1
|
Kalu GO, Francis JM, Ibisomi L, Chirwa T, Kagura J. Factors associated with the uptake of Intermittent Preventive Treatment (IPTp-SP) for malaria in pregnancy: Further analysis of the 2018 Nigeria Demographic and Health Survey. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0000771. [PMID: 36962778 PMCID: PMC10021516 DOI: 10.1371/journal.pgph.0000771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/27/2022] [Indexed: 02/04/2023]
Abstract
Pregnancy-associated malaria is preventable and curable with intermittent preventive treatment with Sulfodoxine-Pyrimethamine (IPTp-SP). However, despite the effectiveness of IPTp-SP against malaria in pregnancy, the uptake among pregnant women in Nigeria remains very low. Thus, this study aimed to establish the factors associated with the uptake of at least one dose and optimal doses of IPTp-SP among pregnant women aged 15 to 49 years living in Nigeria in 2018. The study included 12,742 women aged 15 to 49 years with live births two years before or during the 2018 Nigeria Demographic Health Survey (NDHS) in the analysis. Descriptive analysis was carried out to determine the prevalence of IPTp-SP uptake. Multivariable logistic regression was used to establish the factors associated with receiving IPTp-SP during pregnancy, adjusting for possible confounding factors. Given the complex survey design, all analyses are adjusted for sampling weight, stratification, and clustering. The p-value of <0.05 was considered significant. In 2018, the prevalence of at least one dose of IPTp-SP was 63.6% (95% CI:62.0-65.1), and optimal doses of IPTp-SP were 16.8% (95% CI:15.8-17.8) during pregnancy. After the multivariable analysis, age group, region, frequency of ANC visits, belief in IPTp-SP effectiveness, and morbidity caused by malaria predicted the uptake of at least one IPTp-SP dose. Similar maternal characteristics, including household wealth index, spouse's educational level, and media exposure were significantly associated with taking optimal IPTp-SP doses. For instance, women in the wealthiest households whose husbands had secondary education predicted a four-fold increase in uptake of at least one IPTp-SP dose (aOR:4.17; 95% CI:1.11-8.85). The low prevalence and regional variations of IPTp-SP uptake in the study area imply that most pregnant women in Nigeria are at substantial risk of pregnancy-associated malaria. Therefore, stakeholders should explore context-specific strategies to improve the IPTp-SP coverage across the regions in Nigeria.
Collapse
Affiliation(s)
- Godwin Okeke Kalu
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Joel Msafiri Francis
- Department of Family Medicine and Primary care, School of Clinical Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Latifat Ibisomi
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
- Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Tobias Chirwa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Juliana Kagura
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
2
|
Cui L, Sattabongkot J, Aung PL, Brashear A, Cao Y, Kaewkungwal J, Khamsiriwatchara A, Kyaw MP, Lawpoolsri S, Menezes L, Miao J, Nguitragool W, Parker D, Phuanukoonnon S, Roobsoong W, Siddiqui F, Soe MT, Sriwichai P, Yang Z, Zhao Y, Zhong D. Multidisciplinary Investigations of Sustained Malaria Transmission in the Greater Mekong Subregion. Am J Trop Med Hyg 2022; 107:138-151. [PMID: 36228909 DOI: 10.4269/ajtmh.21-1267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/28/2022] [Indexed: 11/07/2022] Open
Abstract
In the course of malaria elimination in the Greater Mekong Subregion (GMS), malaria epidemiology has experienced drastic spatiotemporal changes with residual transmission concentrated along international borders and the rising predominance of Plasmodium vivax. The emergence of Plasmodium falciparum parasites resistant to artemisinin and partner drugs renders artemisinin-based combination therapies less effective while the potential spread of multidrug-resistant parasites elicits concern. Vector behavioral changes and insecticide resistance have reduced the effectiveness of core vector control measures. In recognition of these problems, the Southeast Asian International Center of Excellence for Malaria Research (ICEMR) has been conducting multidisciplinary research to determine how human migration, antimalarial drug resistance, vector behavior, and insecticide resistance sustain malaria transmission at international borders. These efforts allow us to comprehensively understand the ecology of border malaria transmission and develop population genomics tools to identify and track parasite introduction. In addition to employing in vivo, in vitro, and molecular approaches to monitor the emergence and spread of drug-resistant parasites, we also use genomic and genetic methods to reveal novel mechanisms of antimalarial drug resistance of parasites. We also use omics and population genetics approaches to study insecticide resistance in malaria vectors and identify changes in mosquito community structure, vectorial potential, and seasonal dynamics. Collectively, the scientific findings from the ICEMR research activities offer a systematic view of the factors sustaining residual malaria transmission and identify potential solutions to these problems to accelerate malaria elimination in the GMS.
Collapse
Affiliation(s)
- Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | | | | | - Awtum Brashear
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Yaming Cao
- Department of Immunology, China Medical University, Shenyang, China
| | | | | | | | | | - Lynette Menezes
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Mahidol University, Bangkok, Thailand
| | - Daniel Parker
- Department of Epidemiology, University of California at Irvine, Irvine, California
| | | | | | - Faiza Siddiqui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon, Myanmar
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Yan Zhao
- Department of Immunology, China Medical University, Shenyang, China
| | - Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, California
| |
Collapse
|
3
|
Chen Y, Murillo-Solano C, Kirkpatrick MG, Antoshchenko T, Park HW, Pizarro JC. Repurposing drugs to target the malaria parasite unfolding protein response. Sci Rep 2018; 8:10333. [PMID: 29985421 PMCID: PMC6037779 DOI: 10.1038/s41598-018-28608-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/26/2018] [Indexed: 01/19/2023] Open
Abstract
Drug resistant Plasmodium falciparum parasites represent a major obstacle in our efforts to control malaria, a deadly vector borne infectious disease. This situation creates an urgent need to find and validate new drug targets to contain the spread of the disease. Several genes associated with the unfolded protein response (UPR) including Glucose-regulated Protein 78 kDa (GRP78, also known as BiP) have been deemed potential drug targets. We explored the drug target potential of GRP78, a molecular chaperone that is a regulator of the UPR, for the treatment of P. falciparum parasite infection. By screening repurposed chaperone inhibitors that are anticancer agents, we showed that GRP78 inhibition is lethal to drug-sensitive and -resistant P. falciparum parasite strains in vitro. We correlated the antiplasmodial activity of the inhibitors with their ability to bind the malaria chaperone, by characterizing their binding to recombinant parasite GRP78. Furthermore, we determined the crystal structure of the ATP binding domain of P. falciparum GRP78 with ADP and identified structural features unique to the parasite. These data suggest that P. falciparum GRP78 can be a valid drug target and that its structural differences to human GRP78 emphasize potential to generate parasite specific compounds.
Collapse
Affiliation(s)
- Yun Chen
- Department of Molecular Biology and Biochemistry, School of Medicine, Tulane University, New Orleans, USA
| | - Claribel Murillo-Solano
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA
| | - Melanie G Kirkpatrick
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA
| | - Tetyana Antoshchenko
- Department of Molecular Biology and Biochemistry, School of Medicine, Tulane University, New Orleans, USA
| | - Hee-Won Park
- Department of Molecular Biology and Biochemistry, School of Medicine, Tulane University, New Orleans, USA.,Vector Borne Infectious Disease Research Center (VBIDRC), Tulane University, New Orleans, USA
| | - Juan C Pizarro
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA. .,Vector Borne Infectious Disease Research Center (VBIDRC), Tulane University, New Orleans, USA.
| |
Collapse
|
4
|
Patankar S, Sharma S, Rathod PK, Duraisingh MT. Malaria in India: The Need for New Targets for Diagnosis and Detection of Plasmodium vivax. Proteomics Clin Appl 2018; 12:e1700024. [PMID: 29193853 DOI: 10.1002/prca.201700024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/28/2017] [Indexed: 11/08/2022]
Abstract
Plasmodium vivax is a protozoan parasite that is one of the causative agents of human malaria. Due to several occult features of its life cycle, P. vivax threatens to be a problem for the recent efforts toward elimination of malaria globally. With an emphasis on malaria elimination goals, the authors summarize the major gaps in P. vivax diagnosis and describe how proteomics technologies have begun to contribute toward the discovery of antigens that could be used for various technology platforms and applications. The authors suggest areas where, in the future, proteomics technologies could fill in gaps in P. vivax diagnosis that have proved difficult. The discovery of new parasite antigens, host responses, and immune signatures using proteomics technologies will be a key part of the global malaria elimination efforts.
Collapse
Affiliation(s)
- Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
5
|
Tarique M, Ahmad M, Chauhan M, Tuteja R. Genome Wide In silico Analysis of the Mismatch Repair Components of Plasmodium falciparum and Their Comparison with Human Host. Front Microbiol 2017; 8:130. [PMID: 28232818 PMCID: PMC5298969 DOI: 10.3389/fmicb.2017.00130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 01/18/2017] [Indexed: 12/28/2022] Open
Abstract
Malaria a major parasitic infection globally particularly in tropical and sub-tropical regions of the world is responsible for about 198 million cases and estimated deaths due to this disease are about 0.6 million. The emergence of drug resistance in the malaria parasite is alarming and it is necessary to understand its underlying cause and molecular mechanisms. It has been established that drug resistant malaria parasites have defective mismatch repair (MMR) therefore it is essential to study this pathway and its components in detail. Recently a number of non-synonymous Single Nucleotide Polymorphisms have been reported in genes involved in MMR pathways. PfMLH is an endonuclease essential to restore the MMR in drug resistant strains of Plasmodium falciparum. Considering all these facts about the role of MMR in emergence of drug resistant parasite, in this manuscript we report a genome wide analysis of the components of the MMR pathway such as MLH, Pms1, MSH2-1, MSH2-2, MSH6, and UvrD using in silico bioinformatics based approaches. The phylogenetic analysis revealed evolutionary closeness with the MMR components of various organisms. It is noteworthy that P. falciparum contains two homologs of MSH2, which are located on different chromosomes. The structural modeling of these components showed their similarity with the human/yeast MMR components. The docking studies reveal that PfUvrD and PfMLH interact with each other. The in silico identification of interacting partners of the major MMR components identified numerous P. falciparum specific proteins. In line with our previous studies the present study will also contribute significantly to understand the MMR pathway of malaria parasite.
Collapse
Affiliation(s)
- Mohammed Tarique
- Parasite Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Moaz Ahmad
- Parasite Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Manish Chauhan
- Parasite Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Renu Tuteja
- Parasite Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| |
Collapse
|
6
|
Luciferase-Based, High-Throughput Assay for Screening and Profiling Transmission-Blocking Compounds against Plasmodium falciparum Gametocytes. Antimicrob Agents Chemother 2016; 60:2097-107. [PMID: 26787698 DOI: 10.1128/aac.01949-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 01/11/2016] [Indexed: 01/11/2023] Open
Abstract
The discovery of new antimalarial drugs able to target both the asexual and gametocyte stages ofPlasmodium falciparumis critical to the success of the malaria eradication campaign. We have developed and validated a robust, rapid, and cost-effective high-throughput reporter gene assay to identify compounds active against late-stage (stage IV and V) gametocytes. The assay, which is suitable for testing compound activity at incubation times up to 72 h, demonstrates excellent quality and reproducibility, with averageZ' values of 0.85 ± 0.01. We used the assay to screen more than 10,000 compounds from three chemically diverse libraries. The screening outcomes highlighted the opportunity to use collections of compounds with known activity against the asexual stages of the parasites as a starting point for gametocytocidal activity detection in order to maximize the chances of identifying gametocytocidal compounds. This assay extends the capabilities of our previously reported luciferase assay, which tested compounds against early-stage gametocytes, and opens possibilities to profile the activities of gametocytocidal compounds over the entire course of gametocytogenesis.
Collapse
|
7
|
Schreiber SL, Kotz JD, Li M, Aubé J, Austin CP, Reed JC, Rosen H, White EL, Sklar LA, Lindsley CW, Alexander BR, Bittker JA, Clemons PA, de Souza A, Foley MA, Palmer M, Shamji AF, Wawer MJ, McManus O, Wu M, Zou B, Yu H, Golden JE, Schoenen FJ, Simeonov A, Jadhav A, Jackson MR, Pinkerton AB, Chung TDY, Griffin PR, Cravatt BF, Hodder PS, Roush WR, Roberts E, Chung DH, Jonsson CB, Noah JW, Severson WE, Ananthan S, Edwards B, Oprea TI, Conn PJ, Hopkins CR, Wood MR, Stauffer SR, Emmitte KA. Advancing Biological Understanding and Therapeutics Discovery with Small-Molecule Probes. Cell 2015; 161:1252-65. [PMID: 26046436 PMCID: PMC4564295 DOI: 10.1016/j.cell.2015.05.023] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Indexed: 02/06/2023]
Abstract
Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the NIH launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines but also highlight the need to innovate the science of therapeutic discovery.
Collapse
Affiliation(s)
- Stuart L Schreiber
- Probe Development Center, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Joanne D Kotz
- Probe Development Center, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Min Li
- Johns Hopkins School of Medicine Ion Channel Center, Baltimore, MD 21205, USA
| | - Jeffrey Aubé
- University of Kansas Specialized Chemistry Center, Lawrence, KS 66045, USA; Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, 66045, USA
| | - Christopher P Austin
- NIH Chemical Genomics Center, National Institutes of Health, Rockville, MD 20850, USA; National Center for Advancing Translational Sciences, Bethesda, MD 20892, USA
| | - John C Reed
- Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, and Lake Nona, FL 32827, USA
| | - Hugh Rosen
- Molecular Screening Center, The Scripps Research Institute, La Jolla, CA 92037, and Jupiter, FL 33458, USA; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - E Lucile White
- Southern Research Specialized Biocontainment Screening Center, Southern Research Institute, Birmingham, AL 35205, USA
| | - Larry A Sklar
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM 87131, USA; Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Craig W Lindsley
- The Vanderbilt Specialized Chemistry Center for Accelerated Probe Development, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Benjamin R Alexander
- Probe Development Center, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Joshua A Bittker
- Probe Development Center, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for the Development of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Paul A Clemons
- Probe Development Center, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Andrea de Souza
- Probe Development Center, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Michael A Foley
- Probe Development Center, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Michelle Palmer
- Probe Development Center, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Alykhan F Shamji
- Probe Development Center, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Mathias J Wawer
- Probe Development Center, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Owen McManus
- Johns Hopkins School of Medicine Ion Channel Center, Baltimore, MD 21205, USA
| | - Meng Wu
- Johns Hopkins School of Medicine Ion Channel Center, Baltimore, MD 21205, USA
| | - Beiyan Zou
- Johns Hopkins School of Medicine Ion Channel Center, Baltimore, MD 21205, USA
| | - Haibo Yu
- Johns Hopkins School of Medicine Ion Channel Center, Baltimore, MD 21205, USA
| | - Jennifer E Golden
- University of Kansas Specialized Chemistry Center, Lawrence, KS 66045, USA
| | - Frank J Schoenen
- University of Kansas Specialized Chemistry Center, Lawrence, KS 66045, USA
| | - Anton Simeonov
- NIH Chemical Genomics Center, National Institutes of Health, Rockville, MD 20850, USA; National Center for Advancing Translational Sciences, Bethesda, MD 20892, USA
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Institutes of Health, Rockville, MD 20850, USA; National Center for Advancing Translational Sciences, Bethesda, MD 20892, USA
| | - Michael R Jackson
- Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, and Lake Nona, FL 32827, USA
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, and Lake Nona, FL 32827, USA
| | - Thomas D Y Chung
- Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, and Lake Nona, FL 32827, USA
| | - Patrick R Griffin
- Molecular Screening Center, The Scripps Research Institute, La Jolla, CA 92037, and Jupiter, FL 33458, USA; Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Benjamin F Cravatt
- Molecular Screening Center, The Scripps Research Institute, La Jolla, CA 92037, and Jupiter, FL 33458, USA; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Peter S Hodder
- Molecular Screening Center, The Scripps Research Institute, La Jolla, CA 92037, and Jupiter, FL 33458, USA
| | - William R Roush
- Molecular Screening Center, The Scripps Research Institute, La Jolla, CA 92037, and Jupiter, FL 33458, USA; Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Edward Roberts
- Molecular Screening Center, The Scripps Research Institute, La Jolla, CA 92037, and Jupiter, FL 33458, USA
| | - Dong-Hoon Chung
- Southern Research Specialized Biocontainment Screening Center, Southern Research Institute, Birmingham, AL 35205, USA
| | - Colleen B Jonsson
- Southern Research Specialized Biocontainment Screening Center, Southern Research Institute, Birmingham, AL 35205, USA
| | - James W Noah
- Southern Research Specialized Biocontainment Screening Center, Southern Research Institute, Birmingham, AL 35205, USA
| | - William E Severson
- Southern Research Specialized Biocontainment Screening Center, Southern Research Institute, Birmingham, AL 35205, USA
| | - Subramaniam Ananthan
- Southern Research Specialized Biocontainment Screening Center, Southern Research Institute, Birmingham, AL 35205, USA
| | - Bruce Edwards
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM 87131, USA; Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Tudor I Oprea
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM 87131, USA; Department of Internal Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - P Jeffrey Conn
- The Vanderbilt Specialized Chemistry Center for Accelerated Probe Development, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Corey R Hopkins
- The Vanderbilt Specialized Chemistry Center for Accelerated Probe Development, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Michael R Wood
- The Vanderbilt Specialized Chemistry Center for Accelerated Probe Development, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Shaun R Stauffer
- The Vanderbilt Specialized Chemistry Center for Accelerated Probe Development, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kyle A Emmitte
- The Vanderbilt Specialized Chemistry Center for Accelerated Probe Development, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
8
|
Global distribution of polymorphisms associated with delayed Plasmodium falciparum parasite clearance following artemisinin treatment: Genotyping of archive blood samples. Parasitol Int 2015; 64:267-73. [DOI: 10.1016/j.parint.2014.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 10/05/2014] [Accepted: 11/02/2014] [Indexed: 11/22/2022]
|
9
|
Markus MB. Do hypnozoites cause relapse in malaria? Trends Parasitol 2015; 31:239-45. [DOI: 10.1016/j.pt.2015.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/01/2015] [Accepted: 02/20/2015] [Indexed: 12/25/2022]
|
10
|
Antimalarial activity of tulathromycin in a murine model of malaria. Antimicrob Agents Chemother 2015; 59:3672-4. [PMID: 25870067 DOI: 10.1128/aac.02858-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/07/2015] [Indexed: 12/24/2022] Open
Abstract
There is an urgent need for new antimalarial agents and strategies to treat and control malaria. This study shows an antiplasmodium effect of tulathromycin in mice infected with Plasmodium yoelii. The administration of tulathromycin around the time of infection prevented the progression of disease in 100% of the animals. In addition, highly parasitized mice treated with tulathromycin showed a decreased parasite burden and cleared the parasite faster than did untreated infected mice.
Collapse
|
11
|
Ahmad M, Tuteja R. Emerging importance of mismatch repair components including UvrD helicase and their cross-talk with the development of drug resistance in malaria parasite. Mutat Res 2014; 770:54-60. [PMID: 25771870 DOI: 10.1016/j.mrfmmm.2014.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/14/2014] [Accepted: 09/17/2014] [Indexed: 06/04/2023]
Abstract
Human malaria is an important parasitic infection responsible for a significant number of deaths worldwide, particularly in tropical and subtropical regions. The recent scenario has worsened mainly because of the emergence of drug-resistant malaria parasites having the potential to spread across the world. Drug-resistant parasites possess a defective mismatch repair (MMR); therefore, it is essential to explore its mechanism in detail to determine the underlying cause. Recently, artemisinin-resistant parasites have been reported to exhibit nonsynonymous single nucleotide polymorphisms in genes involved in MMR pathways such as MutL homolog (MLH) and UvrD. Plasmodium falciparum MLH is an endonuclease required to restore the defective MMR in drug-resistant W2 strain of P. falciparum. Although the role of helicases in eukaryotic MMR has been questioned, the identification and characterization of the UvrD helicase and their cross-talk with MLH in P. falciparum suggests the possible involvement of UvrD in MMR. A comparative genome-wide analysis revealed the presence of the UvrD helicase in Plasmodium species, while it is absent in human host. Therefore, PfUvrD may emerge as a suitable drug target to control malaria. This review study is focused on recent developments in MMR biochemistry, emerging importance of the UvrD helicase, possibility of its involvement in MMR and the emerging cross-talk between MMR components and drug resistance in malaria parasite.
Collapse
Affiliation(s)
- Moaz Ahmad
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Renu Tuteja
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
12
|
Leroy D, Campo B, Ding XC, Burrows JN, Cherbuin S. Defining the biology component of the drug discovery strategy for malaria eradication. Trends Parasitol 2014; 30:478-90. [PMID: 25131411 DOI: 10.1016/j.pt.2014.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 10/24/2022]
Abstract
Malaria is still considered a deadly scourge in Africa, Asia, and South America despite improved vector control and curative treatments with new antimalarial combinations. The next challenge is to work towards disease eradication. To achieve this goal it is crucial to develop, validate, and integrate biological assays into test cascades that align with the key target product profiles. For anti-relapse, a parent molecule should kill hypnozoites or cause activation of Plasmodium vivax liver stages. For transmission blocking, dual equal-activity antimalarials killing both the asexual and the sexual parasite stages in human blood are favored. Finally, by assessing cross resistance and generating drug resistance in the laboratory, it is expected that new medicines with acceptable resistance profiles will be forthcoming.
Collapse
Affiliation(s)
- Didier Leroy
- Medicines for Malaria Venture (MMV), PO Box 1826, 20 route de Pré-Bois, 1215 Geneva 15, Switzerland.
| | - Brice Campo
- Medicines for Malaria Venture (MMV), PO Box 1826, 20 route de Pré-Bois, 1215 Geneva 15, Switzerland
| | - Xavier C Ding
- Medicines for Malaria Venture (MMV), PO Box 1826, 20 route de Pré-Bois, 1215 Geneva 15, Switzerland
| | - Jeremy N Burrows
- Medicines for Malaria Venture (MMV), PO Box 1826, 20 route de Pré-Bois, 1215 Geneva 15, Switzerland
| | - Stéphanie Cherbuin
- Medicines for Malaria Venture (MMV), PO Box 1826, 20 route de Pré-Bois, 1215 Geneva 15, Switzerland
| |
Collapse
|
13
|
Affiliation(s)
- Zhonglei Wang
- a School of Chinese Pharmacy , Beijing University of Chinese Medicine , Beijing , China
| | - Liyan Yang
- b College of Science , China University of Petroleum , Beijing , China
| | - Xiuwei Yang
- c School of Pharmaceutical Sciences , Peking University , Beijing , China
| | - Xiaohua Zhang
- a School of Chinese Pharmacy , Beijing University of Chinese Medicine , Beijing , China
| |
Collapse
|
14
|
Basu S, Modrek S, Bendavid E. Comparing decisions for malaria testing and presumptive treatment: a net health benefit analysis. Med Decis Making 2014; 34:996-1005. [PMID: 24829277 DOI: 10.1177/0272989x14533609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Rapid tests for malaria are being distributed through vendors to individual patients, presenting the dilemma of determining how individuals are incentivized to pursue testing for malaria, versus the traditional approach of presumptively treating fevers with antimalarial drugs. METHODS AND FINDINGS We incorporated testing and treatment data from 6 African countries into a dynamic model of malaria transmission and nonmalarial causes of fever to investigate how variations in the epidemiologic risk of malaria and the prices of rapid diagnostic tests (RDTs) and treatments affect testing and treatment choices from the perspective of febrile patients, public health officials, and drug shop owners. In environments falling below a critical threshold infection rate (entomological inoculation rate) of 282 for patients older than 5 years (95% confidence interval [CI]: 275-289) or 300 for 0- to 5-year-olds (95% CI: 203-307), testing was more beneficial than presumptive therapy in terms of health and financial costs to patients. Infection and cost conditions generally aligned the best patient-level strategy with the best public health strategy to minimize an overall population's morbidity and mortality from both malaria and nonmalarial causes of fever. However, the infection and cost conditions of very high malaria transmission settings did not align patient interests or public health interests with the interests of private drug shop owners. In such settings, a further lowering of testing prices may realign the interests of all 3 parties. CONCLUSIONS A threshold transmission rate exists under which malaria testing confers more health and financial benefits to patients than presumptive treatment. Studying local transmission rates and testing and treatment costs may facilitate an approach to align the interests of individual patients, public health officials, and distributors of tests and therapies.
Collapse
Affiliation(s)
- Sanjay Basu
- Department of Medicine, Stanford University, Stanford, CA, USA (SB, SM, EB)
| | - Sepideh Modrek
- Department of Medicine, Stanford University, Stanford, CA, USA (SB, SM, EB)
| | - Eran Bendavid
- Department of Medicine, Stanford University, Stanford, CA, USA (SB, SM, EB)
| |
Collapse
|
15
|
Johnston GL, Gething PW, Hay SI, Smith DL, Fidock DA. Modeling within-host effects of drugs on Plasmodium falciparum transmission and prospects for malaria elimination. PLoS Comput Biol 2014; 10:e1003434. [PMID: 24465196 PMCID: PMC3900379 DOI: 10.1371/journal.pcbi.1003434] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/25/2013] [Indexed: 01/05/2023] Open
Abstract
Achieving a theoretical foundation for malaria elimination will require a detailed understanding of the quantitative relationships between patient treatment-seeking behavior, treatment coverage, and the effects of curative therapies that also block Plasmodium parasite transmission to mosquito vectors. Here, we report a mechanistic, within-host mathematical model that uses pharmacokinetic (PK) and pharmacodynamic (PD) data to simulate the effects of artemisinin-based combination therapies (ACTs) on Plasmodium falciparum transmission. To contextualize this model, we created a set of global maps of the fold reductions that would be necessary to reduce the malaria R C (i.e. its basic reproductive number under control) to below 1 and thus interrupt transmission. This modeling was applied to low-transmission settings, defined as having a R 0<10 based on 2010 data. Our modeling predicts that treating 93-98% of symptomatic infections with an ACT within five days of fever onset would interrupt malaria transmission for ∼91% of the at-risk population of Southeast Asia and ∼74% of the global at-risk population, and lead these populations towards malaria elimination. This level of treatment coverage corresponds to an estimated 81-85% of all infected individuals in these settings. At this coverage level with ACTs, the addition of the gametocytocidal agent primaquine affords no major gains in transmission reduction. Indeed, we estimate that it would require switching ∼180 people from ACTs to ACTs plus primaquine to achieve the same transmission reduction as switching a single individual from untreated to treated with ACTs. Our model thus predicts that the addition of gametocytocidal drugs to treatment regimens provides very small population-wide benefits and that the focus of control efforts in Southeast Asia should be on increasing prompt ACT coverage. Prospects for elimination in much of Sub-Saharan Africa appear far less favorable currently, due to high rates of infection and less frequent and less rapid treatment.
Collapse
Affiliation(s)
- Geoffrey L. Johnston
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- School of International and Public Affairs, Columbia University, New York, New York, United States of America
- Bloomberg School of Public Health, John Hopkins University, Baltimore, Maryland, United States of America
| | - Peter W. Gething
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Simon I. Hay
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - David L. Smith
- Bloomberg School of Public Health, John Hopkins University, Baltimore, Maryland, United States of America
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| |
Collapse
|
16
|
Evidence for pyronaridine as a highly effective partner drug for treatment of artemisinin-resistant malaria in a rodent model. Antimicrob Agents Chemother 2013; 58:183-95. [PMID: 24145526 DOI: 10.1128/aac.01466-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The increasing prevalence in Southeast Asia of Plasmodium falciparum infections with delayed parasite clearance rates, following treatment of malaria patients with the artemisinin derivative artesunate, highlights an urgent need to identify which of the currently available artemisinin-based combination therapies (ACTs) are most suitable to treat populations with emerging artemisinin resistance. Here, we demonstrate that the rodent Plasmodium berghei SANA strain has acquired artemisinin resistance following drug pressure, as defined by reduced parasite clearance and early recrudescence following daily exposure to high doses of artesunate or the active metabolite dihydroartemisinin. Using the SANA strain and the parental drug-sensitive N strain, we have interrogated the antimalarial activity of five ACTs, namely, artemether-lumefantrine, artesunate-amodiaquine, artesunate-mefloquine, dihydroartemisinin-piperaquine, and the newest combination artesunate-pyronaridine. By monitoring parasitemia and outcome for 30 days following initiation of treatment, we found that infections with artemisinin-resistant P. berghei SANA parasites can be successfully treated with artesunate-pyronaridine used at doses that are curative for the parental drug-sensitive N strain. No other partner drug combination was as effective in resolving SANA infections. Of the five partner drugs tested, pyronaridine was also the most effective at suppressing the recrudescence of SANA parasites. These data support the potential benefit of implementing ACTs with pyronaridine in regions affected by artemisinin-resistant malaria.
Collapse
|