1
|
Burdakov D, Peleg-Raibstein D. How may the hypothalamus control distinct types and stages of memory? Neuropharmacology 2025; 277:110513. [PMID: 40381884 DOI: 10.1016/j.neuropharm.2025.110513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Memory is a complex and multifaceted cognitive function integral to all aspects of survival across species. It involves short-term and long-term components, which are supported by distinct yet interconnected brain systems, each specialized in processing distinct types of information. These systems interact in an integrated and dynamic manner, allowing for the encoding, consolidation, retrieval, and updating of memories. In this review, we explore the role of orexin and melanin-concentrating hormone (MCH) neurons, clustered primarily within lateral hypothalamus (LH), in orchestrating these memory processes. We consider its demonstrated and potential contributions across memory phases (e.g., short-term, long-term), transitional processes (e.g., consolidation, retrieval), and memory types (e.g., declarative, nondeclarative). Particular attention is given to its neuropeptides, orexin and. MCH, which have been implicated in modulating arousal, sleep, and neural plasticity - key factors in memory formation and maintenance. While orexin and MCH neurons have direct (arousal-independent) synaptic effects relevant to memory, their overall influence on memory processes is likely to include their established roles in regulating arousal, vigilance, and sleep. We further link these roles to the LH's traditional view as a nutritional sensor and regulator of arousal states, highlighting its unique position at the intersection of homeostatic and cognitive functions. By providing a unified perspective on the LH's involvement in memory, this work aims to bridge gaps in our understanding of its broader cognitive significance.
Collapse
Affiliation(s)
- Denis Burdakov
- Laboratory of Neurobehavioural Dynamics, Institute for Neuroscience, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, Federal Institute of Technology Zurich, ETH Zurich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
| | - Daria Peleg-Raibstein
- Laboratory of Neurobehavioural Dynamics, Institute for Neuroscience, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, Federal Institute of Technology Zurich, ETH Zurich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Feeney SP, McCarthy JM, Petruconis CR, Tudor JC. Sleep loss is a metabolic disorder. Sci Signal 2025; 18:eadp9358. [PMID: 40198749 DOI: 10.1126/scisignal.adp9358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 03/12/2025] [Indexed: 04/10/2025]
Abstract
Sleep loss dysregulates cellular metabolism and energy homeostasis. Highly metabolically active cells, such as neurons, enter a catabolic state during periods of sleep loss, which consequently disrupts physiological functioning. Specific to the central nervous system, sleep loss results in impaired synaptogenesis and long-term memory, effects that are also characteristic of neurodegenerative diseases. In this review, we describe how sleep deprivation increases resting energy expenditure, leading to the development of a negative energy balance-a state with insufficient metabolic resources to support energy expenditure-in highly active cells like neurons. This disruption of energetic homeostasis alters the balance of metabolites, including adenosine, lactate, and lipid peroxides, such that energetically costly processes, such as synapse formation, are attenuated. During sleep loss, metabolically active cells shunt energetic resources away from those processes that are not acutely essential, like memory formation, to support cell survival. Ultimately, these findings characterize sleep loss as a metabolic disorder.
Collapse
Affiliation(s)
- Sierra P Feeney
- Department of Biology, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Jordan M McCarthy
- Department of Biology, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Cecilia R Petruconis
- Department of Biology, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Jennifer C Tudor
- Department of Biology, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA 19131, USA
| |
Collapse
|
3
|
Bergmann C, Mousaei K, Rizzoli SO, Tchumatchenko T. How energy determines spatial localisation and copy number of molecules in neurons. Nat Commun 2025; 16:1424. [PMID: 39915472 PMCID: PMC11802781 DOI: 10.1038/s41467-025-56640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
In neurons, the quantities of mRNAs and proteins are traditionally assumed to be determined by functional, electrical or genetic factors. Yet, there may also be global, currently unknown computational rules that are valid across different molecular species inside a cell. Surprisingly, our results show that the energy for molecular turnover is a significant cellular expense, en par with spiking cost, and which requires energy-saving strategies. We show that the drive to save energy determines transcript quantities and their location while acting differently on each molecular species depending on the length, longevity and other features of the respective molecule. We combined our own data and experimental reports from five other large-scale mRNA and proteomics screens, comprising more than ten thousand molecular species to reveal the underlying computational principles of molecular localisation. We found that energy minimisation principles explain experimentally-reported exponential rank distributions of mRNA and protein copy numbers. Our results further reveal robust energy benefits when certain mRNA classes are moved into dendrites, for example mRNAs of proteins with long amino acid chains or mRNAs with large non-coding regions and long half-lives proving surprising insights at the level of molecular populations.
Collapse
Affiliation(s)
- Cornelius Bergmann
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Kanaan Mousaei
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Silvio O Rizzoli
- Department for Neuro- and Sensory Physiology, University Medical Center Göttingen Center for Biostructural Imaging of Neurodegeneration, BIN Humboldtallee 23, 37073, Göttingen, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
4
|
Shoenhard H, Sehgal A. Coordinating the energetic strategy of glia and neurons for memory. Trends Neurosci 2025; 48:93-95. [PMID: 39848837 PMCID: PMC11827068 DOI: 10.1016/j.tins.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 01/25/2025]
Abstract
Memory consolidation requires rapid energy supply to neurons. In a recent study, Francés et al. revealed the signal by which a neuron commands glia to limit fatty acid synthesis in favor of metabolite export during memory formation in Drosophila melanogaster. This mechanism coordinates just-in-time glial energy delivery in response to dynamic neuronal needs.
Collapse
Affiliation(s)
- Hannah Shoenhard
- Department of Biology, Bryn Mawr College, Bryn Mawr, PA 19010, USA; Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amita Sehgal
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Hiramatsu S, Saito K, Kondo S, Katow H, Yamagata N, Wu CF, Tanimoto H. Synaptic enrichment and dynamic regulation of the two opposing dopamine receptors within the same neurons. eLife 2025; 13:RP98358. [PMID: 39882849 PMCID: PMC11781798 DOI: 10.7554/elife.98358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Dopamine can play opposing physiological roles depending on the receptor subtype. In the fruit fly Drosophila melanogaster, Dop1R1 and Dop2R encode the D1- and D2-like receptors, respectively, and are reported to oppositely regulate intracellular cAMP levels. Here, we profiled the expression and subcellular localization of endogenous Dop1R1 and Dop2R in specific cell types in the mushroom body circuit. For cell-type-specific visualization of endogenous proteins, we employed reconstitution of split-GFP tagged to the receptor proteins. We detected dopamine receptors at both presynaptic and postsynaptic sites in multiple cell types. Quantitative analysis revealed enrichment of both receptors at the presynaptic sites, with Dop2R showing a greater degree of localization than Dop1R1. The presynaptic localization of Dop1R1 and Dop2R in dopamine neurons suggests dual feedback regulation as autoreceptors. Furthermore, we discovered a starvation-dependent, bidirectional modulation of the presynaptic receptor expression in the protocerebral anterior medial (PAM) and posterior lateral 1 (PPL1) clusters, two distinct subsets of dopamine neurons, suggesting their roles in regulating appetitive behaviors. Our results highlight the significance of the co-expression of the two opposing dopamine receptors in the spatial and conditional regulation of dopamine responses in neurons.
Collapse
Affiliation(s)
- Shun Hiramatsu
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Kokoro Saito
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of ScienceTokyoJapan
| | - Hidetaka Katow
- Department of Cell Biology, New York UniversityNew YorkUnited States
| | - Nobuhiro Yamagata
- Faculty and Graduate School of Engineering Science, Akita UniversityAkitaJapan
| | - Chun-Fang Wu
- Department of Biology, University of IowaIowa CityUnited States
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| |
Collapse
|
6
|
Raun N, Jones SG, Kerr O, Keung C, Butler EF, Alka K, Krupski JD, Reid-Taylor RA, Ibrahim V, Williams M, Top D, Kramer JM. Trithorax regulates long-term memory in Drosophila through epigenetic maintenance of mushroom body metabolic state and translation capacity. PLoS Biol 2025; 23:e3003004. [PMID: 39869640 PMCID: PMC11835295 DOI: 10.1371/journal.pbio.3003004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/18/2025] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
The role of epigenetics and chromatin in the maintenance of postmitotic neuronal cell identities is not well understood. Here, we show that the histone methyltransferase Trithorax (Trx) is required in postmitotic memory neurons of the Drosophila mushroom body (MB) to enable their capacity for long-term memory (LTM), but not short-term memory (STM). Using MB-specific RNA-, ChIP-, and ATAC-sequencing, we find that Trx maintains homeostatic expression of several non-canonical MB-enriched transcripts, including the orphan nuclear receptor Hr51, and the metabolic enzyme lactate dehydrogenase (Ldh). Through these key targets, Trx facilitates a metabolic state characterized by high lactate levels in MBγ neurons. This metabolic state supports a high capacity for protein translation, a process that is essential for LTM, but not STM. These data suggest that Trx, a classic regulator of cell type specification during development, has additional functions in maintaining underappreciated aspects of postmitotic neuron identity, such as metabolic state. Our work supports a body of evidence suggesting that a high capacity for energy metabolism is an essential cell identity characteristic for neurons that mediate LTM.
Collapse
Affiliation(s)
- Nicholas Raun
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Spencer G. Jones
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Olivia Kerr
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Crystal Keung
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | - Emily F. Butler
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Kumari Alka
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Jonathan D. Krupski
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Robert A. Reid-Taylor
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Veyan Ibrahim
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - MacKayla Williams
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Deniz Top
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Jamie M. Kramer
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| |
Collapse
|
7
|
Francés R, Rabah Y, Preat T, Plaçais PY. Diverting glial glycolytic flux towards neurons is a memory-relevant role of Drosophila CRH-like signalling. Nat Commun 2024; 15:10467. [PMID: 39622834 PMCID: PMC11612226 DOI: 10.1038/s41467-024-54778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
An essential role of glial cells is to comply with the large and fluctuating energy needs of neurons. Metabolic adaptation is integral to the acute stress response, suggesting that glial cells could be major, yet overlooked, targets of stress hormones. Here we show that Dh44 neuropeptide, Drosophila homologue of mammalian corticotropin-releasing hormone (CRH), acts as an experience-dependent metabolic switch for glycolytic output in glia. Dh44 released by dopamine neurons limits glial fatty acid synthesis and build-up of lipid stores. Although basally active, this hormonal axis is acutely stimulated following learning of a danger-predictive cue. This results in transient suppression of glial anabolic use of pyruvate, sparing it for memory-relevant energy supply to neurons. Diverting pyruvate destination may dampen the need to upregulate glial glycolysis in response to increased neuronal demand. Although beneficial for the energy efficiency of memory formation, this mechanism reveals an ongoing competition between neuronal fuelling and glial anabolism.
Collapse
Affiliation(s)
- Raquel Francés
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Yasmine Rabah
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Thomas Preat
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, Paris, France.
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, Paris, France.
| |
Collapse
|
8
|
Comyn T, Preat T, Pavlowsky A, Plaçais PY. Mitochondrial plasticity: An emergent concept in neuronal plasticity and memory. Neurobiol Dis 2024; 203:106740. [PMID: 39557174 DOI: 10.1016/j.nbd.2024.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024] Open
Abstract
Mitochondria are classically viewed as 'on demand' energy suppliers to neurons in support of their activity. In order to adapt to a wide range of demands, mitochondria need to be highly dynamic and capable of adjusting their metabolic activity, shape, and localization. Although these plastic properties give them a central support role in basal neuronal physiology, recent lines of evidence point toward a role for mitochondria in the regulation of high-order cognitive functions such as memory formation. In this review, we discuss the interplay between mitochondrial function and neural plasticity in sustaining memory formation at the molecular and cellular levels. First, we explore the global significance of mitochondria in memory formation. Then, we will detail the memory-relevant cellular and molecular mechanisms of mitochondrial plasticity. Finally, we focus on those mitochondrial functions, including but not limited to ATP production, that give mitochondria their pivotal role in memory formation. Altogether, this review highlights the central role of mitochondrial structural and functional plasticity in supporting and regulating neuronal plasticity and memory.
Collapse
Affiliation(s)
- Typhaine Comyn
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| | - Alice Pavlowsky
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| |
Collapse
|
9
|
Amaral-Silva L, Santin J. Neural Processing without O 2 and Glucose Delivery: Lessons from the Pond to the Clinic. Physiology (Bethesda) 2024; 39:0. [PMID: 38624246 PMCID: PMC11573265 DOI: 10.1152/physiol.00030.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024] Open
Abstract
Neuronal activity requires a large amount of ATP, leading to a rapid collapse of brain function when aerobic respiration fails. Here, we summarize how rhythmic motor circuits in the brain stem of adult frogs, which normally have high metabolic demands, transform to produce proper output during severe hypoxia associated with emergence from hibernation. We suggest that general principles underlying plasticity in brain bioenergetics may be uncovered by studying nonmammalian models that face extreme environments, yielding new insights to combat neurological disorders involving dysfunctional energy metabolism.
Collapse
Affiliation(s)
- Lara Amaral-Silva
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States
- Division of Biology, University of Missouri, Columbia, Missouri, United States
| | - Joseph Santin
- Division of Biology, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
10
|
Comyn T, Preat T, Pavlowsky A, Plaçais PY. PKCδ is an activator of neuronal mitochondrial metabolism that mediates the spacing effect on memory consolidation. eLife 2024; 13:RP92085. [PMID: 39475218 PMCID: PMC11524582 DOI: 10.7554/elife.92085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Relevance-based selectivity and high energy cost are two distinct features of long-term memory (LTM) formation that warrant its default inhibition. Spaced repetition of learning is a highly conserved cognitive mechanism that can lift this inhibition. Here, we questioned how the spacing effect integrates experience selection and energy efficiency at the cellular and molecular levels. We showed in Drosophila that spaced training triggers LTM formation by extending over several hours an increased mitochondrial metabolic activity in neurons of the associative memory center, the mushroom bodies (MBs). We found that this effect is mediated by PKCδ, a member of the so-called 'novel PKC' family of enzymes, which uncovers the critical function of PKCδ in neurons as a regulator of mitochondrial metabolism for LTM. Additionally, PKCδ activation and translocation to mitochondria result from LTM-specific dopamine signaling on MB neurons. By bridging experience-dependent neuronal circuit activity with metabolic modulation of memory-encoding neurons, PKCδ signaling binds the cognitive and metabolic constraints underlying LTM formation into a unified gating mechanism.
Collapse
Affiliation(s)
- Typhaine Comyn
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Alice Pavlowsky
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| |
Collapse
|
11
|
Lin YC, Wu T, Wu CL. The Neural Correlations of Olfactory Associative Reward Memories in Drosophila. Cells 2024; 13:1716. [PMID: 39451234 PMCID: PMC11506542 DOI: 10.3390/cells13201716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Advancing treatment to resolve human cognitive disorders requires a comprehensive understanding of the molecular signaling pathways underlying learning and memory. While most organ systems evolved to maintain homeostasis, the brain developed the capacity to perceive and adapt to environmental stimuli through the continuous modification of interactions within a gene network functioning within a broader neural network. This distinctive characteristic enables significant neural plasticity, but complicates experimental investigations. A thorough examination of the mechanisms underlying behavioral plasticity must integrate multiple levels of biological organization, encompassing genetic pathways within individual neurons, interactions among neural networks providing feedback on gene expression, and observable phenotypic behaviors. Model organisms, such as Drosophila melanogaster, which possess more simple and manipulable nervous systems and genomes than mammals, facilitate such investigations. The evolutionary conservation of behavioral phenotypes and the associated genetics and neural systems indicates that insights gained from flies are pertinent to understanding human cognition. Rather than providing a comprehensive review of the entire field of Drosophila memory research, we focus on olfactory associative reward memories and their related neural circuitry in fly brains, with the objective of elucidating the underlying neural mechanisms, thereby advancing our understanding of brain mechanisms linked to cognitive systems.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tony Wu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City 23652, Taiwan;
| | - Chia-Lin Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City 23652, Taiwan;
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
12
|
Jiang J, Foyard E, van Rossum MCW. Reinforcement learning when your life depends on it: A neuro-economic theory of learning. PLoS Comput Biol 2024; 20:e1012554. [PMID: 39466882 PMCID: PMC11542834 DOI: 10.1371/journal.pcbi.1012554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 11/07/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Synaptic plasticity enables animals to adapt to their environment, but memory formation can require a substantial amount of metabolic energy, potentially impairing survival. Hence, a neuro-economic dilemma arises whether learning is a profitable investment or not, and the brain must therefore judiciously regulate learning. Indeed, in experiments it was observed that during starvation, Drosophila suppress formation of energy-intensive aversive memories. Here we include energy considerations in a reinforcement learning framework. Simulated flies learned to avoid noxious stimuli through synaptic plasticity in either the energy expensive long-term memory (LTM) pathway, or the decaying anesthesia-resistant memory (ARM) pathway. The objective of the flies is to maximize their lifespan, which is calculated with a hazard function. We find that strategies that switch between the LTM and ARM pathways, based on energy reserve and reward prediction error, prolong lifespan. Our study highlights the significance of energy-regulation of memory pathways and dopaminergic control for adaptive learning and survival. It might also benefit engineering applications of reinforcement learning under resources constraints.
Collapse
Affiliation(s)
- Jiamu Jiang
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Emilie Foyard
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Mark C. W. van Rossum
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
13
|
van Rossum MCW, Pache A. Competitive plasticity to reduce the energetic costs of learning. PLoS Comput Biol 2024; 20:e1012553. [PMID: 39466853 PMCID: PMC11542811 DOI: 10.1371/journal.pcbi.1012553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/07/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
The brain is not only constrained by energy needed to fuel computation, but it is also constrained by energy needed to form memories. Experiments have shown that learning simple conditioning tasks which might require only a few synaptic updates, already carries a significant metabolic cost. Yet, learning a task like MNIST to 95% accuracy appears to require at least 108 synaptic updates. Therefore the brain has likely evolved to be able to learn using as little energy as possible. We explored the energy required for learning in feedforward neural networks. Based on a parsimonious energy model, we propose two plasticity restricting algorithms that save energy: 1) only modify synapses with large updates, and 2) restrict plasticity to subsets of synapses that form a path through the network. In biology networks are often much larger than the task requires, yet vanilla backprop prescribes to update all synapses. In particular in this case, large savings can be achieved while only incurring a slightly worse learning time. Thus competitively restricting plasticity helps to save metabolic energy associated to synaptic plasticity. The results might lead to a better understanding of biological plasticity and a better match between artificial and biological learning. Moreover, the algorithms might benefit hardware because also electronic memory storage is energetically costly.
Collapse
Affiliation(s)
- Mark C. W. van Rossum
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Aaron Pache
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
14
|
Tait C, Chicco AJ, Naug D. Brain energy metabolism as an underlying basis of slow and fast cognitive phenotypes in honeybees. J Exp Biol 2024; 227:jeb247835. [PMID: 39092671 PMCID: PMC11418170 DOI: 10.1242/jeb.247835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
In the context of slow-fast behavioral variation, fast individuals are hypothesized to be those who prioritize speed over accuracy while slow individuals are those which do the opposite. Since energy metabolism is a critical component of neural and cognitive functioning, this predicts such differences in cognitive style to be reflected at the level of the brain. We tested this idea in honeybees by first classifying individuals into slow and fast cognitive phenotypes based on a learning assay and then measuring their brain respiration with high-resolution respirometry. Our results broadly show that inter-individual differences in cognition are reflected in differences in brain mass and accompanying energy use at the level of the brain and the whole animal. Larger brains had lower mass-specific energy usage and bees with larger brains had a higher metabolic rate. These differences in brain respiration and brain mass were, in turn, associated with cognitive differences, such that bees with larger brains were fast cognitive phenotypes whereas those with smaller brains were slow cognitive phenotypes. We discuss these results in the context of the role of energy in brain functioning and slow-fast decision making and speed accuracy trade-off.
Collapse
Affiliation(s)
- Catherine Tait
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Dhruba Naug
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
15
|
Meschi E, Duquenoy L, Otto N, Dempsey G, Waddell S. Compensatory enhancement of input maintains aversive dopaminergic reinforcement in hungry Drosophila. Neuron 2024; 112:2315-2332.e8. [PMID: 38795709 DOI: 10.1016/j.neuron.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 05/28/2024]
Abstract
Hungry animals need compensatory mechanisms to maintain flexible brain function, while modulation reconfigures circuits to prioritize resource seeking. In Drosophila, hunger inhibits aversively reinforcing dopaminergic neurons (DANs) to permit the expression of food-seeking memories. Multitasking the reinforcement system for motivation potentially undermines aversive learning. We find that chronic hunger mildly enhances aversive learning and that satiated-baseline and hunger-enhanced learning require endocrine adipokinetic hormone (AKH) signaling. Circulating AKH influences aversive learning via its receptor in four neurons in the ventral brain, two of which are octopaminergic. Connectomics revealed AKH receptor-expressing neurons to be upstream of several classes of ascending neurons, many of which are presynaptic to aversively reinforcing DANs. Octopaminergic modulation of and output from at least one of these ascending pathways is required for shock- and bitter-taste-reinforced aversive learning. We propose that coordinated enhancement of input compensates for hunger-directed inhibition of aversive DANs to preserve reinforcement when required.
Collapse
Affiliation(s)
- Eleonora Meschi
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Lucille Duquenoy
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Nils Otto
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Georgia Dempsey
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Scott Waddell
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK.
| |
Collapse
|
16
|
Comyn T, Preat T, Pavlowsky A, Plaçais PY. PKCδ is an activator of neuronal mitochondrial metabolism that mediates the spacing effect on memory consolidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561186. [PMID: 38948698 PMCID: PMC11212906 DOI: 10.1101/2023.10.06.561186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Relevance-based selectivity and high energy cost are two distinct features of long-term memory (LTM) formation that warrant its default inhibition. Spaced repetition of learning is a highly conserved cognitive mechanism that can lift this inhibition. Here, we questioned how the spacing effect integrates experience selection and energy efficiency at the cellular and molecular levels. We showed in Drosophila that spaced training triggers LTM formation by extending over several hours an increased mitochondrial metabolic activity in neurons of the associative memory center, the mushroom bodies (MBs). We found that this effect is mediated by PKCδ, a member of the so-called 'novel PKC' family of enzymes, which uncovers the critical function of PKCδ in neurons as a regulator of mitochondrial metabolism for LTM. Additionally, PKCδ activation and translocation to mitochondria result from LTM-specific dopamine signaling on MB neurons. By bridging experience-dependent neuronal circuit activity with metabolic modulation of memory-encoding neurons, PKCδ signaling binds the cognitive and metabolic constraints underlying LTM formation into a unified gating mechanism.
Collapse
Affiliation(s)
- Typhaine Comyn
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Alice Pavlowsky
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
- Co-corresponding authors
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
- Co-corresponding authors
| |
Collapse
|
17
|
Suárez-Grimalt R, Grunwald Kadow IC, Scheunemann L. An integrative sensor of body states: how the mushroom body modulates behavior depending on physiological context. Learn Mem 2024; 31:a053918. [PMID: 38876486 PMCID: PMC11199956 DOI: 10.1101/lm.053918.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/08/2024] [Indexed: 06/16/2024]
Abstract
The brain constantly compares past and present experiences to predict the future, thereby enabling instantaneous and future behavioral adjustments. Integration of external information with the animal's current internal needs and behavioral state represents a key challenge of the nervous system. Recent advancements in dissecting the function of the Drosophila mushroom body (MB) at the single-cell level have uncovered its three-layered logic and parallel systems conveying positive and negative values during associative learning. This review explores a lesser-known role of the MB in detecting and integrating body states such as hunger, thirst, and sleep, ultimately modulating motivation and sensory-driven decisions based on the physiological state of the fly. State-dependent signals predominantly affect the activity of modulatory MB input neurons (dopaminergic, serotoninergic, and octopaminergic), but also induce plastic changes directly at the level of the MB intrinsic and output neurons. Thus, the MB emerges as a tightly regulated relay station in the insect brain, orchestrating neuroadaptations due to current internal and behavioral states leading to short- but also long-lasting changes in behavior. While these adaptations are crucial to ensure fitness and survival, recent findings also underscore how circuit motifs in the MB may reflect fundamental design principles that contribute to maladaptive behaviors such as addiction or depression-like symptoms.
Collapse
Affiliation(s)
- Raquel Suárez-Grimalt
- Institute for Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | - Lisa Scheunemann
- Institute for Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
18
|
Basu R, Preat T, Plaçais PY. Glial metabolism versatility regulates mushroom body-driven behavioral output in Drosophila. Learn Mem 2024; 31:a053823. [PMID: 38862167 PMCID: PMC11199944 DOI: 10.1101/lm.053823.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/23/2024] [Indexed: 06/13/2024]
Abstract
Providing metabolic support to neurons is now recognized as a major function of glial cells that is conserved from invertebrates to vertebrates. However, research in this field has focused for more than two decades on the relevance of lactate and glial glycolysis for neuronal energy metabolism, while overlooking many other facets of glial metabolism and their impact on neuronal physiology, circuit activity, and behavior. Here, we review recent work that has unveiled new features of glial metabolism, especially in Drosophila, in the modulation of behavioral traits involving the mushroom bodies (MBs). These recent findings reveal that spatially and biochemically distinct modes of glucose-derived neuronal fueling are implemented within the MB in a memory type-specific manner. In addition, cortex glia are endowed with several antioxidant functions, whereas astrocytes can serve as pro-oxidant agents that are beneficial to redox signaling underlying long-term memory. Finally, glial fatty acid oxidation seems to play a dual fail-safe role: first, as a mode of energy production upon glucose shortage, and, second, as a factor underlying the clearance of excessive oxidative load during sleep. Altogether, these integrated studies performed in Drosophila indicate that glial metabolism has a deterministic role on behavior.
Collapse
Affiliation(s)
- Ruchira Basu
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Thomas Preat
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| |
Collapse
|
19
|
Piette C, Gervasi N, Venance L. Synaptic plasticity through a naturalistic lens. Front Synaptic Neurosci 2023; 15:1250753. [PMID: 38145207 PMCID: PMC10744866 DOI: 10.3389/fnsyn.2023.1250753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
From the myriad of studies on neuronal plasticity, investigating its underlying molecular mechanisms up to its behavioral relevance, a very complex landscape has emerged. Recent efforts have been achieved toward more naturalistic investigations as an attempt to better capture the synaptic plasticity underpinning of learning and memory, which has been fostered by the development of in vivo electrophysiological and imaging tools. In this review, we examine these naturalistic investigations, by devoting a first part to synaptic plasticity rules issued from naturalistic in vivo-like activity patterns. We next give an overview of the novel tools, which enable an increased spatio-temporal specificity for detecting and manipulating plasticity expressed at individual spines up to neuronal circuit level during behavior. Finally, we put particular emphasis on works considering brain-body communication loops and macroscale contributors to synaptic plasticity, such as body internal states and brain energy metabolism.
Collapse
Affiliation(s)
- Charlotte Piette
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | | | - Laurent Venance
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
20
|
Yamazaki D, Maeyama Y, Tabata T. Combinatory Actions of Co-transmitters in Dopaminergic Systems Modulate Drosophila Olfactory Memories. J Neurosci 2023; 43:8294-8305. [PMID: 37429719 PMCID: PMC10711700 DOI: 10.1523/jneurosci.2152-22.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/30/2023] [Accepted: 05/27/2023] [Indexed: 07/12/2023] Open
Abstract
Dopamine neurons (DANs) are extensively studied in the context of associative learning, in both vertebrates and invertebrates. In the acquisition of male and female Drosophila olfactory memory, the PAM cluster of DANs provides the reward signal, and the PPL1 cluster of DANs sends the punishment signal to the Kenyon cells (KCs) of mushroom bodies, the center for memory formation. However, thermo-genetical activation of the PPL1 DANs after memory acquisition impaired aversive memory, and that of the PAM DANs impaired appetitive memory. We demonstrate that the knockdown of glutamate decarboxylase, which catalyzes glutamate conversion to GABA in PAM DANs, potentiated the appetitive memory. In addition, the knockdown of glutamate transporter in PPL1 DANs potentiated aversive memory, suggesting that GABA and glutamate co-transmitters act in an inhibitory manner in olfactory memory formation. We also found that, in γKCs, the Rdl receptor for GABA and the mGluR DmGluRA mediate the inhibition. Although multiple-spaced training is required to form long-term aversive memory, a single cycle of training was sufficient to develop long-term memory when the glutamate transporter was knocked down, in even a single subset of PPL1 DANs. Our results suggest that the mGluR signaling pathway may set a threshold for memory acquisition to allow the organisms' behaviors to adapt to changing physiological conditions and environments.SIGNIFICANCE STATEMENT In the acquisition of olfactory memory in Drosophila, the PAM cluster of dopamine neurons (DANs) mediates the reward signal, while the PPL1 cluster of DANs conveys the punishment signal to the Kenyon cells of the mushroom bodies, which serve as the center for memory formation. We found that GABA co-transmitters in the PAM DANs and glutamate co-transmitters in the PPL1 DANs inhibit olfactory memory formation. Our findings demonstrate that long-term memory acquisition, which typically necessitates multiple-spaced training sessions to establish aversive memory, can be triggered with a single training cycle in cases where the glutamate co-transmission is inhibited, even within a single subset of PPL1 DANs, suggesting that the glutamate co-transmission may modulate the threshold for memory acquisition.
Collapse
Affiliation(s)
- Daisuke Yamazaki
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Yuko Maeyama
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Tetsuya Tabata
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| |
Collapse
|
21
|
Pache A, van Rossum MCW. Energetically efficient learning in neuronal networks. Curr Opin Neurobiol 2023; 83:102779. [PMID: 37672980 DOI: 10.1016/j.conb.2023.102779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023]
Abstract
Human and animal experiments have shown that acquiring and storing information can require substantial amounts of metabolic energy. However, computational models of neural plasticity only seldom take this cost into account, and might thereby miss an important constraint on biological learning. This review explores various ways to reduce energy requirements for learning in neural networks. By comparing the resulting learning rules to cognitive and neurophysiological observations, we discuss how energy efficiency might have shaped biological learning.
Collapse
Affiliation(s)
- Aaron Pache
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Mark C W van Rossum
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom; School of Psychology, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
22
|
Bergman TJ, Beehner JC. Information Ecology: an integrative framework for studying animal behavior. Trends Ecol Evol 2023; 38:1041-1050. [PMID: 37820577 DOI: 10.1016/j.tree.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 10/13/2023]
Abstract
Information is simultaneously a valuable resource for animals and a tractable variable for researchers. We propose the name Information Ecology to describe research focused on how individual animals use information to enhance fitness. An explicit focus on information in animal behavior is far from novel - we simply build on these ideas and promote a unified approach to how and why animals use information. The value of information to animals favors the theoretically rich adaptive approach of field-based research. Simultaneously, our ability to manipulate information lends itself to the strong methods of laboratory-based research. Information Ecology asks three questions: What information is available? How is it used (or not)? And, why is it used (or not)?
Collapse
Affiliation(s)
- Thore J Bergman
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jacinta C Beehner
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Rabah Y, Francés R, Minatchy J, Guédon L, Desnous C, Plaçais PY, Preat T. Glycolysis-derived alanine from glia fuels neuronal mitochondria for memory in Drosophila. Nat Metab 2023; 5:2002-2019. [PMID: 37932430 PMCID: PMC10663161 DOI: 10.1038/s42255-023-00910-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/20/2023] [Indexed: 11/08/2023]
Abstract
Glucose is the primary source of energy for the brain; however, it remains controversial whether, upon neuronal activation, glucose is primarily used by neurons for ATP production or if it is partially oxidized in astrocytes, as proposed by the astrocyte-neuron lactate shuttle model for glutamatergic neurons. Thus, an in vivo picture of glucose metabolism during cognitive processes is missing. Here, we uncover in Drosophila melanogaster a glia-to-neuron alanine transfer involving alanine aminotransferase that sustains memory formation. Following associative conditioning, glycolysis in glial cells produces alanine, which is back-converted into pyruvate in cholinergic neurons of the olfactory memory center to uphold their increased mitochondrial needs. Alanine, as a mediator of glia-neuron coupling, could be an alternative to lactate in cholinergic systems. In parallel, a dedicated glial glucose transporter imports glucose specifically for long-term memory, by directly transferring it to neurons for use by the pentose phosphate pathway. Our results demonstrate in vivo the compartmentalization of glucose metabolism between neurons and glial cells during memory formation.
Collapse
Affiliation(s)
- Yasmine Rabah
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Raquel Francés
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Julia Minatchy
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Laura Guédon
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Coraline Desnous
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France.
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France.
| |
Collapse
|
24
|
Concetti C, Peleg-Raibstein D, Burdakov D. Hypothalamic MCH Neurons: From Feeding to Cognitive Control. FUNCTION 2023; 5:zqad059. [PMID: 38020069 PMCID: PMC10667013 DOI: 10.1093/function/zqad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Modern neuroscience is progressively elucidating that the classic view positing distinct brain regions responsible for survival, emotion, and cognitive functions is outdated. The hypothalamus demonstrates the interdependence of these roles, as it is traditionally known for fundamental survival functions like energy and electrolyte balance, but is now recognized to also play a crucial role in emotional and cognitive processes. This review focuses on lateral hypothalamic melanin-concentrating hormone (MCH) neurons, producing the neuropeptide MCH-a relatively understudied neuronal population with integrative functions related to homeostatic regulation and motivated behaviors, with widespread inputs and outputs throughout the entire central nervous system. Here, we review early findings and recent literature outlining their role in the regulation of energy balance, sleep, learning, and memory processes.
Collapse
Affiliation(s)
- Cristina Concetti
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | - Daria Peleg-Raibstein
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | - Denis Burdakov
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| |
Collapse
|
25
|
Lin S. Internal-state-dependent modulation of olfactory responses: a tale of dopamine neurons in the adult Drosophila mushroom body. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101104. [PMID: 37611806 DOI: 10.1016/j.cois.2023.101104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Olfaction is a vital sense that insects use to forage and interact with each other. When an insect smells an odor, its nervous system processes the odor information and transforms it into an appropriate behavioral decision. Olfactory processing and transformation are not label-lined, but instead are modulated by internal states. The vinegar fly, Drosophila melanogaster, has become a primary model organism for studying this modulation. It has been observed that internal state modulates olfactory behaviors in multiple sites of the fly brain. In this review article, I focus on the mushroom body, a computational center in the fly brain, and discuss how the dopamine system in this brain region mediates internal-state signals and shapes olfactory responses in adult flies.
Collapse
Affiliation(s)
- Suewei Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
26
|
Okray Z, Jacob PF, Stern C, Desmond K, Otto N, Talbot CB, Vargas-Gutierrez P, Waddell S. Multisensory learning binds neurons into a cross-modal memory engram. Nature 2023; 617:777-784. [PMID: 37100911 PMCID: PMC10208976 DOI: 10.1038/s41586-023-06013-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/24/2023] [Indexed: 04/28/2023]
Abstract
Associating multiple sensory cues with objects and experience is a fundamental brain process that improves object recognition and memory performance. However, neural mechanisms that bind sensory features during learning and augment memory expression are unknown. Here we demonstrate multisensory appetitive and aversive memory in Drosophila. Combining colours and odours improved memory performance, even when each sensory modality was tested alone. Temporal control of neuronal function revealed visually selective mushroom body Kenyon cells (KCs) to be required for enhancement of both visual and olfactory memory after multisensory training. Voltage imaging in head-fixed flies showed that multisensory learning binds activity between streams of modality-specific KCs so that unimodal sensory input generates a multimodal neuronal response. Binding occurs between regions of the olfactory and visual KC axons, which receive valence-relevant dopaminergic reinforcement, and is propagated downstream. Dopamine locally releases GABAergic inhibition to permit specific microcircuits within KC-spanning serotonergic neurons to function as an excitatory bridge between the previously 'modality-selective' KC streams. Cross-modal binding thereby expands the KCs representing the memory engram for each modality into those representing the other. This broadening of the engram improves memory performance after multisensory learning and permits a single sensory feature to retrieve the memory of the multimodal experience.
Collapse
Affiliation(s)
- Zeynep Okray
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK.
| | - Pedro F Jacob
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
| | - Ciara Stern
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
| | - Kieran Desmond
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
| | - Nils Otto
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Clifford B Talbot
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
| | | | - Scott Waddell
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK.
| |
Collapse
|
27
|
Perisse E, Miranda M, Trouche S. Modulation of aversive value coding in the vertebrate and invertebrate brain. Curr Opin Neurobiol 2023; 79:102696. [PMID: 36871400 DOI: 10.1016/j.conb.2023.102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 03/06/2023]
Abstract
Avoiding potentially dangerous situations is key for the survival of any organism. Throughout life, animals learn to avoid environments, stimuli or actions that can lead to bodily harm. While the neural bases for appetitive learning, evaluation and value-based decision-making have received much attention, recent studies have revealed more complex computations for aversive signals during learning and decision-making than previously thought. Furthermore, previous experience, internal state and systems level appetitive-aversive interactions seem crucial for learning specific aversive value signals and making appropriate choices. The emergence of novel methodologies (computation analysis coupled with large-scale neuronal recordings, neuronal manipulations at unprecedented resolution offered by genetics, viral strategies and connectomics) has helped to provide novel circuit-based models for aversive (and appetitive) valuation. In this review, we focus on recent vertebrate and invertebrate studies yielding strong evidence that aversive value information can be computed by a multitude of interacting brain regions, and that past experience can modulate future aversive learning and therefore influence value-based decisions.
Collapse
Affiliation(s)
- Emmanuel Perisse
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 141 rue de la Cardonille, 34094 Montpellier Cedex 5, France.
| | - Magdalena Miranda
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 141 rue de la Cardonille, 34094 Montpellier Cedex 5, France
| | - Stéphanie Trouche
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 141 rue de la Cardonille, 34094 Montpellier Cedex 5, France.
| |
Collapse
|
28
|
Crossley M, Benjamin PR, Kemenes G, Staras K, Kemenes I. A circuit mechanism linking past and future learning through shifts in perception. SCIENCE ADVANCES 2023; 9:eadd3403. [PMID: 36961898 PMCID: PMC10038338 DOI: 10.1126/sciadv.add3403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Long-term memory formation is energetically costly. Neural mechanisms that guide an animal to identify fruitful associations therefore have important survival benefits. Here, we elucidate a circuit mechanism in Lymnaea, which enables past memory to shape new memory formation through changes in perception. Specifically, strong classical conditioning drives a positive shift in perception that facilitates the robust learning of a subsequent and otherwise ineffective weak association. Circuit dissection approaches reveal the neural control network responsible, characterized by a mutual inhibition motif. This both sets perceptual state and acts as the master controller for gating new learning. Pharmacological circuit manipulation in vivo fully substitutes for strong paradigm learning, shifting the network into a more receptive state to enable subsequent weak paradigm learning. Thus, perceptual change provides a conduit to link past and future memory storage. We propose that this mechanism alerts animals to learning-rich periods, lowering the threshold for new memory acquisition.
Collapse
|
29
|
Aging and memory are altered by genetically manipulating lactate dehydrogenase in the neurons or glia of flies. Aging (Albany NY) 2023; 15:947-981. [PMID: 36849157 PMCID: PMC10008500 DOI: 10.18632/aging.204565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/20/2023] [Indexed: 03/01/2023]
Abstract
The astrocyte-neuron lactate shuttle hypothesis posits that glial-generated lactate is transported to neurons to fuel metabolic processes required for long-term memory. Although studies in vertebrates have revealed that lactate shuttling is important for cognitive function, it is uncertain if this form of metabolic coupling is conserved in invertebrates or is influenced by age. Lactate dehydrogenase (Ldh) is a rate limiting enzyme that interconverts lactate and pyruvate. Here we genetically manipulated expression of Drosophila melanogaster lactate dehydrogenase (dLdh) in neurons or glia to assess the impact of altered lactate metabolism on invertebrate aging and long-term courtship memory at different ages. We also assessed survival, negative geotaxis, brain neutral lipids (the core component of lipid droplets) and brain metabolites. Both upregulation and downregulation of dLdh in neurons resulted in decreased survival and memory impairment with age. Glial downregulation of dLdh expression caused age-related memory impairment without altering survival, while upregulated glial dLdh expression lowered survival without disrupting memory. Both neuronal and glial dLdh upregulation increased neutral lipid accumulation. We provide evidence that altered lactate metabolism with age affects the tricarboxylic acid (TCA) cycle, 2-hydroxyglutarate (2HG), and neutral lipid accumulation. Collectively, our findings indicate that the direct alteration of lactate metabolism in either glia or neurons affects memory and survival but only in an age-dependent manner.
Collapse
|
30
|
Padamsey Z, Rochefort NL. Paying the brain's energy bill. Curr Opin Neurobiol 2023; 78:102668. [PMID: 36571958 DOI: 10.1016/j.conb.2022.102668] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/25/2022]
Abstract
How have animals managed to maintain metabolically expensive brains given the volatile and fleeting availability of calories in the natural world? Here we review studies in support of three strategies that involve: 1) a reallocation of energy from peripheral tissues and functions to cover the costs of the brain, 2) an implementation of energy-efficient neural coding, enabling the brain to operate at reduced energy costs, and 3) efficient use of costly neural resources during food scarcity. Collectively, these studies reveal a heterogeneous set of energy-saving mechanisms that make energy-costly brains fit for survival.
Collapse
Affiliation(s)
- Zahid Padamsey
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, EH8 9XD, Edinburgh, United Kingdom.
| | - Nathalie L Rochefort
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, EH8 9XD, Edinburgh, United Kingdom; Simons Initiative for the Developing Brain, University of Edinburgh, EH8 9XD, Edinburgh, United Kingdom.
| |
Collapse
|
31
|
Institoris A, Vandal M, Peringod G, Catalano C, Tran CH, Yu X, Visser F, Breiteneder C, Molina L, Khakh BS, Nguyen MD, Thompson RJ, Gordon GR. Astrocytes amplify neurovascular coupling to sustained activation of neocortex in awake mice. Nat Commun 2022; 13:7872. [PMID: 36550102 PMCID: PMC9780254 DOI: 10.1038/s41467-022-35383-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Functional hyperemia occurs when enhanced neuronal activity signals to increase local cerebral blood flow (CBF) to satisfy regional energy demand. Ca2+ elevation in astrocytes can drive arteriole dilation to increase CBF, yet affirmative evidence for the necessity of astrocytes in functional hyperemia in vivo is lacking. In awake mice, we discovered that functional hyperemia is bimodal with a distinct early and late component whereby arteriole dilation progresses as sensory stimulation is sustained. Clamping astrocyte Ca2+ signaling in vivo by expressing a plasma membrane Ca2+ ATPase (CalEx) reduces sustained but not brief sensory-evoked arteriole dilation. Elevating astrocyte free Ca2+ using chemogenetics selectively augments sustained hyperemia. Antagonizing NMDA-receptors or epoxyeicosatrienoic acid production reduces only the late component of functional hyperemia, leaving brief increases in CBF to sensory stimulation intact. We propose that a fundamental role of astrocyte Ca2+ is to amplify functional hyperemia when neuronal activation is prolonged.
Collapse
Affiliation(s)
- Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Milène Vandal
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Govind Peringod
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Christy Catalano
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Cam Ha Tran
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557-352, USA
| | - Xinzhu Yu
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1751, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1751, USA
- Department of Molecular and Integrative Physiology, Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Frank Visser
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Cheryl Breiteneder
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Leonardo Molina
- Hotchkiss Brain Institute, Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1751, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1751, USA
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Roger J Thompson
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Grant R Gordon
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
32
|
Huang S, Piao C, Beuschel CB, Zhao Z, Sigrist SJ. A brain-wide form of presynaptic active zone plasticity orchestrates resilience to brain aging in Drosophila. PLoS Biol 2022; 20:e3001730. [PMID: 36469518 PMCID: PMC9721493 DOI: 10.1371/journal.pbio.3001730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/07/2022] [Indexed: 12/10/2022] Open
Abstract
The brain as a central regulator of stress integration determines what is threatening, stores memories, and regulates physiological adaptations across the aging trajectory. While sleep homeostasis seems to be linked to brain resilience, how age-associated changes intersect to adapt brain resilience to life history remains enigmatic. We here provide evidence that a brain-wide form of presynaptic active zone plasticity ("PreScale"), characterized by increases of active zone scaffold proteins and synaptic vesicle release factors, integrates resilience by coupling sleep, longevity, and memory during early aging of Drosophila. PreScale increased over the brain until mid-age, to then decreased again, and promoted the age-typical adaption of sleep patterns as well as extended longevity, while at the same time it reduced the ability of forming new memories. Genetic induction of PreScale also mimicked early aging-associated adaption of sleep patterns and the neuronal activity/excitability of sleep control neurons. Spermidine supplementation, previously shown to suppress early aging-associated PreScale, also attenuated the age-typical sleep pattern changes. Pharmacological induction of sleep for 2 days in mid-age flies also reset PreScale, restored memory formation, and rejuvenated sleep patterns. Our data suggest that early along the aging trajectory, PreScale acts as an acute, brain-wide form of presynaptic plasticity to steer trade-offs between longevity, sleep, and memory formation in a still plastic phase of early brain aging.
Collapse
Affiliation(s)
- Sheng Huang
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Chengji Piao
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Christine B. Beuschel
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Zhiying Zhao
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Stephan J. Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
33
|
Yamagata N, Imanishi Y, Wu H, Kondo S, Sano H, Tanimoto H. Nutrient responding peptide hormone CCHamide-2 consolidates appetitive memory. Front Behav Neurosci 2022; 16:986064. [PMID: 36338876 PMCID: PMC9627028 DOI: 10.3389/fnbeh.2022.986064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
CCHamide-2 (CCHa2) is a protostome excitatory peptide ortholog known for various arthropod species. In fruit flies, CCHa2 plays a crucial role in the endocrine system, allowing peripheral tissue to communicate with the central nervous system to ensure proper development and the maintenance of energy homeostasis. Since the formation of odor-sugar associative long-term memory (LTM) depends on the nutrient status in an animal, CCHa2 may play an essential role in linking memory and metabolic systems. Here we show that CCHa2 signals are important for consolidating appetitive memory by acting on the rewarding dopamine neurons. Genetic disruption of CCHa2 using mutant strains abolished appetitive LTM but not short-term memory (STM). A post-learning thermal suppression of CCHa2 expressing cells impaired LTM. In contrast, a post-learning thermal activation of CCHa2 cells stabilized STM induced by non-nutritious sugar into LTM. The receptor of CCHa2, CCHa2-R, was expressed in a subset of dopamine neurons that mediate reward for LTM. In accordance, the receptor expression in these dopamine neurons was required for LTM specifically. We thus concluded that CCHa2 conveys a sugar nutrient signal to the dopamine neurons for memory consolidation. Our finding establishes a direct interplay between brain reward and the putative endocrine system for long-term energy homeostasis.
Collapse
Affiliation(s)
- Nobuhiro Yamagata
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- *Correspondence: Nobuhiro Yamagata,
| | | | - Hongyang Wu
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Hiroko Sano
- Department of Molecular Genetics, Institute of Life Sciences, Kurume University, Kurume, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
34
|
De Backer JF, Grunwald Kadow IC. A role for glia in cellular and systemic metabolism: insights from the fly. CURRENT OPINION IN INSECT SCIENCE 2022; 53:100947. [PMID: 35772690 DOI: 10.1016/j.cois.2022.100947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Excitability and synaptic transmission make neurons high-energy consumers. However, neurons do not store carbohydrates or lipids. Instead, they need support cells to fuel their metabolic demands. This role is assumed by glia, both in vertebrates and invertebrates. Many questions remain regarding the coupling between neuronal activity and energy demand on the one hand, and nutrient supply by glia on the other hand. Here, we review recent advances showing that fly glia, similar to their role in vertebrates, fuel neurons in times of high energetic demand, such as during memory formation and long-term storage. Vertebrate glia also play a role in the modulation of neurons, their communication, and behavior, including food search and feeding. We discuss recent literature pointing to similar roles of fly glia in behavior and metabolism.
Collapse
Affiliation(s)
- Jean-François De Backer
- Technical University of Munich, School of Life Sciences, Liesel-Beckmann-Str. 4, 85354 Freising, Germany; University of Bonn, Faculty of Medicine, UKB, Institute of Physiology II, Nussallee 11, 53115 Bonn, Germany
| | - Ilona C Grunwald Kadow
- Technical University of Munich, School of Life Sciences, Liesel-Beckmann-Str. 4, 85354 Freising, Germany; University of Bonn, Faculty of Medicine, UKB, Institute of Physiology II, Nussallee 11, 53115 Bonn, Germany.
| |
Collapse
|
35
|
Sergi C, Schlais A, Marshall M, Rodríguez RL. Western black widow spiders (
Latrodectus hesperus
) remember prey capture location and size, but only alter behavior for prey caught at particular sites. Ethology 2022. [DOI: 10.1111/eth.13328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Clint Sergi
- Behavioral and Molecular Ecology group, Department of Biological Sciences University of Wisconsin Milwaukee Wisconsin USA
| | - Audrey Schlais
- Behavioral and Molecular Ecology group, Department of Biological Sciences University of Wisconsin Milwaukee Wisconsin USA
| | - Martie Marshall
- Behavioral and Molecular Ecology group, Department of Biological Sciences University of Wisconsin Milwaukee Wisconsin USA
| | - Rafael L. Rodríguez
- Behavioral and Molecular Ecology group, Department of Biological Sciences University of Wisconsin Milwaukee Wisconsin USA
| |
Collapse
|
36
|
Memory and the value of social information in foraging bumble bees. Learn Behav 2022; 50:317-328. [DOI: 10.3758/s13420-022-00528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 11/08/2022]
|
37
|
Villar ME, Pavão-Delgado M, Amigo M, Jacob PF, Merabet N, Pinot A, Perry SA, Waddell S, Perisse E. Differential coding of absolute and relative aversive value in the Drosophila brain. Curr Biol 2022; 32:4576-4592.e5. [DOI: 10.1016/j.cub.2022.08.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/24/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022]
|
38
|
Contextual memory reactivation modulates Ca2+-activity network state in a mushroom body-like center of the crab N. granulata. Sci Rep 2022; 12:11408. [PMID: 35794138 PMCID: PMC9259570 DOI: 10.1038/s41598-022-15502-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022] Open
Abstract
High-order brain centers play key roles in sensory integration and cognition. In arthropods, much is known about the insect high-order centers that support associative memory processes, the mushroom bodies. The hypothesis that crustaceans possess structures equivalent to the mushroom bodies -traditionally called hemiellipsoid body- has been receiving neuroanatomical endorsement. The recent functional support is limited to the short term: in a structure of the true crab Neohelice granulata that has many insect-like mushroom bodies traits, the plastic learning changes express the context attribute of an associative memory trace. Here, we used in vivo calcium imaging to test whether neuronal activity in this structure is associated with memory reactivation in the long-term (i.e., 24 h after training). Long-term training effects were tested by presenting the training-context alone, a reminder known to trigger memory reconsolidation. We found similar spontaneous activity between trained and naïve animals. However, after training-context presentation, trained animals showed increased calcium events rate, suggesting that memory reactivation induced a change in the underlying physiological state of this center. Reflecting the change in the escape response observed in the paradigm, animals trained with a visual danger stimulus showed significantly lower calcium-evoked transients in the insect-like mushroom body. Protein synthesis inhibitor cycloheximide administered during consolidation prevented calcium mediated changes. Moreover, we found the presence of distinct calcium activity spatial patterns. Results suggest that intrinsic neurons of this crustacean mushroom body-like center are involved in contextual associative long-term memory processes.
Collapse
|
39
|
Hong SZ, Mesik L, Grossman CD, Cohen JY, Lee B, Severin D, Lee HK, Hell JW, Kirkwood A. Norepinephrine potentiates and serotonin depresses visual cortical responses by transforming eligibility traces. Nat Commun 2022; 13:3202. [PMID: 35680879 PMCID: PMC9184610 DOI: 10.1038/s41467-022-30827-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
Reinforcement allows organisms to learn which stimuli predict subsequent biological relevance. Hebbian mechanisms of synaptic plasticity are insufficient to account for reinforced learning because neuromodulators signaling biological relevance are delayed with respect to the neural activity associated with the stimulus. A theoretical solution is the concept of eligibility traces (eTraces), silent synaptic processes elicited by activity which upon arrival of a neuromodulator are converted into a lasting change in synaptic strength. Previously we demonstrated in visual cortical slices the Hebbian induction of eTraces and their conversion into LTP and LTD by the retroactive action of norepinephrine and serotonin Here we show in vivo in mouse V1 that the induction of eTraces and their conversion to LTP/D by norepinephrine and serotonin respectively potentiates and depresses visual responses. We also show that the integrity of this process is crucial for ocular dominance plasticity, a canonical model of experience-dependent plasticity.
Collapse
Affiliation(s)
- Su Z Hong
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Lukas Mesik
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Cooper D Grossman
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jeremiah Y Cohen
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Boram Lee
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Daniel Severin
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Hey-Kyoung Lee
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Alfredo Kirkwood
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
40
|
Interplay between metabolic energy regulation and memory pathways in Drosophila. Trends Neurosci 2022; 45:539-549. [PMID: 35597687 DOI: 10.1016/j.tins.2022.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/10/2022] [Accepted: 04/21/2022] [Indexed: 12/17/2022]
Abstract
Regulating energy metabolism is critical to maintain homeostasis of cellular and systemic functions. In the brain, specialised centres for energy storage regulation finely communicate with the periphery and integrate signals about internal states. As a result, the behavioural responses can be directly adjusted accordingly to the energetic demands. In the fruit fly Drosophila melanogaster, one of these regulatory centres is the mushroom bodies (MBs), a brain region involved in olfactory memory. The integration of metabolic cues by the MBs has a crucial impact on learned behaviour. In this review, we explore recent advances supporting the interplay between energy metabolism and memory establishment, as well as the instructive role of energy during the switch between memory phases.
Collapse
|
41
|
Fujii H, Bito H. Deciphering Ca2+-controlled biochemical computation governing neural circuit dynamics via multiplex imaging. Neurosci Res 2022; 179:79-90. [DOI: 10.1016/j.neures.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/25/2022]
|
42
|
Chen H, Xie L, Wang Y, Zhang H. Postsynaptic Potential Energy as Determinant of Synaptic Plasticity. Front Comput Neurosci 2022; 16:804604. [PMID: 35250524 PMCID: PMC8891168 DOI: 10.3389/fncom.2022.804604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic energy can be used as a unifying principle to control neuronal activity. However, whether and how metabolic energy alone can determine the outcome of synaptic plasticity remains unclear. This study proposes a computational model of synaptic plasticity that is completely determined by energy. A simple quantitative relationship between synaptic plasticity and postsynaptic potential energy is established. Synaptic weight is directly proportional to the difference between the baseline potential energy and the suprathreshold potential energy and is constrained by the maximum energy supply. Results show that the energy constraint improves the performance of synaptic plasticity and avoids setting the hard boundary of synaptic weights. With the same set of model parameters, our model can reproduce several classical experiments in homo- and heterosynaptic plasticity. The proposed model can explain the interaction mechanism of Hebbian and homeostatic plasticity at the cellular level. Homeostatic synaptic plasticity at different time scales coexists. Homeostatic plasticity operating on a long time scale is caused by heterosynaptic plasticity and, on the same time scale as Hebbian synaptic plasticity, is caused by the constraint of energy supply.
Collapse
Affiliation(s)
- Huanwen Chen
- School of Automation, Central South University, Changsha, China
- *Correspondence: Huanwen Chen
| | - Lijuan Xie
- Institute of Physiology and Psychology, School of Marxism, Changsha University of Science and Technology, Changsha, China
| | - Yijun Wang
- School of Automation, Central South University, Changsha, China
| | - Hang Zhang
- School of Automation, Central South University, Changsha, China
| |
Collapse
|
43
|
Deng X, Mozzachiodi R. Using an invertebrate model to investigate the mechanisms of short-term memory deficits induced by food deprivation. Behav Brain Res 2022; 418:113646. [PMID: 34757110 PMCID: PMC8671320 DOI: 10.1016/j.bbr.2021.113646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/29/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
Although prolonged food deprivation is known to cause memory deficits, the underlying mechanisms are only partially understood. In this study, we began to investigate the cellular substrates of food deprivation-induced memory impairments in the invertebrate Aplysia. Following a single trial of noxious stimuli, Aplysia concurrently express short-term sensitization (an elementary form of learning in which withdrawal reflexes are enhanced) and short-term feeding suppression for at least 15 min. Cellular correlates of sensitization and feeding suppression include increased excitability of the tail sensory neurons (TSNs) controlling the withdrawal reflexes, and decreased excitability of feeding decision-making neuron B51, respectively. Recently, 14 days of food deprivation (14DFD) was reported to break the co-expression of sensitization and feeding suppression in Aplysia without health deterioration. Specifically, under 14DFD, sensitization was completely prevented while feeding suppression was present albeit attenuated. This study explored the cellular mechanisms underlying the absent sensitization and reduced feeding suppression under 14DFD. A reduced preparation was used to evaluate the short-term cellular modifications induced by delivering an aversive training protocol in vitro. TSN excitability failed to increase following in vitro training under 14DFD, suggesting that the lack of sensitization may be a consequence of the fact that TSN excitability failed to increase. B51 excitability also failed to decrease following in vitro training, indicating that additional neurons may contribute to the conserved albeit reduced feeding suppression in 14DFD animals. This study lays the foundations for the future use of the Aplysia model system to investigate the mechanisms underlying the memory impairments induced by prolonged food deprivation.
Collapse
Affiliation(s)
- Xin Deng
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX 78412, USA
| | - Riccardo Mozzachiodi
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX 78412, USA.
| |
Collapse
|
44
|
Silva B, Mantha OL, Schor J, Pascual A, Plaçais PY, Pavlowsky A, Preat T. Glia fuel neurons with locally synthesized ketone bodies to sustain memory under starvation. Nat Metab 2022; 4:213-224. [PMID: 35177854 PMCID: PMC8885408 DOI: 10.1038/s42255-022-00528-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/07/2022] [Indexed: 11/15/2022]
Abstract
During starvation, mammalian brains can adapt their metabolism, switching from glucose to alternative peripheral fuel sources. In the Drosophila starved brain, memory formation is subject to adaptative plasticity, but whether this adaptive plasticity relies on metabolic adaptation remains unclear. Here we show that during starvation, neurons of the fly olfactory memory centre import and use ketone bodies (KBs) as an energy substrate to sustain aversive memory formation. We identify local providers within the brain, the cortex glia, that use their own lipid store to synthesize KBs before exporting them to neurons via monocarboxylate transporters. Finally, we show that the master energy sensor AMP-activated protein kinase regulates both lipid mobilization and KB export in cortex glia. Our data provide a general schema of the metabolic interactions within the brain to support memory when glucose is scarce.
Collapse
Affiliation(s)
- Bryon Silva
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Olivier L Mantha
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
- INSERM UMR1069 'Nutrition, Croissance et Cancer', Tours, France
| | - Johann Schor
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Alice Pavlowsky
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France.
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France.
| |
Collapse
|
45
|
Padamsey Z, Katsanevaki D, Dupuy N, Rochefort NL. Neocortex saves energy by reducing coding precision during food scarcity. Neuron 2022; 110:280-296.e10. [PMID: 34741806 PMCID: PMC8788933 DOI: 10.1016/j.neuron.2021.10.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/07/2021] [Accepted: 10/15/2021] [Indexed: 11/21/2022]
Abstract
Information processing is energetically expensive. In the mammalian brain, it is unclear how information coding and energy use are regulated during food scarcity. Using whole-cell recordings and two-photon imaging in layer 2/3 mouse visual cortex, we found that food restriction reduced AMPA receptor conductance, reducing synaptic ATP use by 29%. Neuronal excitability was nonetheless preserved by a compensatory increase in input resistance and a depolarized resting potential. Consequently, neurons spiked at similar rates as controls but spent less ATP on underlying excitatory currents. This energy-saving strategy had a cost because it amplified the variability of visually-evoked subthreshold responses, leading to a 32% broadening of orientation tuning and impaired fine visual discrimination. This reduction in coding precision was associated with reduced levels of the fat mass-regulated hormone leptin and was restored by exogenous leptin supplementation. Our findings reveal that metabolic state dynamically regulates the energy spent on coding precision in neocortex.
Collapse
Affiliation(s)
- Zahid Padamsey
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| | - Danai Katsanevaki
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Nathalie Dupuy
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Nathalie L Rochefort
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
46
|
Xu 徐焕 H, Huang 黄求应 Q, Gao 高勇勇 Y, Wu 吴佳 J, Hassan A, Liu 刘昱彤 Y. IDH knockdown alters foraging behavior in the termite Odontotermes formosanus in different social contexts. Curr Zool 2021; 67:609-620. [PMID: 34805537 PMCID: PMC8599053 DOI: 10.1093/cz/zoab032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
Foraging, as an energy-consuming behavior, is very important for colony survival in termites. How energy metabolism related to glucose decomposition and adenosine triphosphate (ATP) production influences foraging behavior in termites is still unclear. Here, we analyzed the change in energy metabolism in the whole organism and brain after silencing the key metabolic gene isocitrate dehydrogenase (IDH) and then investigated its impact on foraging behavior in the subterranean termite Odontotermes formosanus in different social contexts. The IDH gene exhibited higher expression in the abdomen and head of O. formosanus. The knockdown of IDH resulted in metabolic disorders in the whole organism. The dsIDH-injected workers showed significantly reduced walking activity but increased foraging success. Interestingly, IDH knockdown altered brain energy metabolism, resulting in a decline in ATP levels and an increase in IDH activity. Additionally, the social context affected brain energy metabolism and, thus, altered foraging behavior in O. formosanus. We found that the presence of predator ants increased the negative influence on the foraging behavior of dsIDH-injected workers, including a decrease in foraging success. However, an increase in the number of nestmate soldiers could provide social buffering to relieve the adverse effect of predator ants on worker foraging behavior. Our orthogonal experiments further verified that the role of the IDH gene as an inherent factor was dominant in manipulating termite foraging behavior compared with external social contexts, suggesting that energy metabolism, especially brain energy metabolism, plays a crucial role in regulating termite foraging behavior.
Collapse
Affiliation(s)
- Huan Xu 徐焕
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qiuying Huang 黄求应
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yongyong Gao 高勇勇
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jia Wu 吴佳
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ali Hassan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yutong Liu 刘昱彤
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
47
|
A pair of dopamine neurons mediate chronic stress signals to induce learning deficit in Drosophila melanogaster. Proc Natl Acad Sci U S A 2021; 118:2023674118. [PMID: 34654742 DOI: 10.1073/pnas.2023674118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 11/18/2022] Open
Abstract
Chronic stress could induce severe cognitive impairments. Despite extensive investigations in mammalian models, the underlying mechanisms remain obscure. Here, we show that chronic stress could induce dramatic learning and memory deficits in Drosophila melanogaster The chronic stress-induced learning deficit (CSLD) is long lasting and associated with other depression-like behaviors. We demonstrated that excessive dopaminergic activity provokes susceptibility to CSLD. Remarkably, a pair of PPL1-γ1pedc dopaminergic neurons that project to the mushroom body (MB) γ1pedc compartment play a key role in regulating susceptibility to CSLD so that stress-induced PPL1-γ1pedc hyperactivity facilitates the development of CSLD. Consistently, the mushroom body output neurons (MBON) of the γ1pedc compartment, MBON-γ1pedc>α/β neurons, are important for modulating susceptibility to CSLD. Imaging studies showed that dopaminergic activity is necessary to provoke the development of chronic stress-induced maladaptations in the MB network. Together, our data support that PPL1-γ1pedc mediates chronic stress signals to drive allostatic maladaptations in the MB network that lead to CSLD.
Collapse
|
48
|
Glial glucose fuels the neuronal pentose phosphate pathway for long-term memory. Cell Rep 2021; 36:109620. [PMID: 34433052 PMCID: PMC8411112 DOI: 10.1016/j.celrep.2021.109620] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 01/10/2023] Open
Abstract
Brain function relies almost solely on glucose as an energy substrate. The main model of brain metabolism proposes that glucose is taken up and converted into lactate by astrocytes to fuel the energy-demanding neuronal activity underlying plasticity and memory. Whether direct neuronal glucose uptake is required for memory formation remains elusive. We uncover, in Drosophila, a mechanism of glucose shuttling to neurons from cortex glia, an exclusively perisomatic glial subtype, upon formation of olfactory long-term memory (LTM). In vivo imaging reveals that, downstream of cholinergic activation of cortex glia, autocrine insulin signaling increases glucose concentration in glia. Glucose is then transferred from glia to the neuronal somata in the olfactory memory center to fuel the pentose phosphate pathway and allow LTM formation. In contrast, our results indicate that the increase in neuronal glucose metabolism, although crucial for LTM formation, is not routed to glycolysis. Neuronal glucose metabolism is increased upon long-term memory formation Glial cells shuttle glucose to neurons following insulin signaling activation Glucose fuels the neuronal pentose phosphate pathway
Collapse
|
49
|
Seitz BM, Tomiyama AJ, Blaisdell AP. Eating behavior as a new frontier in memory research. Neurosci Biobehav Rev 2021; 127:795-807. [PMID: 34087276 DOI: 10.1016/j.neubiorev.2021.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/15/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
The study of memory is commonly associated with neuroscience, aging, education, and eyewitness testimony. Here we discuss how eating behavior is also heavily intertwined-and yet considerably understudied in its relation to memory processes. Both are influenced by similar neuroendocrine signals (e.g., leptin and ghrelin) and are dependent on hippocampal functions. While learning processes have long been implicated in influencing eating behavior, recent research has shown how memory of recent eating modulates future consumption. In humans, obesity is associated with impaired memory performance, and in rodents, dietary-induced obesity causes rapid decrements to memory. Lesions to the hippocampus disrupt memory but also induce obesity, highlighting a cyclic relationship between obesity and memory impairment. Enhancing memory of eating has been shown to reduce future eating and yet, little is known about what influences memory of eating or how memory of eating differs from memory for other behaviors. We discuss recent advancements in these areas and highlight fruitful research pursuits afforded by combining the study of memory with the study of eating behavior.
Collapse
|
50
|
Soudavari R, Batabyal A, Lukowiak K. In the great pond snail (Lymnaea stagnalis), two stressors that individually enhance memory in combination block memory formation. CAN J ZOOL 2021. [DOI: 10.1139/cjz-2020-0207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stress plays an important role in memory formation in the great pond snail (Lymnaea stagnalis (Linnaeus, 1758)). Individual stressors have been shown to enhance or to perturb long-term memory (LTM) formation. However, when snails perceive a combination of two stressors, it is unclear the outcome with regards to LTM formation. Here we first show that when L. stagnalis are exposed individually to either a predator stressor (crayfish effluent (CE), which is a kairomone) or a thermal stressor (30 °C), LTM formation is enhanced. In their natural environment, L. stagnalis may experience temperatures approaching 30 °C and they may encounter crayfish at the same time. How such a combination of stressors alters adaptive behaviour is unknown. Here we show that when these two stressors are combined, LTM formation is blocked. Since boiling CE inactivates the kairomone, we used previously boiled CE that we combined with the thermal stressor and found that LTM formation is again enhanced. These data show that (i) it cannot accurately be predicted how a combination of stressors when combined interact to alter LTM formation and (ii) there is a difference between hot CE and room temperature CE.
Collapse
Affiliation(s)
- Romina Soudavari
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Anuradha Batabyal
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|