1
|
Hasanzadeh A, Saeedi S, Dastanpour L, Biabanaki ZS, Asadi L, Noori H, Hamblin MR, Liu Y, Karimi M. Self-replicating nanomaterials as a new generation of smart nanostructures. Biotechnol Adv 2025; 81:108565. [PMID: 40107431 DOI: 10.1016/j.biotechadv.2025.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/19/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Self-replication is the process by which a system or entity autonomously reproduces or generates copies of itself, transmitting hereditary information through its molecular structure. Self-replication can be attractive for various researchers, ranging from biologists focused on uncovering the origin of life, to synthetic chemists and nanotechnologists studying synthetic machines and nanorobots. The capability of a single structure to act as a template to produce multiple copies of itself could allow the bottom-up engineering of progressively complex reaction networks and nanoarchitectures from simple building blocks. Herein, we review nucleic acid-based and amino acid-based self-replicating systems and completely synthetic artificial systems and specially focused on specific aspects of self-replicating nanomaterials. We describe their mechanisms of action and provide a full discussion of the principal requirements for achieving nanostructures capable of self-replication.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Sara Saeedi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Lida Dastanpour
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Zahra S Biabanaki
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Leili Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Noori
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Center, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Research Center for Science and Technology in Medicine, Tehran University of Medical Science, Islamic Azad University, Tehran, Iran; Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Yarus M. On an RNA-Membrane Protogenome. Life (Basel) 2025; 15:692. [PMID: 40430121 PMCID: PMC12113313 DOI: 10.3390/life15050692] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/07/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Efficient evolution exists before DNA, else the DNA genome itself could not evolve. Current data suggest RNA-membranes for this role. Selected RNAs bind well to phospholipid bilayers; randomized sequences do not. No repeated sequences are evident in selected binding RNAs. This implies small and varied membrane-affinity motifs. Such binding sequences are partially defined. Phospholipid-bound RNAs require divalents like Mg2+ and/or Ca2+, preferring more ordered bilayers: gel, ripple, or rafted membranes, in that order. RNAs also bind and stabilize bent or sharply deformed bilayers. RNA binding without divalents extends to negatively charged membranes formed from simpler anionic phospholipids and to plausibly prebiotic fatty acid bilayers. RNA-membranes frequently retain RNA solution functions: base pairing, passive transport of tryptophan, specific affinity for arginine side chains, and ribozymic ligase catalysis. Membrane-bound RNAs with several biochemical functions, linked by specific base-pairing, are readily constructed. Given these data, genetic roles seem feasible. RNA activities often require few nucleotides, easily joined in a small RNA. Base-paired groups of such RNAs can also be purposeful, joining related functions. Complex functions can therefore require only replication of short RNAs. RNA-membranes potentially segregate accurately during cell division and quickly evolve through new base pairings. Accordingly, ancient RNA-membranes could act as a protogenome, supporting encoded RNA expression, inheritance, and evolution before the DNA genome: for example, supporting organized biochemistry, coded translation, and a Standard Genetic Code.
Collapse
Affiliation(s)
- Michael Yarus
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
3
|
Yu F, Fei J, Jia Y, Wang T, Martin WF, Li J. Chemiosmotic ATP synthesis by minimal protocells. CELL REPORTS. PHYSICAL SCIENCE 2025; 6:102461. [PMID: 40123866 PMCID: PMC11922820 DOI: 10.1016/j.xcrp.2025.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 03/25/2025]
Abstract
Energy conservation is crucial to life's origin and evolution. The common ancestor of all cells used ATP synthase to convert proton gradients into ATP. However, pumps generating proton gradients and lipids maintaining proton gradients are not universally conserved across all lineages. A solution to this paradox is that ancestral ATP synthase could harness naturally formed geochemical ion gradients with simpler environmentally provided precursors preceding both proton pumps and biogenic membranes. This runs counter to traditional views that phospholipid bilayers are required to maintain proton gradients. Here, we show that fatty acid membranes can maintain sufficient proton gradients to synthesize ATP by ATP synthase under the steep pH and temperature gradients observed in hydrothermal vent systems. These findings shed substantial light on early membrane bioenergetics, uncovering a functional intermediate in the evolution of chemiosmotic ATP synthesis during protocellular stages postdating the ATP synthase's origin but preceding the advent of enzymatically synthesized cell membranes.
Collapse
Affiliation(s)
- Fanchen Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Tonghui Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - William F. Martin
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Mulkidjanian AY, Dibrova DV, Bychkov AY. Origin of the RNA World in Cold Hadean Geothermal Fields Enriched in Zinc and Potassium: Abiogenesis as a Positive Fallout from the Moon-Forming Impact? Life (Basel) 2025; 15:399. [PMID: 40141744 PMCID: PMC11943819 DOI: 10.3390/life15030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
The ubiquitous, evolutionarily oldest RNAs and proteins exclusively use rather rare zinc as transition metal cofactor and potassium as alkali metal cofactor, which implies their abundance in the habitats of the first organisms. Intriguingly, lunar rocks contain a hundred times less zinc and ten times less potassium than the Earth's crust; the Moon is also depleted in other moderately volatile elements (MVEs). Current theories of impact formation of the Moon attribute this depletion to the MVEs still being in a gaseous state when the hot post-impact disk contracted and separated from the nascent Moon. The MVEs then fell out onto juvenile Earth's protocrust; zinc, as the most volatile metal, precipitated last, just after potassium. According to our calculations, the top layer of the protocrust must have contained up to 1019 kg of metallic zinc, a powerful reductant. The venting of hot geothermal fluids through this MVE-fallout layer, rich in metallic zinc and radioactive potassium, both capable of reducing carbon dioxide and dinitrogen, must have yielded a plethora of organic molecules released with the geothermal vapor. In the pools of vapor condensate, the RNA-like molecules may have emerged through a pre-Darwinian selection for low-volatile, associative, mineral-affine, radiation-resistant, nitrogen-rich, and polymerizable molecules.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Daria V. Dibrova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Andrey Y. Bychkov
- School of Geology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
5
|
Yin C, Yu X, Wu B, Tian L. Spontaneous Emergence of Lipid Vesicles in a Coacervate-Based Compartmentalized System. Angew Chem Int Ed Engl 2025; 64:e202414372. [PMID: 39656166 DOI: 10.1002/anie.202414372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/06/2024] [Indexed: 12/22/2024]
Abstract
The spontaneous emergence of lipid vesicles in the absence of evolved biological machinery represents a major challenge for bottom-up synthetic biology. We show that coacervate microdroplets could create a compartmentalized environment that enriches lipid molecules and facilitates their spontaneous assembly into lipid vesicles. These vesicles can escape from the coacervate microdroplets in a continuous process under non-equilibrium conditions, resembling a constant production process akin to a "primitive enzyme" factory assembly line. These findings significantly extend our understanding of the intricate interaction between lipid molecules and coacervate microdroplets, shedding light on the emergence of cellular systems and offering a new perspective on the conditions necessary for the development of life on Earth.
Collapse
Affiliation(s)
- Chengying Yin
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
- Department of Ambulatory Surgery, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
| | - Xinran Yu
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Baohu Wu
- MLZ, JCNS, JCNS-4, Forschungszentrum Jülich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
- Department of Ambulatory Surgery, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
6
|
Lee J, Pir Cakmak F, Booth R, Keating CD. Hybrid Protocells Based on Coacervate-Templated Fatty Acid Vesicles Combine Improved Membrane Stability with Functional Interior Protocytoplasm. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406671. [PMID: 39402790 PMCID: PMC11673456 DOI: 10.1002/smll.202406671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/24/2024] [Indexed: 12/28/2024]
Abstract
Prebiotically-plausible compartmentalization mechanisms include membrane vesicles formed by amphiphile self-assembly and coacervate droplets formed by liquid-liquid phase separation. Both types of structures form spontaneously and can be related to cellular compartmentalization motifs in today's living cells. As prebiotic compartments, they have complementary capabilities, with coacervates offering excellent solute accumulation and membranes providing superior boundaries. Herein, protocell models constructed by spontaneous encapsulation of coacervate droplets by mixed fatty acid/phospholipid and by purely fatty acid membranes are described. Coacervate-supported membranes form over a range of coacervate and lipid compositions, with membrane properties impacted by charge-charge interactions between coacervates and membranes. Vesicles formed by coacervate-templated membrane assembly exhibit profoundly different permeability than traditional fatty acid or blended fatty acid/phospholipid membranes without a coacervate interior, particularly in the presence of magnesium ions (Mg2+). While fatty acid and blended membrane vesicles are disrupted by the addition of Mg2+, the corresponding coacervate-supported membranes remain intact and impermeable to externally-added solutes. With the more robust membrane, fluorescein diacetate (FDA) hydrolysis, which is commonly used for cell viability assays, can be performed inside the protocell model due to the simple diffusion of FDA and then following with the coacervate-mediated abiotic hydrolysis to fluorescein.
Collapse
Affiliation(s)
- Jessica Lee
- Department of ChemistryThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Fatma Pir Cakmak
- Department of ChemistryThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Richard Booth
- Department of ChemistryThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Christine D. Keating
- Department of ChemistryThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
7
|
Synak J, Rybarczyk A, Kasprzak M, Blazewicz J. RNA World with Inhibitors. ENTROPY (BASEL, SWITZERLAND) 2024; 26:1012. [PMID: 39766641 PMCID: PMC11726725 DOI: 10.3390/e26121012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 01/15/2025]
Abstract
During the evolution of the RNA World, compartments, which were fragments of space surrounded by a primitive lipid membrane, had to have emerged. These led eventually to the formation of modern cellular membranes. Inside these compartments, another process had to take place-switching from RNA to DNA as a primary storage of genetic information. The latter part needed a handful of enzymes for the DNA to be able to perform its function. A natural question arises, i.e., how the concentration of all vital molecules could have been kept in check without modern cellular mechanisms. The authors propose a theory on how it could have worked during early stages, using only short RNA molecules, which could have emerged spontaneously. The hypothesis was analysed mathematically and tested against different scenarios by using computer simulations.
Collapse
Affiliation(s)
- Jaroslaw Synak
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
- European Center for Bioinformatics and Genomics, 60-965 Poznan, Poland
| | - Agnieszka Rybarczyk
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
- European Center for Bioinformatics and Genomics, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Marta Kasprzak
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
- European Center for Bioinformatics and Genomics, 60-965 Poznan, Poland
| | - Jacek Blazewicz
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
- European Center for Bioinformatics and Genomics, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
8
|
Deamer D. Perspective: Protocells and the Path to Minimal Life. J Mol Evol 2024; 92:530-538. [PMID: 39230713 PMCID: PMC11458682 DOI: 10.1007/s00239-024-10197-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
The path to minimal life involves a series of stages that can be understood in terms of incremental, stepwise additions of complexity ranging from simple solutions of organic compounds to systems of encapsulated polymers capable of capturing nutrients and energy to grow and reproduce. This brief review will describe the initial stages that lead to populations of protocells capable of undergoing selection and evolution. The stages incorporate knowledge of chemical and physical properties of organic compounds, self-assembly of membranous compartments, non-enzymatic polymerization of amino acids and nucleotides followed by encapsulation of polymers to produce protocell populations. The results are based on laboratory simulations related to cyclic hydrothermal conditions on the prebiotic Earth. The final portion of the review looks ahead to what remains to be discovered about this process in order to understand the evolutionary path to minimal life.
Collapse
Affiliation(s)
- David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
9
|
Agrawal A, Radakovic A, Vonteddu A, Rizvi S, Huynh VN, Douglas JF, Tirrell MV, Karim A, Szostak JW. Did the exposure of coacervate droplets to rain make them the first stable protocells? SCIENCE ADVANCES 2024; 10:eadn9657. [PMID: 39167649 PMCID: PMC11338219 DOI: 10.1126/sciadv.adn9657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
Membraneless coacervate microdroplets have long been proposed as model protocells as they can grow, divide, and concentrate RNA by natural partitioning. However, the rapid exchange of RNA between these compartments, along with their rapid fusion, both within minutes, means that individual droplets would be unable to maintain their separate genetic identities. Hence, Darwinian evolution would not be possible, and the population would be vulnerable to collapse due to the rapid spread of parasitic RNAs. In this study, we show that distilled water, mimicking rain/freshwater, leads to the formation of electrostatic crosslinks on the interface of coacervate droplets that not only suppress droplet fusion indefinitely but also allow the spatiotemporal compartmentalization of RNA on a timescale of days depending on the length and structure of RNA. We suggest that these nonfusing membraneless droplets could potentially act as protocells with the capacity to evolve compartmentalized ribozymes in prebiotic environments.
Collapse
Affiliation(s)
- Aman Agrawal
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Aleksandar Radakovic
- Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Anusha Vonteddu
- Materials Science and Engineering Program, University of Houston, Houston, TX 77204, USA
| | - Syed Rizvi
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Vivian N. Huynh
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Matthew V. Tirrell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- Argonne National Laboratory, Lemont, IL, 60439 USA
| | - Alamgir Karim
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
- Materials Science and Engineering Program, University of Houston, Houston, TX 77204, USA
| | - Jack W. Szostak
- Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Saha R, Choi JA, Chen IA. Protocell Effects on RNA Folding, Function, and Evolution. Acc Chem Res 2024; 57:2058-2066. [PMID: 39005057 PMCID: PMC11308369 DOI: 10.1021/acs.accounts.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/03/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Creating a living system from nonliving matter is a great challenge in chemistry and biophysics. The early history of life can provide inspiration from the idea of the prebiotic "RNA World" established by ribozymes, in which all genetic and catalytic activities were executed by RNA. Such a system could be much simpler than the interdependent central dogma characterizing life today. At the same time, cooperative systems require a mechanism such as cellular compartmentalization in order to survive and evolve. Minimal cells might therefore consist of simple vesicles enclosing a prebiotic RNA metabolism. The internal volume of a vesicle is a distinctive environment due to its closed boundary, which alters diffusion and available volume for macromolecules and changes effective molecular concentrations, among other considerations. These physical effects are mechanistically distinct from chemical interactions, such as electrostatic repulsion, that might also occur between the membrane boundary and encapsulated contents. Both indirect and direct interactions between the membrane and RNA can give rise to nonintuitive, "emergent" behaviors in the model protocell system. We have been examining how encapsulation inside membrane vesicles would affect the folding and activity of entrapped RNA. Using biophysical techniques such as FRET, we characterized ribozyme folding and activity inside vesicles. Encapsulation inside model protocells generally promoted RNA folding, consistent with an excluded volume effect, independently of chemical interactions. This energetic stabilization translated into increased ribozyme activity in two different systems that were studied (hairpin ribozyme and self-aminoacylating RNAs). A particularly intriguing finding was that encapsulation could rescue the activity of mutant ribozymes, suggesting that encapsulation could affect not only folding and activity but also evolution. To study this further, we developed a high-throughput sequencing assay to measure the aminoacylation kinetics of many thousands of ribozyme variants in parallel. The results revealed an unexpected tendency for encapsulation to improve the better ribozyme variants more than worse variants. During evolution, this effect would create a tilted playing field, so to speak, that would give additional fitness gains to already-high-activity variants. According to Fisher's Fundamental Theorem of Natural Selection, the increased variance in fitness should manifest as faster evolutionary adaptation. This prediction was borne out experimentally during in vitro evolution, where we observed that the initially diverse ribozyme population converged more quickly to the most active sequences when they were encapsulated inside vesicles. The studies in this Account have expanded our understanding of emergent protocell behavior, by showing how simply entrapping an RNA inside a vesicle, which could occur spontaneously during vesicle formation, might profoundly affect the evolutionary landscape of the RNA. Because of the exponential dynamics of replication and selection, even small changes to activity and function could lead to major evolutionary consequences. By closely studying the details of minimal yet surprisingly complex protocells, we might one day trace a pathway from encapsulated RNA to a living system.
Collapse
Affiliation(s)
- Ranajay Saha
- Department of Chemical and Biomolecular
Engineering, Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1592, United States
| | - Jongseok A. Choi
- Department of Chemical and Biomolecular
Engineering, Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1592, United States
| | - Irene A. Chen
- Department of Chemical and Biomolecular
Engineering, Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1592, United States
| |
Collapse
|
11
|
Sieg JP. A Divalent Metal Cation-Metabolite Interaction Model Reveals Cation Buffering and Speciation. Biochemistry 2024; 63:1709-1717. [PMID: 38975737 DOI: 10.1021/acs.biochem.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
I present the perspective that the divalent metalome and the metabolome can be modeled as a network of chelating interactions instead of separate entities. I review progress in understanding the complex cellular environment, in particular recent contributions to modeling metabolite-Mg2+ interactions. I then demonstrate a simple extension of these strategies based approximately on intracellular Escherichia coli concentrations. This model is composed of four divalent metal cations with a range of cellular concentrations and physical properties (Mg2+, Ca2+, Mn2+, and Zn2+), eight representative metabolites, and interaction constants. I applied this model to predict the speciation of divalent metal cations between free and metabolite-chelated species. This approach reveals potentially beneficial properties, including maintenance of free divalent metal cations at biologically relevant concentrations, buffering of free divalent metal cations, and enrichment of functional metabolite-chelated species. While currently limited by available interaction coefficients, this modeling strategy can be generalized to more complex systems. In summary, biochemists should consider the potential of cellular metabolites to form chelating interactions with divalent metal cations.
Collapse
Affiliation(s)
- Jacob P Sieg
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
12
|
Kocher CD, Dill KA. The prebiotic emergence of biological evolution. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240431. [PMID: 39050718 PMCID: PMC11265915 DOI: 10.1098/rsos.240431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/10/2024] [Indexed: 07/27/2024]
Abstract
The origin of life must have been preceded by Darwin-like evolutionary dynamics that could propagate it. How did that adaptive dynamics arise? And from what prebiotic molecules? Using evolutionary invasion analysis, we develop a universal framework for describing any origin story for evolutionary dynamics. We find that cooperative autocatalysts, i.e. autocatalysts whose per-unit reproductive rate grows as their population increases, have the special property of being able to cross a barrier that separates their initial degradation-dominated state from a growth-dominated state with evolutionary dynamics. For some model parameters, this leap to persistent propagation is likely, not rare. We apply this analysis to the Foldcat Mechanism, wherein peptides fold and help catalyse the elongation of each other. Foldcats are found to have cooperative autocatalysis and be capable of emergent evolutionary dynamics.
Collapse
Affiliation(s)
- Charles D. Kocher
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ken A. Dill
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
13
|
Saha R, Vázquez-Salazar A, Nandy A, Chen IA. Fitness Landscapes and Evolution of Catalytic RNA. Annu Rev Biophys 2024; 53:109-125. [PMID: 39013026 DOI: 10.1146/annurev-biophys-030822-025038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The relationship between genotype and phenotype, or the fitness landscape, is the foundation of genetic engineering and evolution. However, mapping fitness landscapes poses a major technical challenge due to the amount of quantifiable data that is required. Catalytic RNA is a special topic in the study of fitness landscapes due to its relatively small sequence space combined with its importance in synthetic biology. The combination of in vitro selection and high-throughput sequencing has recently provided empirical maps of both complete and local RNA fitness landscapes, but the astronomical size of sequence space limits purely experimental investigations. Next steps are likely to involve data-driven interpolation and extrapolation over sequence space using various machine learning techniques. We discuss recent progress in understanding RNA fitness landscapes, particularly with respect to protocells and machine representations of RNA. The confluence of technical advances may significantly impact synthetic biology in the near future.
Collapse
Affiliation(s)
- Ranajay Saha
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA; ,
| | - Alberto Vázquez-Salazar
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA; ,
| | - Aditya Nandy
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA; ,
- Department of Chemistry, The University of Chicago, Chicago, Illinois, USA
- The James Franck Institute, The University of Chicago, Chicago, Illinois, USA
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA; ,
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| |
Collapse
|
14
|
Ben Trad F, Delacotte J, Lemaître F, Guille-Collignon M, Arbault S, Sojic N, Labbé E, Buriez O. Shadow electrochemiluminescence imaging of giant liposomes opening at polarized electrodes. Analyst 2024; 149:3317-3324. [PMID: 38742381 DOI: 10.1039/d4an00470a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
In this work, the release of giant liposome (∼100 μm in diameter) content was imaged by shadow electrochemiluminescence (ECL) microscopy. Giant unilamellar liposomes were pre-loaded with a sucrose solution and allowed to sediment at an ITO electrode surface immersed in a solution containing a luminophore ([Ru(bpy)3]2+) and a sacrificial co-reactant (tri-n-propylamine). Upon polarization, the electrode exhibited illumination over its entire surface thanks to the oxidation of ECL reagents. However, as soon as liposomes reached the electrode surface, dark spots appeared and then spread over time on the surface. This observation reflected a blockage of the electrode surface at the contact point between the liposome and the electrode surface, followed by the dilution of ECL reagents after the rupture of the liposome membrane and release of its internal ECL-inactive solution. Interestingly, ECL reappeared in areas where it initially faded, indicating back-diffusion of ECL reagents towards the previously diluted area and thus confirming liposome permeabilization. The whole process was analyzed qualitatively and quantitatively within the defined region of interest. Two mass transport regimes were identified: a gravity-driven spreading process when the liposome releases its content leading to ECL vanishing and a diffusive regime when ECL recovers. The reported shadow ECL microscopy should find promising applications for the imaging of transient events such as molecular species released by artificial or biological vesicles.
Collapse
Affiliation(s)
- Fatma Ben Trad
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Jérôme Delacotte
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Frédéric Lemaître
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Manon Guille-Collignon
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Stéphane Arbault
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Neso Sojic
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 CNRS, 33400 Talence, France.
| | - Eric Labbé
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Olivier Buriez
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| |
Collapse
|
15
|
Guo D, Zhang Z, Sun J, Zhao H, Hou W, Du N. A Fusion-Growth Protocell Model Based on Vesicle Interactions with Pyrite Particles. Molecules 2024; 29:2664. [PMID: 38893538 PMCID: PMC11173516 DOI: 10.3390/molecules29112664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Protocell models play a pivotal role in the exploration of the origin of life. Vesicles are one type of protocell model that have attracted much attention. Simple single-chain amphiphiles (SACs) and organic small molecules (OSMs) possess primitive relevance and were most likely the building blocks of protocells on the early Earth. OSM@SAC vesicles have been considered to be plausible protocell models. Pyrite (FeS2), a mineral with primitive relevance, is ubiquitous in nature and plays a crucial role in the exploration of the origin of life in the mineral-water interface scenario. "How do protocell models based on OSM@SAC vesicles interact with a mineral-water interface scenario that simulates a primitive Earth environment" remains an unresolved question. Hence, we select primitive relevant sodium monododecyl phosphate (SDP), isopentenol (IPN) and pyrite (FeS2) mineral particles to build a protocell model. The model investigates the basic physical and chemical properties of FeS2 particles and reveals the effects of the size, content and duration of interaction of FeS2 particles on IPN@SDP vesicles. This deepens the understanding of protocell growth mechanisms in scenarios of mineral-water interfaces in primitive Earth environments and provides new information for the exploration of the origin of life.
Collapse
Affiliation(s)
- Dong Guo
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Ziyue Zhang
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jichao Sun
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Hui Zhao
- National Engineering Technology Research Center for Colloidal Materials, Shandong University, Jinan 250100, China
| | - Wanguo Hou
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- National Engineering Technology Research Center for Colloidal Materials, Shandong University, Jinan 250100, China
| | - Na Du
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
16
|
Samanta A, Baranda Pellejero L, Masukawa M, Walther A. DNA-empowered synthetic cells as minimalistic life forms. Nat Rev Chem 2024; 8:454-470. [PMID: 38750171 DOI: 10.1038/s41570-024-00606-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 06/13/2024]
Abstract
Cells, the fundamental units of life, orchestrate intricate functions - motility, adaptation, replication, communication, and self-organization within tissues. Originating from spatiotemporally organized structures and machinery, coupled with information processing in signalling networks, cells embody the 'sensor-processor-actuator' paradigm. Can we glean insights from these processes to construct primitive artificial systems with life-like properties? Using de novo design approaches, what can we uncover about the evolutionary path of life? This Review discusses the strides made in crafting synthetic cells, utilizing the powerful toolbox of structural and dynamic DNA nanoscience. We describe how DNA can serve as a versatile tool for engineering entire synthetic cells or subcellular entities, and how DNA enables complex behaviour, including motility and information processing for adaptive and interactive processes. We chart future directions for DNA-empowered synthetic cells, envisioning interactive systems wherein synthetic cells communicate within communities and with living cells.
Collapse
Affiliation(s)
- Avik Samanta
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India.
| | | | - Marcos Masukawa
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
| |
Collapse
|
17
|
Okada S, Shoji K. Microrail-assisted liposome trapping and aligning in microfluidic channels. RSC Adv 2024; 14:18003-18010. [PMID: 38841399 PMCID: PMC11152143 DOI: 10.1039/d4ra02094d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Liposome assemblies with a specific shape are potential cell tissue models for studying intercellular communication. Microfluidic channels that can trap liposomes have been constructed to achieve efficient and high-throughput manipulation and observation of liposomes. However, the trapping and alignment of multiple liposomes in a specific space are still challenging because the liposomes are soft and easily ruptured. In this study, we focused on a microrail-assisted technique for manipulating water-in-oil (w/o) emulsions. In this technique, w/o emulsions are trapped under the microrails through a surface energy gradient. First, we investigated whether the microrail channel can be applied for liposome trapping and alignment and found that the numerical simulations showed that drag forces in the direction of the microrail acted on the liposomes, thereby moving the liposomes from the main channel to the microrail. Next, we designed a microrail device based on the simulation results and trapped liposomes using the device. Resultantly, 24.7 ± 8.5 liposomes were aligned under the microrail within an hour, and the microrail was filled with liposomes for 3 hours. Finally, we prepared the microrail devices with y-shaped and ring-shaped microrails and demonstrated the construction of liposome assemblies with specific shapes, not only the straight shape. Our results indicate that the microrail-assisted technique is a valuable method for manipulating liposomes because it has the potential to provide various-shaped liposome assemblies. We believe the microrail channel will be a powerful tool for constructing liposome-based cell-cell interaction models.
Collapse
Affiliation(s)
- Shun Okada
- Department of Mechanical Engineering, Nagaoka University of Technology 1603-1 Kamitomioka Nagaoka Niigata 940-2188 Japan
| | - Kan Shoji
- Department of Mechanical Engineering, Nagaoka University of Technology 1603-1 Kamitomioka Nagaoka Niigata 940-2188 Japan
| |
Collapse
|
18
|
Xie G, Toledo MP, Hu X, Yong HJ, Sanchez PS, Liu C, Naji A, Irianto J, Wang YJ. NKX2-2 based nuclei sorting on frozen human archival pancreas enables the enrichment of islet endocrine populations for single-nucleus RNA sequencing. BMC Genomics 2024; 25:427. [PMID: 38689254 PMCID: PMC11059690 DOI: 10.1186/s12864-024-10335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Current approaches to profile the single-cell transcriptomics of human pancreatic endocrine cells almost exclusively rely on freshly isolated islets. However, human islets are limited in availability. Furthermore, the extensive processing steps during islet isolation and subsequent single cell dissolution might alter gene expressions. In this work, we report the development of a single-nucleus RNA sequencing (snRNA-seq) approach with targeted islet cell enrichment for endocrine-population focused transcriptomic profiling using frozen archival pancreatic tissues without islet isolation. RESULTS We cross-compared five nuclei isolation protocols and selected the citric acid method as the best strategy to isolate nuclei with high RNA integrity and low cytoplasmic contamination from frozen archival human pancreata. We innovated fluorescence-activated nuclei sorting based on the positive signal of NKX2-2 antibody to enrich nuclei of the endocrine population from the entire nuclei pool of the pancreas. Our sample preparation procedure generated high-quality single-nucleus gene-expression libraries while preserving the endocrine population diversity. In comparison with single-cell RNA sequencing (scRNA-seq) library generated with live cells from freshly isolated human islets, the snRNA-seq library displayed comparable endocrine cellular composition and cell type signature gene expression. However, between these two types of libraries, differential enrichments of transcripts belonging to different functional classes could be observed. CONCLUSIONS Our work fills a technological gap and helps to unleash frozen archival pancreatic tissues for molecular profiling targeting the endocrine population. This study opens doors to retrospective mappings of endocrine cell dynamics in pancreatic tissues of complex histopathology. We expect that our protocol is applicable to enrich nuclei for transcriptomics studies from various populations in different types of frozen archival tissues.
Collapse
Affiliation(s)
- Gengqiang Xie
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306, USA
| | - Maria Pilar Toledo
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306, USA
| | - Xue Hu
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306, USA
| | - Hyo Jeong Yong
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306, USA
| | - Pamela Sandoval Sanchez
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306, USA
| | - Chengyang Liu
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ali Naji
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jerome Irianto
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306, USA
| | - Yue J Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306, USA.
| |
Collapse
|
19
|
Rothschild LJ, Averesch NJH, Strychalski EA, Moser F, Glass JI, Cruz Perez R, Yekinni IO, Rothschild-Mancinelli B, Roberts Kingman GA, Wu F, Waeterschoot J, Ioannou IA, Jewett MC, Liu AP, Noireaux V, Sorenson C, Adamala KP. Building Synthetic Cells─From the Technology Infrastructure to Cellular Entities. ACS Synth Biol 2024; 13:974-997. [PMID: 38530077 PMCID: PMC11037263 DOI: 10.1021/acssynbio.3c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
The de novo construction of a living organism is a compelling vision. Despite the astonishing technologies developed to modify living cells, building a functioning cell "from scratch" has yet to be accomplished. The pursuit of this goal alone has─and will─yield scientific insights affecting fields as diverse as cell biology, biotechnology, medicine, and astrobiology. Multiple approaches have aimed to create biochemical systems manifesting common characteristics of life, such as compartmentalization, metabolism, and replication and the derived features, evolution, responsiveness to stimuli, and directed movement. Significant achievements in synthesizing each of these criteria have been made, individually and in limited combinations. Here, we review these efforts, distinguish different approaches, and highlight bottlenecks in the current research. We look ahead at what work remains to be accomplished and propose a "roadmap" with key milestones to achieve the vision of building cells from molecular parts.
Collapse
Affiliation(s)
- Lynn J. Rothschild
- Space Science
& Astrobiology Division, NASA Ames Research
Center, Moffett
Field, California 94035-1000, United States
- Department
of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Nils J. H. Averesch
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Felix Moser
- Synlife, One Kendall Square, Cambridge, Massachusetts 02139-1661, United States
| | - John I. Glass
- J.
Craig
Venter Institute, La Jolla, California 92037, United States
| | - Rolando Cruz Perez
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Blue
Marble
Space Institute of Science at NASA Ames Research Center, Moffett Field, California 94035-1000, United
States
| | - Ibrahim O. Yekinni
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brooke Rothschild-Mancinelli
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0150, United States
| | | | - Feilun Wu
- J. Craig
Venter Institute, Rockville, Maryland 20850, United States
| | - Jorik Waeterschoot
- Mechatronics,
Biostatistics and Sensors (MeBioS), KU Leuven, 3000 Leuven Belgium
| | - Ion A. Ioannou
- Department
of Chemistry, MSRH, Imperial College London, London W12 0BZ, U.K.
| | - Michael C. Jewett
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Allen P. Liu
- Mechanical
Engineering & Biomedical Engineering, Cellular and Molecular Biology,
Biophysics, Applied Physics, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vincent Noireaux
- Physics
and Nanotechnology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carlise Sorenson
- Department
of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katarzyna P. Adamala
- Department
of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
20
|
Fang Z, Pazienza LT, Zhang J, Tam CP, Szostak JW. Catalytic Metal Ion-Substrate Coordination during Nonenzymatic RNA Primer Extension. J Am Chem Soc 2024; 146:10632-10639. [PMID: 38579124 PMCID: PMC11027144 DOI: 10.1021/jacs.4c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
Nonenzymatic template-directed RNA copying requires catalysis by divalent metal ions. The primer extension reaction involves the attack of the primer 3'-hydroxyl on the adjacent phosphate of a 5'-5'-imidazolium-bridged dinucleotide substrate. However, the nature of the interaction of the catalytic metal ion with the reaction center remains unclear. To explore the coordination of the catalytic metal ion with the imidazolium-bridged dinucleotide substrate, we examined catalysis by oxophilic and thiophilic metal ions with both diastereomers of phosphorothioate-modified substrates. We show that Mg2+ and Cd2+ exhibit opposite preferences for the two phosphorothioate substrate diastereomers, indicating a stereospecific interaction of the divalent cation with one of the nonbridging phosphorus substituents. High-resolution X-ray crystal structures of the products of primer extension with phosphorothioate substrates reveal the absolute stereochemistry of this interaction and indicate that catalysis by Mg2+ involves inner-sphere coordination with the nonbridging phosphate oxygen in the pro-SP position, while thiophilic cadmium ions interact with sulfur in the same position, as in one of the two phosphorothioate substrates. These results collectively suggest that during nonenzymatic RNA primer extension with a 5'-5'-imidazolium-bridged dinucleotide substrate the interaction of the catalytic Mg2+ ion with the pro-SP oxygen of the reactive phosphate plays a crucial role in the metal-catalyzed SN2(P) reaction.
Collapse
Affiliation(s)
- Ziyuan Fang
- Department
of Chemistry, Howard Hughes Medical Institute,
The University of Chicago, Chicago, Illinois 60637, United States
| | - Lydia T. Pazienza
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Howard Hughes Medical Institute,
Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Jian Zhang
- Department
of Chemistry, Howard Hughes Medical Institute,
The University of Chicago, Chicago, Illinois 60637, United States
| | - Chun Pong Tam
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Howard Hughes Medical Institute,
Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Jack W. Szostak
- Department
of Chemistry, Howard Hughes Medical Institute,
The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
21
|
Dayeh DM, Cika J, Moon Y, Henderson S, Di Grandi D, Fu Y, Muthusamy K, Palackal N, Ihnat PM, Pyles EA. Comprehensive chromatographic assessment of forced degraded in vitro transcribed mRNA. J Chromatogr A 2024; 1722:464885. [PMID: 38631223 DOI: 10.1016/j.chroma.2024.464885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
Heightened interest in messenger RNA (mRNA) therapeutics has accelerated the need for analytical methodologies that facilitate the production of supplies for clinical trials. Forced degradation studies are routinely conducted to provide an understanding of potential weak spots in the molecule that are exploited by stresses encountered during bulk purification, production, shipment, and storage. Consequently, temperature fluctuations and excursions are often experienced during these unit operations and may accelerate mRNA degradation. Here, we present a concise panel of chromatography-based stability-indicating assays for evaluating thermally stressed in vitro transcribed (IVT) mRNA as part of a forced degradation study. We found that addition of EDTA to the mRNAs prior to heat exposure reduced the extent of degradation, suggesting that transcripts may be fragmenting via a divalent metal-ion mediated pathway. Trace divalent metal contamination that can accelerate RNA instability is likely carried over from upstream steps. We demonstrate the application of these methods to evaluate the critical quality attributes (CQAs) of mRNAs as well as to detect intrinsic process- and product-related impurities.
Collapse
Affiliation(s)
- Daniel M Dayeh
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Jaclyn Cika
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Youmi Moon
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Steven Henderson
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Deanna Di Grandi
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Yue Fu
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States.
| | - Kathir Muthusamy
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States.
| | - Nisha Palackal
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Peter M Ihnat
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Erica A Pyles
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| |
Collapse
|
22
|
Hazra B, Mandal R, Sahu J, Das S, Prasad M, Tarafdar PK. Self-immolation Assisted Morphology Transformation of Prebiotic Lipidated-cationic Amino Acids: Electro-droplet Mediated C-C Coupling Reaction to Synthesize Macromolecules. Chemistry 2024; 30:e202303555. [PMID: 38205907 DOI: 10.1002/chem.202303555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/12/2024]
Abstract
Compartmentalization protected biomolecules from the fluctuating environments of early Earth. Although contemporary cells mostly use phospholipid-based bilayer membranes, the utility of non-bilayer compartments was not ruled out during the prebiotic and modern eras. In the present study, we demonstrated the prebiotic synthesis of lipidated cationic amino acid-based amphiphiles [lauryl ester of lysine (LysL); ornithine (OrnL); and 2,4-diamino butyric acid (DabL)] using model dry-down reaction. These amphiphiles self-assemble into micellar membranes. However, the OrnL and DabL-based micelles undergo pH-responsive transformation to lipid droplet-like morphologies, a modelcompartment in the prebiotic Earth. These cationic droplets encapsulated prebiotic molecules (isoprene) and assisted electron transfer reaction to synthesize isoprenoid derivatives at primitive Earth conditions. The self-assembly of prebiotic amphiphiles, their transformation to droplet compartments, and droplet-assisted C-C bond formation reaction might have helped the evolution to synthesize various biomolecules required for the origin of life.
Collapse
Affiliation(s)
- Bibhas Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Raki Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Jayati Sahu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Subrata Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Mahesh Prasad
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| |
Collapse
|
23
|
Rodriguez LE, Altair T, Hermis NY, Jia TZ, Roche TP, Steller LH, Weber JM. Chapter 4: A Geological and Chemical Context for the Origins of Life on Early Earth. ASTROBIOLOGY 2024; 24:S76-S106. [PMID: 38498817 DOI: 10.1089/ast.2021.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Within the first billion years of Earth's history, the planet transformed from a hot, barren, and inhospitable landscape to an environment conducive to the emergence and persistence of life. This chapter will review the state of knowledge concerning early Earth's (Hadean/Eoarchean) geochemical environment, including the origin and composition of the planet's moon, crust, oceans, atmosphere, and organic content. It will also discuss abiotic geochemical cycling of the CHONPS elements and how these species could have been converted to biologically relevant building blocks, polymers, and chemical networks. Proposed environments for abiogenesis events are also described and evaluated. An understanding of the geochemical processes under which life may have emerged can better inform our assessment of the habitability of other worlds, the potential complexity that abiotic chemistry can achieve (which has implications for putative biosignatures), and the possibility for biochemistries that are vastly different from those on Earth.
Collapse
Affiliation(s)
- Laura E Rodriguez
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA. (Current)
| | - Thiago Altair
- Institute of Chemistry of São Carlos, Universidade de São Paulo, São Carlos, Brazil
- Department of Chemistry, College of the Atlantic, Bar Harbor, Maine, USA. (Current)
| | - Ninos Y Hermis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Physics and Space Sciences, University of Granada, Granada Spain. (Current)
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Tyler P Roche
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Luke H Steller
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Australia
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
24
|
Cohen ZR, Ding D, Zhou L, DasGupta S, Haas S, Sinclair KP, Todd ZR, Black RA, Szostak JW, Catling DC. Natural soda lakes provide compatible conditions for RNA and membrane function that could have enabled the origin of life. PNAS NEXUS 2024; 3:pgae084. [PMID: 38505692 PMCID: PMC10949909 DOI: 10.1093/pnasnexus/pgae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/31/2024] [Indexed: 03/21/2024]
Abstract
The origin of life likely occurred within environments that concentrated cellular precursors and enabled their co-assembly into cells. Soda lakes (those dominated by Na+ ions and carbonate species) can concentrate precursors of RNA and membranes, such as phosphate, cyanide, and fatty acids. Subsequent assembly of RNA and membranes into cells is a long-standing problem because RNA function requires divalent cations, e.g. Mg2+, but Mg2+ disrupts fatty acid membranes. The low solubility of Mg-containing carbonates limits soda lakes to moderate Mg2+ concentrations (∼1 mM), so we investigated whether both RNAs and membranes function within these lakes. We collected water from Last Chance Lake and Goodenough Lake in Canada. Because we sampled after seasonal evaporation, the lake water contained ∼1 M Na+ and ∼1 mM Mg2+ near pH 10. In the laboratory, nonenzymatic, RNA-templated polymerization of 2-aminoimidazole-activated ribonucleotides occurred at comparable rates in lake water and standard laboratory conditions (50 mM MgCl2, pH 8). Additionally, we found that a ligase ribozyme that uses oligonucleotide substrates activated with 2-aminoimidazole was active in lake water after adjusting pH from ∼10 to 9. We also observed that decanoic acid and decanol assembled into vesicles in a dilute solution that resembled lake water after seasonal rains, and that those vesicles retained encapsulated solutes despite salt-induced flocculation when the external solution was replaced with dry-season lake water. By identifying compatible conditions for nonenzymatic and ribozyme-catalyzed RNA assembly, and for encapsulation by membranes, our results suggest that soda lakes could have enabled cellular life to emerge on Earth, and perhaps elsewhere.
Collapse
Affiliation(s)
- Zachary R Cohen
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
- Astrobiology Program, University of Washington, Seattle, WA 98195, USA
| | - Dian Ding
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lijun Zhou
- Department of Biochemistry and Biophysics and Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Saurja DasGupta
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sebastian Haas
- Astrobiology Program, University of Washington, Seattle, WA 98195, USA
- Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kimberly P Sinclair
- Astrobiology Program, University of Washington, Seattle, WA 98195, USA
- Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA
| | - Zoe R Todd
- Astrobiology Program, University of Washington, Seattle, WA 98195, USA
- Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Chemistry and Department of Astronomy, University of Wisconsin, Madison, WI 53706, USA
| | - Roy A Black
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
- Astrobiology Program, University of Washington, Seattle, WA 98195, USA
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - David C Catling
- Astrobiology Program, University of Washington, Seattle, WA 98195, USA
- Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
25
|
Demongeot J, Waku J, Cohen O. Combinatorial and frequency properties of the ribosome ancestors. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:884-902. [PMID: 38303447 DOI: 10.3934/mbe.2024037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
BACKGROUND The current ribosome has evolved from the primitive stages of life on Earth. Its function is to build proteins and on the basis of this role, we are looking for a universal common ancestor to the ribosome which could: i) present optimal combinatorial properties, and ii) have left vestiges in the current molecules composing the ribosome (rRNA or r-proteins) or helping in its construction and functioning. METHODS Genomic public databases are used for finding the nucleotide sequences of rRNAs and mRNA of r-proteins and statistical calculations are performed on the occurrence in these genes of some pentamers belonging to the RNA proposed as optimal ribosome ancestor. RESULTS After having exhibited a possible solution to the problem of an RNA capable of catalyzing peptide genesis, traces of this RNA are found in many rRNAs and mRNA of r-proteins, as well as in factors contributing to the construction of the current ribosome. CONCLUSIONS The existence of an optimal primordial RNA whose function is to facilitate the creation of peptide bonds between amino acids may have contributed to accelerate the emergence of the first vital processes. Its traces should be found in many living species inside structures structurally and functionally close to the ribosome, which is already the case in the species studied in this article.
Collapse
Affiliation(s)
- Jacques Demongeot
- AGEIS, Faculty of Medicine, University Grenoble Alpes, 38700 La Tronche, France
| | - Jules Waku
- IRD UMI 209 UMMISCO and LIRIMA, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Olivier Cohen
- AGEIS, Faculty of Medicine, University Grenoble Alpes, 38700 La Tronche, France
| |
Collapse
|
26
|
Zorc SA, Roy RN. Origin & influence of autocatalytic reaction networks at the advent of the RNA world. RNA Biol 2024; 21:78-92. [PMID: 39358873 PMCID: PMC11451275 DOI: 10.1080/15476286.2024.2405757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Research on the origin of life investigates the transition from abiotic chemistry to the emergence of biology, with the 'RNA world hypothesis' as the leading theory. RNA's dual role in storage and catalysis suggests its importance in this narrative. The discovery of natural ribozymes emphasizes RNA's catalytic capabilities in prebiotic environments, supporting the plausibility of an RNA world and prompting exploration of precellular evolution. Collective autocatalytic sets (CASs) mark a crucial milestone in this transition, fostering complexity through autocatalysis. While modern biology emphasizes sequence-specific polymerases, remnants of CASs persist in primary metabolism highlighting their significance. Autocatalysis, driven by CASs, promotes complexity through mutually interdependent catalytic sets. Yet, the transition from ribonucleotides to complex RNA oligomers remains puzzling. Questions persist about the genesis of the first self-replicating RNA molecule, RNA's stability in prebiotic conditions, and the shift to complex molecular reproduction. This review delves into diverse facets of the RNA world's emergence, addressing critical bottlenecks and scientific advances. Integrating insights from simulation and in vitro evolution research, we illuminate the multistep biogenesis of catalytic RNA from the abiotic world. Through this exploration, we aim to elucidate the journey from the primordial soup to the dawn of life, emphasizing the interplay between chemistry and biology in understanding life's origins.
Collapse
Affiliation(s)
- Stephen A. Zorc
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Raktim N. Roy
- Department of pathology and laboratory medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
27
|
Mozumdar D, Roy RN. Origin of ribonucleotide recognition motifs through ligand mimicry at early earth. RNA Biol 2024; 21:107-121. [PMID: 39526332 PMCID: PMC11556283 DOI: 10.1080/15476286.2024.2423149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
In an RNA world, the emergence of template-specific self-replication and catalysis necessitated the presence of motifs facilitating reliable recognition between RNA molecules. What did these motifs entail, and how did they evolve into the proteinaceous RNA recognition entities observed today? Direct observation of these primordial entities is hindered by rapid degradation over geological time scales. To overcome this challenge, researchers employ diverse approaches, including scrutiny of conserved sequences and structural motifs across extant organisms and employing directed evolution experiments to generate RNA molecules with specific catalytic abilities. In this review, we delve into the theme of ribonucleotide recognition across key periods of early Earth's evolution. We explore scenarios of RNA interacting with small molecules and examine hypotheses regarding the role of minerals and metal ions in enabling structured ribonucleotide recognition and catalysis. Additionally, we highlight instances of RNA-protein mimicry in interactions with other RNA molecules. We propose a hypothesis where RNA initially recognizes small molecules and metal ions/minerals, with subsequent mimicry by proteins leading to the emergence of proteinaceous RNA binding domains.
Collapse
Affiliation(s)
- Deepto Mozumdar
- Department of Immunology & Microbiology, University of California San Francisco, San Francisco, CA, USA
| | - Raktim N. Roy
- Department of pathology & laboratory medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
28
|
Roy S, Sengupta S. The RNA-DNA world and the emergence of DNA-encoded heritable traits. RNA Biol 2024; 21:1-9. [PMID: 38785360 PMCID: PMC11135857 DOI: 10.1080/15476286.2024.2355391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/09/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
The RNA world hypothesis confers a central role to RNA molecules in information encoding and catalysis. Even though evidence in support of this hypothesis has accumulated from both experiments and computational modelling, the transition from an RNA world to a world where heritable genetic information is encoded in DNA remains an open question. Recent experiments show that both RNA and DNA templates can extend complementary primers using free RNA/DNA nucleotides, either non-enzymatically or in the presence of a replicase ribozyme. Guided by these experiments, we analyse protocellular evolution with an expanded set of reaction pathways made possible through the presence of DNA nucleotides. By encapsulating these reactions inside three different types of protocellular compartments, each subject to distinct modes of selection, we show how protocells containing DNA-encoded replicases in low copy numbers and replicases in high copy numbers can dominate the population. This is facilitated by a reaction that leads to auto-catalytic synthesis of replicase ribozymes from DNA templates encoding the replicase after the chance emergence of a replicase through non-enzymatic reactions. Our work unveils a pathway for the transition from an RNA world to a mixed RNA-DNA world characterized by Darwinian evolution, where DNA sequences encode heritable phenotypes.
Collapse
Affiliation(s)
- Suvam Roy
- Department of Physical Sciences, Indian Institute of Science Education and ResearchKolkata, Mohanpur, West Bengal, India
| | - Supratim Sengupta
- Department of Physical Sciences, Indian Institute of Science Education and ResearchKolkata, Mohanpur, West Bengal, India
| |
Collapse
|
29
|
Toparlak Ö, Sebastianelli L, Egas Ortuno V, Karki M, Xing Y, Szostak JW, Krishnamurthy R, Mansy SS. Cyclophospholipids Enable a Protocellular Life Cycle. ACS NANO 2023; 17:23772-23783. [PMID: 38038709 PMCID: PMC10722605 DOI: 10.1021/acsnano.3c07706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
There is currently no plausible path for the emergence of a self-replicating protocell, because prevalent formulations of model protocells are built with fatty acid vesicles that cannot withstand the concentrations of Mg2+ needed for the function and replication of nucleic acids. Although prebiotic chelates increase the survivability of fatty acid vesicles, the resulting model protocells are incapable of growth and division. Here, we show that protocells made of mixtures of cyclophospholipids and fatty acids can grow and divide in the presence of Mg2+-citrate. Importantly, these protocells retain encapsulated nucleic acids during growth and division, can acquire nucleotides from their surroundings, and are compatible with the nonenzymatic extension of an RNA oligonucleotide, chemistry needed for the replication of a primitive genome. Our work shows that prebiotically plausible mixtures of lipids form protocells that are active under the conditions necessary for the emergence of Darwinian evolution.
Collapse
Affiliation(s)
- Ö.
Duhan Toparlak
- Department
of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo, Trentino, Italy
| | - Lorenzo Sebastianelli
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton Alberta T6G 2G2, Canada
| | - Veronica Egas Ortuno
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Megha Karki
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yanfeng Xing
- Department
of Biochemistry and Molecular Biology, University
of Chicago, Chicago, Illinois 60637, United States
| | - Jack W. Szostak
- Howard
Hughes Medical Institute, Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Ramanarayanan Krishnamurthy
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Sheref S. Mansy
- Department
of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo, Trentino, Italy
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton Alberta T6G 2G2, Canada
| |
Collapse
|
30
|
Patki GM, Rajamani S. Nonenzymatic RNA replication in a mixture of 'spent' nucleotides. FEBS Lett 2023; 597:3125-3134. [PMID: 38058189 DOI: 10.1002/1873-3468.14785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/23/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
Nonenzymatic template-directed replication would have been affected by co-solutes in a heterogeneous prebiotic soup due to lack of enzymatic machinery. Unlike in contemporary biology, these reactions use chemically activated nucleotides, which undergo rapid hydrolysis forming nucleoside monophosphates ('spent' monomers). These co-solutes cannot extend the primer but continue to base pair with the template, thereby interfering with replication. We, therefore, aimed to understand how a mixture of 'spent' ribonucleotides would affect nonenzymatic replication. We observed the inhibition of replication in the mixture, wherein the predominant contribution came from the cognate Watson-Crick monomer, showing potential sequence dependence. Our study highlights how nonenzymatic RNA replication would have been directly affected by co-solutes, with ramifications for the emergence of functional polymers in an RNA World.
Collapse
Affiliation(s)
- Gauri M Patki
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| |
Collapse
|
31
|
Plante M. Epistemology of synthetic biology: a new theoretical framework based on its potential objects and objectives. Front Bioeng Biotechnol 2023; 11:1266298. [PMID: 38053845 PMCID: PMC10694798 DOI: 10.3389/fbioe.2023.1266298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
Synthetic biology is a new research field which attempts to understand, modify, and create new biological entities by adopting a modular and systemic conception of the living organisms. The development of synthetic biology has generated a pluralism of different approaches, bringing together a set of heterogeneous practices and conceptualizations from various disciplines, which can lead to confusion within the synthetic biology community as well as with other biological disciplines. I present in this manuscript an epistemological analysis of synthetic biology in order to better define this new discipline in terms of objects of study and specific objectives. First, I present and analyze the principal research projects developed at the foundation of synthetic biology, in order to establish an overview of the practices in this new emerging discipline. Then, I analyze an important scientometric study on synthetic biology to complete this overview. Afterwards, considering this analysis, I suggest a three-level classification of the object of study for synthetic biology (which are different kinds of living entities that can be built in the laboratory), based on three successive criteria: structural hierarchy, structural origin, functional origin. Finally, I propose three successively linked objectives in which synthetic biology can contribute (where the achievement of one objective led to the development of the other): interdisciplinarity collaboration (between natural, artificial, and theoretical sciences), knowledge of natural living entities (past, present, future, and alternative), pragmatic definition of the concept of "living" (that can be used by biologists in different contexts). Considering this new theoretical framework, based on its potential objects and objectives, I take the position that synthetic biology has not only the potential to develop its own new approach (which includes methods, objects, and objectives), distinct from other subdisciplines in biology, but also the ability to develop new knowledge on living entities.
Collapse
Affiliation(s)
- Mirco Plante
- Collège Montmorency, Laval, QC, Canada
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Université du Québec, Laval, QC, Canada
| |
Collapse
|
32
|
Holler S, Bartlett S, Löffler RJG, Casiraghi F, Diaz CIS, Cartwright JHE, Hanczyc MM. Hybrid organic-inorganic structures trigger the formation of primitive cell-like compartments. Proc Natl Acad Sci U S A 2023; 120:e2300491120. [PMID: 37561785 PMCID: PMC10438843 DOI: 10.1073/pnas.2300491120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Alkaline hydrothermal vents have become a candidate setting for the origins of life on Earth and beyond. This is due to several key features including the presence of gradients of temperature, redox potential, pH, the availability of inorganic minerals, and the existence of a network of inorganic pore spaces that could have served as primitive compartments. Chemical gardens have long been used as experimental proxies for hydrothermal vents. This paper investigates-10pc]Please note that the spelling of the following author name in the manuscript differs from the spelling provided in the article metadata: Richard J. G. Löffler. The spelling provided in the manuscript has been retained; please confirm. a set of prebiotic interactions between such inorganic structures and fatty alcohols. The integration of a medium-chain fatty alcohol, decanol, within these inorganic minerals, produced a range of emergent 3 dimensions structures at both macroscopic and microscopic scales. Fatty alcohols can be considered plausible prebiotic amphiphiles that might have assisted the formation of protocellular structures such as vesicles. The experiments presented herein show that neither chemical gardens nor decanol alone promote vesicle formation, but chemical gardens grown in the presence of decanol, which is then integrated into inorganic mineral structures, support vesicle formation. These observations suggest that the interaction of fatty alcohols and inorganic mineral structures could have played an important role in the emergence of protocells, yielding support for the evolution of living cells.
Collapse
Affiliation(s)
- Silvia Holler
- Cellular, Computational and Integrative Biology Department, Laboratory for Artificial Biology, University of Trento, Povo38123, Italy
| | - Stuart Bartlett
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Richard J. G. Löffler
- Cellular, Computational and Integrative Biology Department, Laboratory for Artificial Biology, University of Trento, Povo38123, Italy
| | - Federica Casiraghi
- Cellular, Computational and Integrative Biology Department, Laboratory for Artificial Biology, University of Trento, Povo38123, Italy
| | - Claro Ignacio Sainz Diaz
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Cientificas–Universidad de Granada, Armilla, Granada18100, Spain
| | - Julyan H. E. Cartwright
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Cientificas–Universidad de Granada, Armilla, Granada18100, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada18071, Spain
| | - Martin M. Hanczyc
- Cellular, Computational and Integrative Biology Department, Laboratory for Artificial Biology, University of Trento, Povo38123, Italy
- Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM87106
| |
Collapse
|
33
|
Zhang S, Lowe L, Anees P, Krishnan Y, Fai T, Szostak J, Wang A. Passive endocytosis in model protocells. Proc Natl Acad Sci U S A 2023; 120:e2221064120. [PMID: 37276401 PMCID: PMC10268330 DOI: 10.1073/pnas.2221064120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Semipermeable membranes are a key feature of all living organisms. While specialized membrane transporters in cells can import otherwise impermeable nutrients, the earliest cells would have lacked a mechanism to import nutrients rapidly under nutrient-rich circumstances. Using both experiments and simulations, we find that a process akin to passive endocytosis can be recreated in model primitive cells. Molecules that are too impermeable to be absorbed can be taken up in a matter of seconds in an endocytic vesicle. The internalized cargo can then be slowly released over hours, into the main lumen or putative cytoplasm. This work demonstrates a way by which primitive life could have broken the symmetry of passive permeation prior to the evolution of protein transporters.
Collapse
Affiliation(s)
- Stephanie J. Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
| | - Lauren A. Lowe
- School of Chemistry, University of New South Wales Sydney, Bedegal Country, Sydney, NSW2052, Australia
- Australian Centre for Astrobiology, University of New South Wales Sydney, Bedegal Country, Sydney, NSW2052, Australia
- ARC Centre of Excellence in Synthetic Biology, University of New South Wales Sydney, Bedegal Country, Sydney, NSW2052, Australia
| | - Palapuravan Anees
- Neuroscience Institute, University of Chicago, Chicago, IL60637
- Department of Chemistry, University of Chicago, Chicago, IL60637
| | - Yamuna Krishnan
- Neuroscience Institute, University of Chicago, Chicago, IL60637
- Department of Chemistry, University of Chicago, Chicago, IL60637
- Institute of Biophysical Dynamics, University of Chicago, Chicago, IL60637
| | - Thomas G. Fai
- Department of Mathematics, Brandeis University, Waltham, MA02453
| | - Jack W. Szostak
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Chemistry, University of Chicago, Chicago, IL60637
- HHMI, Massachusetts General Hospital, Boston, MA02114
| | - Anna Wang
- School of Chemistry, University of New South Wales Sydney, Bedegal Country, Sydney, NSW2052, Australia
- Australian Centre for Astrobiology, University of New South Wales Sydney, Bedegal Country, Sydney, NSW2052, Australia
- ARC Centre of Excellence in Synthetic Biology, University of New South Wales Sydney, Bedegal Country, Sydney, NSW2052, Australia
| |
Collapse
|
34
|
Dagar S, Sarkar S, Rajamani S. Nonenzymatic Template-Directed Primer Extension Using 2'-3' Cyclic Nucleotides Under Wet-Dry Cycles. ORIGINS LIFE EVOL B 2023; 53:43-60. [PMID: 37243884 DOI: 10.1007/s11084-023-09636-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/15/2023] [Indexed: 05/29/2023]
Abstract
RNA World Hypothesis is centred around the idea of a period in the early history of life's origin, wherein nonenzymatic oligomerization and replication of RNA resulted in functional ribozymes. Previous studies in this endeavour have demonstrated template-directed primer extension using chemically modified nucleotides and primers. Nonetheless, similar studies that used non-activated nucleotides led to the formation of RNA only with abasic sites. In this study, we report template-directed primer extension with prebiotically relevant cyclic nucleotides, under dehydration-rehydration (DH-RH) cycles occurring at high temperature (90 °C) and alkaline conditions (pH 8). 2'-3' cyclic nucleoside monophosphates (cNMP) resulted in primer extension, while 3'-5' cNMP failed to do so. Intact extension of up to two nucleotide additions was observed with both canonical hydroxy-terminated (OH-primer) and activated amino-terminated (NH2-primer) primers. We demonstrate primer extension reactions using both purine and pyrimidine 2'-3' cNMPs, with higher product yield observed during cAMP additions. Further, the presence of lipid was observed to significantly enhance the extended product in cCMP reactions. In all, our study provides a proof-of-concept for nonenzymatic primer extension of RNA, using intrinsically activated prebiotically relevant cyclic nucleotides as monomers.
Collapse
Affiliation(s)
- Shikha Dagar
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Susovan Sarkar
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India.
| |
Collapse
|
35
|
Fraccia TP, Martin N. Non-enzymatic oligonucleotide ligation in coacervate protocells sustains compartment-content coupling. Nat Commun 2023; 14:2606. [PMID: 37160869 PMCID: PMC10169843 DOI: 10.1038/s41467-023-38163-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/18/2023] [Indexed: 05/11/2023] Open
Abstract
Modern cells are complex chemical compartments tightly regulated by an underlying DNA-encoded program. Achieving a form of coupling between molecular content, chemical reactions, and chassis in synthetic compartments represents a key step to the assembly of evolvable protocells but remains challenging. Here, we design coacervate droplets that promote non-enzymatic oligonucleotide polymerization and that restructure as a result of the reaction dynamics. More specifically, we rationally exploit complexation between end-reactive oligonucleotides able to stack into long physical polymers and a cationic azobenzene photoswitch to produce three different phases-soft solids, liquid crystalline or isotropic coacervates droplets-each of them having a different impact on the reaction efficiency. Dynamical modulation of coacervate assembly and dissolution via trans-cis azobenzene photo-isomerization is used to demonstrate cycles of light-actuated oligonucleotide ligation. Remarkably, changes in the population of polynucleotides during polymerization induce phase transitions due to length-based DNA self-sorting to produce multiphase coacervates. Overall, by combining a tight reaction-structure coupling and environmental responsiveness, our reactive coacervates provide a general route to the non-enzymatic synthesis of polynucleotides and pave the way to the emergence of a primitive compartment-content coupling in membrane-free protocells.
Collapse
Affiliation(s)
- Tommaso P Fraccia
- Institut Pierre-Gilles de Gennes, Chimie Biologie et Innovation, UMR 8231, ESPCI Paris, PSL University, CNRS, 6 rue Jean Calvin, 75005, Paris, France.
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133, Milano, Italy.
| | - Nicolas Martin
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France.
| |
Collapse
|
36
|
Zhang SJ, Lowe LA, Anees P, Krishnan Y, Fai TG, Szostak JW, Wang A. Passive endocytosis in model protocells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.522792. [PMID: 37205531 PMCID: PMC10187163 DOI: 10.1101/2023.01.07.522792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Semipermeable membranes are a key feature of all living organisms. While specialized membrane transporters in cells can import otherwise impermeable nutrients, the earliest cells would have lacked a mechanism to import nutrients rapidly under nutrient-rich circumstances. Using both experiments and simulations, we find that a process akin to passive endocytosis can be recreated in model primitive cells. Molecules that are too impermeable to be absorbed can be taken up in a matter of seconds in an endocytic vesicle. The internalized cargo can then be slowly released over hours, into the main lumen or putative cytoplasm. This work demonstrates a way by which primitive life could have broken the symmetry of passive permeation prior to the evolution of protein transporters.
Collapse
|
37
|
Goldman AD. How did life become cellular? Proc Biol Sci 2023; 290:20222327. [PMID: 36750189 PMCID: PMC9904939 DOI: 10.1098/rspb.2022.2327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Affiliation(s)
- Aaron D. Goldman
- Department of Biology, Oberlin College, Oberlin, OH, USA,Blue Marble Space Institute of Science, Seattle, WA, USA
| |
Collapse
|
38
|
Sieg JP, McKinley LN, Huot MJ, Yennawar NH, Bevilacqua PC. The Metabolome Weakens RNA Thermodynamic Stability and Strengthens RNA Chemical Stability. Biochemistry 2022; 61:2579-2591. [PMID: 36306436 PMCID: PMC9669196 DOI: 10.1021/acs.biochem.2c00488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We examined the complex network of interactions among RNA, the metabolome, and divalent Mg2+ under conditions that mimic the Escherichia coli cytoplasm. We determined Mg2+ binding constants for the top 15 E. coli metabolites, comprising 80% of the metabolome by concentration at physiological pH and monovalent ion concentrations. These data were used to inform the development of an artificial cytoplasm that mimics in vivo E. coli conditions, which we term "Eco80". We empirically determined that the mixture of E. coli metabolites in Eco80 approximated single-site binding behavior toward Mg2+ in the biologically relevant free Mg2+ range of ∼0.5 to 3 mM Mg2+, using a Mg2+-sensitive fluorescent dye. Effects of Eco80 conditions on the thermodynamic stability, chemical stability, structure, and catalysis of RNA were examined. We found that Eco80 conditions lead to opposing effects on the thermodynamic and chemical stabilities of RNA. In particular, the thermodynamic stability of RNA helices was weakened by 0.69 ± 0.12 kcal/mol, while the chemical stability was enhanced ∼2-fold, which can be understood using the speciation of Mg2+ between weak and strong Mg2+-metabolite complexes in Eco80. Overall, the use of Eco80 reflects RNA function in vivo and enhances the biological relevance of mechanistic studies of RNA.
Collapse
Affiliation(s)
- Jacob P. Sieg
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Lauren N. McKinley
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Melanie J. Huot
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Department of Biology, Pennsylvania State University, University Park, PA 16802
| | - Neela H. Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Philip C. Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
39
|
Nunes Palmeira R, Colnaghi M, Harrison SA, Pomiankowski A, Lane N. The limits of metabolic heredity in protocells. Proc Biol Sci 2022; 289:20221469. [PMID: 36350219 PMCID: PMC9653231 DOI: 10.1098/rspb.2022.1469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The universal core of metabolism could have emerged from thermodynamically favoured prebiotic pathways at the origin of life. Starting with H
2
and CO
2
, the synthesis of amino acids and mixed fatty acids, which self-assemble into protocells, is favoured under warm anoxic conditions. Here, we address whether it is possible for protocells to evolve greater metabolic complexity, through positive feedbacks involving nucleotide catalysis. Using mathematical simulations to model metabolic heredity in protocells, based on branch points in protometabolic flux, we show that nucleotide catalysis can indeed promote protocell growth. This outcome only occurs when nucleotides directly catalyse CO
2
fixation. Strong nucleotide catalysis of other pathways (e.g. fatty acids and amino acids) generally unbalances metabolism and slows down protocell growth, and when there is competition between catalytic functions cell growth collapses. Autocatalysis of nucleotide synthesis can promote growth but only if nucleotides also catalyse CO
2
fixation; autocatalysis alone leads to the accumulation of nucleotides at the expense of CO
2
fixation and protocell growth rate. Our findings offer a new framework for the emergence of greater metabolic complexity, in which nucleotides catalyse broad-spectrum processes such as CO
2
fixation, hydrogenation and phosphorylation important to the emergence of genetic heredity at the origin of life.
Collapse
Affiliation(s)
- Raquel Nunes Palmeira
- Department of Computer Science, Engineering Building, Malet Place, University College London, WC1E 7JG, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Marco Colnaghi
- Department of Computer Science, Engineering Building, Malet Place, University College London, WC1E 7JG, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Stuart A. Harrison
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Andrew Pomiankowski
- Department of Computer Science, Engineering Building, Malet Place, University College London, WC1E 7JG, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
40
|
Investigation of the ionic conditions in SiRNA-mediated delivery through its carriers in the cell membrane: a molecular dynamic simulation. Sci Rep 2022; 12:17520. [PMID: 36266467 PMCID: PMC9582388 DOI: 10.1038/s41598-022-22509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/17/2022] [Indexed: 01/12/2023] Open
Abstract
SiRNA is a new generation of drug molecules and a new approach for treating a variety of diseases such as cancer and viral infections. SiRNA delivery to cells and translocation into cytoplasm are the main challenges in the clinical application of siRNA. Lipid carriers are one of the most successful carriers for siRNA delivery. In this study, we investigated the interaction of siRNA with a zwitterionic bilayer and how ion concentration and lipid conjugation can affect it. The divalent cation such as Mg2+ ions could promote the siRNA adsorption on the bilayer surface. The cation ions can bind to the head groups of lipids and the grooves of siRNA molecules and form bridges between the siRNA and bilayer surface. Our findings demonstrated the bridges formed by divalent ions could facilitate the attachment of siRNA to the membrane surface. We showed that the divalent cations can regulate the bridging-driven membrane attachment and it seems the result of this modulation can be used for designing biomimetic devices. In the following, we examined the effect of cations on the interaction between siRNA modified by cholesterol and the membrane surface. Our MD simulations showed that in the presence of Mg2+, the electrostatic and vdW energy between the membrane and siRNA were higher compared to those in the presence of NA+. We showed that the electrostatic interaction between membrane and siRNA cannot be facilitated only by cholesterol conjugated. Indeed, cations are essential to create coulomb repulsion and enable membrane attachment. This study provides important insight into liposome carriers for siRNA delivery and could help us in the development of siRNA-based therapeutics. Due to the coronavirus pandemic outbreak, these results may shed light on the new approach for treating these diseases and their molecular details.
Collapse
|
41
|
Peng Z, Linderoth J, Baum DA. The hierarchical organization of autocatalytic reaction networks and its relevance to the origin of life. PLoS Comput Biol 2022; 18:e1010498. [PMID: 36084149 PMCID: PMC9491600 DOI: 10.1371/journal.pcbi.1010498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/21/2022] [Accepted: 08/18/2022] [Indexed: 12/16/2022] Open
Abstract
Prior work on abiogenesis, the emergence of life from non-life, suggests that it requires chemical reaction networks that contain self-amplifying motifs, namely, autocatalytic cores. However, little is known about how the presence of multiple autocatalytic cores might allow for the gradual accretion of complexity on the path to life. To explore this problem, we develop the concept of a seed-dependent autocatalytic system (SDAS), which is a subnetwork that can autocatalytically self-maintain given a flux of food, but cannot be initiated by food alone. Rather, initiation of SDASs requires the transient introduction of chemical "seeds." We show that, depending on the topological relationship of SDASs in a chemical reaction network, a food-driven system can accrete complexity in a historically contingent manner, governed by rare seeding events. We develop new algorithms for detecting and analyzing SDASs in chemical reaction databases and describe parallels between multi-SDAS networks and biological ecosystems. Applying our algorithms to both an abiotic reaction network and a biochemical one, each driven by a set of simple food chemicals, we detect SDASs that are organized as trophic tiers, of which the higher tier can be seeded by relatively simple chemicals if the lower tier is already activated. This indicates that sequential activation of trophically organized SDASs by seed chemicals that are not much more complex than what already exist could be a mechanism of gradual complexification from relatively simple abiotic reactions to more complex life-like systems. Interestingly, in both reaction networks, higher-tier SDASs include chemicals that might alter emergent features of chemical systems and could serve as early targets of selection. Our analysis provides computational tools for analyzing very large chemical/biochemical reaction networks and suggests new approaches to studying abiogenesis in the lab.
Collapse
Affiliation(s)
- Zhen Peng
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jeff Linderoth
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison Wisconsin, United States of America
| | - David A. Baum
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
42
|
Samanta A, Hörner M, Liu W, Weber W, Walther A. Signal-processing and adaptive prototissue formation in metabolic DNA protocells. Nat Commun 2022; 13:3968. [PMID: 35803944 PMCID: PMC9270428 DOI: 10.1038/s41467-022-31632-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/28/2022] [Indexed: 11/09/2022] Open
Abstract
The fundamental life-defining processes in living cells, such as replication, division, adaptation, and tissue formation, occur via intertwined metabolic reaction networks that process signals for downstream effects with high precision in a confined, crowded environment. Hence, it is crucial to understand and reenact some of these functions in wholly synthetic cell-like entities (protocells) to envision designing soft materials with life-like traits. Herein, we report on all-DNA protocells composed of a liquid DNA interior and a hydrogel-like shell, harboring a catalytically active DNAzyme, that converts DNA signals into functional metabolites that lead to downstream adaptation processes via site-selective strand displacement reactions. The downstream processes include intra-protocellular phenotype-like changes, prototissue formation via multivalent interactions, and chemical messenger communication between active sender and dormant receiver cell populations for sorted heteroprototissue formation. The approach integrates several tools of DNA-nanoscience in a synchronized way to mimic life-like behavior in artificial systems for future interactive materials.
Collapse
Affiliation(s)
- Avik Samanta
- A3BMS Lab, University of Mainz, Department of Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany.
| | - Maximilian Hörner
- Faculty of Biology, Cluster of Excellence CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Wei Liu
- A3BMS Lab, University of Mainz, Department of Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Wilfried Weber
- Faculty of Biology, Cluster of Excellence CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Andreas Walther
- A3BMS Lab, University of Mainz, Department of Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany. .,Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany.
| |
Collapse
|
43
|
Deamer D, Cary F, Damer B. Urability: A Property of Planetary Bodies That Can Support an Origin of Life. ASTROBIOLOGY 2022; 22:889-900. [PMID: 35675644 DOI: 10.1089/ast.2021.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The concept of habitability is now widely used to describe zones in a solar system in which planets with liquid water can sustain life. Because habitability does not explicitly incorporate the origin of life, this article proposes a new word-urability-which refers to the conditions that allow life to begin. The utility of the word is tested by applying it to combinations of multiple geophysical and geochemical factors that support plausible localized zones that are conducive to the chemical reactions and molecular assembly processes required for the origin of life. The concept of urable worlds, planetary bodies that can sustain an arising of life, is considered for bodies in our own solar system and exoplanets beyond.
Collapse
Affiliation(s)
- David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Francesca Cary
- Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Bruce Damer
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
44
|
Hydrophobic-cationic peptides modulate RNA polymerase ribozyme activity by accretion. Nat Commun 2022; 13:3050. [PMID: 35665749 PMCID: PMC9166800 DOI: 10.1038/s41467-022-30590-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/04/2022] [Indexed: 11/09/2022] Open
Abstract
Accretion and the resulting increase in local concentration is a widespread mechanism in biology to enhance biomolecular functions (for example, in liquid-liquid demixing phases). Such macromolecular aggregation phases (e.g., coacervates, amyloids) may also have played a role in the origin of life. Here, we report that a hydrophobic-cationic RNA binding peptide selected by phage display (P43: AKKVWIIMGGS) forms insoluble amyloid-containing aggregates, which reversibly accrete RNA on their surfaces in an RNA-length and Mg2+-concentration dependent manner. The aggregates formed by P43 or its sequence-simplified version (K2V6: KKVVVVVV) inhibited RNA polymerase ribozyme (RPR) activity at 25 mM MgCl2, while enhancing it significantly at 400 mM MgCl2. Our work shows that such hydrophobic-cationic peptide aggregates can reversibly concentrate RNA and enhance the RPR activity, and suggests that they could have aided the emergence and evolution of longer and functional RNAs in the fluctuating environments of the prebiotic earth.
Collapse
|
45
|
Yao Z, Du N, Chen N, Liu J, Hou W. Primitive Nucleobases @ Sodium 2-Ketooctanoate Vesicles with High Salt Resistance. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Sahai N, Adebayo S, Schoonen MA. Freshwater and Evaporite Brine Compositions on Hadean Earth: Priming the Origins of Life. ASTROBIOLOGY 2022; 22:641-671. [PMID: 35447041 DOI: 10.1089/ast.2020.2396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The chemical composition of aqueous solutions during the Hadean era determined the availability of essential elements for prebiotic synthesis of the molecular building blocks of life. Here we conducted quantitative reaction path modeling of atmosphere-water-rock interactions over a range of environmental conditions to estimate freshwater and evaporite brine compositions. We then evaluated the solution chemistries for their potential to influence ribonucleotide synthesis and polymerization as well as protocell membrane stability. Specifically, solutions formed by komatiite and tonalite (primitive crustal rocks) weathering and evaporation-rehydration (drying-wetting) cycles were studied assuming neutral atmospheric composition over a wide range of values of atmospheric partial pressure of CO2 (PCO2) and temperatures (T). Solution pH decreased and total dissolved concentrations of inorganic P, Mg, Ca, Fe, and C (PT, MgT, CaT, FeT, and CT) increased with increasing PCO2. The PCO2 and T dictated how the solution evolved with regard to minerals precipitated and ions left in solution. At T = 75°C and PCO2 < 0.05 atm, the concentration ratio of magnesium to calcium ion concentrations (Mg2+/Ca2+) was < 1 and predominantly metal aluminosilicates (including clays), dolomite, gibbsite, and pyrite (FeS2) precipitated, whereas at PCO2 > 0.05 atm, Mg2+/Ca2+ was > 1 and mainly magnesite, dolomite, pyrite, chalcedony (SiO2), and kaolinite (Al2Si2O5) precipitated. At T = 75°C and PCO2 > 0.05 atm, hydroxyapatite (HAP) precipitated during weathering but not during evaporation, and so, PT increased with each evaporation-rehydration cycle, while MgT, CaT, and FeT decreased as other minerals precipitated. At T = 75°C and PCO2 ∼5 atm, reactions with komatiite provided end-of-weathering solutions with high enough Mg2+ concentrations to promote RNA-template directed and montmorillonite-promoted nonenzymatic RNA polymerization, but incompatible with protocell membranes; however, montmorillonite-promoted RNA polymerization could proceed with little or no Mg2+ present. Cyclically evaporating/rehydrating brines from komatiite weathering at T = 75°C and PCO2 ∼5 atm yielded the following: (1) high PT values that could promote ribonucleotide synthesis, and (2) low divalent cation concentrations compatible with amino acid-promoted, montmorillonite-catalyzed RNA polymerization and with protocell membranes, but too low for template-directed nonenzymatic RNA polymerization. For all PCO2 values, Mg2+ and PT concentrations decreased, whereas the HCO3- concentration increased within increasing temperature, due to the retrograde solubility of the minerals controlling these ions' concentrations; Fe2+ concentration increased because of prograde pyrite solubility. Tonalite weathering and cyclical wetting-drying reactions did not produce solution compositions favorable for promoting prebiotic RNA formation. Conversely, the ion concentrations compatible with protocell emergence, placed constraints on PCO2 of early Earth's atmosphere. In summary: (1) prebiotic RNA synthesis and membrane self-assembly could have been achieved even under neutral atmosphere conditions by atmosphere-water-komatiite rock interactions; and (2) constraints on element availability for the origins of life and early PCO2 were addressed by a single, globally operating mechanism of atmosphere-water-rock interactions without invoking special microenvironments. The present results support a facile origins-of-life hypothesis even under a neutral atmosphere as long as other favorable geophysical and planetary conditions are also met.
Collapse
Affiliation(s)
- Nita Sahai
- School of Polymer Science and Polymer Engineering and University of Akron, Akron, Ohio, USA
- Department of Geoscience, University of Akron, Akron, Ohio, USA
- Integrated Bioscience Program, University of Akron, Akron, Ohio, USA
| | - Segun Adebayo
- School of Polymer Science and Polymer Engineering and University of Akron, Akron, Ohio, USA
| | - Martin A Schoonen
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
- Department of Geosciences, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
47
|
Gözen I, Köksal ES, Põldsalu I, Xue L, Spustova K, Pedrueza-Villalmanzo E, Ryskulov R, Meng F, Jesorka A. Protocells: Milestones and Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106624. [PMID: 35322554 DOI: 10.1002/smll.202106624] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The origin of life is still one of humankind's great mysteries. At the transition between nonliving and living matter, protocells, initially featureless aggregates of abiotic matter, gain the structure and functions necessary to fulfill the criteria of life. Research addressing protocells as a central element in this transition is diverse and increasingly interdisciplinary. The authors review current protocell concepts and research directions, address milestones, challenges and existing hypotheses in the context of conditions on the early Earth, and provide a concise overview of current protocell research methods.
Collapse
Affiliation(s)
- Irep Gözen
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Elif Senem Köksal
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Inga Põldsalu
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Lin Xue
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Karolina Spustova
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Esteban Pedrueza-Villalmanzo
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
- Department of Physics, University of Gothenburg, Universitetsplatsen 1, Gothenburg, 40530, Sweden
| | - Ruslan Ryskulov
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| | - Fanda Meng
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Aldo Jesorka
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| |
Collapse
|
48
|
Ahn SY, Kim J, Vellampatti S, Oh S, Lim YT, Park SH, Luo D, Chung J, Um SH. Protein-Encoding Free-Standing RNA Hydrogel for Sub-Compartmentalized Translation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110424. [PMID: 35263477 DOI: 10.1002/adma.202110424] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
RNA can self-fold into complex structures that can serve as major biological regulators in protein synthesis and in catalysis. Due to the abundance of structural primitives and functional diversity, RNA has been utilized for designing nature-defined goals despite its intrinsic chemical instability and lack of technologies. Here, a robust, free-standing RNA hydrogel is developed through a sequential process involving both ligation and rolling circle transcription to form RNA G-quadruplexes, capable of both catalytic activity and enhancing expression of several proteins in sub-compartmentalized, phase-separated translation environments. The observations suggest that this hydrogel will expand RNA research and impact practical RNA principles and applications.
Collapse
Affiliation(s)
- So Yeon Ahn
- Progeneer Incorporation, 12, Digital-ro 31-gil, Guro-gu, Seoul, 08380, Korea
| | - Jeonghun Kim
- Progeneer Incorporation, 12, Digital-ro 31-gil, Guro-gu, Seoul, 08380, Korea
| | | | - Sung Oh
- Progeneer Incorporation, 12, Digital-ro 31-gil, Guro-gu, Seoul, 08380, Korea
| | - Yong Taik Lim
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Korea
| | - Sung Ha Park
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Korea
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Korea
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Soong Ho Um
- Progeneer Incorporation, 12, Digital-ro 31-gil, Guro-gu, Seoul, 08380, Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Korea
| |
Collapse
|
49
|
Rossetto D, Mansy SS. Metals Are Integral to Life as We Know It. Front Cell Dev Biol 2022; 10:864830. [PMID: 35309928 PMCID: PMC8930831 DOI: 10.3389/fcell.2022.864830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Investigations of biology and the origins of life regularly focus on the components of the central dogma and thus the elements that compose nucleic acids and peptides. Less attention is given to the inorganic components of a biological cell, which are required for biological polymers to function. The Earth was and continues to be rich in metals, and so investigations of the emergence and evolution of life must account for the role that metal ions play. Evolution is shaped by what is present, and not all elements of the periodic table are equally accessible. The presence of metals, the solubility of their ions, and their intrinsic reactivity all impacted the composition of the cells that emerged. Geological and bioinformatic analyses clearly show that the suite of accessible metal ions changed over the history of the Earth; however, such analyses tend to be interpreted in comparison to average oceanic conditions, which do not represent well the many niche environments present on the Earth. While there is still debate concerning the sequence of events that led to extant biology, what is clear is that life as we know it requires metals, and that past and current metal-dependent events remain, at least partially, imprinted in the chemistry of the cell.
Collapse
Affiliation(s)
| | - Sheref S Mansy
- D-CIBIO, University of Trento, Povo, Italy
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
50
|
Jia TZ, Nishikawa S, Fujishima K. Sequencing the Origins of Life. BBA ADVANCES 2022; 2:100049. [PMID: 37082609 PMCID: PMC10074849 DOI: 10.1016/j.bbadva.2022.100049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/10/2023] Open
Abstract
One goal of origins of life research is to understand how primitive informational and catalytic biopolymers emerged and evolved. Recently, a number of sequencing techniques have been applied to analysis of replicating and evolving primitive biopolymer systems, providing a sequence-specific and high-resolution view of primitive chemical processes. Here, we review application of sequencing techniques to analysis of synthetic and primitive nucleic acids and polypeptides. This includes next-generation sequencing of primitive polymerization and evolution processes, followed by discussion of other novel biochemical techniques that could contribute to sequence analysis of primitive biopolymer driven chemical systems. Further application of sequencing to origins of life research, perhaps as a life detection technology, could provide insight into the origin and evolution of informational and catalytic biopolymers on early Earth or elsewhere.
Collapse
Affiliation(s)
- Tony Z. Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Blue Marble Space Institute of Science, 600 1st Ave, Floor 1, Seattle, WA 98104, USA
- Corresponding author
| | - Shota Nishikawa
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa-shi, Kanagawa 252-0882, Japan
| |
Collapse
|