1
|
Pophali S, Su DD, Ata R, Vijayakanth T, Nandi S, Jain R, Shimon LJW, Misra R, Barboiu M. Metal-Directed Self-Assembly of Minimal Heterochiral Peptides into Metallo-Supramolecular β-Helical Tubules for Artificial Transmembrane Water Channels. J Am Chem Soc 2025; 147:17404-17415. [PMID: 40350603 DOI: 10.1021/jacs.5c03970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Transmembrane selective transport of metabolites controls essential biological functions. During the last two decades, artificial channels have been developed and cyclic peptides have emerged as ideal platforms for efficient ion, sugar, and nucleic acid channel translocation. Despite these tremendous developments, cyclic peptides have eluded selective water transport. Herein, we report the formation of narrow artificial β-helical tubules with diameters ranging from 2.80 to 3.25 Å that selectively control the water translocation, akin to natural aquaporin channels. The tubular assemblies resulted from the metal-driven folding and assembly of minimal heterochiral metal-binding 3-pyridyl-terminated peptides. The bent ultrashort peptide ligand coordinates with Ag+ metal ions in a head-to-tail manner, which undergoes subsequent polymerization into a β-helical tubular structure stabilized by interstrand hydrogen bonds (H-bonds) between the β-strands and π-π staking interactions between terminal pyridyl moieties. Furthermore, sequence engineering of the heterochiral peptide and subsequent Ag+ ion coordination of the tailored peptides enabled the formation of distinct synthetic double β-barrel and artificial β-helical tubular assemblies, with water molecules encapsulated in the hydrophilic core of the tubes. These water-encapsulated tubes were further explored as artificial water channels in lipid bilayers. Our findings suggest that such β-helical tubular channels achieve a single-channel permeability of 106 water molecules/second/channel, which is within 1-2 orders of magnitude lower than that of aquaporins, with a rather good ability to sterically reject ions and prevent proton transport. These assemblies present significant potential for engineering efficient membranes for water purification and separation sciences.
Collapse
Affiliation(s)
- Salil Pophali
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Mohali 160062, India
| | - Dan-Dan Su
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, ENSCM-CNRS, UMR5635, University of Montpellier, Place E. Bataillon CC047, 34095 Montpellier, France
| | - Rudra Ata
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Mohali 160062, India
| | - Thangavel Vijayakanth
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801 , Israel
| | - Shyamapada Nandi
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai, Tamil Nadu 600127, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Mohali 160062, India
| | - Linda J W Shimon
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 7610001 , Israel
| | - Rajkumar Misra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Mohali 160062, India
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, ENSCM-CNRS, UMR5635, University of Montpellier, Place E. Bataillon CC047, 34095 Montpellier, France
| |
Collapse
|
2
|
Bukhdruker S, Gushchin I, Shevchenko V, Kovalev K, Polovinkin V, Tsybrov F, Astashkin R, Alekseev A, Mikhaylov A, Bukhalovich S, Bratanov D, Ryzhykau Y, Kuklina D, Caramello N, Rokitskaya T, Antonenko Y, Rulev M, Stoev C, Zabelskii D, Round E, Rogachev A, Borshchevskiy V, Ghai R, Bourenkov G, Zeghouf M, Cherfils J, Engelhard M, Chizhov I, Rodriguez-Valera F, Bamberg E, Gordeliy V. Proteorhodopsin insights into the molecular mechanism of vectorial proton transport. SCIENCE ADVANCES 2025; 11:eadu5303. [PMID: 40238873 PMCID: PMC12002130 DOI: 10.1126/sciadv.adu5303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/11/2025] [Indexed: 04/18/2025]
Abstract
Bacterial proton pumps, proteorhodopsins (PRs), are a major group of light-driven membrane proteins found in marine bacteria. They are functionally and structurally distinct from archaeal and eukaryotic proton pumps. To elucidate the proton transfer mechanism by PRs and understand the differences to nonbacterial pumps on a molecular level, high-resolution structures of PRs' functional states are needed. In this work, we have determined atomic-resolution structures of MAR, a PR from marine actinobacteria, in various functional states, notably the challenging late O intermediate state. These data and information from recent atomic-resolution structures on an archaeal outward proton pump bacteriorhodopsin and bacterial inward proton pump xenorhodopsin allow for deducing key universal elements for light-driven proton pumping. First, long hydrogen-bonded chains characterize proton pathways. Second, short hydrogen bonds allow proton storage and inhibit their backflow. Last, the retinal Schiff base is the active proton donor and acceptor to and from hydrogen-bonded chains.
Collapse
Affiliation(s)
- Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Vitaly Shevchenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Kirill Kovalev
- Hamburg Outstation c/o DESY, European Molecular Biology Laboratory, 22607 Hamburg, Germany
| | | | - Fedor Tsybrov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Roman Astashkin
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
| | - Alexey Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Anatoly Mikhaylov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Siarhei Bukhalovich
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Dmitry Bratanov
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
| | - Yury Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - Daria Kuklina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Nicolas Caramello
- Institute for Nanostructure and Solid State Physics, HARBOR, Universität Hamburg, 22761 Hamburg, Germany
| | - Tatyana Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yuri Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maksim Rulev
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| | - Chavdar Stoev
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
| | | | - Ekaterina Round
- European X-ray Free Electron Laser GmbH, 22869 Schenefeld, Germany
| | - Andrey Rogachev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Gleb Bourenkov
- Hamburg Outstation c/o DESY, European Molecular Biology Laboratory, 22607 Hamburg, Germany
| | - Mahel Zeghouf
- Université Paris-Saclay, CNRS, and Ecole Normale Supérieure Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Jacqueline Cherfils
- Université Paris-Saclay, CNRS, and Ecole Normale Supérieure Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Martin Engelhard
- Department Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Igor Chizhov
- Institute for Biophysical Chemistry, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | - Francisco Rodriguez-Valera
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, 03550 Alicante, Spain
| | - Ernst Bamberg
- Department of Biophysical Chemistry, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Valentin Gordeliy
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
| |
Collapse
|
3
|
Kozai D, Inoue M, Suzuki S, Kamegawa A, Nishikawa K, Suzuki H, Ekimoto T, Ikeguchi M, Fujiyoshi Y. Narrowed pore conformations of aquaglyceroporins AQP3 and GlpF. Nat Commun 2025; 16:2653. [PMID: 40113770 PMCID: PMC11926279 DOI: 10.1038/s41467-025-57728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 02/27/2025] [Indexed: 03/22/2025] Open
Abstract
Aquaglyceroporins such as aquaporin-3 (AQP3) and its bacterial homologue GlpF facilitate water and glycerol permeation across lipid bilayers. X-ray crystal structures of GlpF showed open pore conformations, and AQP3 has also been predicted to adopt this conformation. Here we present cryo-electron microscopy structures of rat AQP3 and GlpF in different narrowed pore conformations. In n-dodecyl-β-D-maltopyranoside detergent micelles, aromatic/arginine constriction filter residues of AQP3 containing Tyr212 form a 2.8-Å diameter pore, whereas in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) nanodiscs, Tyr212 inserts into the pore. Molecular dynamics simulation shows the Tyr212-in conformation is stable and largely suppresses water permeability. AQP3 reconstituted in POPC liposomes exhibits water and glycerol permeability, suggesting that the Tyr212-in conformation may be altered during permeation. AQP3 Y212F and Y212T mutant structures suggest that the aromatic residue drives the pore-inserted conformation. The aromatic residue is conserved in AQP7 and GlpF, but neither structure exhibits the AQP3-like conformation in POPC nanodiscs. Unexpectedly, the GlpF pore is covered by an intracellular loop, but the loop is flexible and not primarily related to the GlpF permeability. Our findings illuminate the unique AQP3 conformation and structural diversity of aquaglyceroporins.
Collapse
Affiliation(s)
- Daisuke Kozai
- Cellular and Structural Physiology Laboratory (CeSPL), Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| | - Masao Inoue
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Shota Suzuki
- Cellular and Structural Physiology Laboratory (CeSPL), Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| | - Akiko Kamegawa
- Cellular and Structural Physiology Laboratory (CeSPL), Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
- Joint Research Course for Advanced Biomolecular Characterization, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kouki Nishikawa
- Joint Research Course for Advanced Biomolecular Characterization, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroshi Suzuki
- Cellular and Structural Physiology Laboratory (CeSPL), Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- HPC- and AI-driven Drug Development Platform Division, Center for Computational Science, RIKEN, Yokohama, Japan
| | - Yoshinori Fujiyoshi
- Cellular and Structural Physiology Laboratory (CeSPL), Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan.
- Joint Research Course for Advanced Biomolecular Characterization, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| |
Collapse
|
4
|
Mondal A, Mondal D, Sarkar S, Shivpuje U, Mondal J, Talukdar P. Self-Assembled Hydrazide-Based Nanochannels: Efficient Water Translocation and Salt Rejection. Angew Chem Int Ed Engl 2025; 64:e202415510. [PMID: 39158108 DOI: 10.1002/anie.202415510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/20/2024]
Abstract
Nature has ingeniously developed specialized water transporters that effectively reject ions, including protons, while transporting water across membranes. These natural water channels, known as aquaporins (AQPs), have inspired the creation of Artificial Water Channels (AWCs). However, replicating superfast water transport with synthetic molecular structures that exclude salts and protons is a challenging task. This endeavor demands the coexistence of a suitable water-binding site and a selective filter for precise water transportation. Here, we present small-molecule hydrazides 1 b-1 d that self-assemble into a rosette-type nanochannel assembly through intermolecular hydrogen bonding and π-π stacking interactions, and selectively transport water molecules across lipid bilayer membranes. The experimental analysis demonstrates notable permeability rates for the 1 c derivative, enabling approximately 3.18×108 water molecules to traverse the channel per second. This permeability rate is about one order of magnitude lower than that of AQPs. Of particular significance, the 1 c ensures exclusive passage of water molecules while effectively blocking salts and protons. MD simulation studies confirmed the stability and water transport properties of the water channel assembly inside the bilayer membranes at ambient conditions.
Collapse
Affiliation(s)
- Abhishek Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
- Present Address: Leiden Institute of Chemistry, Leiden University, 2333, CC Leiden, The Netherlands
| | - Debashis Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
- Present Address: Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirkii Wigury 101, Warsaw, 02-089, Poland
| | - Susmita Sarkar
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, Telangana, India
| | - Umesh Shivpuje
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Jagannath Mondal
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, Telangana, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| |
Collapse
|
5
|
Oh H, Samineni L, Vogler RJ, Yao C, Behera H, Dhiman R, Horner A, Kumar M. Approaching Ideal Selectivity with Bioinspired and Biomimetic Membranes. ACS NANO 2025; 19:31-53. [PMID: 39718215 DOI: 10.1021/acsnano.4c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The applications of polymeric membranes have grown rapidly compared to traditional separation technologies due to their energy efficiency and smaller footprint. However, their potential is not fully realized due, in part, to their heterogeneity, which results in a "permeability-selectivity" trade-off for most membrane applications. Inspired by the intricate architecture and excellent homogeneity of biological membranes, bioinspired and biomimetic membranes (BBMs) aim to emulate biological membranes for practical applications. This Review highlights the potential of BBMs to overcome the limitations of polymeric membranes by utilizing the "division of labor" between well-defined permeable pores and impermeable matrix molecules seen in biological membranes. We explore the exceptional performance of membranes in biological organisms, focusing on their two major components: membrane proteins (biological channels) and lipid matrix molecules. We then discuss how these natural materials can be replaced with artificial mimics for enhanced properties and how macro-scale BBMs are developed. We highlight key demonstrations in the field of BBMs that draw upon the factors responsible for transport through biological membranes. Additionally, current state-of-the-art methods for fabrication of BBMs are reviewed with potential challenges and prospects for future applications. Finally, we provide considerations for future research that could enable BBMs to progress toward scale-up and enhanced applicability.
Collapse
Affiliation(s)
- Hyeonji Oh
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Laxmicharan Samineni
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Ronald J Vogler
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Chenhao Yao
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Harekrushna Behera
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Raman Dhiman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Manish Kumar
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Lloyd AR, Austin-Muttitt K, Mullins JGL. In silico drug repurposing at the cytoplasmic surface of human aquaporin 1. PLoS One 2025; 20:e0314151. [PMID: 39787482 PMCID: PMC11717375 DOI: 10.1371/journal.pone.0314151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/05/2024] [Indexed: 01/12/2025] Open
Abstract
Aquaporin 1 (AQP1) is a key channel for water transport in peritoneal dialysis. Inhibition of AQP1 could therefore impair water transport during peritoneal dialysis. It is not known whether inhibition of AQP1 occurs unintentionally due to off-target interactions of administered medications. A high-throughput virtual screening study has been performed to investigate the possible binding of licensed medications to the water pore of human AQP1. A complete model of human AQP1 based on its canonical sequence was assembled using I-TASSER and MODELLER. The model was refined via the incorporation of pore water molecules from a high-resolution yeast aquaporin structure. Docking studies were conducted for the cytoplasmic domain of the AQP1 monomer against a library of all compounds listed in the British National Formulary (BNF), using the PLANTS software with the ChemPLP scoring function. The stability of the best docked conformations within the intrinsic water pore was assessed via short 15 nanosecond molecular dynamics (MD) simulations using the GROMACS-on-Colab utility. Of the 1512 compounds tested, 1002 docking results were obtained, and 198 of these conformations occupied a position within the intrinsic water pore. 30 compounds with promising docking scores were assessed by MD. The docked conformations for dopamine, gabapentin, pregabalin, and methyldopa were stable in these short MD studies. For furosemide and pravastatin, the MD trajectory suggested a binding mode different to the docking result. A small set of compounds which could impede water transport through human AQP1 have been identified in this computational screening study.
Collapse
Affiliation(s)
- Aled R. Lloyd
- Genome and Structural Bioinformatics Group, Faculty of Medicine, Health and Life Science, Swansea University, Swansea, Wales, United Kingdom
| | - Karl Austin-Muttitt
- Genome and Structural Bioinformatics Group, Faculty of Medicine, Health and Life Science, Swansea University, Swansea, Wales, United Kingdom
| | - Jonathan G. L. Mullins
- Genome and Structural Bioinformatics Group, Faculty of Medicine, Health and Life Science, Swansea University, Swansea, Wales, United Kingdom
| |
Collapse
|
7
|
Huang LB, Su DD, Hardiagon A, Kocsis I, van der Lee A, Sterpone F, Baaden M, Barboiu M. Water-Pore Flow Permeation through Multivalent H-Bonding Pyridine-2,6-dicarboxamide-histamine/Histidine Water Channels. J Am Chem Soc 2025; 147:678-686. [PMID: 39680597 DOI: 10.1021/jacs.4c13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Aquaporins (AQPs) are natural proteins that can selectively transport water across cell membranes. Heterogeneous H-bonding of water with the inner wall of the pores of AQPs is of maximal importance regarding the optimal stabilization of water clusters within channels, leading to selective pore flow water transport against ions. To gain deeper insight into the water permeation mechanisms, simpler artificial water channels (AWCs) have been developed. Several H-bonding motifs (i.e., imidazole, polyhydroxy, etc.) have been reported as distinct and efficient for water-cluster stabilization within AWCs. Herein we combine two pyridine-2,6 dicarboxamide and imidazole to conceive multivalent U-shaped AWCs able to stabilize, like in AQP water clusters via different H-bonding groups. The crystal structures reveal that stable water superstructures are formed in the solid state, one with hydrophilic pores of ∼9 Å diameter, accommodating water clusters, and one with sterically hindered hydrophobic channels of ∼3 Å diameter, stabilizing water wires. As a result, a single-channel permeability of 1.2 × 107 H2O/s/channel has been achieved by the U-channels, which is only 1 order of magnitude lower than that of AQPs. Moreover, U-channels perform proton transport and completely reject anions and potentially can be applied in desalination membranes. Molecular simulation confirmed that U-channels can generate stable supramolecular porous sponges when they are decorated with hydrophobic alkyl chains featuring multivalent water H-bonding units that serve as water-cluster relays within the channel. To the best of our knowledge, this work is a rare biomimetic example of the importance of water-cluster stabilization via multivalent H-bonding and toward selective transport through water channels.
Collapse
Affiliation(s)
- Li-Bo Huang
- Adaptive Supramolecular Nanosystems Group, University of Montpellier, Institut Européen des Membranes, ENSCM-CNRS, UMR5635, Place E. Bataillon CC047, Montpellier 34095, France
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dan-Dan Su
- Adaptive Supramolecular Nanosystems Group, University of Montpellier, Institut Européen des Membranes, ENSCM-CNRS, UMR5635, Place E. Bataillon CC047, Montpellier 34095, France
| | - Arthur Hardiagon
- Laboratoire de Biochimie Théorique, Université Paris Cité, CNRS, 13 rue Pierre et Marie Curie, Paris 75005, France
| | - Istvan Kocsis
- Adaptive Supramolecular Nanosystems Group, University of Montpellier, Institut Européen des Membranes, ENSCM-CNRS, UMR5635, Place E. Bataillon CC047, Montpellier 34095, France
| | - Arie van der Lee
- Adaptive Supramolecular Nanosystems Group, University of Montpellier, Institut Européen des Membranes, ENSCM-CNRS, UMR5635, Place E. Bataillon CC047, Montpellier 34095, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, Université Paris Cité, CNRS, 13 rue Pierre et Marie Curie, Paris 75005, France
| | - Marc Baaden
- Laboratoire de Biochimie Théorique, Université Paris Cité, CNRS, 13 rue Pierre et Marie Curie, Paris 75005, France
| | - Mihail Barboiu
- Adaptive Supramolecular Nanosystems Group, University of Montpellier, Institut Européen des Membranes, ENSCM-CNRS, UMR5635, Place E. Bataillon CC047, Montpellier 34095, France
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Drewniak P, Xiao P, Ladizhansky V, Bondar AN, Brown LS. A conserved H-bond network in human aquaporin-1 is necessary for native folding and oligomerization. Biophys J 2024; 123:4285-4303. [PMID: 39425471 DOI: 10.1016/j.bpj.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/18/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024] Open
Abstract
Aquaporins (AQPs) are α-helical transmembrane proteins that conduct water through membranes with high selectivity and permeability. For human AQP1, in addition to the functional Asn-Pro-Ala motifs and the aromatic/Arg selectivity filter within the pore, there are several highly conserved residues that form an expansive hydrogen-bonding network. Previous solid-state nuclear magnetic resonance studies and structural conservation analysis have detailed which residues may be involved in this network. We explored this network by mutating the side chains or backbones involved in hydrogen-bonding, generating the following mutants: N127A, V133P, E142A, T187A, R195A, and S196A. The fold and stability of these mutants were assessed with attenuated total reflection Fourier transform infrared spectroscopy coupled with hydrogen/deuterium exchange upon increasing temperature. We found that replacement of any of the chosen residues to alanine leads to either partial instability or outright misfolding at room temperature, with the latter being most pronounced for the N127A, V133P, T187A, and R195A mutants. Deconvolution analysis of the amide I band revealed considerable secondary structure deviations, with some mutants exhibiting new random coil and β sheet structures. We also found that some of these mutations potentially disrupt the oligomerization of human AQP1. BN-PAGE and DLS data provide evidence toward the loss of tetramers within most of the mutants, meanwhile only the S196A mutant retains tetrameric organization. The molecular dynamics simulation of the wild-type, and the N127A, E142A, and T187A mutants show that these mutations result in major rearrangements of intra- and intermonomer hydrogen-bond networks. Overall, we show that specific point mutations that perturb hydrogen-bonding clusters result in severe misfolding in hAQP1 and disruption of its oligomerization. These data provide valuable insight into the structural stability of human aquaporin-1 and have implications toward other members of the AQP family, as these networks are largely conserved among a variety of human and nonmammalian AQP homologs.
Collapse
Affiliation(s)
- Philip Drewniak
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - Peng Xiao
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - Vladimir Ladizhansky
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - Ana-Nicoleta Bondar
- University of Bucharest, Faculty of Physics, Atomiștilor 405, Măgurele 077125, Romania; Forschungszentrum Jülich, Institute for Neuroscience and Medicine (INM), Computational Biomedicine (INM-9), Wilhelm-Johnen Straße, 5428 Jülich, Germany.
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
9
|
Liu Y, He Y, Tong J, Guo S, Zhang X, Luo Z, Sun L, Chang C, Zhuang B, Liu X. Solvent-mediated analgesia via the suppression of water permeation through TRPV1 ion channels. Nat Biomed Eng 2024:10.1038/s41551-024-01288-2. [PMID: 39572786 DOI: 10.1038/s41551-024-01288-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 10/01/2024] [Indexed: 12/15/2024]
Abstract
Activation of the ion channel transient receptor potential vanilloid 1 (TRPV1), which is integral to pain perception, leads to an expansion of channel width, facilitating the passage of cations and large organic molecules. However, the permeability of TRPV1 channels to water remains uncertain, owing to a lack of suitable tools to study water dynamics. Here, using upconversion nanophosphors to discriminate between H2O and D2O, by monitoring water permeability across activated TRPV1 at the single-cell and single-molecule levels, and by combining single-channel current measurements with molecular dynamics simulations, we show that water molecules flow through TRPV1 and reveal a direct connection between water migration, cation flow and TRPV1 functionality. We also show in mouse models of acute or chronic inflammatory pain that the administration of deuterated water suppresses TRPV1 activity, interrupts the transmission of pain signals and mitigates pain without impacting other neurological responses. Solvent-mediated analgesia may inspire alternative options for pain management.
Collapse
Affiliation(s)
- Yuxia Liu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Yuanyuan He
- School of Physics, Peking University, Beijing, China
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, China
- School of Safety Engineering, North China Institute of Science and Technology, Hebei, China
| | - Jiahuan Tong
- Yale-NUS College, National University of Singapore, Singapore, Singapore
| | - Shengyang Guo
- Department of Neurobiology, School of Basic Medicine, Peking University, Beijing, China
- Key Laboratory for Neuroscience of Ministry of Education and National Health Commission of China, Beijing, China
| | - Xinyu Zhang
- Department of Neurobiology, School of Basic Medicine, Peking University, Beijing, China
- Key Laboratory for Neuroscience of Ministry of Education and National Health Commission of China, Beijing, China
| | - Zichao Luo
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Linlin Sun
- Department of Neurobiology, School of Basic Medicine, Peking University, Beijing, China
- Key Laboratory for Neuroscience of Ministry of Education and National Health Commission of China, Beijing, China
| | - Chao Chang
- School of Physics, Peking University, Beijing, China.
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, China.
| | - Bilin Zhuang
- Yale-NUS College, National University of Singapore, Singapore, Singapore.
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
10
|
Yamamoto E, Joo K, Lee J, Sansom MSP, Yasui M. Molecular mechanism of anion permeation through aquaporin 6. Biophys J 2024; 123:2496-2505. [PMID: 38894539 PMCID: PMC11365104 DOI: 10.1016/j.bpj.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/07/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Aquaporins (AQPs) are recognized as transmembrane water channels that facilitate selective water permeation through their monomeric pores. Among the AQP family, AQP6 has an intriguing characteristic as an anion channel, which is allosterically controlled by pH conditions and is eliminated by a single amino acid mutation. However, the molecular mechanism of anion permeation through AQP6 remains unclear. Using molecular dynamics simulations in the presence of a transmembrane voltage utilizing an ion concentration gradient, we show that chloride ions permeate through the pore corresponding to the central axis of the AQP6 homotetramer. Under low pH conditions, a subtle opening of the hydrophobic selectivity filter (SF), located near the extracellular part of the central pore, becomes wetted and enables anion permeation. Our simulations also indicate that a single mutation (N63G) in human AQP6, located at the central pore, significantly reduces anion conduction, consistent with experimental data. Moreover, we demonstrate that the pH-sensing mechanism in which the protonation of H184 and H189 under low pH conditions allosterically triggers the gating of the SF region. These results suggest a unique pH-dependent allosteric anion permeation mechanism in AQP6 and could clarify the role of the central pore in some of the AQP tetramers.
Collapse
Affiliation(s)
- Eiji Yamamoto
- Department of System Design Engineering, Keio University, Yokohama, Kanagawa, Japan.
| | - Keehyoung Joo
- Center for Advanced Computation, Korea Institute for Advanced Study, Seoul, Korea
| | - Jooyoung Lee
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Jiang J, Keniya MV, Puri A, Zhan X, Cheng J, Wang H, Lin G, Lee YK, Jaber N, Hassoun Y, Shor E, Shi Z, Lee SH, Xu M, Perlin DS, Dai W. Structural and Biophysical Dynamics of Fungal Plasma Membrane Proteins and Implications for Echinocandin Action in Candida glabrata. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596243. [PMID: 38854035 PMCID: PMC11160696 DOI: 10.1101/2024.05.29.596243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Fungal plasma membrane proteins represent key therapeutic targets for antifungal agents, yet their structure and spatial distribution in the native context remain poorly characterized. Herein, we employ an integrative multimodal approach to elucidate the structural and functional organization of plasma membrane protein complexes in Candida glabrata , focusing on prominent and essential membrane proteins, the polysaccharide synthase β-(1,3)-glucan synthase (GS) and the proton pump Pma1. Cryo-electron tomography (cryo-ET) and live cell imaging reveal that GS and Pma1 are heterogeneously distributed into distinct plasma membrane microdomains. Treatment with caspofungin, an echinocandin antifungal that targets GS, alters the plasma membrane and disrupts the native distribution of GS and Pma1. Based on these findings, we propose a model for echinocandin action that considers how drug interactions with the plasma membrane environment lead to inhibition of GS. Our work underscores the importance of interrogating the structural and dynamic characteristics of fungal plasma membrane proteins in situ to understand function and facilitate precisely targeted development of novel antifungal therapies.
Collapse
|
12
|
Liu J, Wang Y, Gao B, Zhang K, Li H, Ren J, Huo F, Zhao B, Zhang L, Zhang S, He H. Ionic Liquid Gating Induces Anomalous Permeation through Membrane Channel Proteins. J Am Chem Soc 2024; 146:13588-13597. [PMID: 38695646 DOI: 10.1021/jacs.4c03506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Membrane channel proteins (MCPs) play key roles in matter transport through cell membranes and act as major targets for vaccines and drugs. For emerging ionic liquid (IL) drugs, a rational understanding of how ILs affect the structure and transport function of MCP is crucial to their design. In this work, GPU-accelerated microsecond-long molecular dynamics simulations were employed to investigate the modulating mechanism of ILs on MCP. Interestingly, ILs prefer to insert into the lipid bilayer and channel of aquaporin-2 (AQP2) but adsorb on the entrance of voltage-gated sodium channels (Nav). Molecular trajectory and free energy analysis reflect that ILs have a minimal impact on the structure of MCPs but significantly influence MCP functions. It demonstrates that ILs can decrease the overall energy barrier for water through AQP2 by 1.88 kcal/mol, whereas that for Na+ through Nav is increased by 1.70 kcal/mol. Consequently, the permeation rates of water and Na+ can be enhanced and reduced by at least 1 order of magnitude, respectively. Furthermore, an abnormal IL gating mechanism was proposed by combining the hydrophobic nature of MCP and confined water/ion coordination effects. More importantly, we performed experiments to confirm the influence of ILs on AQP2 in human cells and found that treatment with ILs significantly accelerated the changes in cell volume in response to altered external osmotic pressure. Overall, these quantitative results will not only deepen the understanding of IL-cell interactions but may also shed light on the rational design of drugs and disease diagnosis.
Collapse
Affiliation(s)
- Ju Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, China
| | - Bo Gao
- School of Systems Science and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
| | - Kun Zhang
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Hui Li
- School of Systems Science and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
| | - Jing Ren
- Department of Plastic and Reconstructive Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Feng Huo
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, China
| | - Baofeng Zhao
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Lihua Zhang
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Tan H, Duan M, Xie H, Zhao Y, Liu H, Yang M, Liu M, Yang J. Fast collective motions of backbone in transmembrane α helices are critical to water transfer of aquaporin. SCIENCE ADVANCES 2024; 10:eade9520. [PMID: 38718112 PMCID: PMC11078191 DOI: 10.1126/sciadv.ade9520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Fast collective motions are widely present in biomolecules, but their functional relevance remains unclear. Herein, we reveal that fast collective motions of backbone are critical to the water transfer of aquaporin Z (AqpZ) by using solid-state nuclear magnetic resonance (ssNMR) spectroscopy and molecular dynamics (MD) simulations. A total of 212 residue site-specific dipolar order parameters and 158 15N spin relaxation rates of the backbone are measured by combining the 13C- and 1H-detected multidimensional ssNMR spectra. Analysis of these experimental data by theoretic models suggests that the small-amplitude (~10°) collective motions of the transmembrane α helices on the nanosecond-to-microsecond timescales are dominant for the dynamics of AqpZ. The MD simulations demonstrate that these collective motions are critical to the water transfer efficiency of AqpZ by facilitating the opening of the channel and accelerating the water-residue hydrogen bonds renewing in the selectivity filter region.
Collapse
Affiliation(s)
- Huan Tan
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mojie Duan
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Huayong Xie
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yongxiang Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Hui Liu
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Minghui Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Maili Liu
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
14
|
Bertalan É, Rodrigues MJ, Schertler GFX, Bondar AN. Graph-based algorithms to dissect long-distance water-mediated H-bond networks for conformational couplings in GPCRs. Br J Pharmacol 2024. [PMID: 38636539 DOI: 10.1111/bph.16387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/03/2024] [Accepted: 03/02/2024] [Indexed: 04/20/2024] Open
Abstract
Changes in structure and dynamics elicited by agonist ligand binding at the extracellular side of G protein coupled receptors (GPCRs) must be relayed to the cytoplasmic G protein binding side of the receptors. To decipher the role of water-mediated hydrogen-bond networks in this relay mechanism, we have developed graph-based algorithms and analysis methodologies applicable to datasets of static structures of distinct GPCRs. For a reference dataset of static structures of bovine rhodopsin solved at the same resolution, we show that graph analyses capture the internal protein-water hydrogen-bond network. The extended analyses of static structures of rhodopsins and opioid receptors suggest a relay mechanism whereby inactive receptors have in place much of the internal core hydrogen-bond network required for long-distance relay of structural change, with extensive local H-bond clusters observed in structures solved at high resolution and with internal water molecules.
Collapse
Affiliation(s)
- Éva Bertalan
- Physikzentrum, RWTH-Aachen University, Aachen, Germany
| | | | | | - Ana-Nicoleta Bondar
- Forschungszentrum Jülich, Institute of Computational Biomedicine, Jülich, Germany
- Faculty of Physics, University of Bucharest, Măgurele, Romania
| |
Collapse
|
15
|
Bill RM. Drugging aquaporins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184164. [PMID: 37146744 DOI: 10.1016/j.bbamem.2023.184164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Water is essential for all life because it is required for the proper functioning of the cells and tissues of all organisms. It crosses biological membranes down osmotic gradients through the pores of aquaporin membrane channels at rates of up to 3 billion molecules per second. In the twenty years since Peter Agre was awarded the 2003 Nobel Prize in Chemistry for the discovery of the aquaporin family, aquaporin structure and function have become established in the literature. As a consequence, we understand in fine detail the mechanism by which aquaporins facilitate membrane water flow while excluding protons. We also know that some aquaporins facilitate the permeation of other small neutral solutes, ions or even unexpected substrates across biological membranes. The thirteen aquaporins in the human body have been implicated in pathologies including oedema, epilepsy, cancer cell migration, tumour angiogenesis, metabolic disorders and inflammation. Surprisingly, however, there is no aquaporin-targeted drug in the clinic. Some scientists have therefore concluded that aquaporins are intrinsically non-druggable targets. Discovering medicines to treat disorders of water homeostasis is thus an enduring challenge for the aquaporin field. Success in this endeavour will meet the urgent clinical need of millions of patients suffering from a range of life-threatening conditions and for whom no pharmacological interventions are currently available.
Collapse
Affiliation(s)
- Roslyn M Bill
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
16
|
Kariev AM, Green ME. Water, Protons, and the Gating of Voltage-Gated Potassium Channels. MEMBRANES 2024; 14:37. [PMID: 38392664 PMCID: PMC10890431 DOI: 10.3390/membranes14020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Ion channels are ubiquitous throughout all forms of life. Potassium channels are even found in viruses. Every cell must communicate with its surroundings, so all cells have them, and excitable cells, in particular, especially nerve cells, depend on the behavior of these channels. Every channel must be open at the appropriate time, and only then, so that each channel opens in response to the stimulus that tells that channel to open. One set of channels, including those in nerve cells, responds to voltage. There is a standard model for the gating of these channels that has a section of the protein moving in response to the voltage. However, there is evidence that protons are moving, rather than protein. Water is critical as part of the gating process, although it is hard to see how this works in the standard model. Here, we review the extensive evidence of the importance of the role of water and protons in gating these channels. Our principal example, but by no means the only example, will be the Kv1.2 channel. Evidence comes from the effects of D2O, from mutations in the voltage sensing domain, as well as in the linker between that domain and the gate, and at the gate itself. There is additional evidence from computations, especially quantum calculations. Structural evidence comes from X-ray studies. The hydration of ions is critical in the transfer of ions in constricted spaces, such as the gate region and the pore of a channel; we will see how the structure of the hydrated ion fits with the structure of the channel. In addition, there is macroscopic evidence from osmotic experiments and streaming current measurements. The combined evidence is discussed in the context of a model that emphasizes the role of protons and water in gating these channels.
Collapse
Affiliation(s)
- Alisher M Kariev
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Michael E Green
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| |
Collapse
|
17
|
Liu A, Zhang H, Zheng Q, Wang S. The Potential of Cyclodextrins as Inhibitors for the BM2 Protein: An In Silico Investigation. Molecules 2024; 29:620. [PMID: 38338365 PMCID: PMC10856705 DOI: 10.3390/molecules29030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The influenza BM2 transmembrane domain (BM2TM), an acid-activated proton channel, is an attractive antiviral target due to its essential roles during influenza virus replication, whereas no effective inhibitors have been reported for BM2. In this study, we draw inspiration from the properties of cyclodextrins (CDs) and hypothesize that CDs of appropriate sizes may possess the potential to act as inhibitors of the BM2TM proton channel. To explore this possibility, molecular dynamics simulations were employed to assess their inhibitory capabilities. Our findings reveal that CD4, CD5, and CD6 are capable of binding to the BM2TM proton channel, resulting in disrupted water networks and reduced hydrogen bond occupancy between H19 and the solvent within the BM2TM channel necessary for proton conduction. Notably, CD4 completely obstructs the BM2TM water channel. Based on these observations, we propose that CD4, CD5, and CD6 individually contribute to diminishing the proton transfer efficiency of the BM2 protein, and CD4 demonstrates promising potential as an inhibitor for the BM2 proton channel.
Collapse
Affiliation(s)
- Aijun Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China; (A.L.); (H.Z.)
| | - Hao Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China; (A.L.); (H.Z.)
| | - Qingchuan Zheng
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Song Wang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China; (A.L.); (H.Z.)
| |
Collapse
|
18
|
Xu Y, Nam KH. Xylitol binding to the M1 site of glucose isomerase induces a conformational change in the substrate binding channel. Biochem Biophys Res Commun 2023; 682:21-26. [PMID: 37793321 DOI: 10.1016/j.bbrc.2023.09.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
Glucose isomerase (GI) is extensively used in the food industry for production of high-fructose corn syrup and for the production of biofuels and other renewable chemicals. Structure-based studies on GI inhibitors are important for improving its efficiency in industrial applications. Here, we report the subatomic crystal structure of Streptomyces rubiginosus GI (SruGI) complexed with its inhibitor, xylitol, at 0.99 Å resolution. Electron density map and temperature factor analysis showed partial binding of xylitol to the M1 metal binding site of SruGI, providing two different conformations of the metal binding site and the substrate binding channel. The xylitol molecule induced a conformational change in the M2 metal ion-interacting Asp255 residue, which subsequently led to a conformational change in the side chain of Asp181 residue. This led to the positional shift of Pro25 by 1.71 Å and side chain rotation of Phe26 by 21°, where located on the neighboring protomer in tetrameric SruGI. The conformation change of these two residues affect the size of the substrate-binding channel of GI. Therefore, xylitol binding to M1 site of SruGI induces not only a conformational changes of the metal-binding site, but also conformational change of substrate-binding channel of the tetrameric SruGI. These results expand our knowledge about the mechanism underlying the inhibitory effect of xylitol on GI.
Collapse
Affiliation(s)
- Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Ki Hyun Nam
- College of General Education, Kookmin University, Seoul, 02707, South Korea.
| |
Collapse
|
19
|
Andrei I, Chaix A, Benkhaled BT, Dupuis R, Gomri C, Petit E, Polentarutti M, van der Lee A, Semsarilar M, Barboiu M. Selective Water Pore Recognition and Transport through Self-Assembled Alkyl-Ureido-Trianglamine Artificial Water Channels. J Am Chem Soc 2023; 145:21213-21221. [PMID: 37750755 PMCID: PMC10557096 DOI: 10.1021/jacs.3c02815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 09/27/2023]
Abstract
In nature, aquaporins (AQPs) are proteins known for fast water transport through the membrane of living cells. Artificial water channels (AWCs) synthetic counterparts with intrinsic water permeability have been developed with the hope of mimicking the performances and the natural functions of AQPs. Highly selective AWCs are needed, and the design of selectivity filters for water is of tremendous importance. Herein, we report the use of self-assembled trianglamine macrocycles acting as AWCs in lipid bilayer membranes that are able to transport water with steric restriction along biomimetic H-bonding-decorated pores conferring selective binding filters for water. Trianglamine [(±)Δ, (mixture of diastereoisomers) and (R,R)3Δ and (S,S)3Δ], trianglamine hydrochloride (Δ.HCl), and alkyl-ureido trianglamines (n = 4, 6, 8, and 12) [(±)ΔC4, (±)ΔC8, (±)ΔC6, and (±)ΔC12] were synthesized for the studies presented here. The single-crystal X-ray structures confirmed that trianglamines form a tubular superstructure in the solid state. The water translocation is controlled via successive selective H-bonding pores (a diameter of 3 Å) and highly permeable hydrophobic vestibules (a diameter of 5 Å). The self-assembled alkyl-ureido-trianglamines achieve a single-channel permeability of 108 water molecules/second/channel, which is within 1 order of magnitude lower than AQPs with good ability to sterically reject ions and preventing the proton transport. Trianglamines present potential for engineering membranes for water purification and separation technologies.
Collapse
Affiliation(s)
- Iuliana
M. Andrei
- Institut
Européen des Membranes (IEM), Univ
Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | - Arnaud Chaix
- Institut
Européen des Membranes (IEM), Univ
Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | | | - Romain Dupuis
- Laboratoire
de Mécanique et Génie Civil (LMGC), University of Montpellier, CNRS—UMR 5508, Montpellier 34090, France
| | - Chaimaa Gomri
- Institut
Européen des Membranes (IEM), Univ
Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | - Eddy Petit
- Institut
Européen des Membranes (IEM), Univ
Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | - Maurizio Polentarutti
- Elettra-Sincrotrone
Trieste S.C.p.A., Strada Statale 14 km 163,5 in AREA Science Park, Basovizza 34149 Trieste, Italy
| | - Arie van der Lee
- Institut
Européen des Membranes (IEM), Univ
Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | - Mona Semsarilar
- Institut
Européen des Membranes (IEM), Univ
Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | - Mihail Barboiu
- Institut
Européen des Membranes (IEM), Univ
Montpellier, CNRS, ENSCM, Montpellier 34090, France
| |
Collapse
|
20
|
Login FH, Nejsum LN. Aquaporin water channels: roles beyond renal water handling. Nat Rev Nephrol 2023; 19:604-618. [PMID: 37460759 DOI: 10.1038/s41581-023-00734-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 08/18/2023]
Abstract
Aquaporin (AQP) water channels are pivotal to renal water handling and therefore in the regulation of body water homeostasis. However, beyond the kidney, AQPs facilitate water reabsorption and secretion in other cells and tissues, including sweat and salivary glands and the gastrointestinal tract. A growing body of evidence has also revealed that AQPs not only facilitate the transport of water but also the transport of several small molecules and gases such as glycerol, H2O2, ions and CO2. Moreover, AQPs are increasingly understood to contribute to various cellular processes, including cellular migration, adhesion and polarity, and to act upstream of several intracellular and intercellular signalling pathways to regulate processes such as cell proliferation, apoptosis and cell invasiveness. Of note, several AQPs are highly expressed in multiple cancers, where their expression can correlate with the spread of cancerous cells to lymph nodes and alter the response of cancers to conventional chemotherapeutics. These data suggest that AQPs have diverse roles in various homeostatic and physiological systems and may be exploited for prognostics and therapeutic interventions.
Collapse
Affiliation(s)
- Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
21
|
Kamegawa A, Suzuki S, Suzuki H, Nishikawa K, Numoto N, Fujiyoshi Y. Structural analysis of the water channel AQP2 by single-particle cryo-EM. J Struct Biol 2023; 215:107984. [PMID: 37315821 DOI: 10.1016/j.jsb.2023.107984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/19/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Water channels, which are small membrane proteins almost entirely buried in lipid membranes, are challenging research targets for single-particle cryo-electron microscopy (cryo-EM), a powerful technique routinely used to determine the structures of membrane proteins. Because the single-particle method enables structural analysis of a whole protein with flexible parts that interfere with crystallization, we have focused our efforts on analyzing water channel structures. Here, utilizing this system, we analyzed the structure of full-length aquaporin-2 (AQP2), a primary regulator of vasopressin-dependent reabsorption of water at the renal collecting ducts. The 2.9 Å resolution map revealed a cytoplasmic extension of the cryo-EM density that was presumed to be the highly flexible C-terminus at which the localization of AQP2 is regulated in the renal collecting duct cells. We also observed a continuous density along the common water pathway inside the channel pore and lipid-like molecules at the membrane interface. Observations of these constructions in the AQP2 structure analyzed without any fiducial markers (e.g., a rigidly bound antibody) indicate that single-particle cryo-EM will be useful for investigating water channels in native states as well as in complexes with chemical compounds.
Collapse
Affiliation(s)
- Akiko Kamegawa
- Cellular and Structural Physiology Laboratory (CeSPL), Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Shota Suzuki
- Cellular and Structural Physiology Laboratory (CeSPL), Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hiroshi Suzuki
- Cellular and Structural Physiology Laboratory (CeSPL), Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kouki Nishikawa
- Joint Research Course for Advanced Biomolecular Characterization, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Nobutaka Numoto
- Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8501, Japan
| | - Yoshinori Fujiyoshi
- Cellular and Structural Physiology Laboratory (CeSPL), Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
22
|
Ozu M, Galizia L, Alvear-Arias JJ, Fernández M, Caviglia A, Zimmermann R, Guastaferri F, Espinoza-Muñoz N, Sutka M, Sigaut L, Pietrasanta LI, González C, Amodeo G, Garate JA. Mechanosensitive aquaporins. Biophys Rev 2023; 15:497-513. [PMID: 37681084 PMCID: PMC10480384 DOI: 10.1007/s12551-023-01098-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/04/2023] [Indexed: 09/09/2023] Open
Abstract
Cellular systems must deal with mechanical forces to satisfy their physiological functions. In this context, proteins with mechanosensitive properties play a crucial role in sensing and responding to environmental changes. The discovery of aquaporins (AQPs) marked a significant breakthrough in the study of water transport. Their transport capacity and regulation features make them key players in cellular processes. To date, few AQPs have been reported to be mechanosensitive. Like mechanosensitive ion channels, AQPs respond to tension changes in the same range. However, unlike ion channels, the aquaporin's transport rate decreases as tension increases, and the molecular features of the mechanism are unknown. Nevertheless, some clues from mechanosensitive ion channels shed light on the AQP-membrane interaction. The GxxxG motif may play a critical role in the water permeation process associated with structural features in AQPs. Consequently, a possible gating mechanism triggered by membrane tension changes would involve a conformational change in the cytoplasmic extreme of the single file region of the water pathway, where glycine and histidine residues from loop B play a key role. In view of their transport capacity and their involvement in relevant processes related to mechanical forces, mechanosensitive AQPs are a fundamental piece of the puzzle for understanding cellular responses.
Collapse
Affiliation(s)
- Marcelo Ozu
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Luciano Galizia
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan José Alvear-Arias
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, 2360102 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
| | - Miguel Fernández
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, 2360102 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
| | - Agustín Caviglia
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rosario Zimmermann
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Florencia Guastaferri
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Present Address: Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario, Argentina
| | - Nicolás Espinoza-Muñoz
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, 2360102 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
| | - Moira Sutka
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lorena Sigaut
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina
- Instituto de Física de Buenos Aires (IFIBA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lía Isabel Pietrasanta
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina
- Instituto de Física de Buenos Aires (IFIBA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carlos González
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
- Present Address: Molecular Bioscience Department, University of Texas, Austin, TX 78712 USA
| | - Gabriela Amodeo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - José Antonio Garate
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, 2360102 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia y Vida, Universidad San Sebastián, 7750000 Santiago, Chile
| |
Collapse
|
23
|
Arai N, Yamamoto E, Koishi T, Hirano Y, Yasuoka K, Ebisuzaki T. Wetting hysteresis induces effective unidirectional water transport through a fluctuating nanochannel. NANOSCALE HORIZONS 2023; 8:652-661. [PMID: 36883765 DOI: 10.1039/d2nh00563h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We propose a water pump that actively transports water molecules through nanochannels. Spatially asymmetric noise fluctuations imposed on the channel radius cause unidirectional water flow without osmotic pressure, which can be attributed to hysteresis in the cyclic transition between the wetting/drying states. We show that the water transport depends on fluctuations, such as white, Brownian, and pink noises. Because of the high-frequency components in white noise, fast switching of open and closed states inhibits channel wetting. Conversely, pink and Brownian noises generate high-pass filtered net flow. Brownian fluctuation leads to a faster water transport rate, whereas pink noise has a higher capability to overcome pressure differences in the opposite direction. A trade-off relationship exists between the resonant frequency of the fluctuation and the flow amplification. The proposed pump can be considered as an analogy for the reversed Carnot cycle, which is the upper limit of the energy conversion efficiency.
Collapse
Affiliation(s)
- Noriyoshi Arai
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan.
- Computational Astrophysics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Eiji Yamamoto
- Department of System Design Engineering, Keio University, Yokohama, 223-8522, Japan
| | - Takahiro Koishi
- Department of Applied Physics, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Yoshinori Hirano
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan.
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan.
| | | |
Collapse
|
24
|
Dande R, Sankararamakrishnan R. dbAQP-SNP: a database of missense single-nucleotide polymorphisms in human aquaporins. Database (Oxford) 2023; 2023:7076688. [PMID: 36913438 PMCID: PMC10010469 DOI: 10.1093/database/baad012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/08/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
Aquaporins and aquaglyceroporins belong to the superfamily of major intrinsic proteins (MIPs), and they transport water and other neutral solutes such as glycerol. These channel proteins are involved in vital physiological processes and are implicated in several human diseases. Experimentally determined structures of MIPs from diverse organisms reveal a unique hour-glass fold with six transmembrane helices and two half-helices. MIP channels have two constrictions formed by Asn-Pro-Ala (NPA) motifs and aromatic/arginine selectivity filters (Ar/R SFs). Several reports have found associations among single-nucleotide polymorphisms (SNPs) in human aquaporins (AQPs) with diseases in specific populations. In this study, we have compiled 2798 SNPs that give rise to missense mutations in 13 human AQPs. To understand the nature of missense substitutions, we have systematically analyzed the pattern of substitutions. We found several examples in which substitutions could be considered as non-conservative that include small to big or hydrophobic to charged residues. We also analyzed these substitutions in the context of structure. We have identified SNPs that occur in NPA motifs or Ar/R SFs, and they will most certainly disrupt the structure and/or transport properties of human AQPs. We found 22 examples in which missense SNP substitutions that are mostly non-conservative in nature have given rise to pathogenic conditions as found in the Online Mendelian Inheritance in Man database. It is most likely that not all missense SNPs in human AQPs will result in diseases. However, understanding the effect of missense SNPs on the structure and function of human AQPs is important. In this direction, we have developed a database dbAQP-SNP that contains information about all 2798 SNPs. This database has several features and search options that can help the user to find SNPs in specific positions of human AQPs including the functionally and/or structurally important regions. dbAQP-SNP (http://bioinfo.iitk.ac.in/dbAQP-SNP) is freely available to the academic community. Database URL http://bioinfo.iitk.ac.in/dbAQP-SNP.
Collapse
Affiliation(s)
- Rachana Dande
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | | |
Collapse
|
25
|
Aquaporins Display a Diversity in their Substrates. J Membr Biol 2023; 256:1-23. [PMID: 35986775 DOI: 10.1007/s00232-022-00257-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/13/2022] [Indexed: 02/07/2023]
Abstract
Aquaporins constitute a family of transmembrane proteins that function to transport water and other small solutes across the cell membrane. Aquaporins family members are found in diverse life forms. Aquaporins share the common structural fold consisting of six transmembrane alpha helices with a central water-transporting channel. Four such monomers assemble together to form tetramers as their biological unit. Initially, aquaporins were discovered as water-transporting channels, but several studies supported their involvement in mediating the facilitated diffusion of different solutes. The so-called water channel is able to transport a variety of substrates ranging from a neutral molecule to a charged molecule or a small molecule to a bulky molecule or even a gas molecule. This article gives an overview of a diverse range of substrates conducted by aquaporin family members. Prime focus is on human aquaporins where aquaporins show a wide tissue distribution and substrate specificity leading to various physiological functions. This review also highlights the structural mechanisms leading to the transport of water and glycerol. More research is needed to understand how one common fold enables the aquaporins to transport an array of solutes.
Collapse
|
26
|
Xiong M, Li C, Wang W, Yang B. Protein Structure and Modification of Aquaporins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:15-38. [PMID: 36717484 DOI: 10.1007/978-981-19-7415-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) allow water molecules and other small, neutral solutes to quickly pass through membrane. The protein structures of AQPs solved by crystallographic methods or cryo-electron microscopy technology show that AQP monomer consists of six membrane-spanning alpha-helices that form the central water-transporting pore. AQP monomers assemble to form tetramers, forming the functional units in the membrane, to transport water or other small molecules. The biological functions of AQPs are regulated by posttranslational modifications, e.g., phosphorylation, ubiquitination, glycosylation, subcellular distribution, degradation and protein interactions. Modifications of AQP combined with structural properties contribute to a better functional mechanism of AQPs. Insight into the molecular mechanisms responsible for AQP modifications as well as gating and transport properties proved to be fundamental to the development of new therapeutic targets or reliable diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Mengyao Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chunling Li
- Institute of Hypertension and Kidney Research, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension and Kidney Research, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
27
|
Zeng J, Schmitz F, Isaksson S, Glas J, Arbab O, Andersson M, Sundell K, Eriksson LA, Swaminathan K, Törnroth-Horsefield S, Hedfalk K. High-resolution structure of a fish aquaporin reveals a novel extracellular fold. Life Sci Alliance 2022; 5:5/12/e202201491. [PMID: 36229063 PMCID: PMC9559756 DOI: 10.26508/lsa.202201491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
The structural and functional characterization of a fish AQP reveals a water-specific AQP with unique structural features that may have implications for channel gating in response to osmotic changes. Aquaporins are protein channels embedded in the lipid bilayer in cells from all organisms on earth that are crucial for water homeostasis. In fish, aquaporins are believed to be important for osmoregulation; however, the molecular mechanism behind this is poorly understood. Here, we present the first structural and functional characterization of a fish aquaporin; cpAQP1aa from the fresh water fish climbing perch (Anabas testudineus), a species that is of high osmoregulatory interest because of its ability to spend time in seawater and on land. These studies show that cpAQP1aa is a water-specific aquaporin with a unique fold on the extracellular side that results in a constriction region. Functional analysis combined with molecular dynamic simulations suggests that phosphorylation at two sites causes structural perturbations in this region that may have implications for channel gating from the extracellular side.
Collapse
Affiliation(s)
- Jiao Zeng
- Department of Biological Sciences, National University of Singapore, Queenstown, Singapore
| | - Florian Schmitz
- Department and Chemistry and Molecular Biology, Gothenburg University, Göteborg, Sweden
| | - Simon Isaksson
- Department of Chemistry and Chemical Engineering, Applied Surface Chemistry, Chalmers University of Technology, Gothenburg, Sweden
| | - Jessica Glas
- Department and Chemistry and Molecular Biology, Gothenburg University, Göteborg, Sweden
| | - Olivia Arbab
- Department and Chemistry and Molecular Biology, Gothenburg University, Göteborg, Sweden
| | - Martin Andersson
- Department of Chemistry and Chemical Engineering, Applied Surface Chemistry, Chalmers University of Technology, Gothenburg, Sweden
| | - Kristina Sundell
- Department of Biology and Environmental Sciences, Gothenburg University, Göteborg, Sweden
| | - Leif A Eriksson
- Department and Chemistry and Molecular Biology, Gothenburg University, Göteborg, Sweden
| | | | - Susanna Törnroth-Horsefield
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Lund, Sweden
| | - Kristina Hedfalk
- Department and Chemistry and Molecular Biology, Gothenburg University, Göteborg, Sweden
| |
Collapse
|
28
|
Clabbers MT, Martynowycz MW, Hattne J, Gonen T. Hydrogens and hydrogen-bond networks in macromolecular MicroED data. J Struct Biol X 2022; 6:100078. [PMID: 36507068 PMCID: PMC9731847 DOI: 10.1016/j.yjsbx.2022.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Microcrystal electron diffraction (MicroED) is a powerful technique utilizing electron cryo-microscopy (cryo-EM) for protein structure determination of crystalline samples too small for X-ray crystallography. Electrons interact with the electrostatic potential of the sample, which means that the scattered electrons carry information about the charged state of atoms and provide relatively stronger contrast for visualizing hydrogen atoms. Accurately identifying the positions of hydrogen atoms, and by extension the hydrogen bonding networks, is of importance for understanding protein structure and function, in particular for drug discovery. However, identification of individual hydrogen atom positions typically requires atomic resolution data, and has thus far remained elusive for macromolecular MicroED. Recently, we presented the ab initio structure of triclinic hen egg-white lysozyme at 0.87 Å resolution. The corresponding data were recorded under low exposure conditions using an electron-counting detector from thin crystalline lamellae. Here, using these subatomic resolution MicroED data, we identified over a third of all hydrogen atom positions based on strong difference peaks, and directly visualize hydrogen bonding interactions and the charged states of residues. Furthermore, we find that the hydrogen bond lengths are more accurately described by the inter-nuclei distances than the centers of mass of the corresponding electron clouds. We anticipate that MicroED, coupled with ongoing advances in data collection and refinement, can open further avenues for structural biology by uncovering the hydrogen atoms and hydrogen bonding interactions underlying protein structure and function.
Collapse
Affiliation(s)
- Max T.B. Clabbers
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095, United States,Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, United States
| | - Michael W. Martynowycz
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095, United States,Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, United States
| | - Johan Hattne
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095, United States,Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, United States
| | - Tamir Gonen
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095, United States,Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, United States,Department of Physiology, University of California, Los Angeles, CA 90095, United States,Corresponding author at: Department of Biological Chemistry, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
29
|
Ozu M, Alvear-Arias JJ, Fernandez M, Caviglia A, Peña-Pichicoi A, Carrillo C, Carmona E, Otero-Gonzalez A, Garate JA, Amodeo G, Gonzalez C. Aquaporin Gating: A New Twist to Unravel Permeation through Water Channels. Int J Mol Sci 2022; 23:12317. [PMID: 36293170 PMCID: PMC9604103 DOI: 10.3390/ijms232012317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Aquaporins (AQPs) are small transmembrane tetrameric proteins that facilitate water, solute and gas exchange. Their presence has been extensively reported in the biological membranes of almost all living organisms. Although their discovery is much more recent than ion transport systems, different biophysical approaches have contributed to confirm that permeation through each monomer is consistent with closed and open states, introducing the term gating mechanism into the field. The study of AQPs in their native membrane or overexpressed in heterologous systems have experimentally demonstrated that water membrane permeability can be reversibly modified in response to specific modulators. For some regulation mechanisms, such as pH changes, evidence for gating is also supported by high-resolution structures of the water channel in different configurations as well as molecular dynamics simulation. Both experimental and simulation approaches sustain that the rearrangement of conserved residues contributes to occlude the cavity of the channel restricting water permeation. Interestingly, specific charged and conserved residues are present in the environment of the pore and, thus, the tetrameric structure can be subjected to alter the positions of these charges to sustain gating. Thus, is it possible to explore whether the displacement of these charges (gating current) leads to conformational changes? To our knowledge, this question has not yet been addressed at all. In this review, we intend to analyze the suitability of this proposal for the first time.
Collapse
Affiliation(s)
- Marcelo Ozu
- Department of Biodiversity and Experimental Biology, Faculty of Exact & Natural Sciences, University of Buenos Aires, Buenos Aires C1053, Argentina
- CONICET—Institute of Biodiversity and Experimental and Applied Biology CONICET (IBBEA), University of Buenos Aires, Buenos Aires C1053, Argentina
| | - Juan José Alvear-Arias
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Miguel Fernandez
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Agustín Caviglia
- CONICET—Institute of Biodiversity and Experimental and Applied Biology CONICET (IBBEA), University of Buenos Aires, Buenos Aires C1053, Argentina
| | - Antonio Peña-Pichicoi
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Christian Carrillo
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Emerson Carmona
- Cell Physiology and Molecular Biophysics Department and the Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Anselmo Otero-Gonzalez
- Center of Protein Study, Faculty of Biology, University of Havana, La Habana 10400, Cuba
| | - José Antonio Garate
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
- Faculty of Engineering and Technology, University of San Sebastian, Santiago 8420524, Chile
| | - Gabriela Amodeo
- Department of Biodiversity and Experimental Biology, Faculty of Exact & Natural Sciences, University of Buenos Aires, Buenos Aires C1053, Argentina
- CONICET—Institute of Biodiversity and Experimental and Applied Biology CONICET (IBBEA), University of Buenos Aires, Buenos Aires C1053, Argentina
| | - Carlos Gonzalez
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
30
|
Saitoh Y, Suga M. Structure and function of a silicic acid channel Lsi1. FRONTIERS IN PLANT SCIENCE 2022; 13:982068. [PMID: 36172553 PMCID: PMC9510833 DOI: 10.3389/fpls.2022.982068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/24/2022] [Indexed: 05/26/2023]
Abstract
Silicon is a beneficial element for plant growth and production, especially in rice. Plant roots take up silicon in the form of silicic acid. Silicic acid channels, which belong to the NIP subfamily of aquaporins, are responsible for silicic acid uptake. Accumulated experimental results have deepened our understanding of the silicic acid channel for its uptake mechanism, physiological function, localization, and other aspects. However, how the silicic acid channel efficiently and selectively permeates silicic acid remains to be elucidated. Recently reported crystal structures of the silicic acid channel enabled us to discuss the mechanism of silicic acid uptake by plant roots at an atomic level. In this mini-review, we focus on the crystal structures of the silicic acid channel and provide a detailed description of the structural determinants of silicic acid permeation and its transport mechanism, which are crucial for the rational creation of secure and sustainable crops.
Collapse
Affiliation(s)
- Yasunori Saitoh
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
| | - Michihiro Suga
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
31
|
Liu K, Guo J, Li Y, Chen J, Li P. High-Flux Ultrafiltration Membranes Combining Artificial Water Channels and Covalent Organic Frameworks. MEMBRANES 2022; 12:membranes12090824. [PMID: 36135843 PMCID: PMC9503389 DOI: 10.3390/membranes12090824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 05/26/2023]
Abstract
Artificial water channels (AWCs) have been well investigated, and the imidazole-quartet water channel is one of the representative channels. In this work, covalent organic frameworks (COFs) composite membranes were fabricated through assembling COF layers and imidazole-quartet water channel. The membranes were synthesized by interfacial polymerization and self-assembly process, using polyacrylonitrile (PAN) ultrafiltration substrates with artificial water channels (HC6H) as modifiers. Effective combination of COF layers and imidazole-quartet water channels provide the membrane with excellent performance. The as-prepared membrane exhibits a water permeance above 271.7 L·m−2·h−1·bar−1, and high rejection rate (>99.5%) for CR. The results indicated that the composite structure based on AWCs and COFs may provide a new idea for the development of high-performance membranes for dye separation.
Collapse
Affiliation(s)
- Kai Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Jinwen Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Yingdong Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Jinguang Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Pingli Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
32
|
Mondal D, Dandekar BR, Ahmad M, Mondal A, Mondal J, Talukdar P. Selective and rapid water transportation across a self-assembled peptide-diol channel via the formation of a dual water array. Chem Sci 2022; 13:9614-9623. [PMID: 36091906 PMCID: PMC9400608 DOI: 10.1039/d2sc01737g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022] Open
Abstract
Achieving superfast water transport by using synthetically designed molecular artifacts, which exclude salts and protons, is a challenging task in separation science today, as it requires the concomitant presence of a proper water-binding site and necessary selectivity filter for transporting water. Here, we demonstrate the water channel behavior of two configurationally different peptide diol isomers that mimic the natural water channel system, i.e., aquaporins. The solid-state morphology studies showed the formation of a self-assembled aggregated structure, and X-ray crystal structure analysis confirmed the formation of a nanotubular assembly that comprises two distinct water channels. The water permeabilities of all six compounds were evaluated and are found to transport water by excluding salts and protons with a water permeability rate of 5.05 × 108 water molecules per s per channel, which is around one order of magnitude less than the water permeability rate of aquaporins. MD simulation studies showed that the system forms a stable water channel inside the bilayer membrane under ambient conditions, with a 2 × 8 layered assembly, and efficiently transports water molecules by forming two distinct water arrays within the channel.
Collapse
Affiliation(s)
- Debashis Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Bhupendra R Dandekar
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad 500046 Telangana India
| | - Manzoor Ahmad
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Abhishek Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Jagannath Mondal
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad 500046 Telangana India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| |
Collapse
|
33
|
Gössweiner-Mohr N, Siligan C, Pluhackova K, Umlandt L, Koefler S, Trajkovska N, Horner A. The Hidden Intricacies of Aquaporins: Remarkable Details in a Common Structural Scaffold. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202056. [PMID: 35802902 DOI: 10.1002/smll.202202056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Evolution turned aquaporins (AQPs) into the most efficient facilitators of passive water flow through cell membranes at no expense of solute discrimination. In spite of a plethora of solved AQP structures, many structural details remain hidden. Here, by combining extensive sequence- and structural-based analysis of a unique set of 20 non-redundant high-resolution structures and molecular dynamics simulations of four representatives, key aspects of AQP stability, gating, selectivity, pore geometry, and oligomerization, with a potential impact on channel functionality, are identified. The general view of AQPs possessing a continuous open water pore is challenged and it is depicted that AQPs' selectivity is not exclusively shaped by pore-lining residues but also by the relative arrangement of transmembrane helices. Moreover, this analysis reveals that hydrophobic interactions constitute the main determinant of protein thermal stability. Finally, a numbering scheme of the conserved AQP scaffold is established, facilitating direct comparison of, for example, disease-causing mutations and prediction of potential structural consequences. Additionally, the results pave the way for the design of optimized AQP water channels to be utilized in biotechnological applications.
Collapse
Affiliation(s)
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Kristyna Pluhackova
- Stuttgart Center for Simulation Science, University of Stuttgart, Cluster of Excellence EXC 2075, Universitätsstr. 32, 70569, Stuttgart, Germany
| | - Linnea Umlandt
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Sabina Koefler
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Natasha Trajkovska
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| |
Collapse
|
34
|
Sharma L, Ye L, Yong C, Seetharaman R, Kho K, Surya W, Wang R, Torres J. Aquaporin-based membranes made by interfacial polymerization in hollow fibers: Visualization and role of aquaporin in water permeability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
da Silva IV, Garra S, Calamita G, Soveral G. The Multifaceted Role of Aquaporin-9 in Health and Its Potential as a Clinical Biomarker. Biomolecules 2022; 12:biom12070897. [PMID: 35883453 PMCID: PMC9313442 DOI: 10.3390/biom12070897] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022] Open
Abstract
Aquaporins (AQPs) are transmembrane channels essential for water, energy, and redox homeostasis, with proven involvement in a variety of pathophysiological conditions such as edema, glaucoma, nephrogenic diabetes insipidus, oxidative stress, sepsis, cancer, and metabolic dysfunctions. The 13 AQPs present in humans are widely distributed in all body districts, drawing cell lineage-specific expression patterns closely related to cell native functions. Compelling evidence indicates that AQPs are proteins with great potential as biomarkers and targets for therapeutic intervention. Aquaporin-9 (AQP9) is the most expressed in the liver, with implications in general metabolic and redox balance due to its aquaglyceroporin and peroxiporin activities, facilitating glycerol and hydrogen peroxide (H2O2) diffusion across membranes. AQP9 is also expressed in other tissues, and their altered expression is described in several human diseases, such as liver injury, inflammation, cancer, infertility, and immune disorders. The present review compiles the current knowledge of AQP9 implication in diseases and highlights its potential as a new biomarker for diagnosis and prognosis in clinical medicine.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Sabino Garra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
- Correspondence: (G.C.); (G.S.)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Correspondence: (G.C.); (G.S.)
| |
Collapse
|
36
|
Shen J, Roy A, Joshi H, Samineni L, Ye R, Tu YM, Song W, Skiles M, Kumar M, Aksimentiev A, Zeng H. Fluorofoldamer-Based Salt- and Proton-Rejecting Artificial Water Channels for Ultrafast Water Transport. NANO LETTERS 2022; 22:4831-4838. [PMID: 35674810 DOI: 10.1021/acs.nanolett.2c01137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Here, we report on a novel class of fluorofoldamer-based artificial water channels (AWCs) that combines excellent water transport rate and selectivity with structural simplicity and robustness. Produced by a facile one-pot copolymerization reaction under mild conditions, the best-performing channel (AWC 1) is an n-C8H17-decorated foldamer nanotube with an average channel length of 2.8 nm and a pore diameter of 5.2 Å. AWC 1 demonstrates an ultrafast water conduction rate of 1.4 × 1010 H2O/s per channel, outperforming the archetypal biological water channel, aquaporin 1, while excluding salts (i.e., NaCl and KCl) and protons. Unique to this class of channels, the inwardly facing C(sp2)-F atoms being the most electronegative in the periodic table are proposed as being critical to enabling the ultrafast and superselective water transport properties by decreasing the channel's cavity and enhancing the channel wall smoothness via reducing intermolecular forces with water molecules or hydrated ions.
Collapse
Affiliation(s)
- Jie Shen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Arundhati Roy
- Department of Pharmacy, Ludwig Maximilian University Munich Butenandtstraße 5-13, Munich 81377, Germany
| | - Himanshu Joshi
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Laxmicharan Samineni
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ruijuan Ye
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yu-Ming Tu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Woochul Song
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matthew Skiles
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Manish Kumar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huaqiang Zeng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
37
|
The Unexpected Helical Supramolecular Assembly of a Simple Achiral Acetamide Tecton Generates Selective Water Channels. Chemistry 2022; 28:e202200383. [DOI: 10.1002/chem.202200383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/07/2022]
|
38
|
Lazaratos M, Siemers M, Brown LS, Bondar AN. Conserved hydrogen-bond motifs of membrane transporters and receptors. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183896. [PMID: 35217000 DOI: 10.1016/j.bbamem.2022.183896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 01/18/2023]
Abstract
Membrane transporters and receptors often rely on conserved hydrogen bonds to assemble transient paths for ion transfer or long-distance conformational couplings. For transporters and receptors that use proton binding and proton transfer for function, inter-helical hydrogen bonds of titratable protein sidechains that could change protonation are of central interest to formulate hypotheses about reaction mechanisms. Knowledge of hydrogen bonds common at sites of potential interest for proton binding could thus inform and guide studies on functional mechanisms of protonation-coupled membrane proteins. Here we apply graph-theory approaches to identify hydrogen-bond motifs of carboxylate and histidine sidechains in a large data set of static membrane protein structures. We find that carboxylate-hydroxyl hydrogen bonds are present in numerous structures of the dataset, and can be part of more extended H-bond clusters that could be relevant to conformational coupling. Carboxylate-carboxyamide and imidazole-imidazole hydrogen bonds are represented in comparably fewer protein structures of the dataset. Atomistic simulations on two membrane transporters in lipid membranes suggest that many of the hydrogen bond motifs present in static protein structures tend to be robust, and can be part of larger hydrogen-bond clusters that recruit additional hydrogen bonds.
Collapse
Affiliation(s)
- Michalis Lazaratos
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| | - Malte Siemers
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| | - Leonid S Brown
- University of Guelph, Department of Physics, 50 Stone Road E., Guelph, Ontario N1G 2W1, Canada
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany; University of Bucharest, Faculty of Physics, Atomiștilor 405, Măgurele 077125, Romania; Forschungszentrum Jülich, Institute for Neuroscience and Medicine and Institute for Advanced Simulations (IAS-5/INM-9), Computational Biomedicine, Wilhelm-Johnen Straße, 52428 Jülich, Germany.
| |
Collapse
|
39
|
Crystalline hydrogen bonding of water molecules confined in a metal-organic framework. Commun Chem 2022; 5:51. [PMID: 36697686 PMCID: PMC9814150 DOI: 10.1038/s42004-022-00666-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/10/2022] [Indexed: 01/28/2023] Open
Abstract
Hydrogen bonding (H-bonding) of water molecules confined in nanopores is of particular interest because it is expected to exhibit chemical features different from bulk water molecules due to their interaction with the wall lining the pores. Herein, we show a crystalline behavior of H-bonded water molecules residing in the nanocages of a paddlewheel metal-organic framework, providing in situ and ex situ synchrotron single-crystal X-ray diffraction and Raman spectroscopy studies. The crystalline H-bond is demonstrated by proving the vibrational chain connectivity arising between hydrogen bond and paddlewheel Cu-Cu bond in sequentially connected Cu-Cu·····coordinating H2O·····H-bonded H2O and by proving the spatial ordering of H-bonded water molecules at room temperature, where they are anticipated to be disordered. Additionally, we show a substantial distortion of the paddlewheel Cu2+-centers that arises with water coordination simultaneously. Also, we suggest the dynamic coordination bond character of the H-bond of the confined water, by which an H-bond transitions to a coordination-bond at the Cu2+-center instantaneously after dissociating a previously coordinated H2O.
Collapse
|
40
|
Shen Y, Fei F, Zhong Y, Fan C, Sun J, Hu J, Gong B, Czajkowsky DM, Shao Z. Controlling Water Flow through a Synthetic Nanopore with Permeable Cations. ACS CENTRAL SCIENCE 2021; 7:2092-2098. [PMID: 34963901 PMCID: PMC8704043 DOI: 10.1021/acscentsci.1c01218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 05/19/2023]
Abstract
There is presently intense interest in the development of synthetic nanopores that recapitulate the functional properties of biological water channels for a wide range of applications. To date, all known synthetic water channels have a hydrophobic lumen, and while many exhibit a comparable rate of water transport as biological water channels, there is presently no rationally designed system with the ability to regulate water transport, a critical property of many natural water channels. Here, we describe a self-assembling nanopore consisting of stacked macrocyclic molecules with a hybrid hydrophilic/hydrophobic lumen exhibiting water transport that can be regulated by alkali metal ions. Stopped-flow kinetic assays reveal a non-monotonic-dependence of transport on cation size as well as a strikingly broad range of water flow, from essentially none in the presence of the sodium ion to as high a flow as that of the biological water channel, aquaporin 1, in the absence of the cations. All-atom molecular dynamics simulations show that the mechanism underlying the observed sensitivity is the binding of cations to defined sites within this hybrid pore, which perturbs water flow through the channel. Thus, beyond revealing insights into factors that can modulate a high-flux water transport through sub-nm pores, the obtained results provide a proof-of-concept for the rational design of next-generation, controllable synthetic water channels.
Collapse
Affiliation(s)
- Yi Shen
- School
of Biomedical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China
| | - Fan Fei
- School
of Biomedical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China
| | - Yulong Zhong
- Department
of Chemistry, The State University of New
York at Buffalo, Buffalo, New York 14260, United States
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Jielin Sun
- Shanghai
Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine
(Ministry of Education), Shanghai Jiao Tong
University, Shanghai 200240, China
| | - Jun Hu
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Synchrotron
Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Bing Gong
- Department
of Chemistry, The State University of New
York at Buffalo, Buffalo, New York 14260, United States
| | - Daniel M. Czajkowsky
- School
of Biomedical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China
| | - Zhifeng Shao
- School
of Biomedical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China
| |
Collapse
|
41
|
Schmidt JDR, Beitz E. Mutational Widening of Constrictions in a Formate-Nitrite/H + Transporter Enables Aquaporin-Like Water Permeability and Proton Conductance. J Biol Chem 2021; 298:101513. [PMID: 34929166 PMCID: PMC8749060 DOI: 10.1016/j.jbc.2021.101513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
The unrelated protein families of the microbial formate–nitrite transporters (FNTs) and aquaporins (AQP) likely adapted the same protein fold through convergent evolution. FNTs facilitate weak acid anion/H+ cotransport, whereas AQP water channels strictly exclude charged substrates including protons. The FNT channel–like transduction pathway bears two lipophilic constriction sites that sandwich a highly conserved histidine residue. Because of lacking experiments, the function of these constrictions is unclear, and the protonation status of the central histidine during substrate transport remains a matter of debate. Here, we introduced constriction-widening mutations into the prototypical FNT from Escherichia coli, FocA, and assayed formate/H+ transport properties, water/solute permeability, and proton conductance. We found that enlargement of these constrictions concomitantly decreased formate/formic acid transport. In contrast to wildtype FocA, the mutants were unable to make use of a transmembrane proton gradient as a driving force. A construct in which both constrictions were eliminated exhibited water permeability, similar to AQPs, although accompanied by a proton conductance. Our data indicate that the lipophilic constrictions mainly act as barriers to isolate the central histidine from the aqueous bulk preventing protonation via proton wires. These results are supportive of an FNT transport model in which the central histidine is uncharged, and weak acid substrate anion protonation occurs in the vestibule regions of the transporter before passing the constrictions.
Collapse
Affiliation(s)
- Jana D R Schmidt
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany.
| |
Collapse
|
42
|
Pfeffermann J, Goessweiner-Mohr N, Pohl P. The energetic barrier to single-file water flow through narrow channels. Biophys Rev 2021; 13:913-923. [PMID: 35035593 PMCID: PMC8724168 DOI: 10.1007/s12551-021-00875-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 10/30/2022] Open
Abstract
Various nanoscopic channels of roughly equal diameter and length facilitate single-file diffusion at vastly different rates. The underlying variance of the energetic barriers to transport is poorly understood. First, water partitioning into channels so narrow that individual molecules cannot overtake each other incurs an energetic penalty. Corresponding estimates vary widely depending on how the sacrifice of two out of four hydrogen bonds is accounted for. Second, entropy differences between luminal and bulk water may arise: additional degrees of freedom caused by dangling OH-bonds increase entropy. At the same time, long-range dipolar water interactions decrease entropy. Here, we dissect different contributions to Gibbs free energy of activation, ΔG ‡, for single-file water transport through narrow channels by analyzing experimental results from water permeability measurements on both bare lipid bilayers and biological water channels that (i) consider unstirred layer effects and (ii) adequately count the channels in reconstitution experiments. First, the functional relationship between water permeabilities and Arrhenius activation energies indicates negligible differences between the entropies of intraluminal water and bulk water. Second, we calculate ΔG ‡ from unitary water channel permeabilities using transition state theory. Plotting ΔG ‡ as a function of the number of H-bond donating or accepting pore-lining residues results in a 0.1 kcal/mol contribution per residue. The resulting upper limit for partial water dehydration amounts to 2 kcal/mol. In the framework of biomimicry, our analysis provides valuable insights for the design of synthetic water channels. It thus may aid in the urgent endeavor towards combating global water scarcity.
Collapse
Affiliation(s)
| | | | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
43
|
Schmüser L, Trefz M, Roeters SJ, Beckner W, Pfaendtner J, Otzen D, Woutersen S, Bonn M, Schneider D, Weidner T. Membrane Structure of Aquaporin Observed with Combined Experimental and Theoretical Sum Frequency Generation Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13452-13459. [PMID: 34729987 DOI: 10.1021/acs.langmuir.1c02206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-resolution structural information on membrane proteins is essential for understanding cell biology and for the structure-based design of new medical drugs and drug delivery strategies. X-ray diffraction (XRD) can provide angstrom-level information about the structure of membrane proteins, yet for XRD experiments, proteins are removed from their native membrane environment, chemically stabilized, and crystallized, all of which can compromise the conformation. Here, we describe how a combination of surface-sensitive vibrational spectroscopy and molecular dynamics simulations can account for the native membrane environment. We observe the structure of a glycerol facilitator channel (GlpF), an aquaporin membrane channel finely tuned to selectively transport water and glycerol molecules across the membrane barrier. We find subtle but significant differences between the XRD structure and the inferred in situ structure of GlpF.
Collapse
Affiliation(s)
- L Schmüser
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - M Trefz
- Department of Chemistry-Biochemistry, University of Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - S J Roeters
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - W Beckner
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Seattle, Washington 98195-1750, United States
| | - J Pfaendtner
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Seattle, Washington 98195-1750, United States
| | - D Otzen
- iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - S Woutersen
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - M Bonn
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - D Schneider
- Department of Chemistry-Biochemistry, University of Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - T Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Seattle, Washington 98195-1750, United States
| |
Collapse
|
44
|
Structural basis for high selectivity of a rice silicon channel Lsi1. Nat Commun 2021; 12:6236. [PMID: 34716344 PMCID: PMC8556265 DOI: 10.1038/s41467-021-26535-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/07/2021] [Indexed: 11/28/2022] Open
Abstract
Silicon (Si), the most abundant mineral element in the earth’s crust, is taken up by plant roots in the form of silicic acid through Low silicon rice 1 (Lsi1). Lsi1 belongs to the Nodulin 26-like intrinsic protein subfamily in aquaporin and shows high selectivity for silicic acid. To uncover the structural basis for this high selectivity, here we show the crystal structure of the rice Lsi1 at a resolution of 1.8 Å. The structure reveals transmembrane helical orientations different from other aquaporins, characterized by a unique, widely opened, and hydrophilic selectivity filter (SF) composed of five residues. Our structural, functional, and theoretical investigations provide a solid structural basis for the Si uptake mechanism in plants, which will contribute to secure and sustainable rice production by manipulating Lsi1 selectivity for different metalloids. The rice Lsi1 aquaporin mediates uptake of silicic acid via the roots. Here the authors show the crystal structure of rice Lsi1 and characterize a unique five residue hydrophilic selectivity filter providing a structural basis for the highly selective activity of Lsi1 in Si uptake.
Collapse
|
45
|
Gonzalez MA, Zaragoza A, Lynch CI, Sansom MSP, Valeriani C. Influence of water models on water movement through AQP1. J Chem Phys 2021; 155:154502. [PMID: 34686053 DOI: 10.1063/5.0063986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Water diffusion through membrane proteins is a key aspect of cellular function. Essential processes of cellular metabolism are driven by osmotic pressure, which depends on water channels. Membrane proteins such as aquaporins (AQPs) are responsible for enabling water permeation through the cell membrane. AQPs are highly selective, allowing only water and relatively small polar molecules to cross the membrane. Experimentally, estimation of water flux through membrane proteins is still a challenge, and hence, accurate simulations of water permeation are of particular importance. We present a numerical study of water diffusion through AQP1 comparing three water models: TIP3P, OPC, and TIP4P/2005. Bulk diffusion, diffusion permeability, and osmotic permeability are computed and compared among all models. The results show that there are significant differences between TIP3P (a particularly widespread model for simulations of biological systems) and the more recently developed TIP4P/2005 and OPC models. We demonstrate that OPC and TIP4P/2005 reproduce protein-water interactions and dynamics in very good agreement with experimental data. From this study, we find that the choice of the water model has a significant effect on the computed water dynamics as well as its molecular behavior within a biological nanopore.
Collapse
Affiliation(s)
| | - Alberto Zaragoza
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, USA
| | - Charlotte I Lynch
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, United Kingdom
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, United Kingdom
| | - Chantal Valeriani
- Universidad Complutense de Madrid, Facultad de Ciencias Fícias, Departamento de Estructura de la Materia, Física Térmica y Electrónica, 28040 Madrid, Spain
| |
Collapse
|
46
|
Chen X, Ma J, Wang X, Lu K, Liu Y, Zhang L, Peng J, Chen L, Yang M, Li Y, Cheng Z, Xiao S, Yu J, Zou S, Liang Y, Zhang M, Yang Y, Ding X, Dong H. Functional modulation of an aquaporin to intensify photosynthesis and abrogate bacterial virulence in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:330-346. [PMID: 34273211 DOI: 10.1111/tpj.15427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Plant aquaporins are a recently noted biological resource with a great potential to improve crop growth and defense traits. Here, we report the functional modulation of the rice (Oryza sativa) aquaporin OsPIP1;3 to enhance rice photosynthesis and grain production and to control bacterial blight and leaf streak, the most devastating worldwide bacterial diseases in the crop. We characterize OsPIP1;3 as a physiologically relevant CO2 -transporting facilitator, which supports 30% of rice photosynthesis on average. This role is nullified by interaction of OsPIP1;3 with the bacterial protein Hpa1, an essential component of the Type III translocon that supports translocation of the bacterial Type III effectors PthXo1 and TALi into rice cells to induce leaf blight and streak, respectively. Hpa1 binding shifts OsPIP1;3 from CO2 transport to effector translocation, aggravates bacterial virulence, and blocks rice photosynthesis. On the contrary, the external application of isolated Hpa1 to rice plants effectively prevents OsPIP1;3 from interaction with Hpa1 secreted by the bacteria that are infecting the plants. Blockage of the OsPIP1;3-Hpa1 interaction reverts OsPIP1;3 from effector translocation to CO2 transport, abrogates bacterial virulence, and meanwhile induces defense responses in rice. These beneficial effects can combine to enhance photosynthesis by 29-30%, reduce bacterial disease by 58-75%, and increase grain yield by 11-34% in different rice varieties investigated in small-scale field trials conducted during the past years. Our results suggest that crop productivity and immunity can be coordinated by modulating the physiological and pathological functions of a single aquaporin to break the growth-defense tradeoff barrier.
Collapse
Affiliation(s)
- Xiaochen Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Jinbiao Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Xuan Wang
- Department of Biology, Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Kai Lu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Yan Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Liyuan Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
- State Key Laboratory of Crop Biology, Taian, Shandong Province, China
| | - Jinfeng Peng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Lei Chen
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
- State Key Laboratory of Crop Biology, Taian, Shandong Province, China
| | - Minkai Yang
- Department of Biology, Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yang Li
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
- State Key Laboratory of Crop Biology, Taian, Shandong Province, China
| | - Zaiquan Cheng
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan Province, China
| | - Suqin Xiao
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan Province, China
| | - Jinfeng Yu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Shenshen Zou
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
- State Key Laboratory of Crop Biology, Taian, Shandong Province, China
| | - Yuancun Liang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Meixiang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yonghua Yang
- Department of Biology, Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xinhua Ding
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Hansong Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Crop Biology, Taian, Shandong Province, China
| |
Collapse
|
47
|
Huang LB, Di Vincenzo M, Ahunbay MG, van der Lee A, Cot D, Cerneaux S, Maurin G, Barboiu M. Bilayer versus Polymeric Artificial Water Channel Membranes: Structural Determinants for Enhanced Filtration Performances. J Am Chem Soc 2021; 143:14386-14393. [PMID: 34450001 DOI: 10.1021/jacs.1c07425] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Artificial water channels (AWCs) and their natural aquaporin counterparts selectively transport water. They represent a tremendous source of inspiration to devise biomimetic membranes for several applications, including desalination. They contain variable water-channel constructs with adaptative architectures and morphologies. Herein, we critically discuss the structural details that can impact the performances of biomimetic I quartets, obtained via adaptive self-assembly of alkylureido-ethylimidazoles HC4-HC18 in bilayer or polyamide (PA) membranes. We first explore the performances in bilayer membranes, identifying that hydrophobicity is an essential key parameter to increase water permeability. We compare various I quartets with different hydrophobic tails (from HC4 to HC18), and we reveal that a huge increase in single-channel water permeability, from 104 to 107 water molecules/s/channel, is obtained by increasing the size of the alkyl tail. Quantitative assessment of AWC-PA membranes shows that water permeability increases roughly from 2.09 to 3.85 L m-2 h-1 bar-1, for HC4 and HC6 reverse osmosis membranes, respectively, while maintaining excellent NaCl rejection (99.25-99.51%). Meanwhile, comparable HC8 loading induces a drop of performance reminiscent of a defective membrane formation. We show that the production of nanoscale sponge-like water channels can be obtained with insoluble, low soluble, and low dispersed AWCs, explaining the observed subpar performance. We conclude that optimal solubility enabling breakthrough performance must be considered to not only maximize the inclusion and the stability in the bilayer membranes but also achieve an effective homogeneous distribution of percolated particles that minimizes the defects in hybrid polyamide membranes.
Collapse
Affiliation(s)
- Li-Bo Huang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.,Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, UMR5635, Place E. Bataillon CC047, 34095 Montpellier, France
| | - Maria Di Vincenzo
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, UMR5635, Place E. Bataillon CC047, 34095 Montpellier, France
| | - M Göktuğ Ahunbay
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, UMR5635, Place E. Bataillon CC047, 34095 Montpellier, France.,ICGM, Université Montpellier, CNRS, ENSCM, Montpellier, France.,Department of Chemical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Arie van der Lee
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, UMR5635, Place E. Bataillon CC047, 34095 Montpellier, France
| | - Didier Cot
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, UMR5635, Place E. Bataillon CC047, 34095 Montpellier, France
| | - Sophie Cerneaux
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, UMR5635, Place E. Bataillon CC047, 34095 Montpellier, France
| | | | - Mihail Barboiu
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.,Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, UMR5635, Place E. Bataillon CC047, 34095 Montpellier, France
| |
Collapse
|
48
|
AQPX-cluster aquaporins and aquaglyceroporins are asymmetrically distributed in trypanosomes. Commun Biol 2021; 4:953. [PMID: 34376792 PMCID: PMC8355241 DOI: 10.1038/s42003-021-02472-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Major Intrinsic Proteins (MIPs) are membrane channels that permeate water and other small solutes. Some trypanosomatid MIPs mediate the uptake of antiparasitic compounds, placing them as potential drug targets. However, a thorough study of the diversity of these channels is still missing. Here we place trypanosomatid channels in the sequence-function space of the large MIP superfamily through a sequence similarity network. This analysis exposes that trypanosomatid aquaporins integrate a distant cluster from the currently defined MIP families, here named aquaporin X (AQPX). Our phylogenetic analyses reveal that trypanosomatid MIPs distribute exclusively between aquaglyceroporin (GLP) and AQPX, being the AQPX family expanded in the Metakinetoplastina common ancestor before the origin of the parasitic order Trypanosomatida. Synteny analysis shows how African trypanosomes specifically lost AQPXs, whereas American trypanosomes specifically lost GLPs. AQPXs diverge from already described MIPs on crucial residues. Together, our results expose the diversity of trypanosomatid MIPs and will aid further functional, structural, and physiological research needed to face the potentiality of the AQPXs as gateways for trypanocidal drugs.
Collapse
|
49
|
Roy A, Shen J, Joshi H, Song W, Tu YM, Chowdhury R, Ye R, Li N, Ren C, Kumar M, Aksimentiev A, Zeng H. Foldamer-based ultrapermeable and highly selective artificial water channels that exclude protons. NATURE NANOTECHNOLOGY 2021; 16:911-917. [PMID: 34017100 DOI: 10.1038/s41565-021-00915-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The outstanding capacity of aquaporins (AQPs) for mediating highly selective superfast water transport1-7 has inspired recent development of supramolecular monovalent ion-excluding artificial water channels (AWCs). AWC-based bioinspired membranes are proposed for desalination, water purification and other separation applications8-18. While some recent progress has been made in synthesizing AWCs that approach the water permeability and ion selectivity of AQPs, a hallmark feature of AQPs-high water transport while excluding protons-has not been reproduced. We report a class of biomimetic, helically folded pore-forming polymeric foldamers that can serve as long-sought-after highly selective ultrafast water-conducting channels with performance exceeding those of AQPs (1.1 × 1010 water molecules per second for AQP1), with high water-over-monovalent-ion transport selectivity (~108 water molecules over Cl- ion) conferred by the modularly tunable hydrophobicity of the interior pore surface. The best-performing AWC reported here delivers water transport at an exceptionally high rate, namely, 2.5 times that of AQP1, while concurrently rejecting salts (NaCl and KCl) and even protons.
Collapse
Affiliation(s)
- Arundhati Roy
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore
| | - Jie Shen
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China
| | - Himanshu Joshi
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Woochul Song
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yu-Ming Tu
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Ruijuan Ye
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China
| | - Ning Li
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore
| | | | - Manish Kumar
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huaqiang Zeng
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China.
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
50
|
Bill RM, Hedfalk K. Aquaporins - Expression, purification and characterization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183650. [PMID: 34019902 DOI: 10.1016/j.bbamem.2021.183650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
Aquaporin water channels facilitate the bi-directional flow of water and small, neutral solutes down an osmotic gradient in all kingdoms of life. Over the last two decades, the availability of high-quality protein has underpinned progress in the structural and functional characterization of these water channels. In particular, recombinant protein technology has guaranteed the supply of aquaporin samples that were of sufficient quality and quantity for further study. Here we review the features of successful expression, purification and characterization strategies that have underpinned these successes and that will drive further breakthroughs in the field. Overall, Escherichia coli is a suitable host for prokaryotic isoforms, while Pichia pastoris is the most commonly-used recombinant host for eukaryotic variants. Generally, a two-step purification procedure is suitable after solubilization in glucopyranosides and most structures are determined by X-ray following crystallization.
Collapse
Affiliation(s)
- Roslyn M Bill
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Kristina Hedfalk
- Department of Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden.
| |
Collapse
|