1
|
Moehrle JJ. Development of New Strategies for Malaria Chemoprophylaxis: From Monoclonal Antibodies to Long-Acting Injectable Drugs. Trop Med Infect Dis 2022; 7:tropicalmed7040058. [PMID: 35448833 PMCID: PMC9024890 DOI: 10.3390/tropicalmed7040058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Drug discovery for malaria has traditionally focused on orally available drugs that kill the abundant, parasitic blood stage. Recently, there has also been an interest in injectable medicines, in the form of monoclonal antibodies (mAbs) with long-lasting plasma half-lives or long-lasting depot formulations of small molecules. These could act as prophylactic drugs, targeting the sporozoites and other earlier parasitic stages in the liver, when the parasites are less numerous, or as another intervention strategy targeting the formation of infectious gametocytes. Generally speaking, the development of mAbs is less risky (costly) than small-molecule drugs, and they have an excellent safety profile with few or no off-target effects. Therefore, populations who are the most vulnerable to malaria, i.e., pregnant women and young children would have access to such new treatments much faster than is presently the case for new antimalarials. An analysis of mAbs that were successfully developed for oncology illustrates some of the feasibility aspects, and their potential as affordable drugs in low- and middle-income countries.
Collapse
Affiliation(s)
- Joerg J Moehrle
- Integrated Sciences, R&D, Medicines for Malaria Venture, Route de Pré Bois 20, CH-1215 Geneva 15, Switzerland
| |
Collapse
|
2
|
Ortiz D, Guiguemde WA, Johnson A, Elya C, Anderson J, Clark J, Connelly M, Yang L, Min J, Sato Y, Guy RK, Landfear SM. Identification of Selective Inhibitors of the Plasmodium falciparum Hexose Transporter PfHT by Screening Focused Libraries of Anti-Malarial Compounds. PLoS One 2015; 10:e0123598. [PMID: 25894322 PMCID: PMC4404333 DOI: 10.1371/journal.pone.0123598] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/20/2015] [Indexed: 12/04/2022] Open
Abstract
Development of resistance against current antimalarial drugs necessitates the search for novel drugs that interact with different targets and have distinct mechanisms of action. Malaria parasites depend upon high levels of glucose uptake followed by inefficient metabolic utilization via the glycolytic pathway, and the Plasmodium falciparum hexose transporter PfHT, which mediates uptake of glucose, has thus been recognized as a promising drug target. This transporter is highly divergent from mammalian hexose transporters, and it appears to be a permease that is essential for parasite viability in intra-erythrocytic, mosquito, and liver stages of the parasite life cycle. An assay was developed that is appropriate for high throughput screening against PfHT based upon heterologous expression of PfHT in Leishmania mexicana parasites that are null mutants for their endogenous hexose transporters. Screening of two focused libraries of antimalarial compounds identified two such compounds that are high potency selective inhibitors of PfHT compared to human GLUT1. Additionally, 7 other compounds were identified that are lower potency and lower specificity PfHT inhibitors but might nonetheless serve as starting points for identification of analogs with more selective properties. These results further support the potential of PfHT as a novel drug target.
Collapse
Affiliation(s)
- Diana Ortiz
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, United States of America
| | - W. Armand Guiguemde
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Alex Johnson
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, United States of America
| | - Carolyn Elya
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, United States of America
| | - Johanna Anderson
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, United States of America
| | - Julie Clark
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Michele Connelly
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Lei Yang
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Jaeki Min
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Yuko Sato
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, United States of America
| | - R. Kiplin Guy
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Scott M. Landfear
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, United States of America
- * E-mail:
| |
Collapse
|
3
|
Barry AE, Waltmann A, Koepfli C, Barnadas C, Mueller I. Uncovering the transmission dynamics of Plasmodium vivax using population genetics. Pathog Glob Health 2015; 109:142-52. [PMID: 25891915 DOI: 10.1179/2047773215y.0000000012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Population genetic analysis of malaria parasites has the power to reveal key insights into malaria epidemiology and transmission dynamics with the potential to deliver tools to support control and elimination efforts. Analyses of parasite genetic diversity have suggested that Plasmodium vivax populations are more genetically diverse and less structured than those of Plasmodium falciparum indicating that P. vivax may be a more ancient parasite of humans and/or less susceptible to population bottlenecks, as well as more efficient at disseminating its genes. These population genetic insights into P. vivax transmission dynamics provide an explanation for its relative resilience to control efforts. Here, we describe current knowledge on P. vivax population genetic structure, its relevance to understanding transmission patterns and relapse and how this information can inform malaria control and elimination programmes.
Collapse
Key Words
- Control,
- Elimination
- Genetic diversity,
- Genetics,
- Genomics,
- Linkage disequilibrium,
- Malaria,
- Microsatellites,
- Mitochondrial DNA,
- Plasmodium vivax,
- Population structure,
- Relapse,
- Single nucleotide polymorphisms,
- Transmission,
Collapse
|
4
|
Abdul-Ghani R, Farag HF, Allam AF, Azazy AA. Measuring resistant-genotype transmission of malaria parasites: challenges and prospects. Parasitol Res 2014; 113:1481-7. [PMID: 24562760 DOI: 10.1007/s00436-014-3789-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 01/28/2014] [Indexed: 01/09/2023]
Abstract
Increased gametocytemia in infections with resistant strains of Plasmodium species and their enhanced transmissibility are a matter of concern in planning and evaluating the impact of malaria control strategies. Various studies have determined weekly gametocyte carriage in response to antimalarial drugs in clinical trials. The advent of molecular biology techniques makes it easy to detect and quantify gametocytes, the stages responsible for transmission, and to detect resistant genotypes of the parasite. With the validation of molecular markers of resistance to certain antimalarial drugs, there is a need to devise a simpler formula that could be used with these epidemiological antimalarial resistance tools. Theoretical models for transmission of resistant malaria parasites are difficult to deploy in epidemiological studies. Therefore, devising a simple formula that determines the potential resistant-genotype transmission of malaria parasites should provide further insights into understanding the spread of drug resistance. The present perspective discusses gametocytogenesis in the context of antimalarial treatment and drug resistance. It also highlights the difficulties in applying the available theoretical models of drug resistance transmission and suggests Rashad's devised formula that could perhaps be used in determining potentially transmissible resistant genotypes as well as in mapping areas with high potential risk for the transmission of drug-resistant malaria. The suggested formula makes use of the data on gametocytes and resistant genotypes of malaria parasites, detected by molecular techniques in a certain geographical area within a particular point in time, to calculate the potential risk of resistant genotype transmission.
Collapse
Affiliation(s)
- Rashad Abdul-Ghani
- Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen,
| | | | | | | |
Collapse
|
5
|
Koepfli C, Timinao L, Antao T, Barry AE, Siba P, Mueller I, Felger I. A Large Plasmodium vivax Reservoir and Little Population Structure in the South Pacific. PLoS One 2013; 8:e66041. [PMID: 23823758 PMCID: PMC3688846 DOI: 10.1371/journal.pone.0066041] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/01/2013] [Indexed: 12/02/2022] Open
Abstract
Introduction The importance of Plasmodium vivax in malaria elimination is increasingly being recognized, yet little is known about its population size and population genetic structure in the South Pacific, an area that is the focus of intensified malaria control. Methods We have genotyped 13 microsatellite markers in 295 P. vivax isolates from four geographically distinct sites in Papua New Guinea (PNG) and one site from Solomon Islands, representing different transmission intensities. Results Diversity was very high with expected heterozygosity values ranging from 0.62 to 0.98 for the different markers. Effective population size was high (12′872 to 19′533 per site). In PNG population structuring was limited with moderate levels of genetic differentiation. FST values (adjusted for high diversity of markers) were 0.14–0.15. Slightly higher levels were observed between PNG populations and Solomon Islands (FST = 0.16). Conclusions Low levels of population structure despite geographical barriers to transmission are in sharp contrast to results from regions of low P. vivax endemicity. Prior to intensification of malaria control programs in the study area, parasite diversity and effective population size remained high.
Collapse
Affiliation(s)
- Cristian Koepfli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Infection & Immunity Division, Walter & Eliza Hall Institute, Parkville, Victoria, Australia
| | - Lincoln Timinao
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- PNG Institute of Medical Research, Goroka, Papua New Guinea
| | - Tiago Antao
- Department of Biological Anthropology, University of Cambridge, Cambridge, United Kingdom
| | - Alyssa E. Barry
- Infection & Immunity Division, Walter & Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter Siba
- PNG Institute of Medical Research, Goroka, Papua New Guinea
| | - Ivo Mueller
- Infection & Immunity Division, Walter & Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Barcelona Centre for International Health Research, Barcelona, Spain
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
6
|
Ding XC, Ubben D, Wells TNC. A framework for assessing the risk of resistance for anti-malarials in development. Malar J 2012; 11:292. [PMID: 22913649 PMCID: PMC3478971 DOI: 10.1186/1475-2875-11-292] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/01/2012] [Indexed: 11/10/2022] Open
Abstract
Resistance is a constant challenge for anti-infective drug development. Since they kill sensitive organisms, anti-infective agents are bound to exert an evolutionary pressure toward the emergence and spread of resistance mechanisms, if such resistance can arise by stochastic mutation events. New classes of medicines under development must be designed or selected to stay ahead in this vicious circle of resistance control. This involves both circumventing existing resistance mechanisms and selecting molecules which are resilient against the development and spread of resistance. Cell-based screening methods have led to a renaissance of new classes of anti-malarial medicines, offering us the potential to select and modify molecules based on their resistance potential. To that end, a standardized in vitro methodology to assess quantitatively these characteristics in Plasmodium falciparum during the early phases of the drug development process has been developed and is presented here. It allows the identification of anti-malarial compounds with overt resistance risks and the prioritization of the most robust ones. The integration of this strategy in later stages of development, registration, and deployment is also discussed.
Collapse
Affiliation(s)
- Xavier C Ding
- Medicines for Malaria Venture, 20 rte de Pré Bois, Geneva CH 1215, Switzerland.
| | | | | |
Collapse
|