1
|
Deolka S, Samha MH, Garcia Roca A, Haug GC, Howard JR, Dalmau D, Sandres J, Vasylevskyi S, VanderLinden RT, Paton RS, Sigman MS. Investigating Reactivity and Selectivity in a Palladium-Catalyzed Heteroleptic Ligand System for Electrophilic Arene Fluorination. J Am Chem Soc 2025; 147:12878-12889. [PMID: 40194830 DOI: 10.1021/jacs.5c01738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Methods to access fluorinated molecules are of significant interest to the medicinal and agrochemical industries. We report a series of high-valent PdIV complexes stabilized by two distinct ligand cores, which mediate electrophilic fluorination reactions with excellent yields and good regioselectivity. Using high-throughput experimentation and kinetic analysis, the distinct roles of each ligand were uncovered. Synthetic modulation of the catalyst alongside density functional theory transition state modeling provided evidence into the turnover-limiting step while revealing key insights into the origin of regioselectivity. This workflow presents a general strategy for exploring heteroleptic systems as well as synthetic enhancements to electrophilic fluorination reactions relevant to both industrial and academic settings.
Collapse
Affiliation(s)
- Shubham Deolka
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Mohammad H Samha
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Aleria Garcia Roca
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Graham C Haug
- Department of Chemistry, Colorado State University, 1301 Center Avenue, Fort Collins, Colorado 80523, United States
| | - James R Howard
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - David Dalmau
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jesus Sandres
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Serhii Vasylevskyi
- Department of Chemistry, University of Texas, Austin 78712, United States
| | - Ryan T VanderLinden
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Robert S Paton
- Department of Chemistry, Colorado State University, 1301 Center Avenue, Fort Collins, Colorado 80523, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
Diaz J, Or WT, Merrett JT, Xia B, Chan PWH. Copper(I)-Initiated Site-Selective β-ζ-C(sp 3)-H Bond Fluorination of Ketones, Carboxylic Esters, and Amides by Selectfluor. Org Lett 2025; 27:3279-3283. [PMID: 40113436 DOI: 10.1021/acs.orglett.5c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
A synthetic method that enables the site-selective fluorination at an unactivated C(sp3)-H bond located two to six C-C bond distances from the C═O group in ketones, carboxylic esters, and amides by Selectfluor [1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate)] aided by a copper(I) salt is described. The site selectivity of the C(sp3)-F bond formation protocol was exemplified by the late-stage functionalization of five natural product and drug molecule derivatives.
Collapse
Affiliation(s)
- Jordan Diaz
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Wai Tsun Or
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | | | - Bo Xia
- Department of the Biological Environment, Jiyang College of Zhejiang A&F University, Zhuji 311800, China
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | | |
Collapse
|
3
|
Das A, Twamley B, Kelly OR, Panda C, Richardson P, McDonald AR. High-Valent Cobalt-Difluoride in Oxidative Fluorination of Saturated Hydrocarbons. Angew Chem Int Ed Engl 2025; 64:e202421157. [PMID: 39688219 DOI: 10.1002/anie.202421157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/18/2024]
Abstract
The heme paradigm where Fe=O acts as the C-H oxidant and Fe-OH rebounds with the formed carbon-centered radical guides the design of the prototypical synthetic hydroxylation catalyst. We are exploring methods to evolve beyond the metal-oxo oxidant and hydroxide rebound, to incorporate a wider array of functional group. We have demonstrated the application of CoII(OTf)2 (10 mol% catalyst; OTf=trimfluoromethanesulfonate) in combination with polydentate N-donor ligands (e. g. BPMEN=N,N'-dimethyl-N,N'-bis(pyrid-2-ylmethyl)ethane-1,2-diamine) and Selectfluor in the oxidative fluorination of saturated hydrocarbons in high yields. The addition of CsF to the reaction mixture induced near-quantitative yields of fluorinated saturated hydrocarbons (>90 % yield of fluorinated product). For 1-hydroxy, 1-acetyl, 1-carboxy-, and 1-acetamido-adamantane, we demonstrated selective fluorination at the 3-position. We propose two mechanisms for the CoII-catalyzed reaction: either (i) an N-radical, derived from Selectfluor, acted as the C-H oxidant followed by radical rebound with CoIII-F; or (ii) a CoIV-(F)2 species was the C-H oxidant followed by radical rebound with CoIII-F. Our combined spectroscopic, kinetic, and chemical trapping evidence suggested that an N-radical was not the active oxidant. We concluded that a CoIV-(F)2 species was the likely active oxidant and CoIII-F was the likely F-atom donor to a carbon centered radical producing a C-F bond.
Collapse
Affiliation(s)
- Agnideep Das
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Oscar R Kelly
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Chakadola Panda
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
- Department of Chemistry, Science Faculty, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Paul Richardson
- Medicine Design, Pfizer La Jolla, 10770 Science Center Drive, La Jolla, California, 92121, USA
| | - Aidan R McDonald
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
4
|
Yadav V, Wen L, Yadav S, Siegler MA, Goldberg DP. Nonheme Mononuclear and Dinuclear Iron(II) and Iron(III) Fluoride Complexes and Their Fluorine Radical Transfer Reactivity. Inorg Chem 2025; 64:682-691. [PMID: 39729544 DOI: 10.1021/acs.inorgchem.4c03335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
The nonheme iron(II) complexes containing a fluoride anion, FeII(BNPAPh2O)(F) (1) and [FeII(BNPAPh2OH)(F)(THF)](BF4) (2), were synthesized and structurally characterized. Addition of dioxygen to either 1 or 2 led to the formation of a fluoride-bridged, dinuclear iron(III) complex [Fe2III(BNPAPh2O)2(F)2(μ-F)]+ (4), which was characterized by single-crystal X-ray diffraction, 1H NMR, and elemental analysis. An iron(II)(iodide) complex, FeII(BNPAPh2O)(I) (3), was prepared and reacted with O2 to give the mononuclear complex cis-FeIII(BNPAPh2O)(OH)(I) (5). Addition of excess fluoride to 5 led to the formation of the oxo-bridged, dinuclear iron(III) complex [Fe2III(BNPAPh2O)2(F)2(μ-O)] (6), while the mononuclear iron(III)(fluoride) complex cis-FeIII(BNPAPh2O)(F)(Cl) (7) was prepared from the addition of excess F- to FeIII(BNPAPh2O)Cl2. The dinuclear complexes 4 and 6 were unreactive to fluorine radical transfer, but mononuclear 7 reacts with the radical substrate (p-MeO-C6H4)3C• to give the fluorine radical transfer products FeII(BNPAPh2O)(Cl) and (p-OMe-C6H4)3CF. These results show that a mononuclear FeIII(F) complex is capable of mediating fluorine radical transfer, even in the presence of second coordination sphere hydrogen bonds to the F- ligand. These findings are placed in context with what is known about the nonheme iron halogenases and related synthetic catalysts regarding their ability, or lack thereof, to mediate fluorine radical transfer reactions.
Collapse
Affiliation(s)
- Vishal Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Lyupeng Wen
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Sudha Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Wang R, An S, Xin YX, Jiang YY, Liu WH. Redox-Neutral Umpolung Synthesis of α-Functionalized Amides. JACS AU 2024; 4:4435-4444. [PMID: 39610725 PMCID: PMC11600186 DOI: 10.1021/jacsau.4c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/30/2024]
Abstract
α-Heteroatom-substituted amides are useful as both targets and intermediates but are challenging to synthesize via conventional enolate chemistry. Herein, we describe a general and unified umpolung procedure to prepare α-heteroatom-functionalized secondary amides with various heteroatom-based nucleophiles under redox-neutral conditions. This transformation is a formal oxidation state reshuffle process from -N to -C in the hydroxamate, thereby achieving the umpolung α-heterofunctionalization of carbonyl groups without external oxidants. Regulated by the reshuffle mechanism, functionalization exclusively occurs at the α-position of the hydroxamate and precisely affords the α-functionalized amide with reliable predictability even in complex settings. Density functional theory studies support that soft enolization enabled by Mg2+/DIPEA combination is essential to facilitate the formation of the α-lactam intermediate. This represents the first general protocol to prepare α-functionalized secondary amides.
Collapse
Affiliation(s)
- Rui Wang
- School
of Chemistry, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Shaokang An
- School
of Chemistry, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Yi-Xuan Xin
- Key
Laboratory of Catalytic Conversion and Clean Energy in Universities
of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P.R. China
| | - Yuan-Ye Jiang
- Key
Laboratory of Catalytic Conversion and Clean Energy in Universities
of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P.R. China
| | - Wenbo H. Liu
- School
of Chemistry, Sun Yat-sen University, Guangzhou 510006, P.R. China
| |
Collapse
|
6
|
Saju A, Crawley MR, MacMillan SN, Le Magueres P, Del Campo M, Lacy DC. N-Oxide Coordination to Mn(III) Chloride. Molecules 2024; 29:4670. [PMID: 39407599 PMCID: PMC11477729 DOI: 10.3390/molecules29194670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
We report on the synthesis and characterization of Mn(III) chloride (MnIIICl3) complexes coordinated with N-oxide ylide ligands, namely trimethyl-N-oxide (Me3NO) and pyridine-N-oxide (PyNO). The compounds are reactive and, while isolable in the solid-state at room temperature, readily decompose into Mn(II). For example, "[MnIIICl3(ONMe3)n]" decomposes into the 2D polymeric network compound complex salt [MnII(µ-Cl)3MnII(µ-ONMe3)]n[MnII(µ-Cl)3]n·(Me3NO·HCl)3n (4). The reaction of MnIIICl3 with PyNO forms varied Mn(III) compounds with PyNO coordination and these react with hexamethylbenzene (HMB) to form the chlorinated organic product 1-cloromethyl-2,3,4,5,6-pentamethylbenzene (8). In contrast to N-oxide coordination to Mn(III), the reaction between [MnIIICl3(OPPh3)2] and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) resulted in electron transfer-forming d5 manganate of the [TEMPO] cation instead of TEMPO-Mn(III) adducts. The reactivity affected by N-oxide coordination is discussed through comparisons with other L-MnIIICl3 complexes within the context of reduction potential.
Collapse
Affiliation(s)
- Ananya Saju
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Matthew R. Crawley
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | - David C. Lacy
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
7
|
Liu X, Xu Y, Li L, Li J. Chemoenzymatic Oxidation of Labdane and Formal Synthesis of Nimbolide. J Am Chem Soc 2024; 146:26243-26250. [PMID: 39276077 DOI: 10.1021/jacs.4c07956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
In nature, basic terpene skeletons are produced and subsequently undergo enzymatic or nonenzymatic oxidative transformations, leading to diverse structural variations. To date, thousands of natural products featuring a variety of oxidation patterns have been isolated solely from the labdane family. This work describes a strategy for the comprehensive introduction of oxidation states into the labdane core by employing a combination of enzyme library screening, directed evolution, and sequential chemical oxidation processes. Furthermore, we showcase the functional viability of our chemoenzymatic approach by accomplishing a formal synthesis of nimbolide, highlighting its potential for streamlining the synthesis of complex natural products.
Collapse
Affiliation(s)
- Xiaotao Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaoyao Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingling Li
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
9
|
Lai J, Xiao X, Shao S, Wang S, Kan J, Su W. Photoinduced Transition-Metal and External Photosensitizer Free Benzylic Fluorination of Unactivated Alkylarenes. Chemistry 2024; 30:e202401669. [PMID: 38970448 DOI: 10.1002/chem.202401669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/20/2024] [Accepted: 07/05/2024] [Indexed: 07/08/2024]
Abstract
A green and efficient protocol for the direct monofluorination of unactivated alkylarenes under visible-light irradiation has been developed, without any extraneous transition-metal catalysts or photosensitizers. This method is compatible with a broad spectrum of functional groups, including carboxylic and alcoholic scaffolds, under mild reaction conditions. Gram-scale synthesis of a fluorine-containing pharmaceutical analogue was successfully executed, underscoring the strategy's reliability and practicality. Furthermore, mechanistic studies suggest that a single-electron transfer mechanism might be responsible for the generation of the benzylic radicals in initiation step.
Collapse
Affiliation(s)
- Jiawen Lai
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Xuan Xiao
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Shixing Shao
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Shuping Wang
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Jian Kan
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou Fujian, P. R. China
| |
Collapse
|
10
|
Novaes LFT, Ho JSK, Mao K, Villemure E, Terrett JA, Lin S. α,β-Desaturation and Formal β-C(sp 3)-H Fluorination of N-Substituted Amines: A Late-Stage Functionalization Strategy Enabled by Electrochemistry. J Am Chem Soc 2024; 146:22982-22992. [PMID: 39132893 PMCID: PMC11366977 DOI: 10.1021/jacs.4c02548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Incorporation of C(sp3)-F bonds in biologically active compounds is a common strategy employed in medicinal and agricultural chemistry to tune pharmacokinetic and pharmacodynamic properties. Due to the limited number of robust strategies for C(sp3)-H fluorination of complex molecules, time-consuming de novo syntheses of such fluorinated analogs are typically required, representing a major bottleneck in the drug discovery process. In this work, we present a general and operationally simple strategy for site-specific β-C(sp3)-H fluorination of amine derivatives including carbamates, amides, and sulfonamides, which is compatible with a wide range of functional groups including N-heteroarenes. In this approach, an improved electrochemical Shono oxidation is used to set the site of functionalization via net α,β-desaturation to access enamine derivatives. We further developed a series of new transformations of these enamine intermediates to synthesize a variety of β-fluoro-α-functionalized structures, allowing efficient access to pertinent targets to accelerate drug discovery campaigns.
Collapse
Affiliation(s)
- Luiz F T Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Justin S K Ho
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Kaining Mao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Elisia Villemure
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, California 94080, United States
| | - Jack A Terrett
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, California 94080, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
11
|
Zhao Q, Chen Z, Soler J, Chen X, Rui J, Ji NT, Yu QE, Yang Y, Garcia-Borràs M, Huang X. Engineering non-haem iron enzymes for enantioselective C(sp3)-F bond formation via radical fluorine transfer. NATURE SYNTHESIS 2024; 3:958-966. [PMID: 39364063 PMCID: PMC11446476 DOI: 10.1038/s44160-024-00507-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/21/2024] [Indexed: 10/05/2024]
Abstract
In recent years there has been a surge in the development of methods for the synthesis of organofluorine compounds. However, enzymatic methods for C-F bond formation have been limited to nucleophilic fluoride substitution. Here, we report the incorporation of iron-catalysed radical fluorine transfer, a reaction mechanism that is not used in naturally occurring enzymes, into enzymatic catalysis for the development of biocatalytic enantioselective C(sp 3)-F bond formation. Using this strategy, we repurposed (S)-2-hydroxypropylphosphonate epoxidase from Streptomyces viridochromogenes (SvHppE) to catalyse an N-fluoroamide directed C(sp 3)-H fluorination. Directed evolution has enabled SvHppE to be optimized, forming diverse chiral benzylic fluoride products with turnover numbers of up to 180 and with excellent enantiocontrol (up to 94% e.e.). Mechanistic investigations showed that the N-F bond activation is the rate-determining step, and the strong preference for fluorination in the presence of excess NaN3 can be attributed to the spatial proximity of the carbon-centered radical to the iron-bound fluoride.
Collapse
Affiliation(s)
- Qun Zhao
- School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Zhenhong Chen
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jordi Soler
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Xiahe Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jinyan Rui
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nathan Tianlin Ji
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Yunfang Yang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Xiongyi Huang
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
12
|
Zhao CG, Cai J, Du C, Gao Q, Han J, Xie J. Manganese(I)-Catalyzed Enantioselective C(sp 2)-C(sp 3) Bond-Forming for the Synthesis of Skipped Dienes with Synergistic Aminocatalysis. Angew Chem Int Ed Engl 2024; 63:e202400177. [PMID: 38488857 DOI: 10.1002/anie.202400177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Indexed: 04/09/2024]
Abstract
Mn(I)-catalyzed enantioselective C-C bond-forming reactions represent a great challenge in homogeneous catalysis primarily due to a limited understanding of its mechanistic principles. Herein, we have developed an interesting catalytic strategy that leverages a synergistic combination of a dimeric manganese(I) catalyst and a chiral aminocatalyst to address this issue. A range of conjugated dienals and trienals can exclusively proceed 1,4-hydroalkenylation by using readily available aromatic and aliphatic alkenyl boronic acids as coupling partners, producing a rich library of skipped diene aldehydes in synthetically useful yields and high levels of enantioselectivities. Notably, downstream transformations of these products can not only afford a concise approach to construct enantioenriched skipped trienes but also realize enantioselective total synthesis of analogues to (-)-Blepharocalyxin D in four steps. DFT calculations suggest the 1,4-hydroalkenylation is kinetically more favorable than 1,6-hydroalkenylation.
Collapse
Affiliation(s)
- Chuan-Gang Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Junzhe Cai
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chaoyu Du
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qi Gao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
13
|
Galeotti M, Bietti M, Costas M. Catalyst and Medium Control over Rebound Pathways in Manganese-Catalyzed Methylenic C-H Bond Oxidation. J Am Chem Soc 2024; 146:8904-8914. [PMID: 38506665 PMCID: PMC10996012 DOI: 10.1021/jacs.3c11555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
The C(sp3)-H bond oxygenation of a variety of cyclopropane containing hydrocarbons with hydrogen peroxide catalyzed by manganese complexes containing aminopyridine tetradentate ligands was carried out. Oxidations were performed in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and 2,2,2-trifluoroethanol (TFE) using different manganese catalysts and carboxylic acid co-ligands, where steric and electronic properties were systematically modified. Functionalization selectively occurs at the most activated C-H bonds that are α- to cyclopropane, providing access to carboxylate or 2,2,2-trifluoroethanolate transfer products, with no competition, in favorable cases, from the generally dominant hydroxylation reaction. The formation of mixtures of unrearranged and rearranged esters (oxidation in HFIP in the presence of a carboxylic acid) and ethers (oxidation in TFE) with full control over diastereoselectivity was observed, confirming the involvement of delocalized cationic intermediates in these transformations. Despite such a complex mechanistic scenario, by fine-tuning of catalyst and carboxylic acid sterics and electronics and leveraging on the relative contribution of cationic pathways to the reaction mechanism, control over product chemoselectivity could be systematically achieved. Taken together, the results reported herein provide powerful catalytic tools to rationally manipulate ligand transfer pathways in C-H oxidations of cyclopropane containing hydrocarbons, delivering novel products in good yields and, in some cases, outstanding selectivities, expanding the available toolbox for the development of synthetically useful C-H functionalization procedures.
Collapse
Affiliation(s)
- Marco Galeotti
- QBIS
Research Group, Institut de Química Computacional i Catàlisi
(IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Massimo Bietti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Miquel Costas
- QBIS
Research Group, Institut de Química Computacional i Catàlisi
(IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| |
Collapse
|
14
|
Reese PB. Remote functionalization reactions in steroids: discovery and application. Steroids 2024; 204:109362. [PMID: 38278283 DOI: 10.1016/j.steroids.2023.109362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/23/2023] [Accepted: 12/30/2023] [Indexed: 01/28/2024]
Abstract
Research published between 2001 and 2022 on the functionalization of remote positions of steroids, as well as the use of this technique in the generation of biologically active compounds has been reviewed. In the first section of the analysis established and novel methods for activation of sites deemed to be remote were reported. A series of manganese- (mainly), rhodium-, ruthenium- and osmium-centered porphyrins as catalysts in the presence of PIDA as oxidant have effected hydroxylation at C-1, -5, -6, -7, -11, -14, -15, -16, -17, -20, -24 and -25. Dioxiranes have been utilized in inserting hydroxyl groups at the 5, 12, 14, 15, 16, 17, 20, 24 and 25 positions (tertiary centers for the most part). Alcohols at C-12 and -16 were oxidized further to ketones. The Schönecker oxidation, discovered and developed during the period, has revolutionized the selective functionalization at C-12 of steroids possessing a 17-keto group. In the presence of iron-centered PDP- and MCP-based catalysts, hydrogen peroxide and acetic acid, substrates tended to be hydroxylated at C-6 and -12, with further oxidation to ketones often accompanying this reaction. The hypohalite reaction, utilizing the more modern Suarez conditions (irradiation in the presence of iodine and PIDA), was reported to facilitate the insertion of a hydroxyl moiety five atoms away from an existing alcohol oxygen. Steroidal-3β-diazoacetates tend to decompose on heating with di-rhodium-centered catalysts while activating carbons four or five atoms away. Chromium- and iron-based acetates were observed to functionalize C-5 and -25. Other reactions involving ring cleavage and halogenation, ketone irradiation and α-hydroxylation of ethers were also covered. The syntheses of compounds with marked biological activity from readily available steroids is described in the second section of the study. Cyclopamine, cephalostatin-1, ritterazine B and three polyhydroxypregnanaes (pergularin, utendin and tomentogenin) were generated in sequences in which a key step required hydroxylation at C-12 using the Schönecker reaction. A crucial stage in the preparation of cortistatin A, the saundersioside core, eurysterol A, 5,6-dihydroglaucogenin C, as well as clinostatins A and B involved the functionalization of C-18 or -19 utilizing hypohalite chemistry. The synthetic route to xestobergsterol A, pavonin-4-aglycone and ouagabagenin included a transformation where ketone irradiation played a part in either producing a Δ14 or a C-19 activated steroid. The radical relay reaction, where a 17α-chloro-steroid was formed, was central in the generation of pythocholic acid. The lead tetraacetate reaction was pivotal in the functionalization of C-19 during the synthesis of cyclocitrinol.
Collapse
Affiliation(s)
- Paul B Reese
- Department of Chemistry, The University of the West Indies, Mona, Kingston 7, Jamaica.
| |
Collapse
|
15
|
Huo T, Zhao X, Cheng Z, Wei J, Zhu M, Dou X, Jiao N. Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing. Acta Pharm Sin B 2024; 14:1030-1076. [PMID: 38487004 PMCID: PMC10935128 DOI: 10.1016/j.apsb.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 11/13/2023] [Indexed: 03/17/2024] Open
Abstract
Synthetic chemistry plays an indispensable role in drug discovery, contributing to hit compounds identification, lead compounds optimization, candidate drugs preparation, and so on. As Nobel Prize laureate James Black emphasized, "the most fruitful basis for the discovery of a new drug is to start with an old drug"1. Late-stage modification or functionalization of drugs, natural products and bioactive compounds have garnered significant interest due to its ability to introduce diverse elements into bioactive compounds promptly. Such modifications alter the chemical space and physiochemical properties of these compounds, ultimately influencing their potency and druggability. To enrich a toolbox of chemical modification methods for drug discovery, this review focuses on the incorporation of halogen, oxygen, and nitrogen-the ubiquitous elements in pharmacophore components of the marketed drugs-through late-stage modification in recent two decades, and discusses the state and challenges faced in these fields. We also emphasize that increasing cooperation between chemists and pharmacists may be conducive to the rapid discovery of new activities of the functionalized molecules. Ultimately, we hope this review would serve as a valuable resource, facilitating the application of late-stage modification in the construction of novel molecules and inspiring innovative concepts for designing and building new drugs.
Collapse
Affiliation(s)
- Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| |
Collapse
|
16
|
Jeong D, Lee Y, Lee Y, Kim K, Cho J. Synthesis, Characterization, and Reactivity of a Highly Oxidative Mononuclear Manganese(IV)-Bis(Fluoro) Complex. J Am Chem Soc 2024; 146:4172-4177. [PMID: 38311844 DOI: 10.1021/jacs.3c13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Recently, transition-metal terminal nonoxo complexes have shown a remarkable ability to activate and functionalize C-H bonds via proton-coupled electron transfer (PCET). Here we report the first example of a mononuclear manganese(IV) bis(fluoro) complex bearing a tetradentate pyridinophane ligand, [MnIV(TBDAP)(F)2]2+ (3), with an X-ray single crystal structure and physicochemical characterization. The manganese(IV) bis(fluoro) complex has a very high reduction potential of 1.61 V vs SCE, thereby enabling the four-electron oxidation of mesitylene to 3,5-dimethylbenzaldehyde. Kinetic studies, including the kinetic isotope effect and employment of other toluene derivatives, reveal the electron transfer (ET)-driven PCET in the C-H bond activation of mesitylene by 3. This novel metal halide intermediate would be prominently valuable for expanding transition-metal halide chemistry.
Collapse
Affiliation(s)
- Donghyun Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yujeong Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yuri Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyungmin Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
17
|
Yu K, Zhang K, Jakob RP, Maier T, Ward TR. An artificial nickel chlorinase based on the biotin-streptavidin technology. Chem Commun (Camb) 2024; 60:1944-1947. [PMID: 38277163 PMCID: PMC10863421 DOI: 10.1039/d3cc05847f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Herein, we report on an artificial nickel chlorinase (ANCase) resulting from anchoring a biotinylated nickel-based cofactor within streptavidin (Sav). The resulting ANCase was efficient for the chlorination of diverse C(sp3)-H bonds. Guided by the X-ray analysis of the ANCase, the activity of the artificial chlorinase could be significantly improved. This approach opens interesting perspectives for late-stage functionalization of organic intermediates as it complements biocatalytic chlorination strategies.
Collapse
Affiliation(s)
- Kun Yu
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel, CH-4058, Switzerland.
| | - Kailin Zhang
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel, CH-4058, Switzerland.
| | - Roman P Jakob
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH-4056, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH-4056, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel, CH-4058, Switzerland.
| |
Collapse
|
18
|
Yuan Z, Britton R. Development and application of decatungstate catalyzed C-H 18F- and 19F-fluorination, fluoroalkylation and beyond. Chem Sci 2023; 14:12883-12897. [PMID: 38023504 PMCID: PMC10664588 DOI: 10.1039/d3sc04027e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Over the past few decades, photocatalytic C-H functionalization reactions have received increasing attention due to the often mild reaction conditions and complementary selectivities to conventional functionalization processes. Now, photocatalytic C-H functionalization is a widely employed tool, supporting activities ranging from complex molecule synthesis to late-stage structure-activity relationship studies. In this perspective, we will discuss our efforts in developing a photocatalytic decatungstate catalyzed C-H fluorination reaction as well as its practical application realized through collaborations with industry partners at Hoffmann-La Roche and Merck, and extension to radiofluorination with radiopharmaceutical chemists and imaging experts at TRIUMF and the BC Cancer Agency. Importantly, we feel that our efforts address a question of utility posed by Professor Tobias Ritter in "Late-Stage Fluorination: Fancy Novelty or Useful Tool?" (ACIE, 2015, 54, 3216). In addition, we will discuss decatungstate catalyzed C-H fluoroalkylation and the interesting electrostatic effects observed in decatungstate-catalyzed C-H functionalization. We hope this perspective will inspire other researchers to explore the use of decatungstate for the purposes of photocatalytic C-H functionalization and further advance the exploitation of electrostatic effects for both rate acceleration and directing effects in these reactions.
Collapse
Affiliation(s)
- Zheliang Yuan
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S2 Canada
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University Jinhua Zhejiang 321004 China
| | - Robert Britton
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S2 Canada
| |
Collapse
|
19
|
Yadav V, Wen L, Yadav S, Siegler MA, Goldberg DP. Selective Radical Transfer in a Series of Nonheme Iron(III) Complexes. Inorg Chem 2023; 62:17830-17842. [PMID: 37857315 PMCID: PMC11296666 DOI: 10.1021/acs.inorgchem.3c02617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A series of nonheme iron complexes, FeIII(BNPAPh2O)(Lax)(Leq) (Lax/eq = N3-, NCS-, NCO-, and Cl-) have been synthesized using the previously reported BNPAPh2O- ligand. The ferrous analogs FeII(BNPAPh2O)(Lax) (Lax = N3-, NCS-, and NCO-) were also prepared. The complexes were structurally characterized using single crystal X-ray diffraction, which shows that all the FeIII complexes are six-coordinate, with one anionic ligand (Lax) in the H-bonding axial site and the other anionic ligand (Leq) in the equatorial plane, cis to the Lax ligand. The reaction of FeIII(BNPAPh2O-)(Lax)(Leq) with Ph3C• shows that one ligand is selectively transferred in each case. A selectivity trend emerges that shows •N3 is the most favored for transfer in each case to the carbon radical, whereas Cl• is the least favored. The NCO and NCS ligands showed an intermediate propensity for radical transfer, with NCS > NCO. The overall order of selectivity is N3 > NCS > NCO > Cl. In addition, we also demonstrated that H-bonding has a small effect on governing product selectivity by using a non-H-bonded ligand (DPAPh2O-). This study demonstrates the inherent radical transfer selectivity of nonhydroxo-ligated nonheme iron(III) complexes, which could be useful for efforts in synthetic and (bio)catalytic C-H functionalization.
Collapse
Affiliation(s)
- Vishal Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Lyupeng Wen
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Sudha Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
20
|
Chen CL, Wang HY, Weng ZZ, Long LS, Zheng LS, Kong XJ. Uranyl Polyoxotungstate Cluster for Visible-Light-Driven Heterogeneous C-H Selective Fluorination. Inorg Chem 2023; 62:17041-17045. [PMID: 37819767 DOI: 10.1021/acs.inorgchem.3c02531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The selective fluorination of C-H bonds at room temperature using heterogeneous visible-light catalysts is both interesting and challenging. Herein, we present the heterogeneous sandwich-type structure uranyl-polyoxotungstate cluster Na17{Na@[(SbW9O33)2(UO2)6(PO3OH)6]}·46H2O (denoted as U6P6) to regulate the selective fluorination of the C-H bond under visible light and room temperature. This is the first report in which uranyl participates in the fluorination reaction in the form of an insoluble substance. U6P6 is capable of the effective selective fluorination of cycloalkanes and the recyclability of the photocatalyst due to the synergistic effect of multiple uranyl (UO2)2+ and the insolubility of organic reagents of polyoxotungstate. In situ electron paramagnetic resonance spectroscopy captured the generation of cycloalkane radicals during the photoreaction, confirming the mechanism of direct hydrogen atom transfer.
Collapse
Affiliation(s)
- Chao-Long Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - Hai-Ying Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - Zhen-Zhang Weng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| |
Collapse
|
21
|
Wang M, Rowshanpour R, Guan L, Ruskin J, Nguyen PM, Wang Y, Zhang QA, Liu R, Ling B, Woltornist R, Stephens AM, Prasad A, Dudding T, Lectka T, Pitts CR. Competition between C-C and C-H Bond Fluorination: A Continuum of Electron Transfer and Hydrogen Atom Transfer Mechanisms. J Am Chem Soc 2023; 145:22442-22455. [PMID: 37791901 DOI: 10.1021/jacs.3c06477] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
In 2015, we reported a photochemical method for directed C-C bond cleavage/radical fluorination of relatively unstrained cyclic acetals using Selectfluor and catalytic 9-fluorenone. Herein, we provide a detailed mechanistic study of this reaction, during which it was discovered that the key electron transfer step proceeds through substrate oxidation from a Selectfluor-derived N-centered radical intermediate (rather than through initially suspected photoinduced electron transfer). This finding led to proof of concept for two new methodologies, demonstrating that unstrained C-C bond fluorination can also be achieved under chemical and electrochemical conditions. Moreover, as C-C and C-H bond fluorination reactions are both theoretically possible on 2-aryl-cycloalkanone acetals and would involve the same reactive intermediate, we studied the competition between single-electron transfer (SET) and apparent hydrogen-atom transfer (HAT) pathways in acetal fluorination reactions using density functional theory. Finally, these analyses were applied more broadly to other classes of C-H and C-C bond fluorination reactions developed over the past decade, addressing the feasibility of SET processes masquerading as HAT in C-H fluorination literature.
Collapse
Affiliation(s)
- Muyuan Wang
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Rozhin Rowshanpour
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way St. Catharines, Ontario L2S 3A1, Canada
| | - Liangyu Guan
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen 51832, China
| | - Jonah Ruskin
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Phuong Minh Nguyen
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Yuang Wang
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Qinze Arthur Zhang
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Ran Liu
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Bill Ling
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Ryan Woltornist
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Alexander M Stephens
- Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Aarush Prasad
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Travis Dudding
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way St. Catharines, Ontario L2S 3A1, Canada
| | - Thomas Lectka
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Cody Ross Pitts
- Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
22
|
Koser L, Bach T. Total Synthesis of (-)-5-Deoxyenterocin and Attempted Late-Stage Functionalization Reactions. Chemistry 2023; 29:e202301996. [PMID: 37452638 DOI: 10.1002/chem.202301996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
The first total synthesis of (-)-5-deoxyenterocin has been accomplished starting from pentane-1,3,5-triol (16 steps in the longest linear sequence, 0.2 % overall yield). (-)-Menthone served as the source of chirality to distinguish the enantiotopic hydroxymethyl groups of the substrate. Key steps of the synthesis include two aldol reactions to either end of the C5 -skeleton, a diastereoselective hydroxylation reaction and a biomimetic twofold intramolecular aldol reaction as the final step. Although this step suffered from geometrical constraints and was low yielding (10 %), enough synthetic material could be secured to substantiate the relative and absolute configuration of the natural product. Additional experiments were directed toward a C-H functionalization at carbon atom C5. Despite the fact that several protocols could be successfully applied to (3aR)-(+)-sclareolide as model substrate, (-)-5-deoxyenterocin withstood any selective functionalization.
Collapse
Affiliation(s)
- Lilla Koser
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| |
Collapse
|
23
|
Sisti S, Galeotti M, Scarchilli F, Salamone M, Costas M, Bietti M. Highly Selective C(sp 3)-H Bond Oxygenation at Remote Methylenic Sites Enabled by Polarity Enhancement. J Am Chem Soc 2023; 145:22086-22096. [PMID: 37751483 PMCID: PMC10571082 DOI: 10.1021/jacs.3c07658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Indexed: 09/28/2023]
Abstract
A detailed study on the C(sp3)-H bond oxygenation reactions with H2O2 catalyzed by the [Mn(OTf)2(TIPSmcp)] complex at methylenic sites of cycloalkyl and 1-alkyl substrates bearing 19 different electron-withdrawing functional groups (EW FGs) was carried out. Oxidations in MeCN were compared to the corresponding ones in the strong hydrogen bond donating (HBD) solvents 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and nonafluoro tert-butyl alcohol (NFTBA). Formation of the products deriving from oxygenation at the most remote methylenic sites was observed, with yields, product ratios (PR) for oxygenation at the most remote over the next methylenic sites, and associated site-selectivities that significantly increased going from MeCN to HFIP and NFTBA. Unprecedented site-selectivities were obtained in the oxidation of cyclohexyl, cycloheptyl, cyclooctyl, 1-pentyl, 1-hexyl, and 1-heptyl substrates, approaching >99%, >99%, 90%, >99%, 93%, and 88% (PR >99, >99, 9.4, >99, 14, and 7.5) with cyclohexyl-2-pyridinecarboxylate, cycloheptyl-2-pyridinecarboxylate, cyclooctyl-4-nitrobenzenesulfonamide, 1-pentyl-3,5-dinitrobenzoate, 1-hexyl-3,5-dinitrobenzoate, and 1-heptyl-3,5-dinitrobenzoate, respectively. The results are rationalized on the basis of a polarity enhancement effect via synergistic electronic deactivation of proximal methylenic sites imparted by the EWG coupled to solvent HB. Compared to previous procedures, polarity enhancement provides the opportunity to tune site-selectivity among multiple methylenes in different substrate classes, extending the strong electronic deactivation determined by native EWGs by two carbon atoms. This study uncovers a simple procedure for predictable, high-yielding, and highly site-selective oxidation at remote methylenes of cycloalkyl and 1-alkyl substrates that occurs under mild conditions, with a large substrate scope, providing an extremely powerful tool to be implemented in synthetically useful procedures.
Collapse
Affiliation(s)
- Sergio Sisti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Marco Galeotti
- QBIS
Research Group, Institut de Química Computacional i Catàlisi
(IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Filippo Scarchilli
- QBIS
Research Group, Institut de Química Computacional i Catàlisi
(IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Michela Salamone
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Miquel Costas
- QBIS
Research Group, Institut de Química Computacional i Catàlisi
(IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Massimo Bietti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| |
Collapse
|
24
|
Tang J, Lu F, Sun Y, Zhang G, Zhang E, Jiang YY. Late-Stage Diversification of Peptides via Pd-Catalyzed Site-Selective δ-C(sp 2)-H Fluorination and Amination. J Org Chem 2023; 88:14165-14171. [PMID: 37751495 DOI: 10.1021/acs.joc.3c01897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Site-selective C-H fluorination is an attractive strategy for directly transforming inert C-H bonds into C-F bonds, yet it remains a significant challenge. Herein, we have developed an efficient and versatile strategy for site-selective fluorination and amination of phenylalanine-containing peptides via late-stage Pd-catalyzed δ-C(sp2)-H activation, providing a valuable tool for the in situ synthesis of fluorinated indoline scaffolds within peptides.
Collapse
Affiliation(s)
- Jian Tang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210096, China
| | - Fengjie Lu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yi Sun
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Guodong Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Ensheng Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuan-Ye Jiang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
25
|
Nemoto DT, Bian KJ, Kao SC, West JG. Radical ligand transfer: a general strategy for radical functionalization. Beilstein J Org Chem 2023; 19:1225-1233. [PMID: 37614927 PMCID: PMC10442530 DOI: 10.3762/bjoc.19.90] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023] Open
Abstract
The place of alkyl radicals in organic chemistry has changed markedly over the last several decades, evolving from challenging-to-generate "uncontrollable" species prone to side reactions to versatile reactive intermediates enabling construction of myriad C-C and C-X bonds. This maturation of free radical chemistry has been enabled by several advances, including the proliferation of efficient radical generation methods, such as hydrogen atom transfer (HAT), alkene addition, and decarboxylation. At least as important has been innovation in radical functionalization methods, including radical-polar crossover (RPC), enabling these intermediates to be engaged in productive and efficient bond-forming steps. However, direct engagement of alkyl radicals remains challenging. Among these functionalization approaches, a bio-inspired mechanistic paradigm known as radical ligand transfer (RLT) has emerged as a particularly promising and versatile means of forming new bonds catalytically to alkyl radicals. This development has been driven by several key features of RLT catalysis, including the ability to form diverse bonds (including C-X, C-N, and C-S), the use of simple earth abundant element catalysts, and the intrinsic compatibility of this approach with varied radical generation methods, including HAT, radical addition, and decarboxylation. Here, we provide an overview of the evolution of RLT catalysis from initial studies to recent advances and provide a conceptual framework we hope will inspire and enable future work using this versatile elementary step.
Collapse
Affiliation(s)
- David T Nemoto
- Department of Chemistry, Rice University, 6100 Main St MS 602, Houston, TX 77005, USA
| | - Kang-Jie Bian
- Department of Chemistry, Rice University, 6100 Main St MS 602, Houston, TX 77005, USA
| | - Shih-Chieh Kao
- Department of Chemistry, Rice University, 6100 Main St MS 602, Houston, TX 77005, USA
| | - Julian G West
- Department of Chemistry, Rice University, 6100 Main St MS 602, Houston, TX 77005, USA
| |
Collapse
|
26
|
Jiang Y, Liu D, Rotella ME, Deng G, Liu Z, Chen W, Zhang H, Kozlowski MC, Walsh PJ, Yang X. Net-1,2-Hydrogen Atom Transfer of Amidyl Radicals: Toward the Synthesis of 1,2-Diamine Derivatives. J Am Chem Soc 2023; 145:16045-16057. [PMID: 37441806 PMCID: PMC10411589 DOI: 10.1021/jacs.3c04376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Hydrogen atom transfer (HAT) processes are among the most useful approaches for the selective construction of C(sp3)-C(sp3) bonds. 1,5-HAT with heteroatom-centered radicals (O•, N•) have been well established and are favored relative to other 1,n-HAT processes. In comparison, net 1,2-HAT processes have been observed infrequently. Herein, the first amidyl radicalls are reported that preferentially undergo a net 1,2-HAT over 1,5-HAT. Beginning with single electron transfer from 2-azaallyl anions to N-alkyl N-aryloxy amides, the latter generate amidyl radicals. The amidyl radical undergoes a net-1,2-HAT to generate a C-centered radical that participates in an intermolecular radical-radical coupling with the 2-azaallyl radical to generate 1,2-diamine derivatives. Mechanistic and EPR experiments point to radical intermediates. Density functional theory calculations provide support for a base-assisted, stepwise-1,2-HAT process. It is proposed that the generation of amidyl radicals under basic conditions can be greatly expanded to access α-amino C-centered radicals that will serve as valuable synthetic intermediates.
Collapse
Affiliation(s)
- Yonggang Jiang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Dongxiang Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Madeline E. Rotella
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, 19104, United States
| | - Guogang Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Zhengfen Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Marisa C. Kozlowski
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, 19104, United States
| | - Patrick J. Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, 19104, United States
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| |
Collapse
|
27
|
Castellino NJ, Montgomery AP, Danon JJ, Kassiou M. Late-stage Functionalization for Improving Drug-like Molecular Properties. Chem Rev 2023. [PMID: 37285604 DOI: 10.1021/acs.chemrev.2c00797] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of late-stage functionalization (LSF) methodologies, particularly C-H functionalization, has revolutionized the field of organic synthesis. Over the past decade, medicinal chemists have begun to implement LSF strategies into their drug discovery programs, allowing for the drug discovery process to become more efficient. Most reported applications of late-stage C-H functionalization of drugs and drug-like molecules have been to rapidly diversify screening libraries to explore structure-activity relationships. However, there has been a growing trend toward the use of LSF methodologies as an efficient tool for improving drug-like molecular properties of promising drug candidates. In this review, we have comprehensively reviewed recent progress in this emerging area. Particular emphasis is placed on case studies where multiple LSF techniques were implemented to generate a library of novel analogues with improved drug-like properties. We have critically analyzed the current scope of LSF strategies to improve drug-like properties and commented on how we believe LSF can transform drug discovery in the future. Overall, we aim to provide a comprehensive survey of LSF techniques as tools for efficiently improving drug-like molecular properties, anticipating its continued uptake in drug discovery programs.
Collapse
Affiliation(s)
| | | | - Jonathan J Danon
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
28
|
Leibler INM, Gandhi SS, Tekle-Smith MA, Doyle AG. Strategies for Nucleophilic C(sp 3)-(Radio)Fluorination. J Am Chem Soc 2023; 145:9928-9950. [PMID: 37094357 DOI: 10.1021/jacs.3c01824] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
This Perspective surveys the progress and current limitations of nucleophilic fluorination methodologies. Despite the long and rich history of C(sp3)-F bond construction in chemical research, the inherent challenges associated with this transformation have largely constrained nucleophilic fluorination to a privileged reaction platform. In recent years, the Doyle group─along with many others─has pursued the study and development of this transformation with the intent of generating deeper mechanistic understanding, developing user-friendly fluorination reagents, and contributing to the invention of synthetic methods capable of enabling radiofluorination. Studies from our laboratory are discussed along with recent developments from others in this field. Fluoride reagent development and the mechanistic implications of reagent identity are highlighted. We also outline the chemical space inaccessible by current synthetic technologies and a series of future directions in the field that can potentially fill the existing dark spaces.
Collapse
Affiliation(s)
| | - Shivaani S Gandhi
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Makeda A Tekle-Smith
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Abigail G Doyle
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
29
|
Panda C, Anny-Nzekwue O, Doyle LM, Gericke R, McDonald AR. Evidence for a High-Valent Iron-Fluoride That Mediates Oxidative C(sp 3)-H Fluorination. JACS AU 2023; 3:919-928. [PMID: 37006763 PMCID: PMC10052241 DOI: 10.1021/jacsau.3c00021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
[FeII(NCCH3)(NTB)](OTf)2 (NTB = tris(2-benzimidazoylmethyl)amine, OTf = trifluoromethanesulfonate) was reacted with difluoro(phenyl)-λ3-iodane (PhIF2) in the presence of a variety of saturated hydrocarbons, resulting in the oxidative fluorination of the hydrocarbons in moderate-to-good yields. Kinetic and product analysis point towards a hydrogen atom transfer oxidation prior to fluorine radical rebound to form the fluorinated product. The combined evidence supports the formation of a formally FeIV(F)2 oxidant that performs hydrogen atom transfer followed by the formation of a dimeric μ-F-(FeIII)2 product that is a plausible fluorine atom transfer rebound reagent. This approach mimics the heme paradigm for hydrocarbon hydroxylation, opening up avenues for oxidative hydrocarbon halogenation.
Collapse
|
30
|
Zhou A, Li XX, Sun D, Cao X, Wu Z, Chen H, Zhao Y, Nam W, Wang Y. Theoretical investigation on the elusive structure-activity relationship of bioinspired high-valence nickel-halogen complexes in oxidative fluorination reactions. Dalton Trans 2023; 52:1977-1988. [PMID: 36691931 DOI: 10.1039/d2dt03212k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Very recently, bioinspired high-valence metal-halogen complexes have been proven to be competent oxidants in the C-H bond activation and heteroatom dihalogenation reactions. However, the structure-activity relationship of such active species and the reaction mechanisms of oxidations mediated by these oxidants are still elusive. In this study, density functional theory (DFT) calculations were performed to systematically study the oxidizing ability of the high-valence NiIII-X (X = F and Cl) complexes Et4N[NiIII(Cl/F)(L)], (1Cl/F, Et = ethyl, L = N,N'-(2,6-dimethylphenyl)-2,6-pyridinedicarboxamide), such as the reaction mechanism of fluorination of 1,4-cyclohexadiene (CHD) by 1F in the presence of AgF and the reaction mechanism of difluorination of triphenyl phosphine (PPh3) by 1F. All calculated results fit well with the experiments and present new mechanistic findings. The C-H bond activation by the high-valence nickel(III)-halogen complexes was found to proceed via a hydrogen-atom transfer (HAT) mechanism by analysis of the molecular orbitals of the transition states. C-H bond activation by 1F takes a Ni-F-H angle of ca. 180°, whereas that by 1Cl takes an angle of ca. 120° on the transition states. These results indicate that the exchange-enhanced reactivity is responsible for the dramatic oxidative difference between these two oxidants. The role of AgF in C-H fluorination of CHD by 1F is proposed to act as a Lewis acid adduct, AgF-binding Ni(III)-fluorine complex 1F-Ag-F, which acts both as an oxidant in C-H bond activation and as a fluorine donor in the fluorination step. A cooperative oxidation mechanism involving two 1F oxidants was proposed for the difluorination of PPh3 by 1F. These theoretical findings will enrich the knowledge of high-valence metal-halogen chemistry and play a positive role in the rational design of new catalysts.
Collapse
Affiliation(s)
- Anran Zhou
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Xiao-Xi Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao 266237, China
| | - Dongru Sun
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Xuanyu Cao
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Zhimin Wu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Huanhuan Chen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | - Yong Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
31
|
Sukiennik J, Pranowo A, Domański S, Hurej K. Manganese(III) porphyrin-catalyzed regioselective dual functionalization of C(sp 3)-H bonds: the transformation of arylalkanes to 1,4-diketones. Chem Commun (Camb) 2023; 59:1149-1152. [PMID: 36594254 DOI: 10.1039/d2cc06126k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The first, direct way from arylalkanes to 1,4-dicarbonyl compounds has been shown. It makes obtaining these useful products more accessible and cheaper. Our method is based on a one-pot reaction with excellent regioselectivity, mild conditions, and water as the main solvent. A plausible reaction mechanism has also been proposed.
Collapse
Affiliation(s)
- Jakub Sukiennik
- Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, Wrocław 50383, Poland.
| | - Audrey Pranowo
- Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, Wrocław 50383, Poland.
| | | | - Karolina Hurej
- Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, Wrocław 50383, Poland.
| |
Collapse
|
32
|
Hintz H, Bower J, Tang J, LaLama M, Sevov C, Zhang S. Copper-Catalyzed Electrochemical C-H Fluorination. CHEM CATALYSIS 2023; 3:100491. [PMID: 36743279 PMCID: PMC9894310 DOI: 10.1016/j.checat.2022.100491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report the systematic development of an electrooxidative methodology that translates stoichiometric C-H fluorination reactivity of an isolable CuIII fluoride complex into a catalytic process. The critical challenges of electrocatalysis with a highly reactive CuIII species were addressed by the judicious selection of electrolyte, F- source, and sacrificial electron acceptor. Catalyst-controlled C-H fluorination occurs with a preference for hydridic C-H bonds with high bond dissociation energies over weaker but less hydridic C-H bonds. The selectivity is driven by an oxidative asynchronous proton-coupled elelctron transfer (PCET) at an electrophilic CuIII-F complex. We further demonstrate that the asynchronicity factor of hydrogen atom transfer η can be used as a guideline to rationalize the selectivity of C-H fluorination.
Collapse
Affiliation(s)
- Heather Hintz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Jamey Bower
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Jinghua Tang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Matthew LaLama
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Christo Sevov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Shiyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| |
Collapse
|
33
|
Mandal A, Jang J, Yang B, Kim H, Shin K. Palladium-Catalyzed Electrooxidative Hydrofluorination of Aryl-Substituted Alkenes with a Nucleophilic Fluorine Source. Org Lett 2023; 25:195-199. [PMID: 36583971 DOI: 10.1021/acs.orglett.2c04045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein, we report an electrocatalytic hydrofluorination of aryl-substituted alkenes with a nucleophilic fluorine source. The merger of palladium catalysis with electrooxidation enables the transformation of various substrates ranging from styrenes to more challenging α,β-unsaturated carbonyl derivatives to the corresponding benzylic fluorides. This method can also be applied to the late-stage modification of pharmaceutical derivatives. Mechanistic studies suggest that the generation of a high-valent palladium intermediate via anodic oxidation is the crucial step in this electrocatalytic hydrofluorination.
Collapse
Affiliation(s)
- Anup Mandal
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jieun Jang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Baeho Yang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kwangmin Shin
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
34
|
Yakubov S, Stockerl WJ, Tian X, Shahin A, Mandigma MJP, Gschwind RM, Barham JP. Benzoates as photosensitization catalysts and auxiliaries in efficient, practical, light-powered direct C(sp 3)-H fluorinations. Chem Sci 2022; 13:14041-14051. [PMID: 36540818 PMCID: PMC9728569 DOI: 10.1039/d2sc05735b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 10/28/2022] [Indexed: 12/14/2023] Open
Abstract
Of the methods for direct fluorination of unactivated C(sp3)-H bonds, photosensitization of SelectFluor is a promising approach. Although many substrates can be activated with photosensitizing catalysts, issues remain that hamper fluorination of complex molecules. Alcohol- or amine-containing functional groups are not tolerated, fluorination regioselectivity follows factors endogenous to the substrate and cannot be influenced by the catalyst, and reactions are highly air-sensitive. We report that benzoyl groups serve as highly efficient photosensitizers which, in combination with SelectFluor, enable visible light-powered direct fluorination of unactivated C(sp3)-H bonds. Compared to previous photosensitizer architectures, the benzoyls have versatility to function both (i) as a photosensitizing catalyst for simple substrate fluorinations and (ii) as photosensitizing auxiliaries for complex molecule fluorinations that are easily installed and removed without compromising yield. Our auxiliary approach (i) substantially decreases the reaction's induction period, (ii) enables C(sp3)-H fluorination of many substrates that fail under catalytic conditions, (iii) increases kinetic reproducibility, and (iv) promotes reactions to higher yields, in shorter times, on multigram scales, and even under air. Observations and mechanistic studies suggest an intimate 'assembly' of auxiliary and SelectFluor prior/after photoexcitation. The auxiliary allows other EnT photochemistry under air. Examples show how auxiliary placement proximally directs regioselectivity, where previous methods are substrate-directed.
Collapse
Affiliation(s)
- Shahboz Yakubov
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Willibald J Stockerl
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Xianhai Tian
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Ahmed Shahin
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
- Chemistry Department, Faculty of Science, Benha University 13518 Benha Egypt
| | - Mark John P Mandigma
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Ruth M Gschwind
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| |
Collapse
|
35
|
Zhou YP, Sun Y, Takahashi K, Belov V, Andrews N, Woolf CJ, Brugarolas P. Development of a PET radioligand for α2δ-1 subunit of calcium channels for imaging neuropathic pain. Eur J Med Chem 2022; 242:114688. [PMID: 36031695 PMCID: PMC9623503 DOI: 10.1016/j.ejmech.2022.114688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022]
Abstract
Neuropathic pain affects 7-10% of the adult population. Being able to accurately monitor biological changes underlying neuropathic pain will improve our understanding of neuropathic pain mechanisms and facilitate the development of novel therapeutics. Positron emission tomography (PET) is a noninvasive molecular imaging technique that can provide quantitative information of biochemical changes at the whole-body level by using radiolabeled ligands. One important biological change underlying the development of neuropathic pain is the overexpression of α2δ-1 subunit of voltage-dependent calcium channels (the target of gabapentin). Thus, we hypothesized that a radiolabeled form of gabapentin may allow imaging changes in α2δ-1 for monitoring the underlying pathophysiology of neuropathic pain. Here, we report the development of two 18F-labeled derivatives of gabapentin (trans-4-[18F]fluorogabapentin and cis-4-[18F]fluorogabapentin) and their evaluation in healthy rats and a rat model of neuropathic pain (spinal nerve ligation model). Both isomers were found to selectively bind to the α2δ-1 receptor with trans-4-[18F]fluorogabapentin having higher affinity. Both tracers displayed around 1.5- to 2-fold increased uptake in injured nerves over the contralateral uninjured nerves when measured by gamma counting ex vivo. Although the small size of the nerves and the signal from surrounding muscle prevented visualizing these changes using PET, this work demonstrates that fluorinated derivatives of gabapentin retain binding to α2δ-1 and that their radiolabeled forms can be used to detect pathological changes in vitro and ex vivo. Furthermore, this work confirms that α2δ-1 is a promising target for imaging specific features of neuropathic pain.
Collapse
Affiliation(s)
- Yu-Peng Zhou
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yang Sun
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kazue Takahashi
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Vasily Belov
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nick Andrews
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pedro Brugarolas
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Shen C, Dagnaw WM, Fong CW, Lau KC, Chow CF. Selective functionalization of C(sp 3)-H bonds: catalytic chlorination and bromination by Iron III-acacen-halide under ambient condition. Chem Commun (Camb) 2022; 58:10627-10630. [PMID: 36069398 DOI: 10.1039/d2cc02924c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidative catalytic halogenations of the C(sp3)-H bond of alkanes promoted by FeIII(acacen)Cl (1III-Cl) and FeIII(acacen)Br (1III-Br) in the presence of trifluoroacetic acid (TFA) were investigated. Four major steps were involved: (i) formation of [FeV(acacen)(oxo)X] species (X = Cl or Br), (ii) hydrogen-atom transfer, (iii) halogen atom rebound, and (iv) regeneration of 1III-Cl or 1III-Br. TFA played a significant role in (i) forming the high-valent iron-oxo intermediate and (ii) generating the reaction selectivity.
Collapse
Affiliation(s)
- Chang Shen
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong SAR, China.
| | - Wasihun Menberu Dagnaw
- Department of Chemistry, The City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, SAR, China.
| | - Ching Wai Fong
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong SAR, China.
| | - Kai Chung Lau
- Department of Chemistry, The City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, SAR, China.
| | - Cheuk-Fai Chow
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong SAR, China.
| |
Collapse
|
37
|
Hasanzadeh A, Vahabi AH, Hooshmand SE, Hosseini ES, Azar BKY, Kiani J, Saeedi S, Shahbazi A, Rudra A, Hamblin MR, Karimi M. Saponin and fluorine-modified polycation as a versatile gene delivery system. NANOTECHNOLOGY 2022; 33:445101. [PMID: 35882099 DOI: 10.1088/1361-6528/ac842d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Despite the development of many novel carriers for the delivery of various types of genetic material, the lack of a delivery system with high efficiency and low cytotoxicity is a major bottleneck. Herein, low molecular weight polyethylenimine (PEI1.8k) was functionalized with saponin residues using phenylboronic acid (PBA) as an ATP-responsive cross-linker, and a fluorinated side chain to construct PEI-PBA-SAP-F polycation as a highly efficient delivery vector. This vehicle could transfect small plasmid DNA (∼3 kb) with outstanding efficiency into various cells, including HEK 293T, NIH3T3, A549, PC12, MCF7 and HT-29, as well as robust transfection of a large plasmid (∼9 kb) into HEK 293T cells. The carrier indicated good transfection efficacy even at high concentration of serum and low doses of plasmid. The use of green fluorescent protein (GFP) knock-out analysis demonstrated transfection of different types of CRISPR/Cas9 complexes (Cas9/sgRNA ribonucleoproteins RNP, plasmid encoding Cas9 plus sgRNA targeting GFP, Cas9 expression plasmid plusin vitro-prepared sgRNA). In summary, we report an effective PEI-PBA-SAP-F gene carrier with the appropriate lipophilic/cationic balance for biomedical applications.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Vahabi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyyed Emad Hooshmand
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elaheh Sadat Hosseini
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behjat Kheiri Yeghaneh Azar
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Saeedi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arnab Rudra
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Bian KJ, Nemoto D, Kao SC, He Y, Li Y, Wang XS, West JG. Modular Difunctionalization of Unactivated Alkenes through Bio-Inspired Radical Ligand Transfer Catalysis. J Am Chem Soc 2022; 144:11810-11821. [PMID: 35729791 DOI: 10.1021/jacs.2c04188] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Development of visible light-mediated atom transfer radical addition of haloalkanes onto unsaturated hydrocarbons has seen rapid growth in recent years. However, due to its radical chain propagation mechanism, diverse functionality other than the pre-existing (pseudo-)halide on the alkyl halide source cannot be incorporated into target molecules in a one-step, economic fashion. Inspired by the prominent reactivities shown by cytochrome P450 hydroxylase and non-heme iron-dependent oxygenases, we herein report the first modular, dual catalytic difunctionalization of unactivated alkenes via manganese-catalyzed radical ligand transfer (RLT). This RLT elementary step involves a coordinated nucleophile rebounding to a carbon-centered radical to form a new C-X bond in analogy to the radical rebound step in metalloenzymes. The protocol leverages the synergetic cooperation of both a photocatalyst and earth-abundant manganese complex to deliver two radical species in succession to minimally functionalized alkenes, enabling modular diversification of the radical intermediate by a high-valent manganese species capable of delivering various external nucleophiles. A broad scope (97 examples, including drugs/natural product motifs), mild conditions, and excellent chemoselectivity were shown for a variety of substrates and fluoroalkyl fragments. Mechanistic and kinetics studies provide insights into the radical nature of the dual catalytic transformation and support radical ligand transfer (RLT) as a new strategy to deliver diverse functionality selectively to carbon-centered radicals.
Collapse
Affiliation(s)
- Kang-Jie Bian
- Department of Chemistry, Rice University, 6500 Main St, Houston, Texas 77030, United States
| | - David Nemoto
- Department of Chemistry, Rice University, 6500 Main St, Houston, Texas 77030, United States
| | - Shih-Chieh Kao
- Department of Chemistry, Rice University, 6500 Main St, Houston, Texas 77030, United States
| | - Yan He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yan Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Julian G West
- Department of Chemistry, Rice University, 6500 Main St, Houston, Texas 77030, United States
| |
Collapse
|
39
|
Harry SA, Xiang MR, Holt E, Zhu A, Ghorbani F, Patel D, Lectka T. Hydroxy-directed fluorination of remote unactivated C(sp 3)-H bonds: a new age of diastereoselective radical fluorination. Chem Sci 2022; 13:7007-7013. [PMID: 35774162 PMCID: PMC9200124 DOI: 10.1039/d2sc01907h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/02/2022] [Indexed: 11/23/2022] Open
Abstract
We report a photochemically induced, hydroxy-directed fluorination that addresses the prevailing challenge of high diastereoselectivity in this burgeoning field. Numerous simple and complex motifs showcase a spectrum of regio- and stereochemical outcomes based on the configuration of the hydroxy group. Notable examples include a long-sought switch in the selectivity of the refractory sclareolide core, an override of benzylic fluorination, and a rare case of 3,3'-difluorination. Furthermore, calculations illuminate a low barrier transition state for fluorination, supporting our notion that alcohols are engaged in coordinated reagent direction. A hydrogen bonding interaction between the innate hydroxy directing group and fluorine is also highlighted for several substrates with 19F-1H HOESY experiments, calculations, and more.
Collapse
Affiliation(s)
- Stefan Andrew Harry
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Baltimore MD 21218 USA
| | - Michael Richard Xiang
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Baltimore MD 21218 USA
| | - Eric Holt
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Baltimore MD 21218 USA
| | - Andrea Zhu
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Baltimore MD 21218 USA
| | - Fereshte Ghorbani
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Baltimore MD 21218 USA
| | - Dhaval Patel
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Baltimore MD 21218 USA
| | - Thomas Lectka
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Baltimore MD 21218 USA
| |
Collapse
|
40
|
Golden DL, Suh SE, Stahl SS. Radical C(sp3)-H functionalization and cross-coupling reactions. Nat Rev Chem 2022; 6:405-427. [PMID: 35965690 PMCID: PMC9364982 DOI: 10.1038/s41570-022-00388-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2022] [Indexed: 11/09/2022]
Abstract
C─H functionalization reactions are playing an increasing role in the preparation and modification of complex organic molecules, including pharmaceuticals, agrochemicals, and polymer precursors. Radical C─H functionalization reactions, initiated by hydrogen-atom transfer (HAT) and proceeding via open-shell radical intermediates, have been expanding rapidly in recent years. These methods introduce strategic opportunities to functionalize C(sp3)─H bonds. Examples include synthetically useful advances in radical-chain reactivity and biomimetic radical-rebound reactions. A growing number of reactions, however, proceed via "radical relay" whereby HAT generates a diffusible radical that is functionalized by a separate reagent or catalyst. The latter methods provide the basis for versatile C─H cross-coupling methods with diverse partners. In the present review, highlights of recent radical-chain and radical-rebound methods provide context for a survey of emerging radical-relay methods, which greatly expand the scope and utility of intermolecular C(sp3)─H functionalization and cross coupling.
Collapse
Affiliation(s)
- Dung L. Golden
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
- These authors contributed equally: Dung L. Golden, Sung-Eun Suh
| | - Sung-Eun Suh
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
- These authors contributed equally: Dung L. Golden, Sung-Eun Suh
- Department of Chemistry, Ajou University, Suwon, Republic of Korea
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
| |
Collapse
|
41
|
Nishijo M, Mori S, Nishimura T, Shinokubo H, Miyake Y. Stepwise N-Methylation of Ruthenium and Cobalt 5,15-Diazaporphyrins: Post-Functionalization of Porphyrinoid Catalysts. Chem Asian J 2022; 17:e202200305. [PMID: 35513348 DOI: 10.1002/asia.202200305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/15/2022] [Indexed: 11/08/2022]
Abstract
Post-functionalization of porphyrinoid catalysts provides a powerful tool for fine-tuning their electronic structure. We have succeeded in the stepwise methylation of the peripheral nitrogen atoms in ruthenium and cobalt 5,15-diazaporphyrins. The axial coordination of an anion to the metal center accelerates the second methylation through charge neutralization. N-Methylation of the diazaporphyrin complexes effectively controls their electron deficiency, Lewis acidity, and catalytic activity.
Collapse
Affiliation(s)
- Mayu Nishijo
- Nagoya University: Nagoya Daigaku, Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, JAPAN
| | - Shiho Mori
- Nagoya University: Nagoya Daigaku, Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, JAPAN
| | - Tsubasa Nishimura
- Nagoya University: Nagoya Daigaku, Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, JAPAN
| | - Hiroshi Shinokubo
- Nagoya University: Nagoya Daigaku, Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, JAPAN
| | - Yoshihiro Miyake
- Nagoya University, Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Furo-cho, 464-8603, Nagoya, JAPAN
| |
Collapse
|
42
|
Fessner ND, Badenhorst CPS, Bornscheuer UT. Enzyme Kits to Facilitate the Integration of Biocatalysis into Organic Chemistry – First Aid for Synthetic Chemists. ChemCatChem 2022. [DOI: 10.1002/cctc.202200156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nico D. Fessner
- Dept. of Biotechnology & Enzyme Catalysis Institute of Biochemistry University of Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Christoffel P. S. Badenhorst
- Dept. of Biotechnology & Enzyme Catalysis Institute of Biochemistry University of Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Uwe T. Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis Institute of Biochemistry University of Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
43
|
Xu J, Peng C, Yao B, Xu HJ, Xie Q. Direct Deoxyfluorination of Alcohols with KF as the Fluorine Source. J Org Chem 2022; 87:6471-6478. [PMID: 35442691 DOI: 10.1021/acs.joc.2c00388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This report describes a method for the deoxyfluorination of alcohols with KF as the fluorine source via in situ generation of highly active CF3SO2F. Diverse functionalities, including halogen, nitro, ketone, ester, alkene, and alkyne, are well tolerated. Mild conditions, a short reaction time, and a wide substrate scope make this method an excellent choice for the construction of C-F bonds.
Collapse
Affiliation(s)
- Jun Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Chao Peng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Bolin Yao
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, P. R. China
| | - Hua-Jian Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Qiang Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, P. R. China
| |
Collapse
|
44
|
Coutard N, Musgrave CB, Moon J, Liebov NS, Nielsen RM, Goldberg JM, Li M, Jia X, Lee S, Dickie DA, Schinski WL, Wu Z, Groves JT, Goddard WA, Gunnoe TB. Manganese Catalyzed Partial Oxidation of Light Alkanes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nathan Coutard
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles B. Musgrave
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Jisue Moon
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - Nichole S. Liebov
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Robert M. Nielsen
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Jonathan M. Goldberg
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Meijun Li
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - Xiaofan Jia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Sungsik Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | | | - Zili Wu
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - John T. Groves
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - William A. Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
45
|
Jiang L, Sarró P, Teo WJ, Llop J, Suero MG. Catalytic alkene skeletal modification for the construction of fluorinated tertiary stereocenters. Chem Sci 2022; 13:4327-4333. [PMID: 35509472 PMCID: PMC9006967 DOI: 10.1039/d2sc00968d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/11/2022] [Indexed: 11/25/2022] Open
Abstract
Herein we describe the first construction of fluorinated tertiary stereocenters based on an alkene C(sp2)-C(sp2) bond cleavage. The new process, that takes advantage of a Rh-catalyzed carbyne transfer, relies on a branched-selective fluorination of tertiary allyl cations and is distinguished by a wide scope including natural products and drug molecule derivatives as well as adaptability to radiofluorination.
Collapse
Affiliation(s)
- Liyin Jiang
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
| | - Pau Sarró
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
- Departament de Química Analítica I Química Orgànica, Universitat Rovira I Virgili, C. Marcel·lí Domingo, 1 43007 Tarragona Spain
| | - Wei Jie Teo
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
| | - Jordi Llop
- CIC BiomaGUNE, Basque Research and Technology Alliance 20014 San Sebastián Guipuzcoa Spain
| | - Marcos G Suero
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
| |
Collapse
|
46
|
Qian BY, Zhang W, Lin J, Cao W, Xiao JC. anti-Markovnikov Iodofluorination of Alkenes. Chem Asian J 2022; 17:e202200184. [PMID: 35266316 DOI: 10.1002/asia.202200184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/09/2022] [Indexed: 11/10/2022]
Abstract
The fluorination of alkenes with electrophilic N-F type reagents usually occurs through a Markovnikov-type addition, and the anti-Markovnikov-type addition may require the use of a transition metal catalyst or an expensive catalyst. Herein we describe a convenient anti-Markovnikov iodofluorination of alkenes with Selectfluor/ nBu4NI. A wide substrate scope and good functional group tolerance were observed. The process allows for the construction of various C-F bonds, especially tertiary C-F bonds. The remarkable features make this protocol attractive, including convenient operations, simple reaction conditions, and the installation of an iodine atom which provides possibilities for further transformations.
Collapse
Affiliation(s)
- Bai-Yu Qian
- Shanghai University, Department of Chemistry, CHINA
| | - Wei Zhang
- Shanghai University, Department of Chemistry, CHINA
| | - Jinhong Lin
- Shanghai Institute of Organic Chemistry, Key Laboratory of Organofluorine Chemistry, 345 Lingling Road, 200032, Shanghai, CHINA
| | - Weiguo Cao
- Shanghai University, Department of Chemistry, CHINA
| | - Ji-Chang Xiao
- SIOC: Shanghai Institute of Organic Chemistry, Key Laboratory of Organofluorine Chemistry, CHINA
| |
Collapse
|
47
|
Paik A, Paul S, Bhowmik S, Das R, Naveen T, Rana S. Recent Advances in First Row Transition Metal Mediated C‐H Halogenation of (Hetero)arenes and Alkanes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Aniruddha Paik
- University of North Bengal Department of Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India - 734013 734013 Siliguri INDIA
| | - Sabarni Paul
- University of North Bengal Department of Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India - 734013 734013 Siliguri INDIA
| | - Sabyasachi Bhowmik
- University of North Bengal Department of Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India - 734013 734013 Siliguri INDIA
| | - Rahul Das
- University of North Bengal Department of Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India - 734013 734013 Siliguri INDIA
| | - Togati Naveen
- Sardar Vallabhbhai National Institute of Technology Department of Chemistry 395007 Surat INDIA
| | - Sujoy Rana
- University of North Bengal Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India, 734013 734013 Siliguri INDIA
| |
Collapse
|
48
|
Galeotti M, Salamone M, Bietti M. Electronic control over site-selectivity in hydrogen atom transfer (HAT) based C(sp 3)-H functionalization promoted by electrophilic reagents. Chem Soc Rev 2022; 51:2171-2223. [PMID: 35229835 DOI: 10.1039/d1cs00556a] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The direct functionalization of C(sp3)-H bonds represents one of the most investigated approaches to develop new synthetic methodology. Among the available strategies for intermolecular C-H bond functionalization, increasing attention has been devoted to hydrogen atom transfer (HAT) based procedures promoted by radical or radical-like reagents, that offer the opportunity to introduce a large variety of atoms and groups in place of hydrogen under mild conditions. Because of the large number of aliphatic C-H bonds displayed by organic molecules, in these processes control over site-selectivity represents a crucial issue, and the associated factors have been discussed. In this review article, attention will be devoted to the role of electronic effects on C(sp3)-H bond functionalization site-selectivity. Through an analysis of the recent literature, a detailed description of the HAT reagents employed in these processes, the associated mechanistic features and the selectivity patterns observed in the functionalization of substrates of increasing structural complexity will be provided.
Collapse
Affiliation(s)
- Marco Galeotti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1 I-00133 Rome, Italy.
| | - Michela Salamone
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1 I-00133 Rome, Italy.
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1 I-00133 Rome, Italy.
| |
Collapse
|
49
|
Liu Z, Sun S, Lou J. PhIO-Mediated Oxidative C═C Bond Cleavage and Reassembly toward Highly Functionalized Oxazolones. Org Lett 2022; 24:1323-1328. [PMID: 35129353 DOI: 10.1021/acs.orglett.1c04326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
An efficient PhIO-mediated oxidative C═C bond cleavage and reassembly of enaminone toward oxazolone with high regioselectivity has been reported. DFT calculations revealed that the reaction proceeded through an oxygen atom transfer, C═C bond cleavage, alkylthio migration, and reassembly cascade. This strategy is highlighted by high atom and step economy with formation of five bonds in one pot and generation of a high-valued oxazolone skeleton under mild conditions.
Collapse
Affiliation(s)
- Zhuqing Liu
- Advanced Research Institute for Multidisciplinary Science, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Shaobin Sun
- Advanced Research Institute for Multidisciplinary Science, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jiang Lou
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.,State Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
50
|
Fazekas TJ, Alty JW, Neidhart EK, Miller AS, Leibfarth FA, Alexanian EJ. Diversification of aliphatic C-H bonds in small molecules and polyolefins through radical chain transfer. Science 2022; 375:545-550. [PMID: 35113718 PMCID: PMC8889563 DOI: 10.1126/science.abh4308] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ability to selectively introduce diverse functionality onto hydrocarbons is of substantial value in the synthesis of both small molecules and polymers. Herein, we report an approach to aliphatic carbon-hydrogen bond diversification using radical chain transfer featuring an easily prepared O-alkenylhydroxamate reagent, which upon mild heating facilitates a range of challenging or previously undeveloped aliphatic carbon-hydrogen bond functionalizations of small molecules and polyolefins. This broad reaction platform enabled the functionalization of postconsumer polyolefins in infrastructure used to process plastic waste. Furthermore, the chemoselective placement of ionic functionality onto a branched polyolefin using carbon-hydrogen bond functionalization upcycled the material from a thermoplastic into a tough elastomer with the tensile properties of high-value polyolefin ionomers.
Collapse
Affiliation(s)
- Timothy J Fazekas
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jill W Alty
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eliza K Neidhart
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Austin S Miller
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Frank A Leibfarth
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erik J Alexanian
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|