1
|
Ha K, Ryu S, Trinh CT. Alpha-ketoacid decarboxylases: Diversity, structures, reaction mechanisms, and applications for biomanufacturing of platform chemicals and fuels. Biotechnol Adv 2025; 81:108531. [PMID: 39955038 DOI: 10.1016/j.biotechadv.2025.108531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
In living cells, alpha-ketoacid decarboxylases (KDCs, EC 4.1.1.-) are a class of enzymes that convert alpha-ketoacids into aldehydes through decarboxylation. These aldehydes serve as either drop-in chemicals or precursors for the biosynthesis of alcohols, carboxylic acids, esters, and alkanes. These compounds play crucial roles in cellular metabolism and fitness and the bioeconomy, facilitating the sustainable and renewable biomanufacturing of platform chemicals and fuels. This review explores the diversity and classification of KDCs, detailing their structures, mechanisms, and functions. We highlight recent advancements in repurposing KDCs to enhance their efficiency and robustness for biomanufacturing. Additionally, we present modular KDC-dependent metabolic pathways for the microbial biosynthesis of aldehydes, alcohols, carboxylic acids, esters, and alkanes. Finally, we discuss recent developments in the modular cell engineering technology that can potentially be applied to harness the diversity of KDC-dependent pathways for biomanufacturing platform chemicals and fuels.
Collapse
Affiliation(s)
- Khanh Ha
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Seunghyun Ryu
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
2
|
White IS, Canniffe DP, Hitchcock A. The diversity of physiology and metabolism in chlorophototrophic bacteria. Adv Microb Physiol 2025; 86:1-98. [PMID: 40404267 DOI: 10.1016/bs.ampbs.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Photosynthesis by (bacterio)chlorophyll-producing organisms ("chlorophototrophy") sustains virtually all life on Earth, providing the biosphere with food and energy. The oxygenic process carried out by plants, algae and cyanobacteria also generates the oxygen we breathe, and ancient cyanobacteria were responsible for oxygenating the atmosphere, creating the conditions that allowed the evolution of complex life. Cyanobacteria were also the endosymbiotic progenitors of chloroplasts, play major roles in biogeochemical cycles and as primary producers in aquatic ecosystems, and act as genetically tractable model organisms for studying oxygenic photosynthesis. In addition to the Cyanobacteriota, eight other bacterial phyla, namely Proteobacteria/Pseudomonadota, Chlorobiota, Chloroflexota, Bacillota, Acidobacteriota, Gemmatimonadota, Vulcanimicrobiota and Myxococcota contain at least one putative chlorophototrophic species, all of which perform a variant of anoxygenic photosynthesis, which does not yield oxygen as a by-product. These chlorophototrophic organisms display incredible diversity in the habitats that they colonise, and in their biochemistry, physiology and metabolism, with variation in the light-harvesting complexes and pigments they produce to utilise solar energy. Whilst some are very well understood, such as the proteobacterial 'purple bacteria', others have only been identified in the last few years and therefore relatively little is known about them - especially those that have not yet been isolated and cultured. In this chapter, we aim to summarise and compare the photosynthetic physiology and central metabolic processes of chlorophototrophic members from the nine phyla in which they are found, giving both a short historical perspective and highlighting gaps in our understanding.
Collapse
Affiliation(s)
- Isaac S White
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Daniel P Canniffe
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom; Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
3
|
Chen CNN, Lin KM, Lin YC, Chang HY, Yong TC, Chiu YF, Kuo CH, Chu HA. Comparative genomic analysis of a novel heat-tolerant and euryhaline strain of unicellular marine cyanobacterium Cyanobacterium sp. DS4 from a high-temperature lagoon. BMC Microbiol 2025; 25:279. [PMID: 40335892 PMCID: PMC12060301 DOI: 10.1186/s12866-025-03993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/23/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Cyanobacteria have diversified through their long evolutionary history and occupy a wide range of environments on Earth. To advance our understanding of their adaptation mechanisms in extreme environments, we performed stress tolerance characterizations, whole genome sequencing, and comparative genomic analyses of a novel heat-tolerant and euryhaline strain of the unicellular cyanobacterium Cyanobacterium sp. Dongsha4 (DS4). This strain was isolated from a lagoon on Dongsha Island in the South China Sea, a habitat with fluctuations in temperature, salinity, light intensity, and nutrient supply. RESULTS DS4 cells can tolerate long-term high-temperature up to 50 ℃ and salinity from 0 to 6.6%, which is similar to the results previously obtained for Cyanobacterium aponinum. In contrast, most mesophilic cyanobacteria cannot survive under these extreme conditions. Based on the 16S rRNA gene phylogeny, DS4 is most closely related to Cyanobacterium sp. NBRC102756 isolated from Iwojima Island, Japan, and Cyanobacterium sp. MCCB114 isolated from Vypeen Island, India. For comparison with strains that have genomic information available, DS4 is most similar to Cyanobacterium aponinum strain PCC10605 (PCC10605), sharing 81.7% of the genomic segments and 92.9% average nucleotide identity (ANI). Gene content comparisons identified multiple distinct features of DS4. Unlike related strains, DS4 possesses the genes necessary for nitrogen fixation. Other notable genes include those involved in photosynthesis, central metabolisms, cyanobacterial starch metabolisms, stress tolerances, and biosynthesis of novel secondary metabolites. CONCLUSIONS These findings promote our understanding of the physiology, ecology, evolution, and stress tolerance mechanisms of cyanobacteria. The information is valuable for future functional studies and biotechnology applications of heat-tolerant and euryhaline marine cyanobacteria.
Collapse
Affiliation(s)
| | - Keng-Min Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Yu-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Hsin-Ying Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Tze Ching Yong
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yi-Fang Chiu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan.
| | - Hsiu-An Chu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
4
|
Wang XY, Zhang J, Li HY, Dong CS, Dai HE, Wang M, Liu L. Structural Basis for Monomer-Dimer Transition of Dri1 Upon Heme Binding. Proteins 2025; 93:949-956. [PMID: 39670557 DOI: 10.1002/prot.26778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/25/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Domain related to iron (DRI) contains approximately 90 residues and is involved in iron and heme metabolism. Recent discoveries have annotated Dri1, a DRI-only protein from the cyanobacterium Synechocystis, as a regulator of succinate dehydrogenase in a b-type heme-dependent manner or as a c-type heme oxygenase. Here, we report high-resolution structures of Dri1 in complex with b-type and c-type hemes, respectively. Bis-His-ligated heme is located in the middle of the dimeric Dri1 complex with heme b, as well as in the complex of monomeric Dri1 with c-type heme, but distinct heme binding modes are revealed. Structural analyses suggest that Dri1 may participate in the succinate dehydrogenase activity and/or the metabolism of cytochromes.
Collapse
Affiliation(s)
- Xiao-Ying Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Jing Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Hong-Yan Li
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Chen-Song Dong
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Huai-En Dai
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Mingzhu Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Lin Liu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| |
Collapse
|
5
|
Yuan W, Lu G, Zhao Y, He X, Liao S, Wang Z, Lei X, Xie Z, Yang X, Tang S, Tang G, Deng X. Intranuclear TCA and mitochondrial overload: The nascent sprout of tumors metabolism. Cancer Lett 2025; 613:217527. [PMID: 39909232 DOI: 10.1016/j.canlet.2025.217527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/19/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Abnormal glucose metabolism in tumors is a well-known form of metabolic reprogramming in tumor cells, the most representative of which, the Warburg effect, has been widely studied and discussed since its discovery. However, contradictions in a large number of studies and suboptimal efficacy of drugs targeting glycolysis have prompted us to further deepen our understanding of glucose metabolism in tumors. Here, we review recent studies on mitochondrial overload, nuclear localization of metabolizing enzymes, and intranuclear TCA (nTCA) in the context of the anomalies produced by inhibition of the Warburg effect. We provide plausible explanations for many of the contradictory points in the existing studies, including the causes of the Warburg effect. Furthermore, we provide a detailed prospective discussion of these studies in the context of these new findings, providing new ideas for the use of nTCA and mitochondrial overload in tumor therapy.
Collapse
Affiliation(s)
- Weixi Yuan
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guozhong Lu
- 922nd Hospital of Hengyang, 421001, Hunan, China
| | - Yin Zhao
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiang He
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Senyi Liao
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoyong Lei
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Department of Pharmacy, Xiangnan University, Chenzhou, 423000, China
| | - Zhizhong Xie
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyan Yang
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Department of Pharmacy, Xiangnan University, Chenzhou, 423000, China
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery Systems (2018TP1044), Hunan, 410007, China.
| | - Guotao Tang
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
6
|
Daroch M, You D, Rasul F, Liu X, Jiang Y. C1 photochemotrophy - rethinking one-carbon metabolism in phototrophs. Trends Biotechnol 2025:S0167-7799(25)00003-4. [PMID: 39924356 DOI: 10.1016/j.tibtech.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/11/2025]
Abstract
Excessive CO2 emissions, caused by an imbalance between carbon oxidation and reduction, drive climate change. To address this, we propose photochemotrophic metabolism as an alternative to both canonical photosynthesis and synthetic one-carbon (C1) metabolism in heterotrophs. In photochemotrophy, naturally phototrophic microorganisms such as cyanobacteria serve as the chassis to assimilate chemically reduced and soluble C1 compounds such as formate or methanol by using carbon fixation cycles that are more efficient than the native Calvin cycle. Key potential advantages of photochemotrophy include enhanced carbon fixation efficiency, utilization of storable carbon compounds, retention of energy from the original CO2 reduction, and decoupling of carbon delivery and electron source. This proposed strategy positions photochemotrophic cyanobacteria as a promising tool for advancing the bioeconomy.
Collapse
Affiliation(s)
- Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China.
| | - Dawei You
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Faiz Rasul
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Xiangjian Liu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Ying Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| |
Collapse
|
7
|
Scott H, Segrè D. Metabolic Flux Modeling in Marine Ecosystems. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:593-620. [PMID: 39259978 DOI: 10.1146/annurev-marine-032123-033718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Ocean metabolism constitutes a complex, multiscale ensemble of biochemical reaction networks harbored within and between the boundaries of a myriad of organisms. Gaining a quantitative understanding of how these networks operate requires mathematical tools capable of solving in silico the resource allocation problem each cell faces in real life. Toward this goal, stoichiometric modeling of metabolism, such as flux balance analysis, has emerged as a powerful computational tool for unraveling the intricacies of metabolic processes in microbes, microbial communities, and multicellular organisms. Here, we provide an overview of this approach and its applications, future prospects, and practical considerations in the context of marine sciences. We explore how flux balance analysis has been employed to study marine organisms, help elucidate nutrient cycling, and predict metabolic capabilities within diverse marine environments, and highlight future prospects for this field in advancing our knowledge of marine ecosystems and their sustainability.
Collapse
Affiliation(s)
- Helen Scott
- Biological Design Center, Boston University, Boston, Massachusetts, USA
- Bioinformatics Program, Faculty of Computing and Data Science, Boston University, Boston, Massachusetts, USA; ,
| | - Daniel Segrè
- Department of Biology, Department of Physics, and Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Biological Design Center, Boston University, Boston, Massachusetts, USA
- Bioinformatics Program, Faculty of Computing and Data Science, Boston University, Boston, Massachusetts, USA; ,
| |
Collapse
|
8
|
Xie N, Sharma C, Rusche K, Wang X. Phosphoketolase and KDPG aldolase metabolisms modulate photosynthetic carbon yield in cyanobacteria. THE PLANT CELL 2024; 37:koae291. [PMID: 39471324 DOI: 10.1093/plcell/koae291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Cyanobacteria contribute to roughly a quarter of global net carbon fixation. During diel light/dark growth, dark respiration substantially lowers the overall photosynthetic carbon yield in cyanobacteria and other phototrophs. How respiratory pathways participate in carbon resource allocation at night to optimize dark survival and support daytime photosynthesis remains unclear. Here, using the cyanobacterium Synechococcus elongatus PCC 7942, we show that phosphoketolase integrates into a respiratory network in the dark to best allocate carbon resources for amino acid biosynthesis and to prepare for photosynthesis reinitiation upon photoinduction. Moreover, we show that the respiratory Entner-Doudoroff pathway in S. elongatus is incomplete, with its key enzyme 2-keto-3-deoxy-6-phosphogluconate aldolase exhibiting alternative oxaloacetate decarboxylation activity that modulates daytime photosynthesis. This activity allows for the bypassing of the tricarboxylic acid cycle when ATP and NADPH consumption for biosynthesis is excessive and imbalanced relative to their production by the light reactions, thereby preventing relative NADPH accumulation and ensuring optimal photosynthetic carbon yield. Optimizing these metabolic processes offers opportunities to enhance photosynthetic carbon yield in cyanobacteria and other photosynthetic organisms under diel light/dark cycles.
Collapse
Affiliation(s)
- Ningdong Xie
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Chetna Sharma
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Katherine Rusche
- Department of Microbiology, Miami University, Oxford, OH 45056, USA
| | - Xin Wang
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
9
|
You D, Rasul F, Wang T, Daroch M. Insufficient Acetyl-CoA Pool Restricts the Phototrophic Production of Organic Acids in Model Cyanobacteria. Int J Mol Sci 2024; 25:11769. [PMID: 39519321 PMCID: PMC11546870 DOI: 10.3390/ijms252111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Cyanobacteria are promising biological chassis to produce biochemicals such as carboxylic acids and their derivatives from CO2. In this manuscript, we reflected on cyanobacterial acetyl-CoA pool and TCA cycle as an important source of precursor molecules for the biosynthesis of carboxylic acids such as 3-hydroxypropionate, 3-hydroxybutyrate, succinate, malate, fumarate and free fatty acids, each of which is an important platform chemical for bioeconomy. We further highlighted specific features of the cyanobacterial TCA cycle, how it differs in structure and function from widely described TCA cycles of heterotrophic model organisms, and methods to make it more suitable for the production of carboxylic acids from CO2. Currently, the yields of these compounds are significantly lower than those in heterotrophic organisms and it was concluded that the primary cause of this can be attributed to the limited flux toward acetyl-CoA. Strategies like overexpressing pyruvate dehydrogenase complex or introducing synthetic bypasses are being explored to overcome these limitations. While significant progress has been made, further research is needed to enhance the metabolic efficiency of cyanobacteria, making them viable for the large-scale, sustainable production of carboxylic acids and their derivatives.
Collapse
Affiliation(s)
| | | | | | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (D.Y.); (F.R.); (T.W.)
| |
Collapse
|
10
|
He H, Gómez-Coronado PA, Zarzycki J, Barthel S, Kahnt J, Claus P, Klein M, Klose M, de Crécy-Lagard V, Schindler D, Paczia N, Glatter T, Erb TJ. Adaptive laboratory evolution recruits the promiscuity of succinate semialdehyde dehydrogenase to repair different metabolic deficiencies. Nat Commun 2024; 15:8898. [PMID: 39406738 PMCID: PMC11480449 DOI: 10.1038/s41467-024-53156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Promiscuous enzymes often serve as the starting point for the evolution of novel functions. Yet, the extent to which the promiscuity of an individual enzyme can be harnessed several times independently for different purposes during evolution is poorly reported. Here, we present a case study illustrating how NAD(P)+-dependent succinate semialdehyde dehydrogenase of Escherichia coli (Sad) is independently recruited through various evolutionary mechanisms for distinct metabolic demands, in particular vitamin biosynthesis and central carbon metabolism. Using adaptive laboratory evolution (ALE), we show that Sad can substitute for the roles of erythrose 4-phosphate dehydrogenase in pyridoxal 5'-phosphate (PLP) biosynthesis and glyceraldehyde 3-phosphate dehydrogenase in glycolysis. To recruit Sad for PLP biosynthesis and glycolysis, ALE employs various mechanisms, including active site mutation, copy number amplification, and (de)regulation of gene expression. Our study traces down these different evolutionary trajectories, reports on the surprising active site plasticity of Sad, identifies regulatory links in amino acid metabolism, and highlights the potential of an ordinary enzyme as innovation reservoir for evolution.
Collapse
Affiliation(s)
- Hai He
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| | - Paul A Gómez-Coronado
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jan Zarzycki
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sebastian Barthel
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jörg Kahnt
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Peter Claus
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Moritz Klein
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Melanie Klose
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
- Genetic Institute, University of Florida, Gainesville, FL, USA
| | - Daniel Schindler
- MaxGENESYS Biofoundry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tobias J Erb
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
11
|
Kobayashi K, Yoneda K, Maeda Y, Suzuki I. Transcriptomic analysis reveals insights into the responses of Synechocystis sp. PCC 6803 to acidification during cultivation with ammonium salts as a nitrogen source. J Biosci Bioeng 2024; 138:261-270. [PMID: 39112180 DOI: 10.1016/j.jbiosc.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/16/2024] [Accepted: 07/03/2024] [Indexed: 09/11/2024]
Abstract
Utilizing ammonium in wastewater is a prospective way to reduce costs for bioproduction by photosynthetic organisms. A model cyanobacterium Synechocystis sp. PCC 6803 takes advantage of tolerance to ammonium compared to other microalgae. However, in this study, we report that Synechocystis growth was inhibited when cultured in a medium containing ammonium. This may be due to the pH decreasing below 6 caused by consuming ammonium. Transcriptomic analysis by RNA-seq revealed that the expression of the genes for proteases, chaperones, and antioxidant-scavenging enzymes was induced, but photosynthetic components were repressed. Although these regulations are similar to the previous studies on acidic stress in nitrate-containing culture, the expression of genes such as sigD, slr0042, slr0373, slr0374, and slr1501 was different, indicating that these phenomena are not simply identical to the known responses to acidic stress. The expression of the genes for photosynthesis, gluconeogenesis, and nitrogen assimilation was repressed, and glycolysis and the tricarboxylic acid cycle were induced. Despite the up-regulation of the carbon catabolism and down-regulation of nitrogen assimilation, the 2-oxoglutarate content in the ammonium-grown cells was lower than that in the nitrate-grown cells, and the contents of the major amino acids, such as Glu, Ala, Asp, and Gly were decreased, while the minor amino acids were the same or increased, especially Arg, Lys, Val, and Ile. These results demonstrated that the acidic stress induced by the consumption of ammonium ions differs from the sudden pH drop, and the Synechocystis cell manages amino acid levels to endure carbon limitation under the stress.
Collapse
Affiliation(s)
- Kotaro Kobayashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Kohei Yoneda
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoshiaki Maeda
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Iwane Suzuki
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
12
|
Lucius S, Hagemann M. The primary carbon metabolism in cyanobacteria and its regulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1417680. [PMID: 39036361 PMCID: PMC11257934 DOI: 10.3389/fpls.2024.1417680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
Cyanobacteria are the only prokaryotes capable of performing oxygenic photosynthesis. Many cyanobacterial strains can live in different trophic modes, ranging from photoautotrophic and heterotrophic to mixotrophic growth. However, the regulatory mechanisms allowing a flexible switch between these lifestyles are poorly understood. As anabolic fixation of CO2 in the Calvin-Benson-Bassham (CBB) cycle and catabolic sugar-degradation pathways share intermediates and enzymatic capacity, a tight regulatory network is required to enable simultaneous opposed metabolic fluxes. The Entner-Doudoroff (ED) pathway was recently predicted as one glycolytic route, which cooperates with other pathways in glycogen breakdown. Despite low carbon flux through the ED pathway, metabolite analyses of mutants deficient in the ED pathway revealed a distinct phenotype pointing at a strong regulatory impact of this route. The small Cp12 protein downregulates the CBB cycle in darkness by inhibiting phosphoribulokinase and glyceraldehyde 3-phosphate dehydrogenase. New results of metabolomic and redox level analyses on strains with Cp12 variants extend the known role of Cp12 regulation towards the acclimation to external glucose supply under diurnal conditions as well as to fluctuations in CO2 levels in the light. Moreover, carbon and nitrogen metabolism are closely linked to maintain an essential C/N homeostasis. The small protein PirC was shown to be an important regulator of phosphoglycerate mutase, which identified this enzyme as central branching point for carbon allocation from CBB cycle towards lower glycolysis. Altered metabolite levels in the mutant ΔpirC during nitrogen starvation experiments confirm this regulatory mechanism. The elucidation of novel mechanisms regulating carbon allocation at crucial metabolic branching points could identify ways for targeted redirection of carbon flow towards desired compounds, and thus help to further establish cyanobacteria as green cell factories for biotechnological applications with concurrent utilization of sunlight and CO2.
Collapse
Affiliation(s)
| | - Martin Hagemann
- Department Plant Physiology, University of Rostock, Rostock, Germany
| |
Collapse
|
13
|
Muth-Pawlak D, Kakko L, Kallio P, Aro EM. Interplay between photosynthetic electron flux and organic carbon sinks in sucrose-excreting Synechocystis sp. PCC 6803 revealed by omics approaches. Microb Cell Fact 2024; 23:188. [PMID: 38951789 PMCID: PMC11218172 DOI: 10.1186/s12934-024-02462-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Advancing the engineering of photosynthesis-based prokaryotic cell factories is important for sustainable chemical production and requires a deep understanding of the interplay between bioenergetic and metabolic pathways. Rearrangements in photosynthetic electron flow to increase the efficient use of the light energy for carbon fixation must be balanced with a strong carbon sink to avoid photoinhibition. In the cyanobacterium Synechocystis sp. PCC 6803, the flavodiiron protein Flv3 functions as an alternative electron acceptor of photosystem I and represents an interesting engineering target for reorganizing electron flow in attempts to enhance photosynthetic CO2 fixation and increase production yield. RESULTS We have shown that inactivation of Flv3 in engineered sucrose-excreting Synechocystis (S02:Δflv3) induces a transition from photoautotrophic sucrose production to mixotrophic growth sustained by sucrose re-uptake and the formation of intracellular carbon sinks such as glycogen and polyhydroxybutyrate. The growth of S02:Δflv3 exceeds that of the sucrose-producing strain (S02) and demonstrates unforeseen proteomic and metabolomic changes over the course of the nine-day cultivation. In the absence of Flv3, a down-regulation of proteins related to photosynthetic light reactions and CO2 assimilation occurred concomitantly with up-regulation of those related to glycolytic pathways, before any differences in sucrose production between S02 and S02:Δflv3 strains were observed. Over time, increased sucrose degradation in S02:Δflv3 led to the upregulation of respiratory pathway components, such as the plastoquinone reductase complexes NDH-11 and NDH-2 and the terminal respiratory oxidases Cyd and Cox, which transfer electrons to O2. While glycolytic metabolism is significantly up-regulated in S02:Δflv3 to provide energy for the cell, the accumulation of intracellular storage compounds and the increase in respiration serve as indirect sinks for photosynthetic electrons. CONCLUSIONS Our results show that the presence of strong carbon sink in the engineered sucrose-producing Synechocystis S02 strain, operating under high light, high CO2 and salt stress, cannot compensate for the lack of Flv3 by directly balancing the light transducing source and carbon fixing sink reactions. Instead, the cells immediately sense the imbalance, leading to extensive reprogramming of cellular bioenergetic, metabolic and ion transport pathways that favor mixotrophic growth rather than enhancing photoautotrophic sucrose production.
Collapse
Affiliation(s)
- Dorota Muth-Pawlak
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, FIN-20014, Finland.
| | - Lauri Kakko
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, FIN-20014, Finland
| | - Pauli Kallio
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, FIN-20014, Finland
| | - Eva-Mari Aro
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, FIN-20014, Finland
| |
Collapse
|
14
|
Karikomi M, Katayama N, Osanai T. Pyruvate kinase 2 from Synechocystis sp. PCC 6803 increased substrate affinity via glucose-6-phosphate and ribose-5-phosphate for phosphoenolpyruvate consumption. PLANT MOLECULAR BIOLOGY 2024; 114:60. [PMID: 38758412 PMCID: PMC11101554 DOI: 10.1007/s11103-023-01401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/30/2023] [Indexed: 05/18/2024]
Abstract
Pyruvate kinase (Pyk, EC 2.7.1.40) is a glycolytic enzyme that generates pyruvate and adenosine triphosphate (ATP) from phosphoenolpyruvate (PEP) and adenosine diphosphate (ADP), respectively. Pyk couples pyruvate and tricarboxylic acid metabolisms. Synechocystis sp. PCC 6803 possesses two pyk genes (encoded pyk1, sll0587 and pyk2, sll1275). A previous study suggested that pyk2 and not pyk1 is essential for cell viability; however, its biochemical analysis is yet to be performed. Herein, we biochemically analyzed Synechocystis Pyk2 (hereafter, SyPyk2). The optimum pH and temperature of SyPyk2 were 7.0 and 55 °C, respectively, and the Km values for PEP and ADP under optimal conditions were 1.5 and 0.053 mM, respectively. SyPyk2 is activated in the presence of glucose-6-phosphate (G6P) and ribose-5-phosphate (R5P); however, it remains unaltered in the presence of adenosine monophosphate (AMP) or fructose-1,6-bisphosphate. These results indicate that SyPyk2 is classified as PykA type rather than PykF, stimulated by sugar monophosphates, such as G6P and R5P, but not by AMP. SyPyk2, considering substrate affinity and effectors, can play pivotal roles in sugar catabolism under nonphotosynthetic conditions.
Collapse
Affiliation(s)
- Masahiro Karikomi
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-Ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Noriaki Katayama
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-Ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-Ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
15
|
Zhang LN, Tan JT, Ng HY, Liao YS, Zhang RQ, Chan KH, Hung IFN, Lam TTY, Cheung KS. Association between Gut Microbiota Composition and Long-Term Vaccine Immunogenicity following Three Doses of CoronaVac. Vaccines (Basel) 2024; 12:365. [PMID: 38675747 PMCID: PMC11055114 DOI: 10.3390/vaccines12040365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Neutralizing antibody level wanes with time after COVID-19 vaccination. We aimed to study the relationship between baseline gut microbiota and immunogenicity after three doses of CoronaVac. METHODS This was a prospective cohort study recruiting three-dose CoronaVac recipients from two centers in Hong Kong. Blood samples were collected at baseline and one year post-first dose for virus microneutralization (vMN) assays to determine neutralization titers. The primary outcome was high immune response (defined as with vMN titer ≥ 40). Shotgun DNA metagenomic sequencing of baseline fecal samples identified potential bacterial species and metabolic pathways using Linear Discriminant Analysis Effect Size (LEfSe) analysis. Univariate and multivariable logistic regression models were used to identify high response predictors. RESULTS In total, 36 subjects were recruited (median age: 52.7 years [IQR: 47.9-56.4]; male: 14 [38.9%]), and 18 had low immune response at one year post-first dose vaccination. Eubacterium rectale (log10LDA score = 4.15, p = 0.001; relative abundance of 1.4% vs. 0, p = 0.002), Collinsella aerofaciens (log10LDA score = 3.31, p = 0.037; 0.39% vs. 0.18%, p = 0.038), and Streptococcus salivarius (log10LDA score = 2.79, p = 0.021; 0.05% vs. 0.02%, p = 0.022) were enriched in low responders. The aOR of high immune response with E. rectale, C. aerofaciens, and S. salivarius was 0.03 (95% CI: 9.56 × 10-4-0.32), 0.03 (95% CI: 4.47 × 10-4-0.59), and 10.19 (95% CI: 0.81-323.88), respectively. S. salivarius had a positive correlation with pathways enriched in high responders like incomplete reductive TCA cycle (log10LDA score = 2.23). C. aerofaciens similarly correlated with amino acid biosynthesis-related pathways. These pathways all showed anti-inflammation functions. CONCLUSION E. rectale,C. aerofaciens, and S. salivarius correlated with poorer long-term immunogenicity following three doses of CoronaVac.
Collapse
Affiliation(s)
- Li-Na Zhang
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Jing-Tong Tan
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Ho-Yu Ng
- School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Yun-Shi Liao
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong
- Centre for Immunology & Infection Limited, 17W Hong Kong Science & Technology Parks, Hong Kong
| | - Rui-Qi Zhang
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Kwok-Hung Chan
- Centre for Immunology & Infection Limited, 17W Hong Kong Science & Technology Parks, Hong Kong
| | - Ivan Fan-Ngai Hung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong
| | - Ka-Shing Cheung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| |
Collapse
|
16
|
Zhou H, Zhang Y, Long CP, Xia X, Xue Y, Ma Y, Antoniewicz MR, Tao Y, Lin B. A citric acid cycle-deficient Escherichia coli as an efficient chassis for aerobic fermentations. Nat Commun 2024; 15:2372. [PMID: 38491007 PMCID: PMC10943122 DOI: 10.1038/s41467-024-46655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
Tricarboxylic acid cycle (TCA cycle) plays an important role for aerobic growth of heterotrophic bacteria. Theoretically, eliminating TCA cycle would decrease carbon dissipation and facilitate chemicals biosynthesis. Here, we construct an E. coli strain without a functional TCA cycle that can serve as a versatile chassis for chemicals biosynthesis. We first use adaptive laboratory evolution to recover aerobic growth in minimal medium of TCA cycle-deficient E. coli. Inactivation of succinate dehydrogenase is a key event in the evolutionary trajectory. Supply of succinyl-CoA is identified as the growth limiting factor. By replacing endogenous succinyl-CoA dependent enzymes, we obtain an optimized TCA cycle-deficient E. coli strain. As a proof of concept, the strain is engineered for high-yield production of four separate products. This work enhances our understanding of the role of the TCA cycle in E. coli metabolism and demonstrates the advantages of using TCA cycle-deficient E. coli strain for biotechnological applications.
Collapse
Affiliation(s)
- Hang Zhou
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yiwen Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Christopher P Long
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE, 19716, USA
| | - Xuesen Xia
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yanfen Xue
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yanhe Ma
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Maciek R Antoniewicz
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE, 19716, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Baixue Lin
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
17
|
Ito S, Watanabe A, Osanai T. Regulation of L-aspartate oxidase contributes to NADP+ biosynthesis in Synechocystis sp. PCC 6803. PLANT PHYSIOLOGY 2024; 194:945-957. [PMID: 37936332 DOI: 10.1093/plphys/kiad580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
Cyanobacteria have been promoted as a biomass resource that can contribute to carbon neutrality. Synechocystis sp. PCC 6803 is a model cyanobacterium that is widely used in various studies. NADP+ and NAD+ are electron receptors involved in energy metabolism. The NADP+/NAD+ ratio in Synechocystis sp. PCC 6803 is markedly higher than that in the heterotrophic bacterium Escherichia coli. In Synechocystis sp. PCC 6803, NADP+ primarily functions as an electron receptor during the light reaction of photosynthesis, and NADP+ biosynthesis is essential for photoautotrophic growth. Generally, the regulatory enzyme of NADP+ biosynthesis is NAD kinase, which catalyzes the phosphorylation of NAD+. However, a previous study suggested that the regulation of another enzyme contributes to NADP+ biosynthesis in Synechocystis sp. PCC 6803 under photoautotrophic conditions. L-Aspartate oxidase is the first enzyme in NAD(P)+ biosynthesis. In this study, we biochemically characterized Synechocystis sp. PCC 6803 L-aspartate oxidase and determined the phenotype of a Synechocystis sp. PCC 6803 mutant overexpressing L-aspartate oxidase. The catalytic efficiency of L-aspartate oxidase from Synechocystis sp. PCC 6803 was lower than that of L-aspartate oxidases and NAD kinases from other organisms. L-Aspartate oxidase activity was affected by different metabolites such as NADP+ and ATP. The L-aspartate oxidase-overexpressing strain grew faster than the wild-type strain under photoautotrophic conditions. The L-aspartate oxidase-overexpressing strain accumulated NADP+ under photoautotrophic conditions. These results indicate that the regulation of L-aspartate oxidase contributes to NADP+ biosynthesis in Synechocystis sp. PCC 6803 under photoautotrophic conditions. These findings provide insight into the regulatory mechanism of cyanobacterial NADP+ biosynthesis.
Collapse
Affiliation(s)
- Shoki Ito
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Atsuko Watanabe
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
18
|
Shakoor N, Hussain M, Adeel M, Azeem I, Ahmad MA, Zain M, Zhang P, Li Y, Quanlong W, Horton R, Rui Y. Lithium-induced alterations in soybean nodulation and nitrogen fixation through multifunctional mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166438. [PMID: 37633397 DOI: 10.1016/j.scitotenv.2023.166438] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/10/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
The increasing footprints of lithium (Li) in agroecosystems combined with limited recycling options have raised uncertain consequences for important crops. Nitrogen (N2)-fixation by legumes is an important biological response process, but the cause and effect of Li exposure on plant root-nodule symbiosis and biological N2-fixation (BNF) potential are still unclear. Soybean as a model plant was exposed to Li at low (25 mg kg-1), medium (50 mg kg-1), and high (100 mg kg-1) concentrations. We found that soybean growth and nodulation capacity had a concentration-dependent response to Li. Li at 100 mg kg-1 reduced the nodule numbers, weight, and BNF potential of soybean in comparison to the low and medium levels. Significant shift in soybean growth and BNF after exposure to Li were associated with alteration in the nodule metabolic pathways involved in nitrogen uptake and metabolism (urea, glutamine and glutamate). Importantly, poor soybean nodulation after high Li exposure was due in part to a decreased abundance of bacterium Ensifer in the nodule bacterial community. Also, the dominant N2-fixing bacterium Ensifer was significantly correlated with carbon and nitrogen metabolic pathways. The findings of our study offer mechanistic insights into the environmental and biological impacts of Li on soybean root-nodule symbiosis and N2-acquisition and provide a pathway to develop strategies to mitigate the challenges posed by Li in agroecosystems.
Collapse
Affiliation(s)
- Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Muzammil Hussain
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, Guangdong, PR China.
| | - Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Muhammad Arslan Ahmad
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Muhammad Zain
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Wang Quanlong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Robert Horton
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
19
|
Eungrasamee K, Lindblad P, Jantaro S. Improved lipid production and component of mycosporine-like amino acids by co-overexpression of amt1 and aroB genes in Synechocystis sp. PCC6803. Sci Rep 2023; 13:19439. [PMID: 37945676 PMCID: PMC10636201 DOI: 10.1038/s41598-023-46290-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Implementing homologous overexpression of the amt1 (A) and aroB (B) genes involved in ammonium transporter and the synthesis of mycosporine-like amino acids (MAAs) and aromatic amino acids, respectively, we created three engineered Synechocystis sp. PCC6803 strains, including Ox-A, Ox-B, and Ox-AB, to study the utilization of carbon and nitrogen in cyanobacteria for the production of valuable products. With respect to amt1 overexpression, the Ox-A and Ox-AB strains had a greater growth rate under (NH4)2SO4 supplemented condition. Both the higher level of intracellular accumulation of lipids in Ox-A and Ox-AB as well as the increased secretion of free fatty acids from the Ox-A strain were impacted by the late-log phase of cell growth. It is noteworthy that among all strains, the Ox-B strain undoubtedly spotted a substantial accumulation of glycogen as a consequence of aroB overexpression. Additionally, the ammonium condition drove the potent antioxidant activity in Ox strains with a late-log phase, particularly in the Ox-B and Ox-AB strains. This was probably related to the altered MAA component inside the cells. The higher proportion of P4-fraction was induced by the ammonium condition in both Ox-B and Ox-AB, while the noted increase of the P1 component was found in the Ox-A strain.
Collapse
Affiliation(s)
- Kamonchanock Eungrasamee
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Saowarath Jantaro
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
20
|
Chen X, Huang K, Gan P, Luo L, Yu K, Zhang Y, Pang Y, Xue P. Inactivation of Heterosigma akashiwo under UV/peroxydisulfate advanced disinfection system in marine waters. CHEMOSPHERE 2023; 341:140055. [PMID: 37704084 DOI: 10.1016/j.chemosphere.2023.140055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/09/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
Heterosigma akashiwo (H. akashiwo) is recognized as a harmful algal bloom (HABs) species with a global distribution, capable of posing significant threats to marine ecosystems, particularly when spread through ship ballast water. This investigation focused on elucidating the inactivation kinetics and underlying mechanism of H. akashiwo through a combined ultraviolet irradiation and peroxydisulfate (UV/PDS) process. The results demonstrated a strong synergistic effect within the UV/PDS system, resulting in an inactivation of 0.78-ln and 2.67-ln within 40 min of UV and UV/PDS processes. The principal agents accountable for inactivation were identified as sulfate radicals (•SO4-) and hydroxyl radical (•OH), which exhibited a synergistic effect in the UV/PDS process. Furthermore, the study observed a negatively impact of seawater pH and salinity on the efficiency of inactivation. UV/PDS caused oxidative stress on algal cells, initially involving the participation of antioxidant enzymes in counteracting cellular damage, but this protective mechanism diminished as the reaction duration extended. The UV/PDS treatment not only inflicted damage upon H. akashiwo's photosynthetic system but also caused the extracellular release of DNA and algal organic matter (AOM) due to damaged cell membranes. Transcriptome analysis provided a molecular biology perspective on the cellular inactivation process. Upregulation of genes linked to photosynthesis and oxidative phosphorylation suggested a potential elevation in energy metabolism. In contrast, genes associated with cellular and metabolic processes, including glycolysis and the tricarboxylic acid cycle (TCA cycle), exhibited downregulation. Moreover, this treatment exerted an inhibitory influence on RNA polymerase and protein synthesis, resulting in the reduced expression of genetic information.
Collapse
Affiliation(s)
- Xuan Chen
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Kunling Huang
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Pin Gan
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Lan Luo
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China Globally Distributed
| | - Yuanyuan Zhang
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China Globally Distributed.
| | - Yunfeng Pang
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Pengfei Xue
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| |
Collapse
|
21
|
Liang J, Chen Z, Yin P, Hu H, Cheng W, Shang J, Yang Y, Yuan Z, Pan J, Yin Y, Li W, Chen X, Gao X, Qiu B, Wang B. Efficient Semi-Artificial Photosynthesis of Ethylene by a Self-Assembled InP-Cyanobacterial Biohybrid System. CHEMSUSCHEM 2023; 16:e202300773. [PMID: 37381086 DOI: 10.1002/cssc.202300773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Biomanufacturing of ethylene is particularly important for modern society. Cyanobacterial cells are able to photosynthesize various valuable chemicals. A promising platform for next-generation biomanufacturing, the semiconductor-cyanobacterial hybrid systems are capable of enhancing the solar-to-chemical conversion efficiency. Herein, the native ethylene-producing capability of a filamentous cyanobacterium Nostoc sphaeroides is confirmed experimentally. The self-assembly characteristic of N. sphaeroides is exploited to facilitate its interaction with InP nanomaterial, and the resulting biohybrid system gave rise to further elevated photosynthetic ethylene production. Based on chlorophyll fluorescence measurement and metabolic analysis, the InP nanomaterial-augmented photosystem I activity and enhanced ethylene production metabolism of biohybrid cells are confirmed, the mechanism underlying the material-cell energy transduction as well as nanomaterial-modulated photosynthetic light and dark reactions are established. This work not only demonstrates the potential application of semiconductor-N. sphaeroides biohybrid system as a good platform for sustainable ethylene production but also provides an important reference for future studies to construct and optimize nano-cell biohybrid systems for efficient solar-driven valuable chemical production.
Collapse
Affiliation(s)
- Jun Liang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Zhen Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, 435002, P. R. China
| | - Panqing Yin
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Haitao Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Wenbo Cheng
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| | - Jinlong Shang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, P. R. China
| | - Yiwen Yang
- College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, Jiangxi, 332000, P.R. China
| | - Zuwen Yuan
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, 435002, P. R. China
| | - Jinlong Pan
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, 435002, P. R. China
| | - Yongqi Yin
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, 435002, P. R. China
| | - Weizhi Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, 435002, P. R. China
| | - Xiongwen Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, 435002, P. R. China
| | - Xiang Gao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Baosheng Qiu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, P. R. China
| | - Bo Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| |
Collapse
|
22
|
Kugler A, Stensjö K. Optimal energy and redox metabolism in the cyanobacterium Synechocystis sp. PCC 6803. NPJ Syst Biol Appl 2023; 9:47. [PMID: 37739963 PMCID: PMC10516873 DOI: 10.1038/s41540-023-00307-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 09/01/2023] [Indexed: 09/24/2023] Open
Abstract
Understanding energy and redox homeostasis and carbon partitioning is crucial for systems metabolic engineering of cell factories. Carbon metabolism alone cannot achieve maximal accumulation of metabolites in production hosts, since an efficient production of target molecules requires energy and redox balance, in addition to carbon flow. The interplay between cofactor regeneration and heterologous production in photosynthetic microorganisms is not fully explored. To investigate the optimality of energy and redox metabolism, while overproducing alkenes-isobutene, isoprene, ethylene and 1-undecene, in the cyanobacterium Synechocystis sp. PCC 6803, we applied stoichiometric metabolic modelling. Our network-wide analysis indicates that the rate of NAD(P)H regeneration, rather than of ATP, controls ATP/NADPH ratio, and thereby bioproduction. The simulation also implies that energy and redox balance is interconnected with carbon and nitrogen metabolism. Furthermore, we show that an auxiliary pathway, composed of serine, one-carbon and glycine metabolism, supports cellular redox homeostasis and ATP cycling. The study revealed non-intuitive metabolic pathways required to enhance alkene production, which are mainly driven by a few key reactions carrying a high flux. We envision that the presented comparative in-silico metabolic analysis will guide the rational design of Synechocystis as a photobiological production platform of target chemicals.
Collapse
Affiliation(s)
- Amit Kugler
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden.
| |
Collapse
|
23
|
Zhang Y, Liu Z, Xiao G, Shi J, Liu B, Xiao N, Sun Z. Simultaneous DHA and organic selenium production by Schizochytrium sp.: a theoretical basis. Sci Rep 2023; 13:15607. [PMID: 37731016 PMCID: PMC10511486 DOI: 10.1038/s41598-023-42900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023] Open
Abstract
Docosahexaenoic acid (DHA) and selenium (Se) are nutrients that confer several health benefits to both humans and animals. Widespread use of DHA in milk powder and health products requires large-scale mass production via Schizochytrium sp., while Se intended for human consumption is produced as organic Se via yeast. However, producing these nutrients on an industrial scale is constrained by various factors. We found that supplementing Schizochytrium sp. with Na2SeO3 (0.5 mg/L) improves its biomass and DHA production and also provides organic Se. De novo assembled transcriptome and biochemical indicators showed that Na2SeO3 promotes forming acetyl coenzyme A and L-cysteine via the glycerol kinase and cysteine synthase pathways, promoting DHA synthesis through the polyketide synthase pathway. However, high doses of Na2SeO3 (5 mg/L) limited the biomass of Schizochytrium sp. and DHA content. This study provided a theoretical basis for the simultaneous production of organic Se and DHA via Schizochytrium sp.
Collapse
Affiliation(s)
- Yunqiang Zhang
- Hunan Agricultural University Veterinary Faculty, No.1 Nongda Road, Furong District, Changsha City, 410000, Hunan, China
- Hunan Canzoho Biological Technology Co., Ltd., 321 Kangning Road, Changsha City, 410000, Hunan, China
| | - Zikui Liu
- Hunan Agricultural University Veterinary Faculty, No.1 Nongda Road, Furong District, Changsha City, 410000, Hunan, China
- Hunan Canzoho Biological Technology Co., Ltd., 321 Kangning Road, Changsha City, 410000, Hunan, China
| | - Gang Xiao
- Hunan Agricultural University Veterinary Faculty, No.1 Nongda Road, Furong District, Changsha City, 410000, Hunan, China
| | - Jiawei Shi
- Hunan Agricultural University Veterinary Faculty, No.1 Nongda Road, Furong District, Changsha City, 410000, Hunan, China
- Hunan Canzoho Biological Technology Co., Ltd., 321 Kangning Road, Changsha City, 410000, Hunan, China
| | - Baili Liu
- Hunan Canzoho Biological Technology Co., Ltd., 321 Kangning Road, Changsha City, 410000, Hunan, China
| | - Ning Xiao
- Hunan Agricultural University Veterinary Faculty, No.1 Nongda Road, Furong District, Changsha City, 410000, Hunan, China
| | - Zhiliang Sun
- Hunan Agricultural University Veterinary Faculty, No.1 Nongda Road, Furong District, Changsha City, 410000, Hunan, China.
| |
Collapse
|
24
|
Li ZM, Hu Z, Wang X, Chen S, Yu W, Liu J, Li Z. Biochemical and Structural Insights into a Thiamine Diphosphate-Dependent α-Ketoglutarate Decarboxylase from Cyanobacterium Microcystis aeruginosa NIES-843. Int J Mol Sci 2023; 24:12198. [PMID: 37569577 PMCID: PMC10418658 DOI: 10.3390/ijms241512198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
α-Ketoglutarate decarboxylase is a crucial enzyme in the tricarboxylic acid cycle of cyanobacteria, catalyzing the non-oxidative decarboxylation of α-ketoglutarate to produce succinate semialdehyde and CO2. The decarboxylation process is reliant on the cofactor of thiamine diphosphate. However, this enzyme's biochemical and structural properties have not been well characterized. In this work, two α-ketoglutarate decarboxylases encoded by MAE_06010 and MiAbw_01735 genes from Microcystis aeruginosa NIES-843 (MaKGD) and NIES-4325 (MiKGD), respectively, were overexpressed and purified by using an Escherichia coli expression system. It was found that MaKGD exhibited 9.2-fold higher catalytic efficiency than MiKGD, which may be attributed to the absence of glutamate decarboxylase in Microcystis aeruginosa NIES-843. Further biochemical investigation of MaKGD demonstrated that it displayed optimum activity at pH 6.5-7.0 and was most activated by Mg2+. Additionally, MaKGD showed substrate specificity towards α-ketoglutarate. Structural modeling and autodocking results revealed that the active site of MaKGD contained a distinct binding pocket where α-ketoglutarate and thiamine diphosphate interacted with specific amino acid residues via hydrophobic interactions, hydrogen bonds and salt bridges. Furthermore, the mutagenesis study provided strong evidence supporting the importance of certain residues in the catalysis of MaKGD. These findings provide new insights into the structure-function relationships of α-ketoglutarate decarboxylases from cyanobacteria.
Collapse
Affiliation(s)
- Zhi-Min Li
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Ziwei Hu
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoqin Wang
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Suhang Chen
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Weiyan Yu
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianping Liu
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhimin Li
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
25
|
Gao EB, Wu J, Ye P, Qiu H, Chen H, Fang Z. Rewiring carbon flow in Synechocystis PCC 6803 for a high rate of CO 2-to-ethanol under an atmospheric environment. Front Microbiol 2023; 14:1211004. [PMID: 37323905 PMCID: PMC10265512 DOI: 10.3389/fmicb.2023.1211004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Cyanobacteria are an excellent microbial photosynthetic platform for sustainable carbon dioxide fixation. One bottleneck to limit its application is that the natural carbon flow pathway almost transfers CO2 to glycogen/biomass other than designed biofuels such as ethanol. Here, we used engineered Synechocystis sp. PCC 6803 to explore CO2-to-ethanol potential under atmospheric environment. First, we investigated the effects of two heterologous genes (pyruvate decarboxylase and alcohol dehydrogenase) on ethanol biosynthesis and optimized their promoter. Furthermore, the main carbon flow of the ethanol pathway was strengthened by blocking glycogen storage and pyruvate-to-phosphoenolpyruvate backflow. To recycle carbon atoms that escaped from the tricarboxylic acid cycle, malate was artificially guided back into pyruvate, which also created NADPH balance and promoted acetaldehyde conversion into ethanol. Impressively, we achieved high-rate ethanol production (248 mg/L/day at early 4 days) by fixing atmospheric CO2. Thus, this study exhibits the proof-of-concept that rewiring carbon flow strategies could provide an efficient cyanobacterial platform for sustainable biofuel production from atmospheric CO2.
Collapse
Affiliation(s)
- E-Bin Gao
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junhua Wu
- Ningbo Women and Children's Hospital, Ningbo, China
| | - Penglin Ye
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haiyan Qiu
- Ningbo Women and Children's Hospital, Ningbo, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhen Fang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
26
|
Yamane M, Osanai T. Nondiazotrophic cyanobacteria metabolic engineering for succinate and lactate production. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
27
|
Moreno-Cabezuelo JÁ, Gómez-Baena G, Díez J, García-Fernández JM. Integrated Proteomic and Metabolomic Analyses Show Differential Effects of Glucose Availability in Marine Synechococcus and Prochlorococcus. Microbiol Spectr 2023; 11:e0327522. [PMID: 36722960 PMCID: PMC10100731 DOI: 10.1128/spectrum.03275-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/29/2022] [Indexed: 02/02/2023] Open
Abstract
We compared changes induced by the addition of 100 nM and 5 mM glucose on the proteome and metabolome complements in Synechococcus sp. strains WH8102, WH7803, and BL107 and Prochlorococcus sp. strains MED4, SS120, and MIT9313, grown either under standard light conditions or in darkness. Our results suggested that glucose is metabolized by these cyanobacteria, using primarily the oxidative pentoses and Calvin pathways, while no proof was found for the involvement of the Entner-Doudoroff pathway in this process. We observed differences in the effects of glucose availability, both between genera and between Prochlorococcus MED4 and SS120 strains, which might be related to their specific adaptations to the environment. We found evidence for fermentation in Prochlorococcus sp. strain SS120 and Synechococcus sp. strain WH8102 after 5 mM glucose addition. Our results additionally suggested that marine cyanobacteria can detect nanomolar glucose concentrations in the environment and that glucose might be used to sustain metabolism under darkness. Furthermore, the KaiB and KaiC proteins were also affected in Synechococcus sp. WH8102, pointing to a direct link between glucose assimilation and circadian rhythms in marine cyanobacteria. In conclusion, our study provides a wide overview on the metabolic effects induced by glucose availability in representative strains of the diverse marine picocyanobacteria, providing further evidence for the importance of mixotrophy in marine picocyanobacteria. IMPORTANCE Glucose uptake by marine picocyanobacteria has been previously described and strongly suggests they are mixotrophic organisms (capable of using energy from the sun to make organic matter, but also to directly use organic matter from the environment when available). However, a detailed analysis of the effects of glucose addition on the proteome and metabolome of these microorganisms had not been carried out. Here, we analyzed three Prochlorococcus sp. and three Synechococcus sp. strains which were representative of several marine picocyanobacterial clades. We observed differential features in the effects of glucose availability, depending on both the genus and strain; our study illuminated the strategies utilized by these organisms to metabolize glucose and showed unexpected links to other pathways, such as circadian regulation. Furthermore, we found glucose addition had profound effects in the microbiome, favoring the growth of coexisting heterotrophic bacteria.
Collapse
Affiliation(s)
- José Ángel Moreno-Cabezuelo
- Departamento de Bioquímica y Biología Molecular-Campus de Excelencia Agroalimentaria CEIA3, Universidad de Córdoba, Cordoba, Spain
| | - Guadalupe Gómez-Baena
- Departamento de Bioquímica y Biología Molecular-Campus de Excelencia Agroalimentaria CEIA3, Universidad de Córdoba, Cordoba, Spain
| | - Jesús Díez
- Departamento de Bioquímica y Biología Molecular-Campus de Excelencia Agroalimentaria CEIA3, Universidad de Córdoba, Cordoba, Spain
| | - José Manuel García-Fernández
- Departamento de Bioquímica y Biología Molecular-Campus de Excelencia Agroalimentaria CEIA3, Universidad de Córdoba, Cordoba, Spain
| |
Collapse
|
28
|
Rieseberg TP, Dadras A, Fürst-Jansen JMR, Dhabalia Ashok A, Darienko T, de Vries S, Irisarri I, de Vries J. Crossroads in the evolution of plant specialized metabolism. Semin Cell Dev Biol 2023; 134:37-58. [PMID: 35292191 DOI: 10.1016/j.semcdb.2022.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/17/2022] [Accepted: 03/04/2022] [Indexed: 12/25/2022]
Abstract
The monophyletic group of embryophytes (land plants) stands out among photosynthetic eukaryotes: they are the sole constituents of the macroscopic flora on land. In their entirety, embryophytes account for the majority of the biomass on land and constitute an astounding biodiversity. What allowed for the massive radiation of this particular lineage? One of the defining features of all land plants is the production of an array of specialized metabolites. The compounds that the specialized metabolic pathways of embryophytes produce have diverse functions, ranging from superabundant structural polymers and compounds that ward off abiotic and biotic challenges, to signaling molecules whose abundance is measured at the nanomolar scale. These specialized metabolites govern the growth, development, and physiology of land plants-including their response to the environment. Hence, specialized metabolites define the biology of land plants as we know it. And they were likely a foundation for their success. It is thus intriguing to find that the closest algal relatives of land plants, freshwater organisms from the grade of streptophyte algae, possess homologs for key enzymes of specialized metabolic pathways known from land plants. Indeed, some studies suggest that signature metabolites emerging from these pathways can be found in streptophyte algae. Here we synthesize the current understanding of which routes of the specialized metabolism of embryophytes can be traced to a time before plants had conquered land.
Collapse
Affiliation(s)
- Tim P Rieseberg
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Armin Dadras
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Janine M R Fürst-Jansen
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Amra Dhabalia Ashok
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tatyana Darienko
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Sophie de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Iker Irisarri
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtsr. 1, 37077 Goettingen, Germany.
| |
Collapse
|
29
|
Burkhardt M, Rapp J, Menzel C, Link H, Forchhammer K. The Global Influence of Sodium on Cyanobacteria in Resuscitation from Nitrogen Starvation. BIOLOGY 2023; 12:biology12020159. [PMID: 36829438 PMCID: PMC9952445 DOI: 10.3390/biology12020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Dormancy and resuscitation are key to bacterial survival under fluctuating environmental conditions. In the absence of combined nitrogen sources, the non-diazotrophic model cyanobacterium Synechocystis sp. PCC 6803 enters into a metabolically quiescent state during a process termed chlorosis. This state enables the cells to survive until nitrogen sources reappear, whereupon the cells resuscitate in a process that follows a highly orchestrated program. This coincides with a metabolic switch into a heterotrophic-like mode where glycogen catabolism provides the cells with reductant and carbon skeletons for the anabolic reactions that serve to re-establish a photosynthetically active cell. Here we show that the entire resuscitation process requires the presence of sodium, a ubiquitous cation that has a broad impact on bacterial physiology. The requirement for sodium in resuscitating cells persists even at elevated CO2 levels, a condition that, by contrast, relieves the requirement for sodium ions in vegetative cells. Using a multi-pronged approach, including the first metabolome analysis of Synechocystis cells resuscitating from chlorosis, we reveal the involvement of sodium at multiple levels. Not only does sodium play a role in the bioenergetics of chlorotic cells, as previously shown, but it is also involved in nitrogen compound assimilation, pH regulation, and synthesis of key metabolites.
Collapse
Affiliation(s)
- Markus Burkhardt
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Johanna Rapp
- CMFI, Bacterial Metabolomics, University of Tübingen, Auf der Morgenstelle 24, 72076 Tübingen, Germany
| | - Claudia Menzel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Hannes Link
- CMFI, Bacterial Metabolomics, University of Tübingen, Auf der Morgenstelle 24, 72076 Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
30
|
Díez J, López-Lozano A, Domínguez-Martín MA, Gómez-Baena G, Muñoz-Marín MC, Melero-Rubio Y, García-Fernández JM. Regulatory and metabolic adaptations in the nitrogen assimilation of marine picocyanobacteria. FEMS Microbiol Rev 2023; 47:6794272. [PMID: 36323406 DOI: 10.1093/femsre/fuac043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Prochlorococcus and Synechococcus are the two most abundant photosynthetic organisms on Earth, with a strong influence on the biogeochemical carbon and nitrogen cycles. Early reports demonstrated the streamlining of regulatory mechanisms in nitrogen metabolism and the removal of genes not strictly essential. The availability of a large series of genomes, and the utilization of latest generation molecular techniques have allowed elucidating the main mechanisms developed by marine picocyanobacteria to adapt to the environments where they thrive, with a particular interest in the strains inhabiting oligotrophic oceans. Given that nitrogen is often limited in those environments, a series of studies have explored the strategies utilized by Prochlorococcus and Synechococcus to exploit the low concentrations of nitrogen-containing molecules available in large areas of the oceans. These strategies include the reduction in the GC and the cellular protein contents; the utilization of truncated proteins; a reduced average amount of N in the proteome; the development of metabolic mechanisms to perceive and utilize nanomolar nitrate concentrations; and the reduced responsiveness of key molecular regulatory systems such as NtcA to 2-oxoglutarate. These findings are in sharp contrast with the large body of knowledge obtained in freshwater cyanobacteria. We will outline the main discoveries, stressing their relevance to the ecological success of these important microorganisms.
Collapse
Affiliation(s)
- J Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - A López-Lozano
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - M A Domínguez-Martín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - G Gómez-Baena
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - M C Muñoz-Marín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - Y Melero-Rubio
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - J M García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| |
Collapse
|
31
|
Kanwal S, De-Eknamkul W. A Non-functional γ-Aminobutyric Acid Shunt Pathway in Cyanobacterium Synechocystis sp. PCC 6803 Enhances δ-Aminolevulinic Acid Accumulation under Modified Nutrient Conditions. Int J Mol Sci 2023; 24:1213. [PMID: 36674729 PMCID: PMC9864891 DOI: 10.3390/ijms24021213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
To redirect carbon flux from the γ-aminobutyric acid (GABA) shunt to the δ-aminolevulinic acid (ALA) biosynthetic pathway, we disrupted the GABA shunt route of the model cyanobacterium Synechocystis sp. PCC 6803 by inactivating Gdc, the gene-encoding glutamate decarboxylase. The generated ΔGdc strain exhibited lower intracellular GABA and higher ALA levels than the wild-type (WT) one. The ΔGdc strain’s ALA levels were ~2.8 times higher than those of the WT one when grown with levulinic acid (LA), a competitive inhibitor of porphobilinogen synthase. Abiotic stress conditions including salinity induced by 10 mM NaCl and cold at 4 °C increased the ALA levels in ΔGdc up to ~2.5 and 5 ng g−1 cell DW, respectively. The highest ALA production in the ΔGdc cyanobacteria grown in BG11 medium was triggered by glucose induction, followed by glutamate supplementation with 60 mM of LA, thereby resulting in ~360 ng g−1 cell DW of ALA, that is >300-fold higher ALA accumulation than that observed in ΔGdc cyanobacteria grown in normal medium. Increased levels of the gdhA (involved in the interconversion of α-ketoglutarate to glutamate) and the hemA (a major regulatory target of the ALA biosynthetic pathway) transcripts occurred in ΔGdc cyanobacteria grown under modified growth conditions. Our study provides critical insight into the facilitation of ALA production in cyanobacteria.
Collapse
Affiliation(s)
| | - Wanchai De-Eknamkul
- Natural Product Biotechnology Research Unit, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
32
|
Chen AY, Ku JT, Tsai TP, Hung JJ, Hung BC, Lan EI. Metabolic Engineering Design Strategies for Increasing Carbon Fluxes Relevant for Biosynthesis in Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:105-144. [PMID: 37093259 DOI: 10.1007/10_2023_218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Cyanobacteria are promising microbial cell factories for the direct production of biochemicals and biofuels from CO2. Through genetic and metabolic engineering, they can be modified to produce a variety of both natural and non-natural compounds. To enhance the yield of these products, various design strategies have been developed. In this chapter, strategies used to enhance metabolic fluxes towards common precursors used in biosynthesis, including pyruvate, acetyl-CoA, malonyl-CoA, TCA cycle intermediates, and aromatics, are discussed. Additionally, strategies related to cofactor availability and mixotrophic conditions for bioproduction are also summarize.
Collapse
Affiliation(s)
- Arvin Y Chen
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Jason T Ku
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Teresa P Tsai
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Jenny J Hung
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Billy C Hung
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Ethan I Lan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan.
| |
Collapse
|
33
|
Witthohn M, Strieth D, Kollmen J, Schwarz A, Ulber R, Muffler K. Process Technologies of Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022. [PMID: 36571615 DOI: 10.1007/10_2022_214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although the handling and exploitation of cyanobacteria is associated with some challenges, these phototrophic bacteria offer great opportunities for innovative biotechnological processes. This chapter covers versatile aspects of working with cyanobacteria, starting with up-to-date in silico and in vitro screening methods for bioactive substances. Subsequently, common conservation techniques and vitality/viability estimation methods are compared and supplemented by own data regarding the non-invasive vitality evaluation via pulse amplitude modulated fluorometry. Moreover, novel findings about the influence the state of the pre-cultures have on main cultures are presented. The following sub-chapters deal with different photobioreactor-designs, with special regard to biofilm photobioreactors, as well as with heterotrophic and mixotrophic cultivation modes. The latter topic provides information from literature on successfully enhanced cyanobacterial production processes, augmented by own data.
Collapse
Affiliation(s)
- Marco Witthohn
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen, Germany
| | - Dorina Strieth
- Chair of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Jonas Kollmen
- Chair of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Anna Schwarz
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen, Germany
| | - Roland Ulber
- Chair of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany.
| | - Kai Muffler
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen, Germany
| |
Collapse
|
34
|
Malic Enzyme, not Malate Dehydrogenase, Mainly Oxidizes Malate That Originates from the Tricarboxylic Acid Cycle in Cyanobacteria. mBio 2022; 13:e0218722. [PMID: 36314837 PMCID: PMC9765476 DOI: 10.1128/mbio.02187-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
Abstract
Oxygenic photoautotrophic bacteria, cyanobacteria, have the tricarboxylic acid (TCA) cycle, and metabolite production using the cyanobacterial TCA cycle has been spotlighted recently. The unicellular cyanobacterium Synechocystis sp. strain PCC 6803 (Synechocystis 6803) has been used in various studies on the cyanobacterial TCA cycle. Malate oxidation in the TCA cycle is generally catalyzed by malate dehydrogenase (MDH). However, Synechocystis 6803 MDH (SyMDH) is less active than MDHs from other organisms. Additionally, SyMDH uses only NAD+ as a coenzyme, unlike other TCA cycle enzymes from Synechocystis 6803 that use NADP+. These results suggest that MDH rarely catalyzes malate oxidation in the cyanobacterial TCA cycle. Another enzyme catalyzing malate oxidation is malic enzyme (ME). We clarified which enzyme oxidizes malate that originates from the cyanobacterial TCA cycle using analyses focusing on ME and MDH. In contrast to SyMDH, Synechocystis 6803 ME (SyME) showed high activity when NADP+ was used as a coenzyme. Unlike the Synechocystis 6803 mutant lacking SyMDH, the mutant lacking SyME accumulated malate in the cells. ME was more highly preserved in the cyanobacterial genomes than MDH. These results indicate that ME mainly oxidizes malate that originates from the cyanobacterial TCA cycle (named the ME-dependent TCA cycle). The ME-dependent TCA cycle generates NADPH, not NADH. This is consistent with previous reports that NADPH is an electron carrier in the cyanobacterial respiratory chain. Our finding suggests the diversity of enzymes involved in the TCA cycle in the organisms, and analyses such as those performed in this study are necessary to determine the enzymes. IMPORTANCE Oxygenic photoautotrophic bacteria, namely, cyanobacteria, have the tricarboxylic acid (TCA) cycle. Recently, metabolite production using the cyanobacterial TCA cycle has been well studied. To enhance the production volume of metabolites, understanding the biochemical properties of the cyanobacterial TCA cycle is required. Generally, malate dehydrogenase oxidizes malate in the TCA cycle. However, cyanobacterial malate dehydrogenase shows low activity and does not use NADP+ as a coenzyme, unlike other cyanobacterial TCA cycle enzymes. Our analyses revealed that another malate oxidation enzyme, the malic enzyme, mainly oxidizes malate that originates from the cyanobacterial TCA cycle. These findings provide better insights into metabolite production using the cyanobacterial TCA cycle. Furthermore, our findings suggest that the enzymes related to the TCA cycle vary from organism to organism and emphasize the importance of analyses to identify the enzymes such as those performed in this study.
Collapse
|
35
|
Engineering Escherichia coli for Efficient Aerobic Conversion of Glucose to Malic Acid through the Modified Oxidative TCA Cycle. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Malic acid is a versatile building-block chemical that can serve as a precursor of numerous valuable products, including food additives, pharmaceuticals, and biodegradable plastics. Despite the present petrochemical synthesis, malic acid, being an intermediate of the TCA cycle of a variety of living organisms, can also be produced from renewable carbon sources using wild-type and engineered microbial strains. In the current study, Escherichia coli was engineered for efficient aerobic conversion of glucose to malic acid through the modified oxidative TCA cycle resembling that of myco- and cyanobacteria and implying channelling of 2-ketoglutarate towards succinic acid via succinate semialdehyde formation. The formation of succinate semialdehyde was enabled in the core strain MAL 0 (∆ackA-pta, ∆poxB, ∆ldhA, ∆adhE, ∆ptsG, PL-glk, Ptac-galP, ∆aceBAK, ∆glcB) by the expression of Mycobacterium tuberculosis kgd gene. The secretion of malic acid by the strain was ensured, resulting from the deletion of the mdh, maeA, maeB, and mqo genes. The Bacillus subtilis pycA gene was expressed in the strain to allow pyruvate to oxaloacetate conversion. The corresponding recombinant was able to synthesise malic acid from glucose aerobically with a yield of 0.65 mol/mol. The yield was improved by the derepression in the strain of the electron transfer chain and succinate dehydrogenase due to the enforcement of ATP hydrolysis and reached 0.94 mol/mol, amounting to 94% of the theoretical maximum. The implemented strategy offers the potential for the development of highly efficient strains and processes of bio-based malic acid production.
Collapse
|
36
|
Pettinato E, Böhnert P, Berg IA. Succinyl-CoA:acetate CoA-transferase functioning in the oxidative tricarboxylic acid cycle in Desulfurella acetivorans. Front Microbiol 2022; 13:1080142. [PMID: 36569052 PMCID: PMC9768450 DOI: 10.3389/fmicb.2022.1080142] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Desulfurella acetivorans is a strictly anaerobic sulfur-reducing deltaproteobacterium that possesses a very dynamic metabolism with the ability to revert the citrate synthase version of the tricarboxylic acid (TCA) cycle for autotrophic growth (reversed oxidative TCA cycle) or to use it for acetate oxidation (oxidative TCA cycle). Here we show that for heterotrophic growth on acetate D. acetivorans uses a modified oxidative TCA cycle that was first discovered in acetate-oxidizing sulfate reducers in which a succinyl-CoA:acetate CoA-transferase catalyzes the conversion of succinyl-CoA to succinate, coupled with the activation of acetate to acetyl-CoA. We identified the corresponding enzyme in this bacterium as the AHF96498 gene product and characterized it biochemically. Our phylogenetic analysis of CoA-transferases revealed that the CoA-transferase variant of the oxidative TCA cycle has convergently evolved several times in different bacteria. Its functioning is especially important for anaerobes, as it helps to increase the energetic efficiency of the pathway by using one enzyme for two enzymatic reactions and by allowing to spend just one ATP equivalent for acetate activation.
Collapse
|
37
|
Vergara-Barros P, Alcorta J, Casanova-Katny A, Nürnberg DJ, Díez B. Compensatory Transcriptional Response of Fischerella thermalis to Thermal Damage of the Photosynthetic Electron Transfer Chain. Molecules 2022; 27:8515. [PMID: 36500606 PMCID: PMC9740203 DOI: 10.3390/molecules27238515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
Key organisms in the environment, such as oxygenic photosynthetic primary producers (photosynthetic eukaryotes and cyanobacteria), are responsible for fixing most of the carbon globally. However, they are affected by environmental conditions, such as temperature, which in turn affect their distribution. Globally, the cyanobacterium Fischerella thermalis is one of the main primary producers in terrestrial hot springs with thermal gradients up to 60 °C, but the mechanisms by which F. thermalis maintains its photosynthetic activity at these high temperatures are not known. In this study, we used molecular approaches and bioinformatics, in addition to photophysiological analyses, to determine the genetic activity associated with the energy metabolism of F. thermalis both in situ and in high-temperature (40 °C to 65 °C) cultures. Our results show that photosynthesis of F. thermalis decays with temperature, while increased transcriptional activity of genes encoding photosystem II reaction center proteins, such as PsbA (D1), could help overcome thermal damage at up to 60 °C. We observed that F. thermalis tends to lose copies of the standard G4 D1 isoform while maintaining the recently described D1INT isoform, suggesting a preference for photoresistant isoforms in response to the thermal gradient. The transcriptional activity and metabolic characteristics of F. thermalis, as measured by metatranscriptomics, further suggest that carbon metabolism occurs in parallel with photosynthesis, thereby assisting in energy acquisition under high temperatures at which other photosynthetic organisms cannot survive. This study reveals that, to cope with the harsh conditions of hot springs, F. thermalis has several compensatory adaptations, and provides emerging evidence for mixotrophic metabolism as being potentially relevant to the thermotolerance of this species. Ultimately, this work increases our knowledge about thermal adaptation strategies of cyanobacteria.
Collapse
Affiliation(s)
- Pablo Vergara-Barros
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 8370186, Chile
| | - Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
| | - Angélica Casanova-Katny
- Laboratory of Plant Ecophysiology, Faculty of Natural Resources, Campus Luis Rivas del Canto, Catholic University of Temuco, Temuco 4780000, Chile
| | - Dennis J. Nürnberg
- Institute of Experimental Physics, Freie Universität Berlin, 14195 Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 8370186, Chile
- Center for Climate and Resilience Research (CR)2, Santiago 8370449, Chile
| |
Collapse
|
38
|
Kumar N, Kar S, Shukla P. Role of regulatory pathways and multi-omics approaches for carbon capture and mitigation in cyanobacteria. BIORESOURCE TECHNOLOGY 2022; 366:128104. [PMID: 36257524 DOI: 10.1016/j.biortech.2022.128104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacteria are known for their metabolic potential and carbon capture and sequestration capabilities. These cyanobacteria are not only an effective source for carbon minimization and resource mobilization into value-added products for biotechnological gains. The present review focuses on the detailed description of carbon capture mechanisms exerted by the various cyanobacterial strains, the role of important regulatory pathways, and their subsequent genes responsible for such mechanisms. Moreover, this review will also describe effectual mechanisms of central carbon metabolism like isoprene synthesis, ethylene production, MEP pathway, and the role of Glyoxylate shunt in the carbon sequestration mechanisms. This review also describes some interesting facets of using carbon assimilation mechanisms for valuable bio-products. The role of regulatory pathways and multi-omics approaches in cyanobacteria will not only be crucial towards improving carbon utilization but also will give new insights into utilizing cyanobacterial bioresource for carbon neutrality.
Collapse
Affiliation(s)
- Niwas Kumar
- Society for Research and Initiatives for Sustainable Technologies and Institutions, Navrangapura, Ahmedabad 380009, India
| | - Srabani Kar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
39
|
Lai MJ, Tsai JC, Lan EI. CRISPRi-enhanced direct photosynthetic conversion of carbon dioxide to succinic acid by metabolically engineered cyanobacteria. BIORESOURCE TECHNOLOGY 2022; 366:128131. [PMID: 36252759 DOI: 10.1016/j.biortech.2022.128131] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Engineering photoautotrophic microorganisms to directly convert carbon dioxide into platform chemicals is an attractive approach for chemical sustainability and carbon mitigation. Here, an engineered cyanobacterium Synechococcus elongatus PCC 7942 was developed to produce succinic acid directly from ambient carbon dioxide. Inhibition of succinate dehydrogenase and glycogen synthase by CRIPSR interference increased carbon flux towards succinic acid. Dual inhibition of these two genes led to an 82 % increase in titer. The resulting strain produced 4.8 g/L of succinic acid in a 28-days cultivation. However, cells after the 28-days cultivation became non-viable and cannot continue production. This issue was addressed by re-inoculation with fresh cells into the production medium. This strategy enabled continuous succinic acid accumulation, reaching a final titer of 8.9 g/L. This study provides a sustainable route to succinic acid directly from carbon dioxide and a potential method to overcome the low titer limitation of cyanobacterial-based bioproduction for practical applications.
Collapse
Affiliation(s)
- Martin J Lai
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, 1001 Daxue Road, Hsinchu City 300, Taiwan
| | - Jemmy C Tsai
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, 1001 Daxue Road, Hsinchu City 300, Taiwan
| | - Ethan I Lan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, 1001 Daxue Road, Hsinchu City 300, Taiwan.
| |
Collapse
|
40
|
Sun Y, Zang Y, Chen J, Shang S, Wang J, Liu Q, Tang X. The differing responses of central carbon cycle metabolism in male and female Sargassum thunbergii to ultraviolet-B radiation. FRONTIERS IN PLANT SCIENCE 2022; 13:904943. [PMID: 36262652 PMCID: PMC9574197 DOI: 10.3389/fpls.2022.904943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The enhancement of ultraviolet-B radiation (UV-B) radiation reaching the Earth's surface due to ozone layer depletion is an important topic. Macroalgal species growing in the intertidal zone are often directly exposed to UV-B radiation periodically as the tide changes. In order to better understand the response of macroalgae to UV-B stressed condition, we studied the dominant dioecious intertidal macroalgae Sargassum thunbergii. After consecutive UV-B radiation treatments, we used metabonomics models to analyze and compare the maximum photosynthetic electron transport rate (ETRmax), central carbon cycle metabolism (CCCM) gene expression level, CCCM enzymic activities [pyruvate dehydrogenase and citrate synthase (PDH and CS)], and carbon-based metabolite (including pyruvate, soluble sugar, total amino acid, and lipids) content in male and female S. thunbergii. The results showed that under low and high UV-B radiation, the ETRmax values and six targeted CCCM gene expression levels were significantly higher in males than in females. Under high UV-B radiation, only the CS activity was significantly higher in males than in females. There was no significant difference in PDH activity between males and females. The CCCM models constructed using the metabonomics analysis demonstrate that S. thunbergii males and females exhibit obvious gender differences in their responses to UV-B radiation, providing us with a new understanding of the macroalgal gender differences under UV-B radiation, as past investigations always underestimated their diecious characteristics.
Collapse
Affiliation(s)
- Yan Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu Zang
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shuai Shang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Jing Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qian Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
41
|
Giordano M, Goodman CA, Huang F, Raven JA, Ruan Z. A mechanistic study of the influence of nitrogen and energy availability on the NH4+ sensitivity of nitrogen assimilation in Synechococcus. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5596-5611. [PMID: 35595516 PMCID: PMC9467657 DOI: 10.1093/jxb/erac219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/19/2022] [Indexed: 05/23/2023]
Abstract
In most algae, NO3- assimilation is tightly controlled and is often inhibited by the presence of NH4+. In the marine, non-colonial, non-diazotrophic cyanobacterium Synechococcus UTEX 2380, NO3- assimilation is sensitive to NH4+ only when N does not limit growth. We sequenced the genome of Synechococcus UTEX 2380, studied the genetic organization of the nitrate assimilation related (NAR) genes, and investigated expression and kinetics of the main NAR enzymes, under N or light limitation. We found that Synechococcus UTEX 2380 is a β-cyanobacterium with a full complement of N uptake and assimilation genes and NAR regulatory elements. The nitrate reductase of our strain showed biphasic kinetics, previously observed only in freshwater or soil diazotrophic Synechococcus strains. Nitrite reductase and glutamine synthetase showed little response to our growth treatments, and their activity was usually much higher than that of nitrate reductase. NH4+ insensitivity of NAR genes may be associated with the stimulation of the binding of the regulator NtcA to NAR gene promoters by the high 2-oxoglutarate concentrations produced under N limitation. NH4+ sensitivity in energy-limited cells fits with the fact that, under these conditions, the use of NH4+ rather than NO3- decreases N-assimilation cost, whereas it would exacerbate N shortage under N limitation.
Collapse
Affiliation(s)
- Mario Giordano
- STU-UNIVPM Joint Algal Research Center, Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, China
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona 60131, Italy
- CMNS-Cell Biology and Molecular Genetics, 2107 Bioscience Research Building, University of Maryland, College Park, MD 20742-4407, USA
- Institute of Microbiology ASCR, Algatech, Trebon, Czech Republic
- National Research Council, Institute of Marine Science, Venezia, Italy
| | - Charles A Goodman
- CMNS-Cell Biology and Molecular Genetics, 2107 Bioscience Research Building, University of Maryland, College Park, MD 20742-4407, USA
| | - Fengying Huang
- STU-UNIVPM Joint Algal Research Center, Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, China
| | - John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5 DA, UK
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo NSW 2007, Australia
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | | |
Collapse
|
42
|
Lee I, Podolich O, Brenig B, Tiwari S, Azevedo V, de Carvalho DS, Uetanabaro APT, Góes-Neto A, Alzahrani KJ, Reva O, Kozyrovska N, de Vera JP, Barh D, Kim BS. Metagenome-Assembled Genomes of Komagataeibacter from Kombucha Exposed to Mars-Like Conditions Reveal the Secrets in Tolerating Extraterrestrial Stresses. J Microbiol Biotechnol 2022; 32:967-975. [PMID: 35879284 PMCID: PMC9628956 DOI: 10.4014/jmb.2204.04009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022]
Abstract
Kombucha mutualistic community (KMC) is composed by acetic acid bacteria and yeasts, producing fermented tea with health benefits. As part of the BIOlogy and Mars EXperiment (BIOMEX) project, the effect of Mars-like conditions on the KMC was analyzed. Here, we analyzed metagenome-assembled genomes (MAGs) of the Komagataeibacter, which is a predominant genus in KMC, to understand their roles in the KMC after exposure to Mars-like conditions (outside the International Space Station) based on functional genetic elements. We constructed three MAGs: K. hansenii, K. rhaeticus, and K. oboediens. Our results showed that (i) K. oboediens MAG functionally more complex than K. hansenii, (ii) K. hansenii is a keystone in KMCs with specific functional features to tolerate extreme stress, and (iii) genes related to the PPDK, betaine biosynthesis, polyamines biosynthesis, sulfate-sulfur assimilation pathway as well as type II toxin-antitoxin (TA) system, quorum sensing (QS) system, and cellulose production could play important roles in the resilience of KMC after exposure to Mars-like stress. Our findings show the potential mechanisms through which Komagataeibacter tolerates the extraterrestrial stress and will help to understand minimal microbial composition of KMC for space travelers.
Collapse
Affiliation(s)
- Imchang Lee
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea,Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Olga Podolich
- Institute of Molecular Biology and Genetics of NASU, Kyiv 03143, Ukraine
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardtweg, University of Göttingen, Göttingen 37073, Germany
| | - Sandeep Tiwari
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 6627, Brazil
| | - Vasco Azevedo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 6627, Brazil
| | - Daniel Santana de Carvalho
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 6627, Brazil
| | - Ana Paula Trovatti Uetanabaro
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 6627, Brazil
| | - Aristóteles Góes-Neto
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 6627, Brazil
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Oleg Reva
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Natalia Kozyrovska
- Institute of Molecular Biology and Genetics of NASU, Kyiv 03143, Ukraine
| | - Jean-Pierre de Vera
- Microgravity User Support Center (MUSC), German Aerospace Center (DLR), Cologne 51147, Germany
| | - Debmalya Barh
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 6627, Brazil,Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, WB, 721172, India,Corresponding authors D. Barh E-mail:
| | - Bong-Soo Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea,The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Republic of Korea,
B.-S. Kim Phone: +82-33-248-2093 Fax: +82-33-256-3420 E-mail:
| |
Collapse
|
43
|
Zhang L, Bryan SJ, Selão TT. Sustainable citric acid production from CO2 in an engineered cyanobacterium. Front Microbiol 2022; 13:973244. [PMID: 36060744 PMCID: PMC9428468 DOI: 10.3389/fmicb.2022.973244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Citric acid is one of the most widely used organic acids in the world, with applications ranging from acidity regulation in food and beverages to metal chelation in hydrometallurgical processes. Most of its production is currently derived from fermentative processes, using plant-derived carbon feedstocks. While these are currently dominant, there is an increasing need to develop closed-loop production systems that reduce process carbon footprint. In this work, we demonstrate for the first time that an engineered marine cyanobacterium Synechococcus sp. PCC 7002 can be used as a sustainable chassis for the photosynthetic conversion of CO2 to citric acid. Decreased citric acid cycle flux, through the use of a theophylline-responsive riboswitch, was combined with improved flux through citrate synthase and enhanced citric acid excretion, resulting in a significant improvement to citric acid production. While allowing citrate production, this strategy induces a growth defect which can be overcome by glutamate supplementation or by fine-tuning aconitase levels, resulting in an increase in production relative to WT of over 100-fold. This work represents a first step toward sustainable production of a commodity organic acid from CO2.
Collapse
|
44
|
Enhanced production of polyhydroxyalkanoate with manipulable and reproducible 3-hydroxyvalerate fraction by high alcohol tolerant Cupriavidus malaysiensis USMAA2-4 transformant. Bioprocess Biosyst Eng 2022; 45:1331-1347. [DOI: 10.1007/s00449-022-02748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/11/2022] [Indexed: 11/26/2022]
|
45
|
Yilimulati M, Zhou L, Shevela D, Zhang S. Acetylacetone Interferes with Carbon and Nitrogen Metabolism of Microcystis aeruginosa by Cutting Off the Electron Flow to Ferredoxin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9683-9692. [PMID: 35696645 DOI: 10.1021/acs.est.2c00776] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The regulation of photosynthetic machinery with a nonoxidative approach is a powerful but challenging strategy for the selective inhibition of bloom-forming cyanobacteria. Acetylacetone (AA) was recently found to be a target-selective cyanocide for Microcystis aeruginosa, but the cause and effect in the studied system are still unclear. By recording of the chemical fingerprints of the cells at two treatment intervals (12 and 72 h with 0.1 mM AA) with omics assays, the molecular mechanism of AA in inactivating Microcystis aeruginosa was elucidated. The results clearly reveal the effect of AA on ferredoxin and the consequent effects on the physiological and biochemical processes of Microcystis aeruginosa. In addition to its role as an electron acceptor of photosystem I, ferredoxin plays pivotal roles in the assimilation of nitrogen in cyanobacterial cells. The effect of AA on ferredoxin and on nonheme iron of photosystem II first cut off the photosynthetic electron transfer flow and then interrupted the synthesis of adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide phosphate (NADPH), which ultimately might affect carbon fixation and nitrogen assimilation metabolisms. The results here provide missing pieces in the current knowledge on the selective inhibition of cyanobacteria, which should shed light on the better control of harmful blooms.
Collapse
Affiliation(s)
- Mihebai Yilimulati
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Lang Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187 Umeå, Sweden
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
46
|
He XD, Zhang F, Huang Y, Hao JJ, Zhang M, He JB, Pu XM, Li YJ, Zi L, Yu J, Yang XX. Potential indicators of mitochondrial structure and function. Curr Pharm Des 2022; 28:1738-1744. [PMID: 35619320 DOI: 10.2174/1381612828666220520161200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022]
Abstract
Mitochondria regulate a range of important physiological and biochemical cellular processes including apoptotic cell death, energy production, calcium homeostasis, oxidative stress, and lipid metabolism. Given their role as the 'engines' of cells, their dysfunction is associated with a variety of disease states. Exploring the relationship between mitochondrial function and disease can reveal the mechanism(s) of drug activity and disease pathology. In this review, we summarized the methods of evaluating the structure and function of mitochondria, including the morphology, membrane fluidity, membrane potential, opening of the membrane permeability transition pore, inner membrane permeabilization, mitochondrial dynamics, mitophagy, oxidative stress, energy metabolism-related enzymes, apoptotic pathway related proteins, calcium concentration, DNA copy number, oxygen consumption, β-oxidation-related genes and proteins, cardiolipin content, and adenosine triphosphate content. We believe that the information presented in this review will help explore the pathological processes of mitochondria in the occurrence and development of diseases, as well as the activity and mechanism of drugs, and the discovery of new drugs.
Collapse
Affiliation(s)
- Xu-Dong He
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
| | - Fan Zhang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
| | - Ying Huang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
| | - Jun-Jie Hao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
| | - Mei Zhang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
| | - Jin-Biao He
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
| | - Xue-Mei Pu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
| | - Yan-Juan Li
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
| | - Lei Zi
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
| | - Jie Yu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
| | - Xing-Xin Yang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
| |
Collapse
|
47
|
He Y, Wang S, Han X, Shen J, Lu Y, Zhao J, Shen C, Qiao L. Photosynthesis of Acetate by Sporomusa ovata-CdS Biohybrid System. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23364-23374. [PMID: 35576621 DOI: 10.1021/acsami.2c01918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sporomusa ovata, a typical electroautotrophic microorganism, has been utilized in bioelectrosynthesis for carbon dioxide fixation to multicarbon organic chemicals. However, additional photovoltaic devices are normally needed to convert photo energy to electric energy to power the carbon dioxide fixation, which restricts the overall energy conversion efficiency. Herein, we report Sporomusa ovata-CdS biohybrids for artificial photosynthesis driven by light without any other power source. The quantum yield can reach 16.8 ± 9%, and the active duration time of the system can last for 5 days. During the artificial photosynthesis, carbon dioxide is first reduced to formate and finally converted to acetate via the Wood-Ljungdahl pathway. The carbon dioxide fixation, electron transfer, energy metabolism, and reactive oxygen species damage repair processes in the biohybrid system were characterized by proteomic analysis. Key enzymes, e.g., flavoprotein, ferredoxin, formate-tetrahydrofolate ligase, 5-methyltetrahydrofolate:corrinoid iron-sulfur protein methyltransferase, thioredoxin, and rubrerythrin, were found up-regulated in the biohybrid system. The findings are helpful in understanding the mechanism of the artificial photosynthesis and useful for the development of new biohybrid systems using genetically engineered microbes in the future. The study is expected to boost the development of bioabiotic hybrid system in solar energy harvest.
Collapse
Affiliation(s)
- Ying He
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Shurong Wang
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Xinyue Han
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Jiayuan Shen
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Yanwei Lu
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Jinzhi Zhao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Chengpin Shen
- Shanghai Omicsolution Co., Ltd., Shanghai 200000, China
| | - Liang Qiao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| |
Collapse
|
48
|
Román-Camacho JJ, Mauricio JC, Santos-Dueñas IM, García-Martínez T, García-García I. Unraveling the Role of Acetic Acid Bacteria Comparing Two Acetification Profiles From Natural Raw Materials: A Quantitative Approach in Komagataeibacter europaeus. Front Microbiol 2022; 13:840119. [PMID: 35572698 PMCID: PMC9100681 DOI: 10.3389/fmicb.2022.840119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
The industrial production of vinegar is carried out by the activity of a complex microbiota of acetic acid bacteria (AAB) working, mainly, within bioreactors providing a quite specific and hard environment. The “omics” sciences can facilitate the identification and characterization analyses of these microbial communities, most of which are difficult to cultivate by traditional methods, outside their natural medium. In this work, two acetification profiles coming from the same AAB starter culture but using two natural raw materials of different alcoholic origins (fine wine and craft beer), were characterized and compared and the emphasis of this study is the effect of these raw materials. For this purpose, the composition and natural behavior of the microbiota present throughout these profiles were analyzed by metaproteomics focusing, mainly, on the quantitative protein profile of Komagataeibacter europaeus. This species provided a protein fraction significantly higher (73.5%) than the others. A submerged culture system and semi-continuous operating mode were employed for the acetification profiles and liquid chromatography with tandem mass spectrometry (LC-MS/MS) for the protein analyses. The results showed that neither of two raw materials barely modified the microbiota composition of the profiles, however, they had an effect on the protein expression changes in different biological process. A molecular strategy in which K. europaeus would prevail over other species by taking advantage of the different features offered by each raw material has been suggested. First, by assimilating the excess of inner acetic acid through the TCA cycle and supplying biosynthetic precursors to replenish the cellular material losses; second, by a previous assimilation of the excess of available glucose, mainly in the beer medium, through the glycolysis and the pentose phosphate pathway (PPP); and third, by triggering membrane mechanisms dependent on proton motive force to detoxify the cell at the final moments of acetification. This study could complement the current knowledge of these bacteria as well as to expand the use of diverse raw materials and optimize operating conditions to obtain quality vinegars.
Collapse
Affiliation(s)
- Juan J. Román-Camacho
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, Spain
| | - Juan C. Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, Spain
- *Correspondence: Juan C. Mauricio,
| | - Inés M. Santos-Dueñas
- Department of Inorganic Chemistry and Chemical Engineering, Institute of Nanochemistry (IUNAN), University of Córdoba, Córdoba, Spain
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, Spain
| | - Isidoro García-García
- Department of Inorganic Chemistry and Chemical Engineering, Institute of Nanochemistry (IUNAN), University of Córdoba, Córdoba, Spain
| |
Collapse
|
49
|
Schulze D, Kohlstedt M, Becker J, Cahoreau E, Peyriga L, Makowka A, Hildebrandt S, Gutekunst K, Portais JC, Wittmann C. GC/MS-based 13C metabolic flux analysis resolves the parallel and cyclic photomixotrophic metabolism of Synechocystis sp. PCC 6803 and selected deletion mutants including the Entner-Doudoroff and phosphoketolase pathways. Microb Cell Fact 2022; 21:69. [PMID: 35459213 PMCID: PMC9034593 DOI: 10.1186/s12934-022-01790-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/05/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cyanobacteria receive huge interest as green catalysts. While exploiting energy from sunlight, they co-utilize sugar and CO2. This photomixotrophic mode enables fast growth and high cell densities, opening perspectives for sustainable biomanufacturing. The model cyanobacterium Synechocystis sp. PCC 6803 possesses a complex architecture of glycolytic routes for glucose breakdown that are intertwined with the CO2-fixing Calvin-Benson-Bassham (CBB) cycle. To date, the contribution of these pathways to photomixotrophic metabolism has remained unclear. RESULTS Here, we developed a comprehensive approach for 13C metabolic flux analysis of Synechocystis sp. PCC 6803 during steady state photomixotrophic growth. Under these conditions, the Entner-Doudoroff (ED) and phosphoketolase (PK) pathways were found inactive but the microbe used the phosphoglucoisomerase (PGI) (63.1%) and the oxidative pentose phosphate pathway (OPP) shunts (9.3%) to fuel the CBB cycle. Mutants that lacked the ED pathway, the PK pathway, or phosphofructokinases were not affected in growth under metabolic steady-state. An ED pathway-deficient mutant (Δeda) exhibited an enhanced CBB cycle flux and increased glycogen formation, while the OPP shunt was almost inactive (1.3%). Under fluctuating light, ∆eda showed a growth defect, different to wild type and the other deletion strains. CONCLUSIONS The developed approach, based on parallel 13C tracer studies with GC-MS analysis of amino acids, sugars, and sugar derivatives, optionally adding NMR data from amino acids, is valuable to study fluxes in photomixotrophic microbes to detail. In photomixotrophic cells, PGI and OPP form glycolytic shunts that merge at switch points and result in synergistic fueling of the CBB cycle for maximized CO2 fixation. However, redirected fluxes in an ED shunt-deficient mutant and the impossibility to delete this shunt in a GAPDH2 knockout mutant, indicate that either minor fluxes (below the resolution limit of 13C flux analysis) might exist that could provide catalytic amounts of regulatory intermediates or alternatively, that EDA possesses additional so far unknown functions. These ideas require further experiments.
Collapse
Affiliation(s)
- Dennis Schulze
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Judith Becker
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Edern Cahoreau
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics & Fluxomics, Toulouse, France.,RESTORE, Université de Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, Toulouse, France
| | - Lindsay Peyriga
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics & Fluxomics, Toulouse, France.,RESTORE, Université de Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, Toulouse, France
| | | | | | - Kirstin Gutekunst
- Institute of Botany, Christian-Albrecht University, Kiel, Germany.,Molecular Plant Physiology, Bioenergetics in Photoautotrophs, University of Kassel, Kassel, Germany
| | - Jean-Charles Portais
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics & Fluxomics, Toulouse, France.,RESTORE, Université de Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, Toulouse, France
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
50
|
Li S, Li X, Ho SH. Microalgae as a solution of third world energy crisis for biofuels production from wastewater toward carbon neutrality: An updated review. CHEMOSPHERE 2022; 291:132863. [PMID: 34774903 DOI: 10.1016/j.chemosphere.2021.132863] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The boost of the greenhouse gases (GHGs, largely carbon dioxide - CO2) emissions owing to anthropogenic activity is one of the biggest global threats. Bio-CO2 emission reduction has received more and more attention as an environmentally sustainable approach. Microalgae are very popular in this regard because of excellent speed of growth, low costs of production, and resistance to extreme environments. Besides, most microalgae can undergo photosynthesis, where the CO2 and solar energy can be converted into sugar, and subsequently become biomass, providing a renewable and promising biofuel strategy with a few outstanding benefits. This review focuses on presenting CO2 sequestration by microalgae towards wastewater treatment and biodiesel production. First, the CO2 fixation mechanism by microalgae viz., sequestration and assimilation of CO2 in green microalgae as well as cyanobacteria were introduced. Besides, factors affecting CO2 sequestration in microalgae, containing microalgae species and cultivation conditions, such as light condition, photobioreactor, configuration, pH, CO2 concentration, temperature, and medium composition, were then comprehensively discussed. Special attention was given to the production of biodiesel as third-generation biofuel from various wastewater (CO2 biofixation), including processing steps of biodiesel production by microalgae, biodiesel production from wastewater, and improved methods. Furthermore, current life cycle assessment (LCA) and techno-economic analysis (TEA) used in biodiesel production were discussed. Finally, the research challenges and specific prospects were considered. Taken together, this review provides useful and updated information to facilitate the development of microalgal "green chemistry" and "environmental sustainability".
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Xue Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| |
Collapse
|