1
|
Falzone L, Lavoro A, Candido S, Salmeri M, Zanghì A, Libra M. Benefits and concerns of probiotics: an overview of the potential genotoxicity of the colibactin-producing Escherichia coli Nissle 1917 strain. Gut Microbes 2024; 16:2397874. [PMID: 39229962 PMCID: PMC11376418 DOI: 10.1080/19490976.2024.2397874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/24/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Recently, the mounting integration of probiotics into human health strategies has gathered considerable attention. Although the benefits of probiotics have been widely recognized in patients with gastrointestinal disorders, immune system modulation, and chronic-degenerative diseases, there is a growing need to evaluate their potential risks. In this context, new concerns have arisen regarding the safety of probiotics as some strains may have adverse effects in humans. Among these strains, Escherichia coli Nissle 1917 (EcN) exhibited traits of concern due to a pathogenic locus in its genome that produces potentially genotoxic metabolites. As the use of probiotics for therapeutic purposes is increasing, the effects of potentially harmful probiotics must be carefully evaluated. To this end, in this narrative review article, we reported the findings of the most relevant in vitro and in vivo studies investigating the expanding applications of probiotics and their impact on human well-being addressing concerns arising from the presence of antibiotic resistance and pathogenic elements, with a focus on the polyketide synthase (pks) pathogenic island of EcN. In this context, the literature data here discussed encourages a thorough profiling of probiotics to identify potential harmful elements as done for EcN where potential genotoxic effects of colibactin, a secondary metabolite, were observed. Specifically, while some studies suggest EcN is safe for gastrointestinal health, conflicting findings highlight the need for further research to clarify its safety and optimize its use in therapy. Overall, the data here presented suggest that a comprehensive assessment of the evolving landscape of probiotics is essential to make evidence-based decisions and ensure their correct use in humans.
Collapse
Affiliation(s)
- Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Antonino Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology 'G.F. Ingrassia', University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| |
Collapse
|
2
|
Yang J, Wang J, Liu Z, Chen J, Jiang J, Zhao M, Gong D. Ligilactobacillus Salivarius improve body growth and anti-oxidation capacity of broiler chickens via regulation of the microbiota-gut-brain axis. BMC Microbiol 2023; 23:395. [PMID: 38071295 PMCID: PMC10709959 DOI: 10.1186/s12866-023-03135-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Certain strains of probiotic bacteria can secret functional substances namely digestive enzymes and functional peptides to regulate physiological conditions such as digestion and anti-oxidation, which are often incorporated in industrial broiler chick production. However, few studies have detailed the action mechanisms and effects of these bacteria on regulating growth and anti-oxidation levels in broiler chickens. Ligilactobacillus salivarius is a strain of probiotic bacteria used as dietary supplement. In the present study, Ligilactobacillus salivarius was evaluated for its secreted digestive enzymes in vitro. To detailed evaluate the action mechanisms and effects of gastrointestinal tract (GIT) microbiota on alleviating anti-oxidation levels of broiler chickens through the gut-brain axis. Ligilactobacillus salivarius was cultured and supplemented in the food of broilers to evaluate the probiotic effect on growth and anti-oxidation by modulation of gut microbial composition and its functional metabolites using metagenomic and metabolomic assays. Biochemical results showed that Ligilactobacillus salivarius secreted digestive enzymes: protease, lipase, and amylase. Broiler chickens with Ligilactobacillus salivarius supplemented for 42 days, showed increased body weights, a reduced oxidative status, decreased malondialdehyde levels, and improved activities rates of total superoxide dismutase, glutathione peroxidase IIand IV improved. The microbial composition of caecum was more abundant than those broiler without probiotics supplementation, owing 400 of total number (489) of bacterial operational taxonomic units (OTU). The genera of Lactobacillus, Megamonas, Ruminoccoccaceae, Ruminococcus, Alistipes and Helicobacter shared the dominant proportion of Candidatus _Arthromitus compared with the control chickens. These functional bacteria genera assisted in the transportation and digestion of amino acids, carbohydrates, and ions, synthesis of cellular membranes, and anti-oxidation. Uncultured_organism_g_ Anaerosporobacter, Lactobacillus salivarius, uncultured_bacterium_g_ Ruminococcaceae_UCG-014, uncultured_bacterium_g_ Peptococcus were strongly and positively correlated with body growth performance and anti-oxidation. A metabonomic assay suggested that the secreted of gamma-aminobutyric acid and monobactam was metabolized according to the Kyoto Encyclopedia of Genes and Genomes analysis. In conclusion, Ligilactobacillus salivarius optimized microbial composition of the caecum and secreted functional peptides through gut-brain axis to improve the body growth and antioxidation of broiler chicken.
Collapse
Affiliation(s)
- Jiajun Yang
- Jiangsu Key Laboratory of Animal genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, China
| | - Jing Wang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, China
| | - Zongliang Liu
- Hefei Zhien Biotechnology Company Limited, National University Science Park, No.602 of Huangshan Road, Hefei, 230031, 230001, Anhui Province, China
| | - Jun Chen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, Jiangsu, China
| | - Jiajing Jiang
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, 210038, Jiangsu, China
| | - Minmeng Zhao
- Jiangsu Key Laboratory of Animal genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Daoqing Gong
- Jiangsu Key Laboratory of Animal genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
3
|
Ribaldone DG, Pellicano R, Fagoonee S, Actis GC. Modulation of the gut microbiota: opportunities and regulatory aspects. Minerva Gastroenterol (Torino) 2023; 69:128-140. [PMID: 35179341 DOI: 10.23736/s2724-5985.22.03152-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The human gut is an intensively colonized organ containing microorganisms that can be health-promoting or pathogenic. This feature led to the development of functional foods aiming to fortify the former category at the expense of the latter. Since long, cultured products, including probiotics fortification, have been used for humans as live microbial feed additions. This review presents some of the microbes used as probiotics and discusses how supplementation with probiotics may help initiate and/or restore eubiotic composition of gut microbiota. Additionally, it considers safety and regulatory aspects of probiotics.
Collapse
Affiliation(s)
| | | | - Sharmila Fagoonee
- Institute of Biostructures and Bioimaging (CNR) c/o Molecular Biotechnology Center, Turin, Italy
| | | |
Collapse
|
4
|
El-Sayed HS, El-Sayed SM, Youssef AM. Designated functional microcapsules loaded with green synthesis selenium nanorods and probiotics for enhancing stirred yogurt. Sci Rep 2022; 12:14751. [PMID: 36042364 PMCID: PMC9427739 DOI: 10.1038/s41598-022-18781-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/18/2022] [Indexed: 11/08/2022] Open
Abstract
Green synthesis selenium nanorods (Se-NRs) were produced based on Aloe vera leaf extract. The size, morphology, antimicrobial, and activation of Se-NRs for probiotics were analyzed. The Se-NRS was stable with a diameter of 12 and 40 nm, had an antimicrobial effect, and improved probiotics counts. The microcapsules loaded with Green Se-NRS (0, 0.05 or 0.1 mg/100 ml) and probiotics (Bifidobacterium lactis and Lactobacillus rhamnosus) were designated with efficiency between 95.25 and 97.27% and irregular shapes. Microcapsules were saved probiotics against gastrointestinal juices. The microcapsules were showed a minor inhibition effect against the cell line. Also, microcapsules integrated into stirred yogurt and exanimated for microbiology, chemically, and sensory for 30 days. The probiotics counts, acidity, total solids, and ash values of samples were increased during storage periods without affecting fat and protein contents. The overall acceptability of yogurt with microcapsules containing probiotics and Se-NRs was high without change in body, odor, color, and appearance.
Collapse
Affiliation(s)
- Hoda S El-Sayed
- Dairy Science Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, 12622, Egypt
| | - Samah M El-Sayed
- Dairy Science Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, 12622, Egypt
| | - Ahmed M Youssef
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, 12622, Egypt.
| |
Collapse
|
5
|
Sánchez Y Sánchez de la Barquera B, Martínez Carrillo BE, Aguirre Garrido JF, Martínez Méndez R, Benítez Arciniega AD, Valdés Ramos R, Soto Piña AE. Emerging Evidence on the Use of Probiotics and Prebiotics to Improve the Gut Microbiota of Older Adults with Frailty Syndrome: A Narrative Review. J Nutr Health Aging 2022; 26:926-935. [PMID: 36259581 PMCID: PMC9483424 DOI: 10.1007/s12603-022-1842-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The gut microbiota can impact older adults' health, especially in patients with frailty syndrome. Understanding the association between the gut microbiota and frailty syndrome will help to explain the etiology of age-related diseases. Low-grade systemic inflammation is a factor leading to geriatric disorders, which is known as "inflammaging". Intestinal dysbiosis has a direct relationship with low-grade systemic inflammation because when the natural gut barrier is altered by age or other factors, some microorganisms or their metabolites can cross this barrier and reach the systemic circulation. OBJECTIVES This review had two general goals: first, to describe the characteristics of the gut microbiota associated with age-related diseases, specifically frailty syndrome. The second aim was to identify potential interventions to improve the composition and function of intestinal microbiota, consequently lessening the burden of patients with frailty syndrome. METHODS A search of scientific evidence was performed in PubMed, Science Direct, and Redalyc using keywords such as "frailty", "elderly", "nutrient interventions", "probiotics", and "prebiotics". We included studies reporting the effects of nutrient supplementation on frailty syndrome and older adults. These studies were analyzed to identify novel therapeutic alternatives to improve gut microbiota characteristics as well as subclinical signs related to this condition. RESULTS The gut microbiota participates in many metabolic processes that have an impact on the brain, muscles, and other organs. These processes integrate feedback mechanisms, comprising their respective axis with the intestine and the gut microbiota. Alterations in these associations can lead to frailty. We report a few interventions that demonstrate that prebiotics and probiotics could modulate the gut microbiota in humans. Furthermore, other nutritional interventions could be used in patients with frailty syndrome. CONCLUSION Probiotics and prebiotics may potentially prevent frailty syndrome or improve the quality of life of patients with this disorder. However, there is not enough information about their appropriate doses and periods of administration. Therefore, further investigations are required to determine these factors and improve their efficacy as therapeutic approaches for frailty syndrome.
Collapse
Affiliation(s)
- B Sánchez Y Sánchez de la Barquera
- Alexandra Estela Soto Piña, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan esq. Jesús Carranza, Z.C. 50180 Toluca de Lerdo, México; Email address:
| | | | | | | | | | | | | |
Collapse
|
6
|
Andreae MH, Shah LD, Shepherd V, Sheehan M, Sacks HS, Rhodes R. Decisions on Innovation or Research for Devastating Disease. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2021; 21:28-31. [PMID: 34806956 DOI: 10.1080/15265161.2021.1991042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
| | - L D Shah
- Icahn School of Medicine at Mount Sinai
| | | | | | - H S Sacks
- Icahn School of Medicine at Mount Sinai
| | - R Rhodes
- Icahn School of Medicine at Mount Sinai
| |
Collapse
|
7
|
Oberoi K, Tolun A, Altintas Z, Sharma S. Effect of Alginate-Microencapsulated Hydrogels on the Survival of Lactobacillus rhamnosus under Simulated Gastrointestinal Conditions. Foods 2021; 10:1999. [PMID: 34574109 PMCID: PMC8465150 DOI: 10.3390/foods10091999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023] Open
Abstract
Thanks to the beneficial properties of probiotic bacteria, there exists an immense demand for their consumption in probiotic foods worldwide. Nevertheless, it is difficult to retain a high number of viable cells in probiotic food products during their storage and gastrointestinal transit. Microencapsulation of probiotic bacteria is an effective way of enhancing probiotic viability by limiting cell exposure to extreme conditions via the gastrointestinal tract before releasing them into the colon. This research aims to develop a new coating material system of microencapsulation to protect probiotic cells from adverse environmental conditions and improve their recovery rates. Hence, Lactobacillus rhamnosus was encapsulated with emulsion/internal gelation techniques in a calcium chloride solution. Alginate-probiotic microbeads were coated with xanthan gum, gum acacia, sodium caseinate, chitosan, starch, and carrageenan to produce various types of microcapsules. The alginate+xanthan microcapsules exhibited the highest encapsulation efficiency (95.13 ± 0.44%); they were simulated in gastric and intestinal juices at pH 3 during 1, 2, and 3 h incubations at 37 °C. The research findings showed a remarkable improvement in the survival rate of microencapsulated probiotics under simulated gastric conditions of up to 83.6 ± 0.89%. The morphology, size, and shape of the microcapsules were analyzed using a scanning electron microscope. For the protection of probiotic bacteria under simulated intestinal conditions; alginate microbeads coated with xanthan gum played an important role, and exhibited a survival rate of 87.3 ± 0.79%, which was around 38% higher than that of the free cells (49.4 ± 06%). Our research findings indicated that alginate+xanthan gum microcapsules have a significant potential to deliver large numbers of probiotic cells to the intestines, where cells can be released and colonized for the consumer's benefit.
Collapse
Affiliation(s)
- Khyati Oberoi
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India;
| | - Aysu Tolun
- Food Engineering, Ankara University, Ankara 06110, Turkey;
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Somesh Sharma
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India;
| |
Collapse
|
8
|
Egea MB, Santos DCD, Oliveira Filho JGD, Ores JDC, Takeuchi KP, Lemes AC. A review of nondairy kefir products: their characteristics and potential human health benefits. Crit Rev Food Sci Nutr 2020; 62:1536-1552. [PMID: 33153292 DOI: 10.1080/10408398.2020.1844140] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Functional foods are foods that, in addition to having nutrients, contain in their composition ingredients that act specifically on body functions associated with the control and reduction of the risk of developing some diseases. In this sense, kefir, a group of microorganisms in symbiosis, mainly yeasts and lactic acid bacteria, stands out. The trend of ingesting kefir has been focused on the development of products that serve specific consumers, such as those who are lactose-intolerant, vegans and vegetarians, and consumers in general who seek to combine the consumption of functional products with the improvement of their health and lifestyle. This overview provides an insight into kefir, presenting the technological process to produce a nondairy beverage and evidence of the benefits of its use to reduce the risk of disease. We also discuss regulatory aspects of products fermented using kefir. Until now, the use of kefir (isolated microorganism, kefiran, or fermented product) has demonstrated the potential to promote an increase in the number of bifidobacteria in the colon and an increase in the glycemic control while reducing the blood cholesterol and balancing the intestinal microbiota, which helps in reducing constipation and diarrhea, improving intestinal permeability, and stimulating and balancing the immune system. However, the literature still has gaps that need to be clarified, such as the consumption dose of kefir or its products to cause some health benefit.
Collapse
Affiliation(s)
- Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science, and Technology, Campus Rio Verde, Rio Verde, Brazil
| | - Daiane Costa Dos Santos
- Goiano Federal Institute of Education, Science, and Technology, Campus Rio Verde, Rio Verde, Brazil
| | | | - Joana da Costa Ores
- Goiano Federal Institute of Education, Science, and Technology, Campus Rio Verde, Rio Verde, Brazil
| | - Katiuchia Pereira Takeuchi
- Goiano Federal Institute of Education, Science, and Technology, Campus Rio Verde, Rio Verde, Brazil.,Faculty of Nutrition, Department of Food and Nutrition, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Ailton Cesar Lemes
- School of Chemistry, Department of Biochemical Engineering, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Tendencies and Challenges in Worldwide Scientific Research on Probiotics. Probiotics Antimicrob Proteins 2019; 12:785-797. [DOI: 10.1007/s12602-019-09591-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Kolady DE, Kattelmann K, Scaria J. Effects of health-related claims on millennials’ willingness to pay for probiotics in the U.S.: Implications for regulation. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
11
|
De Angelis M, Garruti G, Minervini F, Bonfrate L, Portincasa P, Gobbetti M. The Food-gut Human Axis: The Effects of Diet on Gut Microbiota and Metabolome. Curr Med Chem 2019; 26:3567-3583. [PMID: 28462705 DOI: 10.2174/0929867324666170428103848] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 02/08/2023]
Abstract
Gut microbiota, the largest symbiont community hosted in human organism, is emerging as a pivotal player in the relationship between dietary habits and health. Oral and, especially, intestinal microbes metabolize dietary components, affecting human health by producing harmful or beneficial metabolites, which are involved in the incidence and progression of several intestinal related and non-related diseases. Habitual diet (Western, Agrarian and Mediterranean omnivore diets, vegetarian, vegan and gluten-free diets) drives the composition of the gut microbiota and metabolome. Within the dietary components, polymers (mainly fibers, proteins, fat and polyphenols) that are not hydrolyzed by human enzymes seem to be the main leads of the metabolic pathways of gut microbiota, which in turn directly influence the human metabolome. Specific relationships between diet and microbes, microbes and metabolites, microbes and immune functions and microbes and/or their metabolites and some human diseases are being established. Dietary treatments with fibers are the most effective to benefit the metabolome profile, by improving the synthesis of short chain fatty acids and decreasing the level of molecules, such as p-cresyl sulfate, indoxyl sulfate and trimethylamine N-oxide, involved in disease state. Based on the axis diet-microbiota-health, this review aims at describing the most recent knowledge oriented towards a profitable use of diet to provide benefits to human health, both directly and indirectly, through the activity of gut microbiota.
Collapse
Affiliation(s)
- Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Gabriella Garruti
- Department of Emergency and Organ Transplants, Section of Endocrinology, Andrology and Metabolic Diseases, University of Bari Medical School, Bari, Italy
| | - Fabio Minervini
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Leonilde Bonfrate
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen, Bolzano, Italy
| |
Collapse
|
12
|
Bell V, Ferrão J, Pimentel L, Pintado M, Fernandes T. One Health, Fermented Foods, and Gut Microbiota. Foods 2018; 7:foods7120195. [PMID: 30513869 PMCID: PMC6306734 DOI: 10.3390/foods7120195] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Changes in present-day society such as diets with more sugar, salt, and saturated fat, bad habits and unhealthy lifestyles contribute to the likelihood of the involvement of the microbiota in inflammatory diseases, which contribute to global epidemics of obesity, depression, and mental health concerns. The microbiota is presently one of the hottest areas of scientific and medical research, and exerts a marked influence on the host during homeostasis and disease. Fermented foods and beverages are generally defined as products made by microbial organisms and enzymatic conversions of major and minor food components. Further to the commonly-recognized effects of nutrition on the digestive health (e.g., dysbiosis) and well-being, there is now strong evidence for the impact of fermented foods and beverages (e.g., yoghurt, pickles, bread, kefir, beers, wines, mead), produced or preserved by the action of microorganisms, on general health, namely their significance on the gut microbiota balance and brain functionality. Fermented products require microorganisms, i.e., Saccharomyces yeasts and lactic acid bacteria, yielding alcohol and lactic acid. Ingestion of vibrant probiotics, especially those contained in fermented foods, is found to cause significant positive improvements in balancing intestinal permeability and barrier function. Our guts control and deal with every aspect of our health. How we digest our food and even the food sensitivities we have is linked with our mood, behavior, energy, weight, food cravings, hormone balance, immunity, and overall wellness. We highlight some impacts in this domain and debate calls for the convergence of interdisciplinary research fields from the United Nations’ initiative. Worldwide human and animal medicine are practiced separately; veterinary science and animal health are generally neither considered nor inserted within national or international Health discussions. The absence of a clear definition and subsequent vision for the future of One Health may act as a barrier to transdisciplinary collaboration. The point of this mini review is to highlight the role of fermented foods and beverages on gut microbiota and debate if the need for confluence of transdisciplinary fields of One Health is feasible and achievable, since they are managed by separate sectors with limited communication.
Collapse
Affiliation(s)
- Victoria Bell
- Faculdade de Farmácia, Universidade de Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Jorge Ferrão
- Universidade Pedagógica, Rua João Carlos Raposo Beirão 135, Maputo 1000-001, Mozambique.
| | - Lígia Pimentel
- CBQF-Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| | - Manuela Pintado
- CBQF-Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| | - Tito Fernandes
- Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal.
| |
Collapse
|
13
|
Rainard P, Foucras G. A Critical Appraisal of Probiotics for Mastitis Control. Front Vet Sci 2018; 5:251. [PMID: 30364110 PMCID: PMC6191464 DOI: 10.3389/fvets.2018.00251] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/19/2018] [Indexed: 01/13/2023] Open
Abstract
The urge to reduce antimicrobials use in dairy farming has prompted a search for alternative solutions. As infections of the mammary gland is a major reason for antibiotic administration to dairy ruminants, mammary probiotics have recently been presented as a possible alternative for the treatment of mastitis. To assess the validity of this proposal, we performed a general appraisal of the knowledge related to probiotics for mammary health by examining their potential modes of action and assessing the compatibility of these mechanisms with the immunobiology of mammary gland infections. Then we analyzed the literature published on the subject, taking into account the preliminary in vitro experiments and the in vivo trials. Preliminary experiments aimed essentially at exploring in vitro the capacity of putative probiotics, mainly lactic acid bacteria (LABs), to interfere with mastitis-associated bacteria or to interact with mammary epithelial cells. A few studies used LABs selected on the basis of bacteriocin production or the capacity to adhere to epithelial cells to perform in vivo experiments. Intramammary infusion of LABs showed that LABs are pro-inflammatory for the mammary gland, inducing an intense influx of neutrophils into milk during lactation and at drying-off. Yet, their capacity to cure mastitis remains to be established. A few preliminary studies tackle the possibility of using probiotics to interfere with the teat apex microbiota or to prevent the colonization of the teat canal by pathogenic bacteria. From the analysis of the published literature, it appears that currently there is no sound scientific foundation for the use of probiotics to prevent or treat mastitis. We conclude that the prospects for oral probiotics are not promising for ruminants, those for intramammary probiotics should be considered with caution, but that teat apex probiotics deserve further research.
Collapse
Affiliation(s)
- Pascal Rainard
- ISP, INRA, Université de Tours, UMR 1282, Nouzilly, France
| | - Gilles Foucras
- IHAP, Université de Toulouse, ENVT, INRA, UMR1225, Toulouse, France
| |
Collapse
|
14
|
Dronkers T, Krist L, Van Overveld F, Rijkers G. The ascent of the blessed: regulatory issues on health effects and health claims for probiotics in Europe and the rest of the world. Benef Microbes 2018; 9:717-723. [DOI: 10.3920/bm2017.0196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The outcome of the first series of health claim applications for probiotics in Europe as evaluated by the European Food Safety Authority (EFSA) has, up to 2013 almost completely yielded negative results. All recent applications also have been rejected, including the latest on prevention of mastitis in breastfeeding mothers. In other developed countries, such as Switzerland, Japan and Canada, the health effects of probiotics, for which scientific evidence has been provided, can be communicated to potential consumers. The number of clinical trials with probiotics over recent years shows a trend to level off or even decline. At the same time, clinical research into the role of (gut) microbiota in a wide variety of diseases and conditions is booming. Ultimately, this may offer new indications for gut microbiota management by probiotics, prebiotics or other food supplements.
Collapse
Affiliation(s)
- T.M.G. Dronkers
- Science Department, University College Roosevelt, Lange Noordstraat 1, 4331 CB Middelburg, the Netherlands
| | - L. Krist
- Science Department, University College Roosevelt, Lange Noordstraat 1, 4331 CB Middelburg, the Netherlands
| | - F.J. Van Overveld
- Science Department, University College Roosevelt, Lange Noordstraat 1, 4331 CB Middelburg, the Netherlands
| | - G.T. Rijkers
- Science Department, University College Roosevelt, Lange Noordstraat 1, 4331 CB Middelburg, the Netherlands
| |
Collapse
|
15
|
RETRACTED: Linking gut microbiota to aging process: a new target for anti-aging. FOOD SCIENCE AND HUMAN WELLNESS 2018. [DOI: 10.1016/j.fshw.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Abstract
The human gut microbiota is a huge ecosystem that provides lots of functions for host development, immune system, and metabolism. Gut microbiota is linked to lots of diseases, including human metabolic diseases such as obesity, type 2 diabetes (T2D), irritable bowel syndrome, and cardiovascular disease (CVD). Few studies, however, have noted the relationship between aging and microbiota; the connection between aging and microbiota remains largely to be researched. In this review, recent research findings are summarized on the role of gut microbiota in aging processes with emphasis on therapeutic potential of microbiome-targeted interventions in antiaging medicine.
Collapse
Affiliation(s)
- Maoyang Lu
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Zhao Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
17
|
Abstract
Ongoing efforts to develop microbiota-directed foods (MDF) provide potentially new ways for improving health status. A MDF could alter the structural and functional configuration of a consumer’s gut microbial community, provide substrates for microbial transformation to biomolecules necessary for a healthy state, or act through a combination of these mechanisms. The development of MDFs promises to expand our view of ‘essential nutrients’ and prompt questions about how they should be classified and regulated.
Collapse
Affiliation(s)
- Jonathan M Green
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Institute for Public Health, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Barratt
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael Kinch
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey I Gordon
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
Anderson S. Probiotics for Preterm Infants: A Premature or Overdue Necrotizing Enterocolitis Prevention Strategy? Neonatal Netw 2016; 34:83-101. [PMID: 26803090 DOI: 10.1891/0730-0832.34.2.83] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Common among preterm, very low birth weight (VLBW) and extremely low birth weight (ELBW) infants, necrotizing enterocolitis (NEC) is a gastrointestinal, infectious disease that remains a leading cause of morbidity and mortality among this high-risk population. To combat this devastating condition, research efforts have been redirected from treatment toward prevention strategies. Although there are several proposed risk-reduction strategies, one intervention gaining support is the administration of prophylactic enteral probiotics. Regardless of growing evidentiary support and a benign safety profile, neonatal providers have yet to embrace this therapy. This article provides an overview of the proposed benefits of probiotics, focusing on their role as a NEC prevention strategy. A review of several sentinel research studies targeting preterm, VLBW, and ELBW infants is provided. Considerations for ongoing research are reviewed. Finally, two evidence-based NEC prevention probiotics protocols are presented.
Collapse
|
19
|
Hayes SR, Vargas AJ. Probiotics for the Prevention of Pediatric Antibiotic-Associated Diarrhea. Explore (NY) 2016; 12:463-466. [PMID: 27688016 DOI: 10.1016/j.explore.2016.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Goldenberg JZ, Lytvyn L, Steurich J, Parkin P, Mahant S, Johnston BC. Probiotics for the prevention of pediatric antibiotic-associated diarrhea.Cochrane Database Syst Rev2015, Issue 12. Art. No.: CD004827. http://dx.doi.org/10.1002/14651858.CD004827.pub4. BACKGROUND Antibiotics are frequently prescribed in children. They alter the microbial balance within the gastrointestinal tract, commonly resulting in antibiotic-associated diarrhea (AAD). Probiotics may prevent AAD via restoration of the gut microflora. OBJECTIVES The primary objectives were to assess the efficacy and safety of probiotics (any specified strain or dose) used for the prevention of AAD in children. SEARCH METHODS MEDLINE, EMBASE, CENTRAL, CINAHL, AMED, and the Web of Science (inception to November 2014) were searched along with specialized registers including the Cochrane IBD/FBD review group, CISCOM (Centralized Information Service for Complementary Medicine), NHS Evidence, the International Bibliographic Information on Dietary Supplements, as well as trial registries. Letters were sent to authors of included trials, nutraceutical and pharmaceutical companies, and experts in the field requesting additional information on ongoing or unpublished trials. Conference proceedings, dissertation abstracts, and reference lists from included and relevant articles were also searched. SELECTION CRITERIA Randomized, parallel, controlled trials in children (0-18 years) receiving antibiotics, that compare probiotics to placebo, active alternative prophylaxis, or no treatment and measure the incidence of diarrhea secondary to antibiotic use were considered for inclusion. DATA COLLECTION AND ANALYSIS Study selection, data extraction, and methodological quality assessment using the risk of bias instrument were conducted independently and in duplicate by two authors. Dichotomous data (incidence of diarrhea and adverse events) were combined using a pooled risk ratio (RR) or risk difference (RD), and continuous data (mean duration of diarrhea and mean daily stool frequency) as mean difference (MD), along with their corresponding 95% confidence interval (95% CI). For overall pooled results on the incidence of diarrhea, sensitivity analyses included available case versus extreme-plausible analyses and random- versus fixed-effect models. To explore possible explanations for heterogeneity, a priori subgroup analysis was conducted on probiotic strain, dose, definition of antibiotic-associated diarrhea, and risk of bias. We also conducted post hoc subgroup analyses by patient diagnosis, single versus multi-strain, industry sponsorship, and inpatient status. The overall quality of the evidence supporting the outcomes was evaluated using the GRADE criteria. MAIN RESULTS Overall, 23 studies (3938 participants) met the inclusion criteria. Trials included treatment with either Bacillus spp., Bifidobacterium spp., Clostridium butyricum, Lactobacilli spp., Lactococcus spp., Leuconostoc cremoris, Saccharomyces spp., or Streptococcus spp., alone or in combination. Eleven studies used a single-strain probiotic, four combined two probiotic strains, three combined three probiotic strains, one combined four probiotic strains, two combined seven probiotic strains, one included ten probiotic strains, and one study included two probiotic arms that used three and two strains, respectively. The risk of bias was determined to be high or unclear in 13 studies and low in 10 studies. Available case (patients who did not complete the studies were not included in the analysis) results from 22/23 trials reporting on the incidence of diarrhea show a precise benefit from probiotics compared to active, placebo, or no treatment control. The incidence of AAD in the probiotic group was 8% (163/1992) compared to 19% (364/1906) in the control group (RR = 0.46; 95% CI: 0.35-0.61; I2 = 55%, 3898 participants). A GRADE analysis indicated that the overall quality of the evidence for this outcome was moderate. This benefit remained statistically significant in an extreme-plausible (60% of children lost to follow-up in probiotic group and 20% lost to follow-up in the control group had diarrhea) sensitivity analysis, where the incidence of AAD in the probiotic group was 14% (330/2294) compared to 19% (426/2235) in the control group (RR = 0.69; 95% CI: 0.54-0.89; I2 = 63%, 4529 participants). None of the 16 trials (n = 2455) that reported on adverse events documented any serious adverse events attributable to probiotics. Meta-analysis excluded all but an extremely small non-significant difference in adverse events between treatment and control (RD = 0.00, 95% CI: -0.01 to 0.01). The majority of adverse events were in placebo, standard care, or no treatment group. Adverse events reported in the studies include rash, nausea, gas, flatulence, abdominal bloating, abdominal pain, vomiting, increased phlegm, chest pain, constipation, taste disturbance, and low appetite. AUTHORS׳ CONCLUSIONS: Moderate quality evidence suggests a protective effect of probiotics in preventing AAD. Our pooled estimate suggests a precise (RR 0.46; 95% CI: 0.35-0.61) probiotic effect with an NNT of 10. Among the various probiotics evaluated, Lactobacillus rhamnosus or Saccharomyces boulardii at 5-40 billion colony-forming units/day may be appropriate given the modest NNT and the likelihood that adverse events are very rare. It is premature to draw conclusions about the efficacy and safety of other probiotic agents for pediatric AAD. Although no serious adverse events were observed among otherwise healthy children, serious adverse events have been observed in severely debilitated or immunocompromised children with underlying risk factors including central venous catheter use and disorders associated with bacterial/fungal translocation. Until further research has been conducted, probiotic use should be avoided in pediatric populations at risk for adverse events. Future trials would benefit from a standard and valid outcomes to measure AAD.
Collapse
Affiliation(s)
- Shelby R Hayes
- National Cancer Institute, 6100 Executive Bldv, Rockville, MD 20852
| | - Ashley J Vargas
- National Cancer Institute, 6100 Executive Bldv, Rockville, MD 20852.
| |
Collapse
|
20
|
McKenney ES, Kendall MM. Microbiota and pathogen 'pas de deux': setting up and breaking down barriers to intestinal infection. Pathog Dis 2016; 74:ftw051. [PMID: 27252177 PMCID: PMC5985477 DOI: 10.1093/femspd/ftw051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/04/2016] [Accepted: 05/24/2016] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota plays essential roles in human health and disease. In this review, we focus on the role of the intestinal microbiota in promoting resistance to infection by bacterial pathogens as well as how pathogens overcome this barrier. We discuss how the resident microbiota restricts growth and colonization of invading pathogens by limiting availability of nutrients and through generation of a hostile environment. Additionally, we examine how microbiota-derived signaling molecules interfere with bacterial virulence. In turn, we discuss how pathogens exploit non-competitive metabolites to replicate in vivo as well as to precisely control virulence and cause disease. This bacterial two step of creating and overcoming challenges important in preventing and establishing infection highlights the complexities of elucidating interactions between the commensal bacteria and pathogens. Better understanding of microbiota-pathogen interplay will have significant implications for developing novel therapeutics to treat infectious diseases.
Collapse
Affiliation(s)
- Elizabeth S McKenney
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Melissa M Kendall
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
21
|
Patro JN, Ramachandran P, Barnaba T, Mammel MK, Lewis JL, Elkins CA. Culture-Independent Metagenomic Surveillance of Commercially Available Probiotics with High-Throughput Next-Generation Sequencing. mSphere 2016; 1:e00057-16. [PMID: 27303722 PMCID: PMC4894680 DOI: 10.1128/msphere.00057-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/09/2016] [Indexed: 12/15/2022] Open
Abstract
Millions of people consume dietary supplements either following a doctor's recommendation or at their own discretion to improve their overall health and well-being. This is a rapidly growing trend, with an associated and expanding manufacturing industry to meet the demand for new health-related products. In this study, we examined the contents and microbial viability of several popular probiotic products on the United States market. Culture-independent methods are proving ideal for fast and efficient analysis of foodborne pathogens and their associated microbial communities but may also be relevant for analyzing probiotics containing mixed microbial constituents. These products were subjected to next-generation whole-genome sequencing and analyzed by a custom in-house-developed k-mer counting method to validate manufacturer label information. In addition, the batch variability of respective products was examined to determine if any changes in their formulations and/or the manufacturing process occurred. Overall, the products we tested adhered to the ingredient claims and lot-to-lot differences were minimal. However, there were a few discrepancies in the naming of closely related Lactobacillus and Bifidobacterium species, whereas one product contained an apparent Enterococcus contaminant in two of its three lots. With the microbial contents of the products identified, we used traditional PCR and colony counting methods to comparatively assess our results and verify the viability of the microbes in these products with regard to the labeling claims. Of all the supplements examined, only one was found to be inaccurate in viability. Our use of next-generation sequencing as an analytical tool clearly demonstrated its utility for quickly analyzing commercially available products containing multiple microbes to ensure consumer safety. IMPORTANCE The rapidly growing supplement industry operates without a formal premarket approval process. Consumers rely on product labels to be accurate and true. Those products containing live microbials report both identity and viability on most product labels. This study used next-generation sequencing technology as an analytical tool in conjunction with classic culture methods to examine the validity of the labels on supplement products containing live microbials found in the United States marketplace. Our results show the importance of testing these products for identity, viability, and potential contaminants, as well as introduce a new culture-independent diagnostic approach for testing these products. Podcast: A podcast concerning this article is available.
Collapse
Affiliation(s)
- Jennifer N Patro
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Padmini Ramachandran
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Tammy Barnaba
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Mark K Mammel
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Jada L Lewis
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Christopher A Elkins
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| |
Collapse
|
22
|
van den Nieuwboer M, van de Burgwal L, Claassen E. A quantitative key-opinion-leader analysis of innovation barriers in probiotic research and development: Valorisation and improving the tech transfer cycle. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2015.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015; 9:392. [PMID: 26528128 PMCID: PMC4604320 DOI: 10.3389/fncel.2015.00392] [Citation(s) in RCA: 695] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/21/2015] [Indexed: 12/12/2022] Open
Abstract
The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a "leaky gut" may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function.
Collapse
Affiliation(s)
- John R Kelly
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork Cork, Ireland ; Department of Psychiatry and Neurobehavioural Science, University College Cork Cork, Ireland
| | - Paul J Kennedy
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork Cork, Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork Cork, Ireland ; Department of Anatomy and Neuroscience, University College Cork Cork, Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork Cork, Ireland ; Department of Psychiatry and Neurobehavioural Science, University College Cork Cork, Ireland
| | - Gerard Clarke
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork Cork, Ireland ; Department of Psychiatry and Neurobehavioural Science, University College Cork Cork, Ireland
| | - Niall P Hyland
- Laboratory of Neurogastroenterology, APC Microbiome Institute, University College Cork Cork, Ireland ; Department of Pharmacology and Therapeutics, University College Cork Cork, Ireland
| |
Collapse
|
24
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
25
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
26
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
27
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
28
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
29
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
30
|
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015. [DOI: 10.3389/fncel.2015.00392 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
31
|
|
32
|
Patro JN, Ramachandran P, Lewis JL, Mammel MK, Barnaba T, Pfeiler EA, Elkins CA. Development and utility of the FDA 'GutProbe' DNA microarray for identification, genotyping and metagenomic analysis of commercially available probiotics. J Appl Microbiol 2015; 118:1478-88. [PMID: 25766767 DOI: 10.1111/jam.12795] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/27/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
Abstract
AIM Lactic acid bacteria are beneficial microbes added to many food products and dietary supplements for their purported health benefits. Proper identification of bacteria is important to assess safety as well as proper product labelling. A custom microarray (FDA GutProbe) was developed to verify accurate labelling in commercial dietary supplements. METHODS AND RESULTS Strain-specific attribution was achieved with GutProbe array which contains genes from the most commonly found species in probiotic supplements and food ingredients. Applied utility of the array was assessed with direct from product DNA hybridization to determine (i) if identification of multiple strains in one sample can be conducted and (ii) if any lot-to-lot variations exist with eight probiotics found on the US market. CONCLUSIONS GutProbe is a useful tool in identifying a mixture of microbials in probiotics and did reveal some product variations. In addition, the array is able to identify lot-to-lot differences in these products. These strain level attribution may be useful for routine monitoring of batch variation as part of a 'Good Manufacturing Practices' process. SIGNIFICANCE AND IMPACT OF THE STUDY The FDA GutProbe is an efficient and reliable platform to identify the presence of microbial ingredients and determining microbe differences in dietary supplements. The GutProbe is a fast, rapid method for direct community profiling or food matrix sampling.
Collapse
Affiliation(s)
- J N Patro
- Division of Molecular Biology, Center for Food Safety & Applied Nutrition, U.S. Food and Drug Administration, Muirkirk Rd Laurel, MD, USA
| | - P Ramachandran
- Division of Molecular Biology, Center for Food Safety & Applied Nutrition, U.S. Food and Drug Administration, Muirkirk Rd Laurel, MD, USA
| | - J L Lewis
- Division of Molecular Biology, Center for Food Safety & Applied Nutrition, U.S. Food and Drug Administration, Muirkirk Rd Laurel, MD, USA
| | - M K Mammel
- Division of Molecular Biology, Center for Food Safety & Applied Nutrition, U.S. Food and Drug Administration, Muirkirk Rd Laurel, MD, USA
| | - T Barnaba
- Division of Molecular Biology, Center for Food Safety & Applied Nutrition, U.S. Food and Drug Administration, Muirkirk Rd Laurel, MD, USA
| | - E A Pfeiler
- Division of Molecular Biology, Center for Food Safety & Applied Nutrition, U.S. Food and Drug Administration, Muirkirk Rd Laurel, MD, USA
| | - C A Elkins
- Division of Molecular Biology, Center for Food Safety & Applied Nutrition, U.S. Food and Drug Administration, Muirkirk Rd Laurel, MD, USA
| |
Collapse
|
33
|
Ondansetron and probiotics in the management of pediatric acute gastroenteritis in developed countries. Curr Opin Gastroenterol 2015; 31:1-6. [PMID: 25333367 DOI: 10.1097/mog.0000000000000132] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Acute gastroenteritis (AGE) is a common and impactful disease, typically managed with supportive care. There is considerable interest in the role of adjunctive therapies, particularly ondansetron and probiotics in improving AGE outcomes. The purpose of this review is to present the latest evidence regarding the use of these agents in children with AGE in developed countries. RECENT FINDINGS Single-dose oral ondansetron is effective and safe in reducing hospital admissions and the use of intravenous rehydration in children with AGE in emergency-department-based trials. Ondansetron use has increased significantly; however, 'real-world' studies of effectiveness have documented less impressive clinical impacts. Similarly, probiotic consumption is growing rapidly. Although several strains appear to reduce the duration of diarrhea in hospitalized children, current data are insufficient to support the routine use of probiotics in outpatient pediatric AGE. SUMMARY Ondansetron and probiotics may improve patient outcomes in pediatric AGE. Appropriate strategies are needed to optimally integrate oral ondansetron into clinical practice to maximize its potential benefits. Although probiotics remain a promising option, there are challenges in generalizing the data available to patients presenting for outpatient care. Large randomized controlled trials are needed to definitively guide the clinical use of probiotics in outpatients in developed countries.
Collapse
|
34
|
Abstract
We report here a 3.2-Mb draft assembled genome of Lactobacillus casei Lbs2. The bacterium shows probiotic and immunomodulatory activities. The genome assembly and annotation will help to identify molecules and pathways responsible for interaction between the host immune system and the microbe.
Collapse
|
35
|
Merritt RJ, Goldsmith AH. Scientific, economic, regulatory, and ethical challenges of bringing science-based pediatric nutrition products to the U.S. market and ensuring their availability for patients. JPEN J Parenter Enteral Nutr 2014; 38:17S-34S. [PMID: 25249029 DOI: 10.1177/0148607114549771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Many nutrition products and related drugs are unavailable or not consistently available to clinicians despite a body of clinical data and experience supporting their use. Many of these can be related to drug shortages that have increased since 2009. In addition, there are potentially useful products that are not approved for a specific use or are no longer being manufactured. This review broadly examines the product availability gap from the perspectives of a clinician/former nutrition industry medical director and an economist. The process of pediatric nutrition product and related drug innovation, as well as its drivers and the steps involved in bringing a product to market, is first described. This is followed by an assessment of factors influencing product availability beyond the innovation process, including regulatory issues, manufacturing compliance, purchasing practices, and other factors related to drug and nutrition product pricing and reimbursement. Three pediatric case examples are reviewed and placed in the context of the prior review. Last, recent and future possible steps toward closing the product availability gap are discussed.
Collapse
Affiliation(s)
- Russell J Merritt
- Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Arthur H Goldsmith
- Department of Economics, Washington and Lee University, Lexington, Virginia
| |
Collapse
|
36
|
Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014; 11:506-14. [PMID: 24912386 DOI: 10.1038/nrgastro.2014.66] [Citation(s) in RCA: 5384] [Impact Index Per Article: 489.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An expert panel was convened in October 2013 by the International Scientific Association for Probiotics and Prebiotics (ISAPP) to discuss the field of probiotics. It is now 13 years since the definition of probiotics and 12 years after guidelines were published for regulators, scientists and industry by the Food and Agriculture Organization of the United Nations and the WHO (FAO/WHO). The FAO/WHO definition of a probiotic--"live microorganisms which when administered in adequate amounts confer a health benefit on the host"--was reinforced as relevant and sufficiently accommodating for current and anticipated applications. However, inconsistencies between the FAO/WHO Expert Consultation Report and the FAO/WHO Guidelines were clarified to take into account advances in science and applications. A more precise use of the term 'probiotic' will be useful to guide clinicians and consumers in differentiating the diverse products on the market. This document represents the conclusions of the ISAPP consensus meeting on the appropriate use and scope of the term probiotic.
Collapse
Affiliation(s)
- Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | - Gregor Reid
- Lawson Health Research Institute and Departments of Microbiology &Immunology, and Surgery, University of Western Ontario, 268 Grosvenor Street, London, ON N6A 4V2, Canada
| | - Glenn R Gibson
- Department of Food and Nutritional Sciences, The University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UK
| | - Daniel J Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Building D 240, 4000 Reservoir Road NW, Washington, DC 20007, USA
| | - Bruno Pot
- Center for Infection and Immunity, Institut Pasteur de Lille, 1 Rue Prof Calmette, Lille 59019, France
| | - Lorenzo Morelli
- Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, Piacenza 29122, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science and European Laboratory for the Investigation of Food Induced Diseases, University of Naples Federico II, Naples 80131, Italy
| | - Harry J Flint
- Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Seppo Salminen
- Functional Foods Forum, University of Turku, Turku 20014, Finland
| | - Philip C Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, 7119 S. Glencoe Court, Centennial, CO 80122, USA
| |
Collapse
|
37
|
Cox AJ, West NP, Horn PL, Lehtinen MJ, Koerbin G, Pyne DB, Lahtinen SJ, Fricker PA, Cripps AW. Effects of probiotic supplementation over 5 months on routine haematology and clinical chemistry measures in healthy active adults. Eur J Clin Nutr 2014; 68:1255-7. [PMID: 25052229 DOI: 10.1038/ejcn.2014.137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/12/2014] [Accepted: 06/06/2014] [Indexed: 12/11/2022]
Abstract
Use of probiotic-containing foods and probiotic supplements is increasing; however, few studies document safety and tolerability in conjunction with defined clinical end points. This paper reports the effects of 150 days of supplementation with either a single- (Bifidobacterium animalis subsp. lactis Bl-04) or a double-strain (Lactobacillus acidophilus NCFM and Bifidobacterium animalis subsp. lactis Bi-07) probiotic on routine haematology and clinical chemistry measures in healthy active adults. Pre- to post-intervention changes in laboratory measures were determined and compared between supplement and placebo groups. Overall there were few differences in routine haematology and clinical chemistry measures between supplement and placebo groups post-intervention. Exceptions included plasma calcium (P=0.03) and urea (P=0.015); however, observed changes were small and within assay-specific laboratory reference ranges. These data provide evidence supporting the use of these probiotic supplements over a period of 5 months in healthy active adults without obvious safety or tolerability issues.
Collapse
Affiliation(s)
- A J Cox
- 1] Molecular Basis of Disease-Griffith Health Institute, Griffith University, Southport, QLD, Australia [2] School of Medical Science, Griffith University, Southport, QLD, Australia
| | - N P West
- 1] Molecular Basis of Disease-Griffith Health Institute, Griffith University, Southport, QLD, Australia [2] School of Medical Science, Griffith University, Southport, QLD, Australia
| | - P L Horn
- Department of Physiology, Australian Institute of Sport, Canberra, ACT, Australia
| | - M J Lehtinen
- DuPont Nutrition & Health, Danisco Sweeteners Oy, Active Nutrition, Kantvik, Finland
| | - G Koerbin
- ACT Pathology, Canberra, ACT, Australia
| | - D B Pyne
- Department of Physiology, Australian Institute of Sport, Canberra, ACT, Australia
| | - S J Lahtinen
- DuPont Nutrition & Health, Danisco Sweeteners Oy, Active Nutrition, Kantvik, Finland
| | - P A Fricker
- 1] Molecular Basis of Disease-Griffith Health Institute, Griffith University, Southport, QLD, Australia [2] Australian Institute of Sport, Canberra, ACT, Australia
| | - A W Cripps
- 1] Molecular Basis of Disease-Griffith Health Institute, Griffith University, Southport, QLD, Australia [2] School of Medical Science, Griffith University, Southport, QLD, Australia
| |
Collapse
|
38
|
LeBeau S, Khoruts A. Fecal microbiota transplantation: an interview with alexander khoruts. Glob Adv Health Med 2014; 3:73-80. [PMID: 24891996 PMCID: PMC4030611 DOI: 10.7453/gahmj.2014.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Steve LeBeau
- Steve LeBeau is a writer, editor, and book doctor based in St Paul, Minnesota. He has a BA in philosophy and an MA in journalism from the University of Minnesota, Minneapolis
| | | |
Collapse
|
39
|
Contractor N, Swick AG, Montalto MB, Troup JP. Supporting a Healthy Microbiome and Patient Outcomes with Probiotics. Glob Adv Health Med 2014; 3:3. [PMID: 24891986 PMCID: PMC4030614 DOI: 10.7453/gahmj.2014.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
40
|
Petrof EO, Khoruts A. From stool transplants to next-generation microbiota therapeutics. Gastroenterology 2014; 146:1573-1582. [PMID: 24412527 PMCID: PMC4221437 DOI: 10.1053/j.gastro.2014.01.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/23/2013] [Accepted: 01/06/2014] [Indexed: 12/19/2022]
Abstract
The epidemic of Clostridium difficile infection fueled by new virulent strains of the organism has led to increased use of fecal microbiota transplantation (FMT). The procedure is effective for even the most desperate cases after failure of multiple courses of antibiotics. The approach recognizes microbiota to be integral to normal human physiology, and microbiota being used in FMT represents a new class of therapeutics. Imbalance in the composition and altered activity of the microbiota are associated with many diseases. Consequently, there is growing interest in applying FMT to non-C difficile indications. However, this may succeed only if microbiota therapeutics are developed systematically, based on mechanistic understanding, and applying up-to-date principles of microbial ecology. We discuss 2 pathways in the development of this new therapeutic class: whole microbial communities separated from donor stool and an assembly of specific fecal microorganisms grown in vitro.
Collapse
Affiliation(s)
- Elaine O. Petrof
- Department of Medicine, Division of Infectious Diseases & Gastrointestinal Research Unit; Queens University and Kingston General Hospital, Kingston, ON, Canada
| | - Alexander Khoruts
- Center for Immunology and Department of Medicine, Division of Gastroenterology; University of Minnesota, MN, USA
| |
Collapse
|
41
|
Woodhams DC, Brandt H, Baumgartner S, Kielgast J, Küpfer E, Tobler U, Davis LR, Schmidt BR, Bel C, Hodel S, Knight R, McKenzie V. Interacting symbionts and immunity in the amphibian skin mucosome predict disease risk and probiotic effectiveness. PLoS One 2014; 9:e96375. [PMID: 24789229 PMCID: PMC4005770 DOI: 10.1371/journal.pone.0096375] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/04/2014] [Indexed: 01/21/2023] Open
Abstract
Pathogenesis is strongly dependent on microbial context, but development of probiotic therapies has neglected the impact of ecological interactions. Dynamics among microbial communities, host immune responses, and environmental conditions may alter the effect of probiotics in human and veterinary medicine, agriculture and aquaculture, and the proposed treatment of emerging wildlife and zoonotic diseases such as those occurring on amphibians or vectored by mosquitoes. Here we use a holistic measure of amphibian mucosal defenses to test the effects of probiotic treatments and to assess disease risk under different ecological contexts. We developed a non-invasive assay for antifungal function of the skin mucosal ecosystem (mucosome function) integrating host immune factors and the microbial community as an alternative to pathogen exposure experiments. From approximately 8500 amphibians sampled across Europe, we compared field infection prevalence with mucosome function against the emerging fungal pathogen Batrachochytrium dendrobatidis. Four species were tested with laboratory exposure experiments, and a highly susceptible species, Alytes obstetricans, was treated with a variety of temperature and microbial conditions to test the effects of probiotic therapies and environmental conditions on mucosome function. We found that antifungal function of the amphibian skin mucosome predicts the prevalence of infection with the fungal pathogen in natural populations, and is linked to survival in laboratory exposure experiments. When altered by probiotic therapy, the mucosome increased antifungal capacity, while previous exposure to the pathogen was suppressive. In culture, antifungal properties of probiotics depended strongly on immunological and environmental context including temperature, competition, and pathogen presence. Functional changes in microbiota with shifts in temperature provide an alternative mechanistic explanation for patterns of disease susceptibility related to climate beyond direct impact on host or pathogen. This nonlethal management tool can be used to optimize and quickly assess the relative benefits of probiotic therapies under different climatic, microbial, or host conditions.
Collapse
Affiliation(s)
- Douglas C. Woodhams
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| | - Hannelore Brandt
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Simone Baumgartner
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jos Kielgast
- Section for Freshwater Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Eliane Küpfer
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Evolutionary Biology, Technical University of Braunschweig, Braunschweig, Germany
| | - Ursina Tobler
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- KARCH, Neuchâtel, Switzerland
| | - Leyla R. Davis
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Benedikt R. Schmidt
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- KARCH, Neuchâtel, Switzerland
| | - Christian Bel
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Sandro Hodel
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Rob Knight
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, Colorado, United States of America
| | - Valerie McKenzie
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
| |
Collapse
|