-associated heterochromatin foci (SAHF) and β-galactosidase (SA-β-gal) activity. Furthermore, H3.3 depletion induced senescence-like phenotypes with the p53/p21-depedent pathway. In addition, we identified miR-22-3p, tumor suppressive miRNA, as an upstream regulator of the H3F3B (H3 histone, family 3B) gene which is the histone variant H3.3 and replaces conventional H3 in active genes. Therefore, our results reveal for the first time the molecular mechanisms for cellular senescence which are regulated by H3.3 abundance. Taken together, our studies suggest that H3.3 exerts functional roles in regulating cellular senescence and is a promising target for cancer therapy.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Department of Cellular and Molecular Biology, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (Y.Y.); (R.-u.T.)
| | - Ryou-u Takahashi
- Department of Cellular and Molecular Biology, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (Y.Y.); (R.-u.T.)
| | - Masaki Kinehara
- Department of Cellular and Molecular Biology, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (Y.Y.); (R.-u.T.)
| | - Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Tatsuya Kuramoto
- Department of Cellular and Molecular Biology, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (Y.Y.); (R.-u.T.)
| | - Akira Shimamoto
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo Onoda 756-0884, Japan;
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (Y.Y.); (R.-u.T.)
| |
Collapse
|
27
|
Jones KM, Bryan A, McCunn E, Lantz PE, Blalock H, Ojeda IC, Mehta K, Cosper PF. The Causes and Consequences of DNA Damage and Chromosomal Instability Induced by Human Papillomavirus. Cancers (Basel) 2024; 16:1662. [PMID: 38730612 PMCID: PMC11083350 DOI: 10.3390/cancers16091662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
High-risk human papillomaviruses (HPVs) are the main cause of cervical, oropharyngeal, and anogenital cancers, which are all treated with definitive chemoradiation therapy when locally advanced. HPV proteins are known to exploit the host DNA damage response to enable viral replication and the epithelial differentiation protocol. This has far-reaching consequences for the host genome, as the DNA damage response is critical for the maintenance of genomic stability. HPV+ cells therefore have increased DNA damage, leading to widespread genomic instability, a hallmark of cancer, which can contribute to tumorigenesis. Following transformation, high-risk HPV oncoproteins induce chromosomal instability, or chromosome missegregation during mitosis, which is associated with a further increase in DNA damage, particularly due to micronuclei and double-strand break formation. Thus, HPV induces significant DNA damage and activation of the DNA damage response in multiple contexts, which likely affects radiation sensitivity and efficacy. Here, we review how HPV activates the DNA damage response, how it induces chromosome missegregation and micronuclei formation, and discuss how these factors may affect radiation response. Understanding how HPV affects the DNA damage response in the context of radiation therapy may help determine potential mechanisms to improve therapeutic response.
Collapse
Affiliation(s)
- Kathryn M. Jones
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Ava Bryan
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Emily McCunn
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Pate E. Lantz
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Hunter Blalock
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
- University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Isabel C. Ojeda
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
- University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Kavi Mehta
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
28
|
Pati D. Role of chromosomal cohesion and separation in aneuploidy and tumorigenesis. Cell Mol Life Sci 2024; 81:100. [PMID: 38388697 PMCID: PMC10884101 DOI: 10.1007/s00018-024-05122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
Cell division is a crucial process, and one of its essential steps involves copying the genetic material, which is organized into structures called chromosomes. Before a cell can divide into two, it needs to ensure that each newly copied chromosome is paired tightly with its identical twin. This pairing is maintained by a protein complex known as cohesin, which is conserved in various organisms, from single-celled ones to humans. Cohesin essentially encircles the DNA, creating a ring-like structure to handcuff, to keep the newly synthesized sister chromosomes together in pairs. Therefore, chromosomal cohesion and separation are fundamental processes governing the attachment and segregation of sister chromatids during cell division. Metaphase-to-anaphase transition requires dissolution of cohesins by the enzyme Separase. The tight regulation of these processes is vital for safeguarding genomic stability. Dysregulation in chromosomal cohesion and separation resulting in aneuploidy, a condition characterized by an abnormal chromosome count in a cell, is strongly associated with cancer. Aneuploidy is a recurring hallmark in many cancer types, and abnormalities in chromosomal cohesion and separation have been identified as significant contributors to various cancers, such as acute myeloid leukemia, myelodysplastic syndrome, colorectal, bladder, and other solid cancers. Mutations within the cohesin complex have been associated with these cancers, as they interfere with chromosomal segregation, genome organization, and gene expression, promoting aneuploidy and contributing to the initiation of malignancy. In summary, chromosomal cohesion and separation processes play a pivotal role in preserving genomic stability, and aberrations in these mechanisms can lead to aneuploidy and cancer. Gaining a deeper understanding of the molecular intricacies of chromosomal cohesion and separation offers promising prospects for the development of innovative therapeutic approaches in the battle against cancer.
Collapse
Affiliation(s)
- Debananda Pati
- Texas Children's Cancer Center, Department of Pediatrics Hematology/Oncology, Molecular and Cellular Biology, Baylor College of Medicine, 1102 Bates Avenue, Houston, TX, 77030, USA.
| |
Collapse
|
29
|
Wang T, Peng J, Fan J, Tang N, Hua R, Zhou X, Wang Z, Wang L, Bai Y, Quan X, Wang Z, Zhang L, Luo C, Zhang W, Kang X, Liu J, Li L, Li L. Single-cell multi-omics profiling of human preimplantation embryos identifies cytoskeletal defects during embryonic arrest. Nat Cell Biol 2024; 26:263-277. [PMID: 38238450 DOI: 10.1038/s41556-023-01328-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 12/01/2023] [Indexed: 02/16/2024]
Abstract
Human in vitro fertilized embryos exhibit low developmental capabilities, and the mechanisms that underlie embryonic arrest remain unclear. Here using a single-cell multi-omics sequencing approach, we simultaneously analysed alterations in the transcriptome, chromatin accessibility and the DNA methylome in human embryonic arrest due to unexplained reasons. Arrested embryos displayed transcriptome disorders, including a distorted microtubule cytoskeleton, increased genomic instability and impaired glycolysis, which were coordinated with multiple epigenetic reprogramming defects. We identified Aurora A kinase (AURKA) repression as a cause of embryonic arrest. Mechanistically, arrested embryos induced through AURKA inhibition resembled the reprogramming abnormalities of natural embryonic arrest in terms of the transcriptome, the DNA methylome, chromatin accessibility and H3K4me3 modifications. Mitosis-independent sequential activation of the zygotic genome in arrested embryos showed that YY1 contributed to human major zygotic genome activation. Collectively, our study decodes the reprogramming abnormalities and mechanisms of human embryonic arrest and the key regulators of zygotic genome activation.
Collapse
Affiliation(s)
- Teng Wang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Junhua Peng
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Jiaqi Fan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Ni Tang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Rui Hua
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Xueliang Zhou
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Zhihao Wang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Longfei Wang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Yanling Bai
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Xiaowan Quan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Zimeng Wang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Li Zhang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Chen Luo
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Weiqing Zhang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Xiangjin Kang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Jianqiao Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Lei Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China.
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China.
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China.
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China.
| | - Lin Li
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China.
| |
Collapse
|
30
|
Viergever BJ, Raats DAE, Geurts V, Mullenders J, Jonges TN, van der Heijden MS, van Es JH, Kranenburg O, Meijer RP. Urine-derived bladder cancer organoids (urinoids) as a tool for cancer longitudinal response monitoring and therapy adaptation. Br J Cancer 2024; 130:369-379. [PMID: 38102228 PMCID: PMC10844626 DOI: 10.1038/s41416-023-02494-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Bladder cancer is one of the most common cancer types worldwide. Generally, research relies on invasive sampling strategies. METHODS Here, we generate bladder cancer organoids directly from urine (urinoids). In this project, we establish 12 urinoid lines from 22 patients with non-muscle and muscle-invasive bladder tumours, with an efficiency of 55%. RESULTS The histopathological features of the urinoids accurately resemble those of the original bladder tumours. Genetically, there is a high concordance of single nucleotide polymorphisms (92.56%) and insertions & deletions (91.54%) between urinoids and original tumours from patient 4. Furthermore, these urinoids show sensitivity to bladder cancer drugs, similar to their tissue-derived organoid counterparts. Genetic analysis of longitudinally generated tumoroids and urinoids from one patient receiving systemic immunotherapy, identify alterations that may guide the choice for second-line therapy. Successful treatment adaptation was subsequently demonstrated in the urinoid setting. CONCLUSION Therefore, urinoids can advance precision medicine in bladder cancer as a non-invasive platform for tumour pathogenesis, longitudinal drug-response monitoring, and therapy adaptation.
Collapse
Affiliation(s)
- Bastiaan J Viergever
- Laboratory Translational Oncology, Division of Imaging and Oncology, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
- Department of Oncological Urology, Division of Imaging and Oncology, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
| | - Daniëlle A E Raats
- Laboratory Translational Oncology, Division of Imaging and Oncology, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
- Utrecht Platform for Organoid Technology, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Veerle Geurts
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
| | - Jasper Mullenders
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
| | - Trudy N Jonges
- Department of Pathology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | | | - Johan H van Es
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
| | - Onno Kranenburg
- Laboratory Translational Oncology, Division of Imaging and Oncology, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
- Utrecht Platform for Organoid Technology, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Richard P Meijer
- Laboratory Translational Oncology, Division of Imaging and Oncology, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands.
- Department of Oncological Urology, Division of Imaging and Oncology, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands.
| |
Collapse
|
31
|
Mazzagatti A, Engel JL, Ly P. Boveri and beyond: Chromothripsis and genomic instability from mitotic errors. Mol Cell 2024; 84:55-69. [PMID: 38029753 PMCID: PMC10842135 DOI: 10.1016/j.molcel.2023.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023]
Abstract
Mitotic cell division is tightly monitored by checkpoints that safeguard the genome from instability. Failures in accurate chromosome segregation during mitosis can cause numerical aneuploidy, which was hypothesized by Theodor Boveri over a century ago to promote tumorigenesis. Recent interrogation of pan-cancer genomes has identified unexpected classes of chromosomal abnormalities, including complex rearrangements arising through chromothripsis. This process is driven by mitotic errors that generate abnormal nuclear structures that provoke extensive yet localized shattering of mis-segregated chromosomes. Here, we discuss emerging mechanisms underlying chromothripsis from micronuclei and chromatin bridges, as well as highlight how this mutational cascade converges on the DNA damage response. A fundamental understanding of these catastrophic processes will provide insight into how initial errors in mitosis can precipitate rapid cancer genome evolution.
Collapse
Affiliation(s)
- Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Justin L Engel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
32
|
Chavli EA, Klaasen SJ, Van Opstal D, Laven JS, Kops GJ, Baart EB. Single-cell DNA sequencing reveals a high incidence of chromosomal abnormalities in human blastocysts. J Clin Invest 2024; 134:e174483. [PMID: 38175717 PMCID: PMC10940095 DOI: 10.1172/jci174483] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024] Open
Abstract
Aneuploidy, a deviation from the normal chromosome copy number, is common in human embryos and is considered a primary cause of implantation failure and early pregnancy loss. Meiotic errors lead to uniformly abnormal karyotypes, while mitotic errors lead to chromosomal mosaicism: the presence of cells with at least 2 different karyotypes within an embryo. Knowledge about mosaicism in blastocysts mainly derives from bulk DNA sequencing (DNA-Seq) of multicellular trophectoderm (TE) and/or inner cell mass (ICM) samples. However, this can only detect an average net gain or loss of DNA above a detection threshold of 20%-30%. To accurately assess mosaicism, we separated the TE and ICM of 55 good-quality surplus blastocysts and successfully applied single-cell whole-genome sequencing (scKaryo-Seq) on 1,057 cells. Mosaicism involving numerical and structural chromosome abnormalities was detected in 82% of the embryos, in which most abnormalities affected less than 20% of the cells. Structural abnormalities, potentially caused by replication stress and DNA damage, were observed in 69% of the embryos. In conclusion, our findings indicated that mosaicism was prevalent in good-quality blastocysts, whereas these blastocysts would likely be identified as normal with current bulk DNA-Seq techniques used for preimplantation genetic testing for aneuploidy.
Collapse
Affiliation(s)
- Effrosyni A. Chavli
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sjoerd J. Klaasen
- Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | | | - Joop S.E. Laven
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Geert J.P.L. Kops
- Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Esther B. Baart
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Developmental Biology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
33
|
Jiang H, Chan YW. Chromatin bridges: stochastic breakage or regulated resolution? Trends Genet 2024; 40:69-82. [PMID: 37891096 DOI: 10.1016/j.tig.2023.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023]
Abstract
Genetic material is organized in the form of chromosomes, which need to be segregated accurately into two daughter cells in each cell cycle. However, chromosome fusion or the presence of unresolved interchromosomal linkages lead to the formation of chromatin bridges, which can induce DNA lesions and genome instability. Persistent chromatin bridges are trapped in the cleavage furrow and are broken at or after abscission, the final step of cytokinesis. In this review, we focus on recent progress in understanding the mechanism of bridge breakage and resolution. We discuss the molecular machinery and enzymes that have been implicated in the breakage and processing of bridge DNA. In addition, we outline both the immediate outcomes and genomic consequences induced by bridge breakage.
Collapse
Affiliation(s)
- Huadong Jiang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Ying Wai Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China.
| |
Collapse
|
34
|
Volpe E, Corda L, Tommaso ED, Pelliccia F, Ottalevi R, Licastro D, Guarracino A, Capulli M, Formenti G, Tassone E, Giunta S. The complete diploid reference genome of RPE-1 identifies human phased epigenetic landscapes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565049. [PMID: 38168337 PMCID: PMC10760208 DOI: 10.1101/2023.11.01.565049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Comparative analysis of recent human genome assemblies highlights profound sequence divergence that peaks within polymorphic loci such as centromeres. This raises the question about the adequacy of relying on human reference genomes to accurately analyze sequencing data derived from experimental cell lines. Here, we generated the complete diploid genome assembly for the human retinal epithelial cells (RPE-1), a widely used non-cancer laboratory cell line with a stable karyotype, to use as matched reference for multi-omics sequencing data analysis. Our RPE1v1.0 assembly presents completely phased haplotypes and chromosome-level scaffolds that span centromeres with ultra-high base accuracy (>QV60). We mapped the haplotype-specific genomic variation specific to this cell line including t(Xq;10q), a stable 73.18 Mb duplication of chromosome 10 translocated onto the microdeleted chromosome X telomere t(Xq;10q). Polymorphisms between haplotypes of the same genome reveals genetic and epigenetic variation for all chromosomes, especially at centromeres. The RPE-1 assembly as matched reference genome improves mapping quality of multi-omics reads originating from RPE-1 cells with drastic reduction in alignments mismatches compared to using the most complete human reference to date (CHM13). Leveraging the accuracy achieved using a matched reference, we were able to identify the kinetochore sites at base pair resolution and show unprecedented variation between haplotypes. This work showcases the use of matched reference genomes for multiomics analyses and serves as the foundation for a call to comprehensively assemble experimentally relevant cell lines for widespread application.
Collapse
Affiliation(s)
- Emilia Volpe
- Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Luca Corda
- Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Elena Di Tommaso
- Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Franca Pelliccia
- Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Riccardo Ottalevi
- Department of Bioinformatic, Dante Genomics Corp Inc., 667 Madison Avenue, New York, NY 10065 USA and S.s.17, 67100, L’Aquila, Italy
| | | | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mattia Capulli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Giulio Formenti
- The Rockefeller University, 1230 York Avenue, 10065 New York, USA
| | - Evelyne Tassone
- Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Simona Giunta
- Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
35
|
Zeng Y, Ren X, Jin P, Zhang Y, Zhuo M, Wang J. Development of MPS1 Inhibitors: Recent Advances and Perspectives. J Med Chem 2023; 66:16484-16514. [PMID: 38095579 DOI: 10.1021/acs.jmedchem.3c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Monopolar spindle kinase 1 (MPS1) plays a pivotal role as a dual-specificity kinase governing spindle assembly checkpoint activation and sister chromatid separation in mitosis. Its overexpression has been observed in various human malignancies. MPS1 reduces spindle assembly checkpoint sensitivity, allowing tumor cells with a high degree of aneuploidy to complete mitosis and survive. Thus, MPS1 has emerged as a promising candidate for cancer therapy. Despite the identification of numerous MPS1 inhibitors, only five have advanced to clinical trials with none securing FDA approval for cancer treatment. In this perspective, we provide a concise overview of the structural and functional characteristics of MPS1 by highlighting its relevance to cancer. Additionally, we explore the structure-activity relationships, selectivity, and pharmacokinetics of MPS1 inhibitors featuring diverse scaffolds. Moreover, we review the reported work on enhancing MPS1 inhibitor selectivity, offering valuable insights into the discovery of novel, highly potent small-molecule MPS1 inhibitors.
Collapse
Affiliation(s)
- Yangjie Zeng
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Pengyao Jin
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yali Zhang
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ming Zhuo
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jubo Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
36
|
Yamada H, Takada M, Ghone D, Yu M, Nagashima T, Fujimoto H, Sakakibara J, Hasegawa Y, Takao S, Yamada A, Narui K, Ishikawa T, Suzuki A, Otsuka M. Eribulin induces micronuclei and enhances the nuclear localization of cGAS in triple-negative breast cancer cells. RESEARCH SQUARE 2023:rs.3.rs-3672056. [PMID: 38106033 PMCID: PMC10723555 DOI: 10.21203/rs.3.rs-3672056/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Eribulin (ERI), clinically utilized for locally advanced or metastatic breast tumors, has shown potential links to the immune system. Notably, the cGAS-STING pathway, a key component of innate immunity, has gained prominence. Yet, limited reports explore ERI's effects on the cGAS-STING pathway. Additionally, the nuclear presence of cGAS remains poorly understood. This study uniquely delves into ERI's impact on both the cytosolic cGAS-STING pathway and nuclear cGAS. ERI enhances nuclear localization of cGAS, resulting in hyper-activation of the cGAS-STING pathway in triple-negative breast cancer cells. Reduction of cGAS heightened both cell proliferation and ERI sensitivity. In clinical data using ERI in a neo-adjuvant setting, patients with low cGAS cases exhibited reduced likelihood of achieving pathological complete response after ERI treatment. These findings illuminate the potential of cGAS and IFNβ as predictive biomarkers for ERI sensitivity, providing valuable insights for personalized breast cancer treatment strategies.
Collapse
|
37
|
Petsalaki E, Balafouti S, Kyriazi AA, Zachos G. The abscission checkpoint senses chromatin bridges through Top2α recruitment to DNA knots. J Cell Biol 2023; 222:e202303123. [PMID: 37638884 PMCID: PMC10461104 DOI: 10.1083/jcb.202303123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/13/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
In response to chromatin bridges, the abscission checkpoint delays completion of cytokinesis to prevent chromosome breakage or tetraploidization. Here, we show that spontaneous or replication stress-induced chromatin bridges exhibit "knots" of catenated and overtwisted DNA next to the midbody. Topoisomerase IIα (Top2α) forms abortive Top2-DNA cleavage complexes (Top2ccs) on DNA knots; furthermore, impaired Top2α-DNA cleavage activity correlates with chromatin bridge breakage in cytokinesis. Proteasomal degradation of Top2ccs is required for Rad17 localization to Top2-generated double-strand DNA ends on DNA knots; in turn, Rad17 promotes local recruitment of the MRN complex and downstream ATM-Chk2-INCENP signaling to delay abscission and prevent chromatin breakage. In contrast, dicentric chromosomes that do not exhibit knotted DNA fail to activate the abscission checkpoint in human cells. These findings are the first to describe a mechanism by which the abscission checkpoint detects chromatin bridges, through generation of abortive Top2ccs on DNA knots, to preserve genome integrity.
Collapse
Affiliation(s)
- Eleni Petsalaki
- Department of Biology, University of Crete, Heraklion, Greece
| | - Sofia Balafouti
- Department of Biology, University of Crete, Heraklion, Greece
| | | | - George Zachos
- Department of Biology, University of Crete, Heraklion, Greece
| |
Collapse
|
38
|
Ognibene M, De Marco P, Amoroso L, Fragola M, Zara F, Parodi S, Pezzolo A. Neuroblastoma Patients' Outcome and Chromosomal Instability. Int J Mol Sci 2023; 24:15514. [PMID: 37958497 PMCID: PMC10648898 DOI: 10.3390/ijms242115514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Chromosomal instability (CIN) induces a high rate of losses or gains of whole chromosomes or parts of chromosomes. It is a hallmark of most human cancers and one of the causes of aneuploidy and intra-tumor heterogeneity. The present study aimed to evaluate the potential prognostic role of CIN in NB patients at diagnosis. We performed array comparative genomic hybridization analyses on 451 primary NB patients at the onset of the disease. To assess global chromosomal instability with high precision, we focused on the total number of DNA breakpoints of gains or losses of chromosome arms. For each tumor, an array-CGH-based breakpoint instability index (BPI) was assigned which defined the total number of chromosomal breakpoints per genome. This approach allowed us to quantify CIN related to whole genome disruption in all NB cases analyzed. We found differences in chromosomal breakages among the NB clinical risk groups. High BPI values are negatively associated with survival of NB patients. This association remains significant when correcting for stage, age, and MYCN status in the Cox model. Stratified analysis confirms the prognostic effect of BPI index in low-risk NB patients with non-amplified MYCN and with segmental chromosome aberrations.
Collapse
Affiliation(s)
- Marzia Ognibene
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (P.D.M.); (F.Z.)
| | - Patrizia De Marco
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (P.D.M.); (F.Z.)
| | - Loredana Amoroso
- U.O.C. Oncologia Pediatrica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Martina Fragola
- Epidemiologia e Biostatistica, Direzione Scientifica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.F.); (S.P.)
| | - Federico Zara
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (P.D.M.); (F.Z.)
| | - Stefano Parodi
- Epidemiologia e Biostatistica, Direzione Scientifica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.F.); (S.P.)
| | | |
Collapse
|
39
|
Marques JF, Kops GJPL. Permission to pass: on the role of p53 as a gatekeeper for aneuploidy. Chromosome Res 2023; 31:31. [PMID: 37864038 PMCID: PMC10589155 DOI: 10.1007/s10577-023-09741-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023]
Abstract
Aneuploidy-the karyotype state in which the number of chromosomes deviates from a multiple of the haploid chromosome set-is common in cancer, where it is thought to facilitate tumor initiation and progression. However, it is poorly tolerated in healthy cells: during development and tissue homeostasis, aneuploid cells are efficiently cleared from the population. It is still largely unknown how cancer cells become, and adapt to being, aneuploid. P53, the gatekeeper of the genome, has been proposed to guard against aneuploidy. Aneuploidy in cancer genomes strongly correlates with mutations in TP53, and p53 is thought to prevent the propagation of aneuploid cells. Whether p53 also participates in preventing the mistakes in cell division that lead to aneuploidy is still under debate. In this review, we summarize the current understanding of the role of p53 in protecting cells from aneuploidy, and we explore the consequences of functional p53 loss for the propagation of aneuploidy in cancer.
Collapse
Affiliation(s)
- Joana F Marques
- Royal Netherlands Academy of Arts and Sciences (KNAW), Hubrecht Institute, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands
- University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, the Netherlands
- Oncode Institute, Jaarbeursplein 6, 3521AL, Utrecht, the Netherlands
| | - Geert J P L Kops
- Royal Netherlands Academy of Arts and Sciences (KNAW), Hubrecht Institute, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands.
- University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, the Netherlands.
- Oncode Institute, Jaarbeursplein 6, 3521AL, Utrecht, the Netherlands.
| |
Collapse
|
40
|
Gray ZH, Chakraborty D, Duttweiler RR, Alekbaeva GD, Murphy SE, Chetal K, Ji F, Ferman BI, Honer MA, Wang Z, Myers C, Sun R, Kaniskan HÜ, Toma MM, Bondarenko EA, Santoro JN, Miranda C, Dillingham ME, Tang R, Gozani O, Jin J, Skorski T, Duy C, Lee H, Sadreyev RI, Whetstine JR. Epigenetic balance ensures mechanistic control of MLL amplification and rearrangement. Cell 2023; 186:4528-4545.e18. [PMID: 37788669 PMCID: PMC10591855 DOI: 10.1016/j.cell.2023.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 06/01/2023] [Accepted: 09/08/2023] [Indexed: 10/05/2023]
Abstract
MLL/KMT2A amplifications and translocations are prevalent in infant, adult, and therapy-induced leukemia. However, the molecular contributor(s) to these alterations are unclear. Here, we demonstrate that histone H3 lysine 9 mono- and di-methylation (H3K9me1/2) balance at the MLL/KMT2A locus regulates these amplifications and rearrangements. This balance is controlled by the crosstalk between lysine demethylase KDM3B and methyltransferase G9a/EHMT2. KDM3B depletion increases H3K9me1/2 levels and reduces CTCF occupancy at the MLL/KMT2A locus, in turn promoting amplification and rearrangements. Depleting CTCF is also sufficient to generate these focal alterations. Furthermore, the chemotherapy doxorubicin (Dox), which associates with therapy-induced leukemia and promotes MLL/KMT2A amplifications and rearrangements, suppresses KDM3B and CTCF protein levels. KDM3B and CTCF overexpression rescues Dox-induced MLL/KMT2A alterations. G9a inhibition in human cells or mice also suppresses MLL/KMT2A events accompanying Dox treatment. Therefore, MLL/KMT2A amplifications and rearrangements are controlled by epigenetic regulators that are tractable drug targets, which has clinical implications.
Collapse
Affiliation(s)
- Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Damayanti Chakraborty
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Reuben R Duttweiler
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Gulnaz D Alekbaeva
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Sedona E Murphy
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Kashish Chetal
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Benjamin I Ferman
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Zhentian Wang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Cynthia Myers
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Renhong Sun
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Monika Maria Toma
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, 3420 N. Broad Street, MRB 548, Philadelphia, PA 19140, USA
| | - Elena A Bondarenko
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - John N Santoro
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Christopher Miranda
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Megan E Dillingham
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Ran Tang
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA; School of Life Science and Technology, Harbin Institute of Technology, 150000 Harbin, China
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tomasz Skorski
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, 3420 N. Broad Street, MRB 548, Philadelphia, PA 19140, USA
| | - Cihangir Duy
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Hayan Lee
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
41
|
Johnson BA, Liu AZ, Bi T, Dong Y, Li T, Zhou D, Narkar A, Wu Y, Sun SX, Larman TC, Zhu J, Li R. Differential effects of aneuploidy on growth and differentiation in human intestinal stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559117. [PMID: 37790420 PMCID: PMC10542480 DOI: 10.1101/2023.09.23.559117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Aneuploidy, a near ubiquitous genetic feature of tumors, is a context-dependent driver of cancer evolution; however, the mechanistic basis of this role remains unclear. Here, by inducing heterogeneous aneuploidy in non-transformed human colon organoids (colonoids), we investigate how the effects of aneuploidy on cell growth and differentiation may promote malignant transformation. Single-cell RNA sequencing reveals that the gene expression signature across over 100 unique aneuploid karyotypes is enriched with p53 responsive genes. The primary driver of p53 activation is karyotype complexity. Complex aneuploid cells with multiple unbalanced chromosomes activate p53 and undergo G1 cell-cycle arrest, independent of DNA damage and without evidence of senescence. By contrast, simple aneuploid cells with 1-3 chromosomes gained or lost continue to proliferate, demonstrated by single cell tracking in colonoids. Notably, simple aneuploid cells exhibit impaired differentiation when niche factors are withdrawn. These findings suggest that while complex aneuploid cells are eliminated from the normal epithelium due to p53 activation, simple aneuploid cells can escape this checkpoint and may contribute to niche factor-independent growth of cancer-initiating cells.
Collapse
|
42
|
Hu Q, Valle-Inclan JE, Dahiya R, Guyer A, Mazzagatti A, Maurais EG, Engel JL, Cortés-Ciriano I, Ly P. Non-homologous end joining shapes the genomic rearrangement landscape of chromothripsis from mitotic errors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552800. [PMID: 37609143 PMCID: PMC10441393 DOI: 10.1101/2023.08.10.552800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Errors in mitosis can generate micronuclei that entrap mis-segregated chromosomes, which are susceptible to catastrophic fragmentation through a process termed chromothripsis. The reassembly of fragmented chromosomes by error-prone DNA double-strand break (DSB) repair generates a spectrum of simple and complex genomic rearrangements that are associated with human cancers and disorders. How specific DSB repair pathways recognize and process these lesions remains poorly understood. Here we used CRISPR/Cas9 to systematically inactivate distinct DSB processing or repair pathways and interrogated the rearrangement landscape of fragmented chromosomes from micronuclei. Deletion of canonical non-homologous end joining (NHEJ) components, including DNA-PKcs, LIG4, and XLF, substantially reduced the formation of complex rearrangements and shifted the rearrangement landscape toward simple alterations without the characteristic patterns of cancer-associated chromothripsis. Following reincorporation into the nucleus, fragmented chromosomes localize within micronuclei bodies (MN bodies) and undergo successful ligation by NHEJ within a single cell cycle. In the absence of NHEJ, chromosome fragments were rarely engaged by polymerase theta-mediated alternative end-joining or recombination-based mechanisms, resulting in delayed repair kinetics and persistent 53BP1-labeled MN bodies in the interphase nucleus. Prolonged DNA damage signaling from unrepaired fragments ultimately triggered cell cycle arrest. Thus, we provide evidence supporting NHEJ as the exclusive DSB repair pathway generating complex rearrangements following chromothripsis from mitotic errors.
Collapse
Affiliation(s)
- Qing Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Jose Espejo Valle-Inclan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Rashmi Dahiya
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Alison Guyer
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Present address: Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Elizabeth G. Maurais
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Justin L. Engel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
43
|
Sun C, Chang X, MacIsaac HJ, Wen J, Zhao L, Dai Z, Li J. Phytosphingosine inhibits cell proliferation by damaging DNA in human cell lines. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114840. [PMID: 37001191 DOI: 10.1016/j.ecoenv.2023.114840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Harmful cyanobacterial blooms have caused numerous biosecurity incidents owing to the production of hazardous secondary metabolites such as microcystin. Additionally, cyanobacteria also release many other components that have not been explored. We identified compounds of a toxic mixture exudated from a dominant, blooming species, Microcystis aeruginosa, and found that phytosphingosine (PHS) was one of the bioactive components. Since PHS exhibited toxicity and is deemed a hazardous substance by the European Chemicals Agency, we hypothesized that PHS is a potentially toxic compound in M. aeruginosa exudates. However, the mechanisms of PHS ecotoxicity remain unclear. We assessed the cytotoxicity of PHS using an in vitro cell model in eight human cell lines and observed that the nasopharyngeal carcinoma cell line CNE2 was the most sensitive. We exposed CNE2 cells to 0-25 µmol/L PHS for 24 hr to explore its toxicity and mechanism. PHS exposure resulted in abnormal nuclear morphology, micronuclei, and DNA damage. Moreover, PHS significantly inhibited cell proliferation and arrested cell cycle at S phase. The results of Western blot suggested that PHS increased the expression of DNA damage-related proteins (ATM, p-P53 and P21) and decreased the expression of S phase-related proteins (CDK2, CyclinA2 and CyclinE1), indicating the toxicological mechanism of PHS on CNE2 cells. These data provide evidence that PHS has genetic toxicity and inhibits cell proliferation by damaging DNA. Our study provides evidence that PHS inhibits cell proliferation by damaging DNA. While additional work is required, we propose that PHS been considered as a potentially toxic component in MaE in addition to other well-characterized secondary compounds.
Collapse
Affiliation(s)
- Chunxiao Sun
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Xuexiu Chang
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada; College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Hugh J MacIsaac
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Jiayao Wen
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Lixing Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Zhi Dai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jiaojiao Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
44
|
Comaills V, Castellano-Pozo M. Chromosomal Instability in Genome Evolution: From Cancer to Macroevolution. BIOLOGY 2023; 12:671. [PMID: 37237485 PMCID: PMC10215859 DOI: 10.3390/biology12050671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
The integrity of the genome is crucial for the survival of all living organisms. However, genomes need to adapt to survive certain pressures, and for this purpose use several mechanisms to diversify. Chromosomal instability (CIN) is one of the main mechanisms leading to the creation of genomic heterogeneity by altering the number of chromosomes and changing their structures. In this review, we will discuss the different chromosomal patterns and changes observed in speciation, in evolutional biology as well as during tumor progression. By nature, the human genome shows an induction of diversity during gametogenesis but as well during tumorigenesis that can conclude in drastic changes such as the whole genome doubling to more discrete changes as the complex chromosomal rearrangement chromothripsis. More importantly, changes observed during speciation are strikingly similar to the genomic evolution observed during tumor progression and resistance to therapy. The different origins of CIN will be treated as the importance of double-strand breaks (DSBs) or the consequences of micronuclei. We will also explain the mechanisms behind the controlled DSBs, and recombination of homologous chromosomes observed during meiosis, to explain how errors lead to similar patterns observed during tumorigenesis. Then, we will also list several diseases associated with CIN, resulting in fertility issues, miscarriage, rare genetic diseases, and cancer. Understanding better chromosomal instability as a whole is primordial for the understanding of mechanisms leading to tumor progression.
Collapse
Affiliation(s)
- Valentine Comaills
- Andalusian Center for Molecular Biology and Regenerative Medicine—CABIMER, University of Pablo de Olavide—University of Seville—CSIC, Junta de Andalucía, 41092 Seville, Spain
| | - Maikel Castellano-Pozo
- Andalusian Center for Molecular Biology and Regenerative Medicine—CABIMER, University of Pablo de Olavide—University of Seville—CSIC, Junta de Andalucía, 41092 Seville, Spain
- Genetic Department, Faculty of Biology, University of Seville, 41080 Seville, Spain
| |
Collapse
|
45
|
Besselink N, Keijer J, Vermeulen C, Boymans S, de Ridder J, van Hoeck A, Cuppen E, Kuijk E. The genome-wide mutational consequences of DNA hypomethylation. Sci Rep 2023; 13:6874. [PMID: 37106015 PMCID: PMC10140063 DOI: 10.1038/s41598-023-33932-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/21/2023] [Indexed: 04/29/2023] Open
Abstract
DNA methylation is important for establishing and maintaining cell identity and for genomic stability. This is achieved by regulating the accessibility of regulatory and transcriptional elements and the compaction of subtelomeric, centromeric, and other inactive genomic regions. Carcinogenesis is accompanied by a global loss in DNA methylation, which facilitates the transformation of cells. Cancer hypomethylation may also cause genomic instability, for example through interference with the protective function of telomeres and centromeres. However, understanding the role(s) of hypomethylation in tumor evolution is incomplete because the precise mutational consequences of global hypomethylation have thus far not been systematically assessed. Here we made genome-wide inventories of all possible genetic variation that accumulates in single cells upon the long-term global hypomethylation by CRISPR interference-mediated conditional knockdown of DNMT1. Depletion of DNMT1 resulted in a genomewide reduction in DNA methylation. The degree of DNA methylation loss was similar to that observed in many cancer types. Hypomethylated cells showed reduced proliferation rates, increased transcription of genes, reactivation of the inactive X-chromosome and abnormal nuclear morphologies. Prolonged hypomethylation was accompanied by increased chromosomal instability. However, there was no increase in mutational burden, enrichment for certain mutational signatures or accumulation of structural variation to the genome. In conclusion, the primary consequence of hypomethylation is genomic instability, which in cancer leads to increased tumor heterogeneity and thereby fuels cancer evolution.
Collapse
Affiliation(s)
- Nicolle Besselink
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Janneke Keijer
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carlo Vermeulen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sander Boymans
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen de Ridder
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arne van Hoeck
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- Hartwig Medical Foundation, Amsterdam, The Netherlands
| | - Ewart Kuijk
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
- Division of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.
- Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| |
Collapse
|
46
|
Dittmar T, Hass R. Intrinsic signalling factors associated with cancer cell-cell fusion. Cell Commun Signal 2023; 21:68. [PMID: 37016404 PMCID: PMC10071245 DOI: 10.1186/s12964-023-01085-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/21/2023] [Indexed: 04/06/2023] Open
Abstract
Cellular fusion e.g. between cancer cells and normal cells represents a stepwise process that is tightly regulated. During a pre-hybrid preparation program somatic cells and/or cancer cells are promoted to a pro-fusogenic state as a prerequisite to prepare a fusion process. A pro-fusogenic state requires significant changes including restructure of the cytoskeleton, e.g., by the formation of F-actin. Moreover, distinct plasma membrane lipids such as phosphatidylserine play an important role during cell fusion. In addition, the expression of distinct fusogenic factors such as syncytins and corresponding receptors are of fundamental importance to enable cellular mergers. Subsequent hybrid formation and fusion are followed by a post-hybrid selection process. Fusion among normal cells is important and often required during organismal development. Cancer cells fusion appears more rarely and is associated with the generation of new cancer hybrid cell populations. These cancer hybrid cells contribute to an elevated tumour plasticity by altered metastatic behaviour, changes in therapeutic and apoptotic responses, and even in the formation of cancer stem/ initiating cells. While many parts within this multi-step cascade are still poorly understood, this review article predominantly focusses on the intracellular necessities for fusion among cancer cells or with other cell populations of the tumour microenvironment. Video Abstract.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany.
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynaecology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
47
|
Jiang H, Kong N, Liu Z, West SC, Chan YW. Human Endonuclease ANKLE1 Localizes at the Midbody and Processes Chromatin Bridges to Prevent DNA Damage and cGAS-STING Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204388. [PMID: 36825683 PMCID: PMC10131833 DOI: 10.1002/advs.202204388] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Chromatin bridges connecting the two segregating daughter nuclei arise from chromosome fusion or unresolved interchromosomal linkage. Persistent chromatin bridges are trapped in the cleavage plane, triggering cytokinesis delay. The trapped bridges occasionally break during cytokinesis, inducing DNA damage and chromosomal rearrangements. Recently, Caenorhabditis elegans LEM-3 and human TREX1 nucleases have been shown to process chromatin bridges. Here, it is shown that ANKLE1 endonuclease, the human ortholog of LEM-3, accumulates at the bulge-like structure of the midbody via its N-terminal ankyrin repeats. Importantly, ANKLE1-/- knockout cells display an elevated level of G1-specific 53BP1 nuclear bodies, prolonged activation of the DNA damage response, and replication stress. Increased DNA damage observed in ANKLE1-/- cells is rescued by inhibiting actin polymerization or reducing actomyosin contractility. ANKLE1 does not act in conjunction with structure-selective endonucleases, GEN1 and MUS81 in resolving recombination intermediates. Instead, ANKLE1 acts on chromatin bridges by priming TREX1 nucleolytic activity and cleaving bridge DNA to prevent the formation of micronuclei and cytosolic dsDNA that activate the cGAS-STING pathway. It is therefore proposed that ANKLE1 prevents DNA damage and autoimmunity by cleaving chromatin bridges to avoid catastrophic breakage mediated by actomyosin contractile forces.
Collapse
Affiliation(s)
- Huadong Jiang
- School of Biological SciencesThe University of Hong KongPokfulamHong Kong
| | - Nannan Kong
- School of Biological SciencesThe University of Hong KongPokfulamHong Kong
| | - Zeyuan Liu
- School of Biological SciencesThe University of Hong KongPokfulamHong Kong
| | - Stephen C. West
- The Francis Crick InstituteDNA Recombination and Repair Laboratory1 Midland RoadLondonNW1 1ATUK
| | - Ying Wai Chan
- School of Biological SciencesThe University of Hong KongPokfulamHong Kong
| |
Collapse
|
48
|
Song S, Jung S, Kwon M. Expanding roles of centrosome abnormalities in cancers. BMB Rep 2023; 56:216-224. [PMID: 36945828 PMCID: PMC10140484 DOI: 10.5483/bmbrep.2023-0025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 12/10/2024] Open
Abstract
Centrosome abnormalities are hallmarks of human cancers. Structural and numerical centrosome abnormalities correlate with tumor aggressiveness and poor prognosis, implicating that centrosome abnormalities could be a cause of tumorigenesis. Since Boveri made his pioneering recognition of the potential causal link between centrosome abnormalities and cancer more than a century ago, there has been significant progress in the field. Here, we review recent advances in the understanding of the causes and consequences of centrosome abnormalities and their connection to cancers. Centrosome abnormalities can drive the initiation and progression of cancers in multiple ways. For example, they can generate chromosome instability through abnormal mitosis, accelerating cancer genome evolution. Remarkably, it is becoming clear that the mechanisms by which centrosome abnormalities promote several steps of tumorigenesis are far beyond what Boveri had initially envisioned. We highlight various cancer-promoting mechanisms exerted by cells with centrosome abnormalities and how these cells possessing oncogenic potential can be monitored. [BMB Reports 2023; 56(4): 216-224].
Collapse
Affiliation(s)
- Soohyun Song
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Surim Jung
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Mijung Kwon
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
49
|
Song S, Jung S, Kwon M. Expanding roles of centrosome abnormalities in cancers. BMB Rep 2023; 56:216-224. [PMID: 36945828 PMCID: PMC10140484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/23/2023] Open
Abstract
Centrosome abnormalities are hallmarks of human cancers. Structural and numerical centrosome abnormalities correlate with tumor aggressiveness and poor prognosis, implicating that centrosome abnormalities could be a cause of tumorigenesis. Since Boveri made his pioneering recognition of the potential causal link between centrosome abnormalities and cancer more than a century ago, there has been significant progress in the field. Here, we review recent advances in the understanding of the causes and consequences of centrosome abnormalities and their connection to cancers. Centrosome abnormalities can drive the initiation and progression of cancers in multiple ways. For example, they can generate chromosome instability through abnormal mitosis, accelerating cancer genome evolution. Remarkably, it is becoming clear that the mechanisms by which centrosome abnormalities promote several steps of tumorigenesis are far beyond what Boveri had initially envisioned. We highlight various cancer-promoting mechanisms exerted by cells with centrosome abnormalities and how these cells possessing oncogenic potential can be monitored. [BMB Reports 2023; 56(4): 216-224].
Collapse
Affiliation(s)
- Soohyun Song
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Surim Jung
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Mijung Kwon
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
50
|
Lau TY, Poon RY. Whole-Genome Duplication and Genome Instability in Cancer Cells: Double the Trouble. Int J Mol Sci 2023; 24:ijms24043733. [PMID: 36835147 PMCID: PMC9959281 DOI: 10.3390/ijms24043733] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Whole-genome duplication (WGD) is one of the most common genomic abnormalities in cancers. WGD can provide a source of redundant genes to buffer the deleterious effect of somatic alterations and facilitate clonal evolution in cancer cells. The extra DNA and centrosome burden after WGD is associated with an elevation of genome instability. Causes of genome instability are multifaceted and occur throughout the cell cycle. Among these are DNA damage caused by the abortive mitosis that initially triggers tetraploidization, replication stress and DNA damage associated with an enlarged genome, and chromosomal instability during the subsequent mitosis in the presence of extra centrosomes and altered spindle morphology. Here, we chronicle the events after WGD, from tetraploidization instigated by abortive mitosis including mitotic slippage and cytokinesis failure to the replication of the tetraploid genome, and finally, to the mitosis in the presence of supernumerary centrosomes. A recurring theme is the ability of some cancer cells to overcome the obstacles in place for preventing WGD. The underlying mechanisms range from the attenuation of the p53-dependent G1 checkpoint to enabling pseudobipolar spindle formation via the clustering of supernumerary centrosomes. These survival tactics and the resulting genome instability confer a subset of polyploid cancer cells proliferative advantage over their diploid counterparts and the development of therapeutic resistance.
Collapse
Affiliation(s)
- Tsz Yin Lau
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Randy Y.C. Poon
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Correspondence: ; Tel.: +852-2358-8718
| |
Collapse
|