1
|
Xia S, Chen J, Arsala D, Emerson JJ, Long M. Functional innovation through new genes as a general evolutionary process. Nat Genet 2025; 57:295-309. [PMID: 39875578 DOI: 10.1038/s41588-024-02059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/15/2024] [Indexed: 01/30/2025]
Abstract
In the past decade, our understanding of how new genes originate in diverse organisms has advanced substantially, and more than a dozen molecular mechanisms for generating initial gene structures were identified, in addition to gene duplication. These new genes have been found to integrate into and modify pre-existing gene networks primarily through mutation and selection, revealing new patterns and rules with stable origination rates across various organisms. This progress has challenged the prevailing belief that new proteins evolve from pre-existing genes, as new genes may arise de novo from noncoding DNA sequences in many organisms, with high rates observed in flowering plants. New genes have important roles in phenotypic and functional evolution across diverse biological processes and structures, with detectable fitness effects of sexual conflict genes that can shape species divergence. Such knowledge of new genes can be of translational value in agriculture and medicine.
Collapse
Affiliation(s)
- Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Jianhai Chen
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Deanna Arsala
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Charlesworth D. When did recombination suppression events occur in bird ZW sex chromosomes? Nat Commun 2025; 16:916. [PMID: 39837823 PMCID: PMC11751099 DOI: 10.1038/s41467-025-56201-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025] Open
|
3
|
Yang F, Cao LJ, Nguyen P, Ma ZZ, Chen JC, Song W, Wei SJ. Hierarchical architecture of neo-sex chromosomes and accelerated adaptive evolution in tortricid moths. Genome Res 2025; 35:66-77. [PMID: 39762048 PMCID: PMC11789632 DOI: 10.1101/gr.279569.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025]
Abstract
Sex chromosomes can expand through fusion with autosomes, thereby acquiring unique evolutionary patterns. In butterflies and moths (Lepidoptera), these sex chromosome-autosome (SA) fusions occur relatively frequently, suggesting possible evolutionary advantages. Here, we investigated how SA fusion affects chromosome features and molecular evolution in leafroller moths (Lepidoptera: Tortricidae). Phylogenomic analysis showed that Tortricidae diverged ∼124 million years ago, accompanied by an SA fusion between the Merian elements M(20 + 17) and MZ. In contrast to partial autosomal fusions, the fused neo-Z Chromosome developed a hierarchical architecture, in which the three elements exhibit heterogeneous sequence features and evolutionary patterns. Specifically, the M17 part had a distinct base composition and chromatin domains. Unlike M20 and MZ, M17 was expressed at the same levels as autosomes in both sexes, compensating for the lost gene dosage in females. Concurrently, the SA fusion drove M17 as an evolutionary hotspot, accelerating the evolution of several genes related to ecological adaptation (e.g., ABCCs) and facilitating the divergence of closely related species, whereas the undercompensated M20 did not show such an effect. Thus, accelerated evolution under a novel pattern of dosage compensation may have favored the adaptive radiation of this group. This study demonstrates the association between a karyotype variant and adaptive evolution and explains the recurrent SA fusion in the Lepidoptera.
Collapse
Affiliation(s)
- Fangyuan Yang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Institute of Zoology, Chinese Academy of Science, Beijing 100101, China
| | - Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Petr Nguyen
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05 Ceske Budejovice, Czech Republic
| | - Zhong-Zheng Ma
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei Song
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| |
Collapse
|
4
|
Turcu MC, Paștiu AI, Bel LV, Doboși AA, Pusta DL. Application of Minimally Invasive Oral Swab Samples for qPCR-Based Sexing in Neognathae Birds. Vet Sci 2025; 12:73. [PMID: 39852948 PMCID: PMC11768705 DOI: 10.3390/vetsci12010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/04/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
Birds are inherently social creatures that rely on pairing to enhance their well-being. Since many bird species lack obvious physical differences between females and males, sex identification is essential for ensuring their welfare. Additionally, early determination of the sexes of birds is crucial for their breeders, especially considering that most companion birds do not display clear sexual characteristics. Molecular genetic sexing has been demonstrated to be the most reliable method for determining the sexes of monomorphic birds. The objective of the present study was to demonstrate rapid, effective, and precise identification of sex in birds through quantitative real-time PCR (qPCR) using samples obtained via a minimally invasive technique (oral swabs). This qPCR method assesses variations in gene copy numbers within conserved Z-specific genes such as CHRNA6, DDX4, VPS13A, LPAR1, and TMEM161B, which are absent from the W chromosome. A total of 34 samples were included in this study from the following 17 bird species: domestic pigeon (Columba livia domestica), domestic chicken (Gallus gallus domesticus), domestic goose (Anser anser f domesticus), domestic duck (Anas platyrhynchos domesticus), Mute swan (Cygnus olor), Budgerigar (Melopsittacus undulatus), Lovebird (Agapornis roseicollis), Cockatiel (Nymphicus hollandicus), Red-rumped parrot (Psephotus haematonotus), Rose-ringed parakeet (Psittacula krameri), African grey parrot (Psittacus erithacus), domestic Canary (Serinus canaria forma domestica), Goldfinch (Carduelis carduelis major), Gouldian Finch (Chloebia gouldiae), Red Siskin (Carduelis cucullata), Australian Zebra Finch (Taeniopygia castanotis), and Common buzzard (Buteo buteo). The results proved that the CHRNA6, DDX4, VPS13A, LPAR1, and TMEM161B genes can reveal the sexes in the Neognath birds tested.
Collapse
Affiliation(s)
- Maria-Carmen Turcu
- Department of Genetics and Hereditary Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.-C.T.); (A.-A.D.); (D.L.P.)
- New Companion Animals Veterinary Clinic, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Anamaria Ioana Paștiu
- Department of Genetics and Hereditary Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.-C.T.); (A.-A.D.); (D.L.P.)
| | - Lucia-Victoria Bel
- New Companion Animals Veterinary Clinic, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Anca-Alexandra Doboși
- Department of Genetics and Hereditary Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.-C.T.); (A.-A.D.); (D.L.P.)
| | - Dana Liana Pusta
- Department of Genetics and Hereditary Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.-C.T.); (A.-A.D.); (D.L.P.)
| |
Collapse
|
5
|
Li BP, Kang N, Xu ZX, Luo HR, Fan SY, Ao XH, Li X, Han YP, Ou XB, Xu LH. Transposable elements shape the landscape of heterozygous structural variation in a bird genome. Zool Res 2025; 46:75-86. [PMID: 39846188 PMCID: PMC11891004 DOI: 10.24272/j.issn.2095-8137.2024.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025] Open
Abstract
Avian genomes exhibit compact organization and remarkable chromosomal stability. However, the extent and mechanisms by which structural variation in avian genomes differ from those in other vertebrate lineages are poorly explored. This study generated a diploid genome assembly for the golden pheasant ( Chrysolophus pictus), a species distinguished by the vibrant plumage of males. Each haploid genome assembly included complete chromosomal models, incorporating all microchromosomes. Analysis revealed extensive tandem amplification of immune-related genes across the smallest microchromosomes (dot chromosomes), with an average copy number of 54. Structural variation between the haploid genomes was primarily shaped by large insertions and deletions (indels), with minimal contributions from inversions or duplications. Approximately 28% of these large indels were associated with recent insertions of transposable elements, despite their typically low activity in bird genomes. Evidence for significant effects of transposable elements on gene expression was minimal. Evolutionary strata on the sex chromosomes were identified, along with a drastic rearrangement of the W chromosome. These analyses of the high-quality diploid genome of the golden pheasant provide valuable insights into the evolutionary patterns of structural variation in avian genomes.
Collapse
Affiliation(s)
- Bo-Ping Li
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration in Longdong, Longdong University, Qingyang, Gansu 745000, China
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
- College of Medicine, Longdong University, Qingyang, Gansu 745000, China. E-mail:
| | - Na Kang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zao-Xu Xu
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration in Longdong, Longdong University, Qingyang, Gansu 745000, China
| | - Hao-Ran Luo
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Ministry of Education for the Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Shi-Yu Fan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiao-Han Ao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xing Li
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ya-Peng Han
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration in Longdong, Longdong University, Qingyang, Gansu 745000, China
| | - Xiao-Bin Ou
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration in Longdong, Longdong University, Qingyang, Gansu 745000, China. E-mail:
| | - Luo-Hao Xu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China. E-mail:
| |
Collapse
|
6
|
Zhou Y, Jin J, Li X, Gedman G, Pelan S, Rhie A, Jiang C, Fedrigo O, Howe K, Phillippy AM, Jarvis ED, Grutzner F, Zhou Q, Zhang G. Chromosome-level echidna genome illuminates evolution of multiple sex chromosome system in monotremes. Gigascience 2025; 14:giae112. [PMID: 39778707 PMCID: PMC11710854 DOI: 10.1093/gigascience/giae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/28/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND A thorough analysis of genome evolution is fundamental for biodiversity understanding. The iconic monotremes (platypus and echidna) feature extraordinary biology. However, they also exhibit rearrangements in several chromosomes, especially in the sex chromosome chain. Therefore, the lack of a chromosome-level echidna genome has limited insights into genome evolution in monotremes, in particular the multiple sex chromosomes complex. RESULTS Here, we present a new long reads-based chromosome-level short-beaked echidna (Tachyglossus aculeatus) genome, which allowed the inference of chromosomal rearrangements in the monotreme ancestor (2n = 64) and each extant species. Analysis of the more complete sex chromosomes uncovered homology between 1 Y chromosome and multiple X chromosomes, suggesting that it is the ancestral X that has undergone reciprocal translocation with ancestral autosomes to form the complex. We also identified dozens of ampliconic genes on the sex chromosomes, with several ancestral ones expressed during male meiosis, suggesting selective constraints in pairing the multiple sex chromosomes. CONCLUSION The new echidna genome provides an important basis for further study of the unique biology and conservation of this species.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen 518083, China
- BGI Research, Wuhan 430074, China
- BGI Research, Hangzhou 310030, China
| | | | - Xuemei Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gregory Gedman
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY 10065, USA
| | - Sarah Pelan
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan Jiang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Olivier Fedrigo
- The Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
| | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Frank Grutzner
- School of Biological Sciences, The Environment Institute, The University of Adelaide, Adelaide 5005, Australia
| | - Qi Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Hangzhou 310052, China
- Centre for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Guojie Zhang
- Centre for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
7
|
Pšenička T, Augstenová B, Frynta D, Kornilios P, Kratochvíl L, Rovatsos M. Sex Chromosome Turnovers and Stability in Snakes. Mol Biol Evol 2025; 42:msae255. [PMID: 39671568 PMCID: PMC11721783 DOI: 10.1093/molbev/msae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 12/15/2024] Open
Abstract
For a long time, snakes were presented as a textbook example of a group with gradual differentiation of homologous ZZ/ZW sex chromosomes. However, recent advances revealed that the ZZ/ZW sex chromosomes characterize only caenophidian snakes and certain species of boas and pythons have nonhomologous XX/XY sex chromosomes. We used genome coverage analysis in four non-caenophidian species to identify their sex chromosomes, and we examined the homology of sex chromosomes across phylogenetically informative snake lineages. We identified sex chromosomes for the first time in 13 species of non-caenophidian snakes, providing much deeper insights into the evolutionary history of snake sex chromosomes. The evolution of sex chromosomes in snakes is more complex than previously thought. Snakes may have had ancestral XX/XY sex chromosomes, which are still present in a blind snake and some boas, and there were several transitions to derived XX/XY sex chromosomes with different gene content and two or even three transitions to ZZ/ZW sex chromosomes. However, we discuss more alternative scenarios. In any case, we document that (1) some genomic regions were likely repeatedly co-opted as sex chromosomes in phylogenetically distant lineages, even with opposite types of heterogamety; (2) snake lineages differ greatly in the rate of differentiation of sex chromosomes; (3) snakes likely originally possessed sex chromosomes prone to turnovers. The sex chromosomes became evolutionarily highly stable once their differentiation progressed in the megadiverse caenophidian snakes. Snakes thus provide an ideal system for studying the evolutionary factors that drive unequal rates of differentiation, turnovers and stability of sex chromosomes.
Collapse
Affiliation(s)
- Tomáš Pšenička
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Augstenová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Daniel Frynta
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
8
|
Pozzobon LC, Toma GA, Cioffi MDB, de Oliveira EHC, Kretschmer R, de Freitas TRO. Karyotype evolution of suliformes and description of a ♂Z 1Z 1Z 2Z 2/♀Z 1Z 2W multiple sex chromosome system in boobies ( Sula spp.). Genome 2025; 68:1-11. [PMID: 39883916 DOI: 10.1139/gen-2024-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Our comprehension of avian karyotypes still needs to be improved, especially for Suliform birds. To enhance understanding of chromosomal evolution in this order, we conducted conventional and molecular cytogenetic analysis in five species, named Sula dactylatra, Sula leucogaster, Sula sula (Sulidae), Fregata magnificens (Fregatidae), and Nannopterum brasilianum (Phalacrocoracidae). The diploid chromosome number for S. dactylatra and S. leucogaster was established as 2n = 76 in males, and 2n = 75 in females, but S. sula displayed a karyotype of 2n = 76 chromosomes in males. The disparity in diploid chromosome numbers between male and female Sula is due to a multiple sex chromosome system of the Z1Z1Z2Z2/Z1Z2W type. We propose that the emergence of this multiple-sex chromosome system resulted from a Robertsonian translocation involving the W chromosome and the smallest microchromosome. Fregata magnificens exhibited a diploid number 76 (2n = 76), while N. brasilianum displayed a diploid number of 74 (2n = 74) in both sexes. The ribosomal cluster was located in one microchromosome pair in S. dactylatra, S. leucogaster, S. sula, and F. magnificens and in four pairs in N. brasilianum. Our findings provide evidence of a conserved multiple-sex chromosome system within the Sula genus, shedding light on the high karyotype diversity in Suliformes.
Collapse
Affiliation(s)
- Luciano Cesar Pozzobon
- Laboratório de Citogenética e Evolução, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gustavo Akira Toma
- Laboratório de Citogenética Evolutiva, Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética Evolutiva, Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Edivaldo Herculano Corrêa de Oliveira
- Laboratório de Citogenômica e Mutagênese Ambiental, Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, PA, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA, Brazil
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Thales Renato Ochotorena de Freitas
- Laboratório de Citogenética e Evolução, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
Zhu Z, Younas L, Zhou Q. Evolution and regulation of animal sex chromosomes. Nat Rev Genet 2025; 26:59-74. [PMID: 39026082 DOI: 10.1038/s41576-024-00757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Animal sex chromosomes typically carry the upstream sex-determining gene that triggers testis or ovary development and, in some species, are regulated by global dosage compensation in response to functional decay of the Y chromosome. Despite the importance of these pathways, they exhibit striking differences across species, raising fundamental questions regarding the mechanisms underlying their evolutionary turnover. Recent studies of non-model organisms, including insects, reptiles and teleosts, have yielded a broad view of the diversity of sex chromosomes that challenges established theories. Moreover, continued studies in model organisms with recently developed technologies have characterized the dynamics of sex determination and dosage compensation in three-dimensional nuclear space and at single-cell resolution. Here, we synthesize recent insights into sex chromosomes from a variety of species to review their evolutionary dynamics with respect to the canonical model, as well as their diverse mechanisms of regulation.
Collapse
Affiliation(s)
- Zexian Zhu
- Evolutionary and Organismal Biology Research Center and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lubna Younas
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Qi Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- State Key Laboratory of Transvascular Implantation Devices, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Jayaprasad S, Peona V, Ellerstrand SJ, Rossini R, Bunikis I, Pettersson OV, Olsen R, Rubin C, Einarsdottir E, Bonath F, Bradford TM, Cooper SJB, Hansson B, Suh A, Kawakami T, Schielzeth H, Palacios‐Gimenez OM. Orthopteran Neo-Sex Chromosomes Reveal Dynamics of Recombination Suppression and Evolution of Supergenes. Mol Ecol 2024; 33:e17567. [PMID: 39475093 PMCID: PMC11589690 DOI: 10.1111/mec.17567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024]
Abstract
The early evolution of sex chromosomes has remained obscure for more than a century. The Vandiemenella viatica species group of morabine grasshoppers is highly suited for studying the early stages of sex chromosome divergence and degeneration of the Y chromosome. This stems from the fact that neo-XY sex chromosomes have independently evolved multiple times by X-autosome fusions with different autosomes. Here, we generated new chromosome-level assemblies for two chromosomal races representing karyotypes with and without neo-sex chromosomes (P24XY and P24X0), and sequence data of a third chromosomal race with a different neo-XY chromosome system (P25XY). Interestingly, these two neo-XY chromosomal races are formed by different X-autosome fusions (involving chr1 and chrB, respectively), and we found that both neo-Y chromosomes have partly ceased to recombine with their neo-X counterpart. We show that the neo-XY chromosomes have diverged through accumulation of SNPs and structural mutations, and that many neo-Y-linked genes have degenerated since recombination ceased. However, the non-recombining regions of neo-Y chromosomes host non-degenerated genes crucial for sex determination, such as sex-lethal and transformer, alongside genes associated with spermatogenesis, fertility, and reproduction, illustrating their integrative role as a masculinizing supergene. Contrary to expectations, the neo-Y chromosomes showed (slightly) lower density of transposable elements (TEs) compared to other genomic regions. The study reveals the unique dynamics of young sex chromosomes, with evolution of recombination suppression and pronounced decay of (some) neo-sex chromosome genes, and provides a compelling case illustrating how chromosomal fusions and post-fusion mutational processes contribute to the evolution of supergenes.
Collapse
Affiliation(s)
- Suvratha Jayaprasad
- Population Ecology GroupInstitute of Ecology and EvolutionFriedrich Schiller University JenaJenaGermany
| | - Valentina Peona
- Department of Organismal Biology–Systematic BiologyEvolutionary Biology CentreUppsala UniversityUppsalaSweden
- Swiss Ornithological InstituteSempachSwitzerland
| | | | - Roberto Rossini
- Department of Organismal Biology–Systematic BiologyEvolutionary Biology CentreUppsala UniversityUppsalaSweden
- Department of BiosciencesUniversity of OsloOsloNorway
| | - Ignas Bunikis
- Department of Immunology, Genetics and PathologyUppsala Genome CenterUppsala UniversityNational Genomics Infrastructure hosted by SciLifeLabUppsalaSweden
| | - Olga V. Pettersson
- Department of Immunology, Genetics and PathologyUppsala Genome CenterUppsala UniversityNational Genomics Infrastructure hosted by SciLifeLabUppsalaSweden
| | - Remi‐André Olsen
- Department of Biochemistry and BiophysicsScience for Life LaboratoryStockholm UniversitySolnaSweden
| | - Carl‐Johan Rubin
- Department of Medical Biochemistry and Microbiology – Disciplinary Domain of Medicine and PharmacyFaculty of MedicineUppsala UniversityUppsalaSweden
| | - Elisabet Einarsdottir
- Department of Gene TechnologyScience for Life LaboratoryKTH‐Royal Institute of TechnologySolnaSweden
| | - Franziska Bonath
- Department of Gene TechnologyScience for Life LaboratoryKTH‐Royal Institute of TechnologySolnaSweden
| | - Tessa M. Bradford
- Evolutionary Biology UnitSouth Australian MuseumAdelaideSouth AustraliaAustralia
- School of Biological Sciences and Environment InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Steven J. B. Cooper
- Evolutionary Biology UnitSouth Australian MuseumAdelaideSouth AustraliaAustralia
- School of Biological Sciences and Environment InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | | | - Alexander Suh
- Department of Organismal Biology–Systematic BiologyEvolutionary Biology CentreUppsala UniversityUppsalaSweden
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichUK
- Centre for Molecular Biodiversity ResearchLeibniz Institute for the Analysis of Biodiversity Change, Zoologisches Forschungsmuseum A. KoenigBonnGermany
| | | | - Holger Schielzeth
- Population Ecology GroupInstitute of Ecology and EvolutionFriedrich Schiller University JenaJenaGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Octavio M. Palacios‐Gimenez
- Population Ecology GroupInstitute of Ecology and EvolutionFriedrich Schiller University JenaJenaGermany
- Department of Organismal Biology–Systematic BiologyEvolutionary Biology CentreUppsala UniversityUppsalaSweden
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| |
Collapse
|
11
|
Behrens KA, Koblmüller S, Kocher TD. Genome assemblies for Chromidotilapia guntheri (Teleostei: Cichlidae) identify a novel candidate gene for vertebrate sex determination, RIN3. Front Genet 2024; 15:1447628. [PMID: 39221227 PMCID: PMC11361979 DOI: 10.3389/fgene.2024.1447628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Advances in genome sequencing have greatly accelerated the identification of sex chromosomes in a variety of species. Many of these species have experienced structural rearrangements that reduce recombination between the sex chromosomes, allowing the accumulation of sequence differences over many megabases. Identification of the genes that are responsible for sex determination within these sometimes large regions has proved difficult. Here, we identify an XY sex chromosome system on LG19 in the West African cichlid fish Chromidotilapia guntheri in which the region of differentiation extends over less than 400 kb. We develop high-quality male and female genome assemblies for this species, which confirm the absence of structural variants, and which facilitate the annotation of genes in the region. The peak of differentiation lies within rin3, which has experienced several debilitating mutations on the Y chromosome. We suggest two hypotheses about how these mutations might disrupt endocytosis, leading to Mendelian effects on sexual development.
Collapse
Affiliation(s)
- Kristen A. Behrens
- Department of Biology, University of Maryland, College Park, MD, United States
| | | | - Thomas D. Kocher
- Department of Biology, University of Maryland, College Park, MD, United States
| |
Collapse
|
12
|
Wang T, Gong G, Li Z, Niu JS, Du WX, Wang ZW, Wang Y, Zhou L, Zhang XJ, Lian ZQ, Mei J, Gui JF, Li XY. Genomic Anatomy of Homozygous XX Females and YY Males Reveals Early Evolutionary Trajectory of Sex-determining Gene and Sex Chromosomes in Silurus Fishes. Mol Biol Evol 2024; 41:msae169. [PMID: 39136558 DOI: 10.1093/molbev/msae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Sex chromosomes display remarkable diversity and variability among vertebrates. Compared with research on the X/Y and Z/W chromosomes, which have long evolutionary histories in mammals and birds, studies on the sex chromosomes at early evolutionary stages are limited. Here, we precisely assembled the genomes of homozygous XX female and YY male Lanzhou catfish (Silurus lanzhouensis) derived from an artificial gynogenetic family and a self-fertilized family, respectively. Chromosome 24 (Chr24) was identified as the sex chromosome based on resequencing data. Comparative analysis of the X and Y chromosomes showed an approximate 320 kb Y-specific region with a Y-specific duplicate of anti-Mullerian hormone type II receptor (amhr2y), which is consistent with findings in 2 other Silurus species but on different chromosomes (Chr24 of Silurus meridionalis and Chr5 of Silurus asotus). Deficiency of amhr2y resulted in male-to-female sex reversal, indicating that amhr2y plays a male-determining role in S. lanzhouensis. Phylogenetic analysis and comparative genomics revealed that the common sex-determining gene amhr2y was initially translocated to Chr24 of the Silurus ancestor along with the expansion of transposable elements. Chr24 was maintained as the sex chromosome in S. meridionalis and S. lanzhouensis, whereas a sex-determining region transition triggered sex chromosome turnover from Chr24 to Chr5 in S. asotus. Additionally, gene duplication, translocation, and degeneration were observed in the Y-specific regions of Silurus species. These findings present a clear case for the early evolutionary trajectory of sex chromosomes, including sex-determining gene origin, repeat sequence expansion, gene gathering and degeneration in sex-determining region, and sex chromosome turnover.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaorui Gong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Sheng Niu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wen-Xuan Du
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Wei Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Juan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zong-Qiang Lian
- Department of Fish Genetic Breeding, Ningxia Fisheries Research Institute, Yinchuan 750001, China
| | - Jie Mei
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian-Fang Gui
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Yin Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Hayashi S, Abe T, Igawa T, Katsura Y, Kazama Y, Nozawa M. Sex chromosome cycle as a mechanism of stable sex determination. J Biochem 2024; 176:81-95. [PMID: 38982631 PMCID: PMC11289310 DOI: 10.1093/jb/mvae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Recent advances in DNA sequencing technology have enabled the precise decoding of genomes in non-model organisms, providing a basis for unraveling the patterns and mechanisms of sex chromosome evolution. Studies of different species have yielded conflicting results regarding the traditional theory that sex chromosomes evolve from autosomes via the accumulation of deleterious mutations and degeneration of the Y (or W) chromosome. The concept of the 'sex chromosome cycle,' emerging from this context, posits that at any stage of the cycle (i.e., differentiation, degeneration, or loss), sex chromosome turnover can occur while maintaining stable sex determination. Thus, understanding the mechanisms that drive both the persistence and turnover of sex chromosomes at each stage of the cycle is crucial. In this review, we integrate recent findings on the mechanisms underlying maintenance and turnover, with a special focus on several organisms having unique sex chromosomes. Our review suggests that the diversity of sex chromosomes in the maintenance of stable sex determination is underappreciated and emphasizes the need for more research on the sex chromosome cycle.
Collapse
Affiliation(s)
- Shun Hayashi
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takuya Abe
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi 981-8558, Japan
| | - Takeshi Igawa
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yukako Katsura
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan
| | - Yusuke Kazama
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji, Fukui 910-1195, Japan
| | - Masafumi Nozawa
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
14
|
Sigeman H, Downing PA, Zhang H, Hansson B. The rate of W chromosome degeneration across multiple avian neo-sex chromosomes. Sci Rep 2024; 14:16548. [PMID: 39020011 PMCID: PMC11255319 DOI: 10.1038/s41598-024-66470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/01/2024] [Indexed: 07/19/2024] Open
Abstract
When sex chromosomes evolve recombination suppression, the sex-limited chromosome (Y/W) commonly degenerate by losing functional genes. The rate of Y/W degeneration is believed to slow down over time as the most essential genes are maintained by purifying selection, but supporting data are scarce especially for ZW systems. Here, we study W degeneration in Sylvioidea songbirds where multiple autosomal translocations to the sex chromosomes, and multiple recombination suppression events causing separate evolutionary strata, have occurred during the last ~ 28.1-4.5 million years (Myr). We show that the translocated regions have maintained 68.3-97.7% of their original gene content, compared to only 4.2% on the much older ancestral W chromosome. By mapping W gene losses onto a dated phylogeny, we estimate an average gene loss rate of 1.0% per Myr, with only moderate variation between four independent lineages. Consistent with previous studies, evolutionarily constrained and haploinsufficient genes were preferentially maintained on W. However, the gene loss rate did not show any consistent association with strata age or with the number of W genes at strata formation. Our study provides a unique account on the pace of W gene loss and reinforces the significance of purifying selection in maintaining essential genes on sex chromosomes.
Collapse
Affiliation(s)
- Hanna Sigeman
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden.
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland.
| | - Philip A Downing
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Hongkai Zhang
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
| | - Bengt Hansson
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden.
| |
Collapse
|
15
|
Jay P, Jeffries D, Hartmann FE, Véber A, Giraud T. Why do sex chromosomes progressively lose recombination? Trends Genet 2024; 40:564-579. [PMID: 38677904 DOI: 10.1016/j.tig.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024]
Abstract
Progressive recombination loss is a common feature of sex chromosomes. Yet, the evolutionary drivers of this phenomenon remain a mystery. For decades, differences in trait optima between sexes (sexual antagonism) have been the favoured hypothesis, but convincing evidence is lacking. Recent years have seen a surge of alternative hypotheses to explain progressive extensions and maintenance of recombination suppression: neutral accumulation of sequence divergence, selection of nonrecombining fragments with fewer deleterious mutations than average, sheltering of recessive deleterious mutations by linkage to heterozygous alleles, early evolution of dosage compensation, and constraints on recombination restoration. Here, we explain these recent hypotheses and dissect their assumptions, mechanisms, and predictions. We also review empirical studies that have brought support to the various hypotheses.
Collapse
Affiliation(s)
- Paul Jay
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark; Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France.
| | - Daniel Jeffries
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Fanny E Hartmann
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France
| | - Amandine Véber
- Université Paris Cité, CNRS, MAP5, F-75006 Paris, France
| | - Tatiana Giraud
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France
| |
Collapse
|
16
|
Zhang N, Zhang Y. Y-chromosome Degeneration due to Speciation and Founder Effect. Acta Biotheor 2024; 72:6. [PMID: 38819710 DOI: 10.1007/s10441-024-09482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
The Y chromosome in the XY sex-determination system is often shorter than its X counterpart, a condition attributed to degeneration after Y recombination ceases. Contrary to the traditional view of continuous, gradual degeneration, our study reveals stabilization within large mating populations. In these populations, we demonstrate that both mutant and active alleles on the Y chromosome can reach equilibrium through a mutation-selection balance. However, the emergence of a new species, particularly through the founder effect, can disrupt this equilibrium. Specifically, if the male founders of a new species carry only a mutant allele for a particular Y-linked gene, this allele becomes fixed, leading to the loss of the corresponding active gene on the Y chromosome. Our findings suggest that the rate of Y-chromosome degeneration may be linked to the frequency of speciation events associated with single-male founder events.
Collapse
Affiliation(s)
- Nianqin Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yongjun Zhang
- Science college, Liaoning Technical University, Fuxin, China.
| |
Collapse
|
17
|
Petrou EL, Scott LC, McKeeman CM, Ramey AM. Molecular sexing of birds using quantitative PCR (qPCR) of sex-linked genes and logistic regression models. Mol Ecol Resour 2024; 24:e13946. [PMID: 38436617 DOI: 10.1111/1755-0998.13946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/26/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
The ability to sex individuals is an important component of many behavioural and ecological investigations and provides information for demographic models used in conservation and species management. However, many birds are difficult to sex using morphological characters or traditional molecular sexing methods. In this study, we developed probabilistic models for sexing birds using quantitative PCR (qPCR) data. First, we quantified distributions of gene copy numbers at a set of six sex-linked genes, including the sex-determining gene DMRT1, for individuals across 17 species and seven orders of birds (n = 150). Using these data, we built predictive logistic models for sex identification and tested their performance with independent samples from 51 species and 13 orders (n = 209). Models using the two loci most highly correlated with sex had greater accuracy than models using the full set of sex-linked loci, across all taxonomic levels of analysis. Sex identification was highly accurate when individuals to be assigned were of species used in model building. Our analytical approach was widely applicable across diverse neognath bird lineages spanning millions of years of evolutionary divergence. Unlike previous methods, our probabilistic framework incorporates uncertainty around qPCR measurements as well as biological variation within species into decision-making rules. We anticipate that this method will be useful for sexing birds, including those of high conservation concern and/or subsistence value, that have proven difficult to sex using traditional approaches. Additionally, the general analytical framework presented in this paper may also be applicable to other organisms with sex chromosomes.
Collapse
Affiliation(s)
- Eleni L Petrou
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| | - Laura C Scott
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| | - Cherie M McKeeman
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| | - Andrew M Ramey
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| |
Collapse
|
18
|
Uno Y, Matsubara K. Unleashing diversity through flexibility: The evolutionary journey of sex chromosomes in amphibians and reptiles. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:230-241. [PMID: 38155517 DOI: 10.1002/jez.2776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
Sex determination systems have greatly diversified between amphibians and reptiles, with such as the different sex chromosome compositions within a single species and transition between temperature-dependent sex determination (TSD) and genetic sex determination (GSD). In most sex chromosome studies on amphibians and reptiles, the whole-genome sequence of Xenopous tropicalis and chicken have been used as references to compare the chromosome homology of sex chromosomes among each of these taxonomic groups, respectively. In the present study, we reviewed existing reports on sex chromosomes, including karyotypes, in amphibians and reptiles. Furthermore, we compared the identified genetic linkages of sex chromosomes in amphibians and reptiles with the chicken genome as a reference, which is believed to resemble the ancestral tetrapod karyotype. Our findings revealed that sex chromosomes in amphibians are derived from genetic linkages homologous to various chicken chromosomes, even among several frogs within single families, such as Ranidae and Pipidae. In contrast, sex chromosomes in reptiles exhibit conserved genetic linkages with chicken chromosomes, not only across most species within a single family, but also within closely related families. The diversity of sex chromosomes in amphibians and reptiles may be attributed to the flexibility of their sex determination systems, including the ease of sex reversal in these animals.
Collapse
Affiliation(s)
- Yoshinobu Uno
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazumi Matsubara
- Department of Bioscience and Biotechnology, Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| |
Collapse
|
19
|
Miura I, Shams F, Ohki J, Tagami M, Fujita H, Kuwana C, Nanba C, Matsuo T, Ogata M, Mawaribuchi S, Shimizu N, Ezaz T. Multiple Transitions between Y Chromosome and Autosome in Tago's Brown Frog Species Complex. Genes (Basel) 2024; 15:300. [PMID: 38540359 PMCID: PMC10969965 DOI: 10.3390/genes15030300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
Sex chromosome turnover is the transition between sex chromosomes and autosomes. Although many cases have been reported in poikilothermic vertebrates, their evolutionary causes and genetic mechanisms remain unclear. In this study, we report multiple transitions between the Y chromosome and autosome in the Japanese Tago's brown frog complex. Using chromosome banding and molecular analyses (sex-linked and autosomal single nucleotide polymorphisms, SNPs, from the nuclear genome), we investigated the frogs of geographic populations ranging from northern to southern Japan of two species, Rana tagoi and Rana sakuraii (2n = 26). Particularly, the Chiba populations of East Japan and Akita populations of North Japan in R. tagoi have been, for the first time, investigated here. As a result, we identified three different sex chromosomes, namely chromosomes 3, 7, and 13, in the populations of the two species. Furthermore, we found that the transition between the Y chromosome (chromosome 7) and autosome was repeated through hybridization between two or three different populations belonging to the two species, followed by restricted chromosome introgression. These dynamic sex chromosome turnovers represent the first such findings in vertebrates and imply that speciation associated with inter- or intraspecific hybridization plays an important role in sex chromosome turnover in frogs.
Collapse
Affiliation(s)
- Ikuo Miura
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; (C.K.); (C.N.)
- Institute for Applied Ecology, Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (F.S.); (T.E.)
| | - Foyez Shams
- Institute for Applied Ecology, Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (F.S.); (T.E.)
| | - Jun’ichi Ohki
- Natural History Museum and Institute, Chiba 260-8682, Japan;
| | - Masataka Tagami
- Gifu World Freshwater Aquarium, Kakamigahara, Gifu 501-6021, Japan;
| | - Hiroyuki Fujita
- Saitama Museum of Rivers, Yorii-Machi, Oosato-Gun, Saitama 369-1217, Japan;
| | - Chiao Kuwana
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; (C.K.); (C.N.)
| | - Chiyo Nanba
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; (C.K.); (C.N.)
| | - Takanori Matsuo
- Department of Preschool Education, Nagasaki Women’s Junior College, Nagasaki 850-0823, Japan;
| | - Mitsuaki Ogata
- Preservation and Research Center, City of Yokohama, Yokohama 241-0804, Japan;
| | - Shuuji Mawaribuchi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan;
| | - Norio Shimizu
- Hiroshima University Museum, Higashi-Hiroshima 739-8524, Japan;
| | - Tariq Ezaz
- Institute for Applied Ecology, Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (F.S.); (T.E.)
| |
Collapse
|
20
|
Xu L, Ren Y, Wu J, Cui T, Dong R, Huang C, Feng Z, Zhang T, Yang P, Yuan J, Xu X, Liu J, Wang J, Chen W, Mi D, Irwin DM, Yan Y, Xu L, Yu X, Li G. Evolution and expression patterns of the neo-sex chromosomes of the crested ibis. Nat Commun 2024; 15:1670. [PMID: 38395916 PMCID: PMC10891136 DOI: 10.1038/s41467-024-46052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Bird sex chromosomes play a unique role in sex-determination, and affect the sexual morphology and behavior of bird species. Core waterbirds, a major clade of birds, share the common characteristics of being sexually monomorphic and having lower levels of inter-sexual conflict, yet their sex chromosome evolution remains poorly understood. Here, by we analyse of a chromosome-level assembly of a female crested ibis (Nipponia nippon), a typical core waterbird. We identify neo-sex chromosomes resulting from fusion of microchromosomes with ancient sex chromosomes. These fusion events likely occurred following the divergence of Threskiornithidae and Ardeidae. The neo-W chromosome of the crested ibis exhibits the characteristics of slow degradation, which is reflected in its retention of abundant gametologous genes. Neo-W chromosome genes display an apparent ovary-biased gene expression, which is largely driven by genes that are retained on the crested ibis W chromosome but lost in other bird species. These results provide new insights into the evolutionary history and expression patterns for the sex chromosomes of bird species.
Collapse
Affiliation(s)
- Lulu Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yandong Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiahong Wu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing, China
| | - Tingting Cui
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Rong Dong
- Research Center for Qinling Giant Panda, Shaanxi Academy of Forestry, Xi'an, China
| | - Chen Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhe Feng
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Tianmin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Peng Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiaqing Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiao Liu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing, China
| | - Jinhong Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wu Chen
- Guangzhou Wildlife Research Center, Guangzhou Zoo, Guangzhou, China
| | - Da Mi
- Xi'an Haorui Genomics Technology Co., LTD, Xi'an, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Yaping Yan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Luohao Xu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing, China.
| | - Xiaoping Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
- Guangzhou Wildlife Research Center, Guangzhou Zoo, Guangzhou, China.
| |
Collapse
|
21
|
Behrens KA, Zimmermann H, Blažek R, Reichard M, Koblmüller S, Kocher TD. Turnover of sex chromosomes in the Lake Tanganyika cichlid tribe Tropheini (Teleostei: Cichlidae). Sci Rep 2024; 14:2471. [PMID: 38291228 PMCID: PMC10828463 DOI: 10.1038/s41598-024-53021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
Sex chromosome replacement is frequent in many vertebrate clades, including fish, frogs, and lizards. In order to understand the mechanisms responsible for sex chromosome turnover and the early stages of sex chromosome divergence, it is necessary to study lineages with recently evolved sex chromosomes. Here we examine sex chromosome evolution in a group of African cichlid fishes (tribe Tropheini) which began to diverge from one another less than 4 MYA. We have evidence for a previously unknown sex chromosome system, and preliminary indications of several additional systems not previously reported in this group. We find a high frequency of sex chromosome turnover and estimate a minimum of 14 turnovers in this tribe. We date the origin of the most common sex determining system in this tribe (XY-LG5/19) near the base of one of two major sub-clades of this tribe, about 3.4 MY ago. Finally, we observe variation in the size of one sex-determining region that suggests independent evolution of evolutionary strata in species with a shared sex-determination system. Our results illuminate the rapid rate of sex chromosome turnover in the tribe Tropheini and set the stage for further studies of the dynamics of sex chromosome evolution in this group.
Collapse
Affiliation(s)
- Kristen A Behrens
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| | - Holger Zimmermann
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 00, Brno, Czech Republic
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Radim Blažek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 00, Brno, Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 00, Brno, Czech Republic
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
| | - Stephan Koblmüller
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
22
|
Filatov DA. Evolution of a plant sex chromosome driven by expanding pericentromeric recombination suppression. Sci Rep 2024; 14:1373. [PMID: 38228625 DOI: 10.1038/s41598-024-51153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024] Open
Abstract
Recombination suppression around sex-determining gene(s) is a key step in evolution of sex chromosomes, but it is not well understood how it evolves. Recently evolved sex-linked regions offer an opportunity to understand the mechanisms of recombination cessation. This paper analyses such a region on Silene latifolia (Caryophyllaceae) sex chromosomes, where recombination was suppressed in the last 120 thousand years ("stratum 3"). Locating the boundaries of the stratum 3 in S. latifolia genome sequence revealed that this region is far larger than assumed previously-it is about 14 Mb long and includes 202 annotated genes. A gradient of X:Y divergence detected in the stratum 3, with divergence increasing proximally, indicates gradual recombination cessation, possibly caused by expansion of pericentromeric recombination suppression (PRS) into the pseudoautosomal region. Expansion of PRS was also the likely cause for the formation of the older stratum 2 on S. latifolia sex chromosomes. The role of PRS in sex chromosome evolution has been underappreciated, but it may be a significant factor, especially in the species with large chromosomes where PRS is often extensive.
Collapse
Affiliation(s)
- Dmitry A Filatov
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK.
| |
Collapse
|
23
|
Xu XW, Sun P, Gao C, Zheng W, Chen S. Assembly of the poorly differentiated Verasper variegatus W chromosome by different sequencing technologies. Sci Data 2023; 10:893. [PMID: 38092799 PMCID: PMC10719390 DOI: 10.1038/s41597-023-02790-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
The assembly of W and Y chromosomes poses significant challenges in vertebrate genome sequencing and assembly. Here, we successfully assembled the W chromosome of Verasper variegatus with a length of 20.48 Mb by combining population and PacBio HiFi sequencing data. It was identified as a young sex chromosome and showed signs of expansion in repetitive sequences. The major component of the expansion was Ty3/Gypsy. The ancestral Osteichthyes karyotype consists of 24 protochromosomes. The sex chromosomes in four Pleuronectiformes species derived from a pair of homologous protochromosomes resulting from a whole-genome duplication event in teleost fish, yet with different sex-determination systems. V. variegatus and Cynoglossus semilaevis adhere to the ZZ/ZW system, while Hippoglossus stenolepis and H. hippoglossus follow the XX/XY system. Interestingly, V. variegatus and H. hippoglossus derived from one protochromosome, while C. semilaevis and H. stenolepis derived from another protochromosome. Our study provides valuable insights into the evolution of sex chromosomes in flatfish and sheds light on the important role of whole-genome duplication in shaping the evolution of sex chromosomes.
Collapse
Affiliation(s)
- Xi-Wen Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237, China
| | - Pengchuan Sun
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chengbin Gao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Weiwei Zheng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237, China.
| |
Collapse
|
24
|
Luo H, Jiang X, Li B, Wu J, Shen J, Xu Z, Zhou X, Hou M, Huang Z, Ou X, Xu L. A high-quality genome assembly highlights the evolutionary history of the great bustard (Otis tarda, Otidiformes). Commun Biol 2023; 6:746. [PMID: 37463976 PMCID: PMC10354230 DOI: 10.1038/s42003-023-05137-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Conservation genomics often relies on non-invasive methods to obtain DNA fragments which limit the power of multi-omic analyses for threatened species. Here, we report multi-omic analyses based on a well-preserved great bustard individual (Otis tarda, Otidiformes) that was found dead in the mountainous region in Gansu, China. We generate a near-complete genome assembly containing only 18 gaps scattering in 8 out of the 40 assembled chromosomes. We characterize the DNA methylation landscape which is correlated with GC content and gene expression. Our phylogenomic analysis suggests Otidiformes and Musophagiformes are sister groups that diverged from each other 46.3 million years ago. The genetic diversity of great bustard is found the lowest among the four available Otidiformes genomes, possibly due to population declines during past glacial periods. As one of the heaviest migratory birds, great bustard possesses several expanded gene families related to cardiac contraction, actin contraction, calcium ion signaling transduction, as well as positively selected genes enriched for metabolism. Finally, we identify an extremely young evolutionary stratum on the sex chromosome, a rare case among birds. Together, our study provides insights into the conservation genomics, adaption and chromosome evolution of the great bustard.
Collapse
Affiliation(s)
- Haoran Luo
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Ministry of Education for the Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Xinrui Jiang
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Boping Li
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province, 745000, China
| | - Jiahong Wu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiexin Shen
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zaoxu Xu
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province, 745000, China
| | - Xiaoping Zhou
- Key Laboratory of Ministry of Education for the Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Minghao Hou
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province, 745000, China
| | - Zhen Huang
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China.
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
| | - Xiaobin Ou
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province, 745000, China.
| | - Luohao Xu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
25
|
Zhou Y, Zhan X, Jin J, Zhou L, Bergman J, Li X, Rousselle MMC, Belles MR, Zhao L, Fang M, Chen J, Fang Q, Kuderna L, Marques-Bonet T, Kitayama H, Hayakawa T, Yao YG, Yang H, Cooper DN, Qi X, Wu DD, Schierup MH, Zhang G. Eighty million years of rapid evolution of the primate Y chromosome. Nat Ecol Evol 2023; 7:1114-1130. [PMID: 37268856 DOI: 10.1038/s41559-022-01974-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/15/2022] [Indexed: 06/04/2023]
Abstract
The Y chromosome usually plays a critical role in determining male sex and comprises sequence classes that have experienced unique evolutionary trajectories. Here we generated 19 new primate sex chromosome assemblies, analysed them with 10 existing assemblies and report rapid evolution of the Y chromosome across primates. The pseudoautosomal boundary has shifted at least six times during primate evolution, leading to the formation of a Simiiformes-specific evolutionary stratum and to the independent start of young strata in Catarrhini and Platyrrhini. Different primate lineages experienced different rates of gene loss and structural and chromatin change on their Y chromosomes. Selection on several Y-linked genes has contributed to the evolution of male developmental traits across the primates. Additionally, lineage-specific expansions of ampliconic regions have further increased the diversification of the structure and gene composition of the Y chromosome. Overall, our comprehensive analysis has broadened our knowledge of the evolution of the primate Y chromosome.
Collapse
Affiliation(s)
| | | | | | - Long Zhou
- Centre for Evolutionary & Organismal Biology, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Juraj Bergman
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, Aarhus C., Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus C., Denmark
| | - Xuemei Li
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | | | - Lan Zhao
- College of Life Sciences, Northwest University, Xi'an, China
| | | | | | - Qi Fang
- BGI-Shenzhen, Shenzhen, China
| | - Lukas Kuderna
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Haruka Kitayama
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
- Japan Monkey Centre, Inuyama, Japan
| | - Yong-Gang Yao
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
- Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Xiaoguang Qi
- College of Life Sciences, Northwest University, Xi'an, China
| | - Dong-Dong Wu
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | | - Guojie Zhang
- Centre for Evolutionary & Organismal Biology, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
26
|
Yazdi HP, Olito C, Kawakami T, Unneberg P, Schou MF, Cloete SWP, Hansson B, Cornwallis CK. The evolutionary maintenance of ancient recombining sex chromosomes in the ostrich. PLoS Genet 2023; 19:e1010801. [PMID: 37390104 DOI: 10.1371/journal.pgen.1010801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/28/2023] [Indexed: 07/02/2023] Open
Abstract
Sex chromosomes have evolved repeatedly across the tree of life and often exhibit extreme size dimorphism due to genetic degeneration of the sex-limited chromosome (e.g. the W chromosome of some birds and Y chromosome of mammals). However, in some lineages, ancient sex-limited chromosomes have escaped degeneration. Here, we study the evolutionary maintenance of sex chromosomes in the ostrich (Struthio camelus), where the W remains 65% the size of the Z chromosome, despite being more than 100 million years old. Using genome-wide resequencing data, we show that the population scaled recombination rate of the pseudoautosomal region (PAR) is higher than similar sized autosomes and is correlated with pedigree-based recombination rate in the heterogametic females, but not homogametic males. Genetic variation within the sex-linked region (SLR) (π = 0.001) was significantly lower than in the PAR, consistent with recombination cessation. Conversely, genetic variation across the PAR (π = 0.0016) was similar to that of autosomes and dependent on local recombination rates, GC content and to a lesser extent, gene density. In particular, the region close to the SLR was as genetically diverse as autosomes, likely due to high recombination rates around the PAR boundary restricting genetic linkage with the SLR to only ~50Kb. The potential for alleles with antagonistic fitness effects in males and females to drive chromosome degeneration is therefore limited. While some regions of the PAR had divergent male-female allele frequencies, suggestive of sexually antagonistic alleles, coalescent simulations showed this was broadly consistent with neutral genetic processes. Our results indicate that the degeneration of the large and ancient sex chromosomes of the ostrich may have been slowed by high recombination in the female PAR, reducing the scope for the accumulation of sexually antagonistic variation to generate selection for recombination cessation.
Collapse
Affiliation(s)
| | - Colin Olito
- Department of Biology, Lund University, Lund, Sweden
| | - Takeshi Kawakami
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Per Unneberg
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mads F Schou
- Department of Biology, Lund University, Lund, Sweden
| | - Schalk W P Cloete
- Directorate Animal Sciences, Western Cape Department of Agriculture, Elsenburg, South Africa
- Department of Animal Sciences, Stellenbosch University, Matieland, South Africa
| | - Bengt Hansson
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
27
|
Yue J, Krasovec M, Kazama Y, Zhang X, Xie W, Zhang S, Xu X, Kan B, Ming R, Filatov DA. The origin and evolution of sex chromosomes, revealed by sequencing of the Silene latifolia female genome. Curr Biol 2023:S0960-9822(23)00678-4. [PMID: 37290443 DOI: 10.1016/j.cub.2023.05.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/07/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
White campion (Silene latifolia, Caryophyllaceae) was the first vascular plant where sex chromosomes were discovered. This species is a classic model for studies on plant sex chromosomes due to presence of large, clearly distinguishable X and Y chromosomes that originated de novo about 11 million years ago (mya), but lack of genomic resources for this relatively large genome (∼2.8 Gb) remains a significant hurdle. Here we report S. latifolia female genome assembly integrated with sex-specific genetic maps of this species, focusing on sex chromosomes and their evolution. The analysis reveals a highly heterogeneous recombination landscape with strong reduction in recombination rate in the central parts of all chromosomes. Recombination on the X chromosome in female meiosis primarily occurs at the very ends, and over 85% of the X chromosome length is located in a massive (∼330 Mb) gene-poor, rarely recombining pericentromeric region (Xpr). The results indicate that the non-recombining region on the Y chromosome (NRY) initially evolved in a relatively small (∼15 Mb), actively recombining region at the end of the q-arm, possibly as a result of inversion on the nascent X chromosome. The NRY expanded about 6 mya via linkage between the Xpr and the sex-determining region, which may have been caused by expanding pericentromeric recombination suppression on the X chromosome. These findings shed light on the origin of sex chromosomes in S. latifolia and yield genomic resources to assist ongoing and future investigations into sex chromosome evolution.
Collapse
Affiliation(s)
- Jingjing Yue
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Marc Krasovec
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK; Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Yusuke Kazama
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-cho, Fukui 910-1195, Japan
| | - Xingtan Zhang
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518100, China
| | - Wangyang Xie
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shencheng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518100, China
| | - Xiuming Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361100, China
| | - Baolin Kan
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ray Ming
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Dmitry A Filatov
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK.
| |
Collapse
|
28
|
Mueller JC, Schlebusch SA, Pei Y, Poignet M, Vontzou N, Ruiz-Ruano FJ, Albrecht T, Reifová R, Forstmeier W, Suh A, Kempenaers B. Micro Germline-Restricted Chromosome in Blue Tits: Evidence for Meiotic Functions. Mol Biol Evol 2023; 40:msad096. [PMID: 37116210 PMCID: PMC10172847 DOI: 10.1093/molbev/msad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
The germline-restricted chromosome (GRC) is likely present in all songbird species but differs widely in size and gene content. This extra chromosome has been described as either a microchromosome with only limited basic gene content or a macrochromosome with enriched gene functions related to female gonad and embryo development. Here, we assembled, annotated, and characterized the first micro-GRC in the blue tit (Cyanistes caeruleus) using high-fidelity long-read sequencing data. Although some genes on the blue tit GRC show signals of pseudogenization, others potentially have important functions, either currently or in the past. We highlight the GRC gene paralog BMP15, which is among the highest expressed GRC genes both in blue tits and in zebra finches (Taeniopygia guttata) and is known to play a role in oocyte and follicular maturation in other vertebrates. The GRC genes of the blue tit are further enriched for functions related to the synaptonemal complex. We found a similar functional enrichment when analyzing published data on GRC genes from two nightingale species (Luscinia spp.). We hypothesize that these genes play a role in maintaining standard maternal inheritance or in recombining maternal and paternal GRCs during potential episodes of biparental inheritance.
Collapse
Affiliation(s)
- Jakob C Mueller
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | | | - Yifan Pei
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Manon Poignet
- Department of Zoology, Charles University, Prague, Czech Republic
| | - Niki Vontzou
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Francisco J Ruiz-Ruano
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Department of Organismal Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tomáš Albrecht
- Department of Zoology, Charles University, Prague, Czech Republic
- Institute of Vertebrate Biology, Academy of Sciences, Brno, Czech Republic
| | - Radka Reifová
- Department of Zoology, Charles University, Prague, Czech Republic
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Department of Organismal Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| |
Collapse
|
29
|
Heterochiasmy and Sex Chromosome Evolution in Silene. Genes (Basel) 2023; 14:genes14030543. [PMID: 36980816 PMCID: PMC10048291 DOI: 10.3390/genes14030543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
The evolution of a non-recombining sex-specific region is a key step in sex chromosome evolution. Suppression of recombination between the (proto-) X- and Y-chromosomes in male meiosis creates a non-recombining Y-linked region (NRY), while the X-chromosome continues to recombine in females. Lack of recombination in the NRY defines its main properties—genetic degeneration and accumulation of repetitive DNA, making X and Y chromosomes very different from each other. How and why recombination suppression on sex chromosomes evolves remains controversial. A strong difference in recombination rates between the sexes (heterochiasmy) can facilitate or even cause recombination suppression. In the extreme case—complete lack of recombination in the heterogametic sex (achiasmy)—the entire sex-specific chromosome is automatically non-recombining. In this study, I analyse sex-specific recombination rates in a dioecious plant Silene latifolia (Caryophyllaceae), which evolved separate sexes and sex chromosomes ~11 million years ago. I reconstruct high-density RNAseq-based genetic maps including over five thousand genic markers for the two sexes separately. The comparison of the male and female maps reveals only modest heterochiasmy across the genome, with the exception of the sex chromosomes, where recombination is suppressed in males. This indicates that heterochiasmy likely played only a minor, if any, role in NRY evolution in S. latifolia, as recombination suppression is specific to NRY rather than to the entire genome in males. Other mechanisms such as structural rearrangements and/or epigenetic modifications were likely involved, and comparative genome analysis and genetic mapping in multiple Silene species will help to shed light on the mechanism(s) of recombination suppression that led to the evolution of sex chromosomes.
Collapse
|
30
|
Huang Z, Xu Z, Bai H, Huang Y, Kang N, Ding X, Liu J, Luo H, Yang C, Chen W, Guo Q, Xue L, Zhang X, Xu L, Chen M, Fu H, Chen Y, Yue Z, Fukagawa T, Liu S, Chang G, Xu L. Evolutionary analysis of a complete chicken genome. Proc Natl Acad Sci U S A 2023; 120:e2216641120. [PMID: 36780517 PMCID: PMC9974502 DOI: 10.1073/pnas.2216641120] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
Microchromosomes are prevalent in nonmammalian vertebrates [P. D. Waters et al., Proc. Natl. Acad. Sci. U.S.A. 118 (2021)], but a few of them are missing in bird genome assemblies. Here, we present a new chicken reference genome containing all autosomes, a Z and a W chromosome, with all gaps closed except for the W. We identified ten small microchromosomes (termed dot chromosomes) with distinct sequence and epigenetic features, among which six were newly assembled. Those dot chromosomes exhibit extremely high GC content and a high level of DNA methylation and are enriched for housekeeping genes. The pericentromeric heterochromatin of dot chromosomes is disproportionately large and continues to expand with the proliferation of satellite DNA and testis-expressed genes. Our analyses revealed that the 41-bp CNM repeat frequently forms higher-order repeats (HORs) at the centromeres of acrocentric chromosomes. The centromere core regions where the kinetochore attaches often encompass telomeric sequence (TTAGGG)n, and in a one of the dot chromosomes, the centromere core recruits an endogenous retrovirus (ERV). We further demonstrate that the W chromosome shares some common features with dot chromosomes, having large arrays of hypermethylated tandem repeats. Finally, using the complete chicken chromosome models, we reconstructed a fine picture of chordate karyotype evolution, revealing frequent chromosomal fusions before and after vertebrate whole-genome duplications. Our sequence and epigenetic characterization of chicken chromosomes shed insights into the understanding of vertebrate genome evolution and chromosome biology.
Collapse
Affiliation(s)
- Zhen Huang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou350108, China
| | - Zaoxu Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Life Sciences and Technology, Longdong University, Qingyang, Gansu Province745000, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou225009, China
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou225009, China
| | - Yongji Huang
- Institute of Oceanography, Minjiang University, Fuzhou350108, China
| | - Na Kang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Xiaoting Ding
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Jing Liu
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna1090, Austria
| | - Haoran Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | | | | | - Qixin Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou225009, China
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou225009, China
| | - Lingzhan Xue
- Aquaculture and Genetic breeding laboratory, Freshwater Fisheries Research Institute of Fujian, Fuzhou350002, China
| | - Xueping Zhang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Li Xu
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Meiling Chen
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Honggao Fu
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Youling Chen
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Zhicao Yue
- Department of Cell Biology and Medical Genetics, International Cancer Center, and Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Guangdong, 518054, China
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Shanlin Liu
- Department of Entomology, China Agricultural University, Beijing100193, China
| | - Guobin Chang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou225009, China
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou225009, China
| | - Luohao Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
| |
Collapse
|
31
|
Sultanova Z, Downing PA, Carazo P. Genetic sex determination, sex chromosome size and sex-specific lifespans across tetrapods. J Evol Biol 2023; 36:480-494. [PMID: 36537352 PMCID: PMC10107984 DOI: 10.1111/jeb.14130] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022]
Abstract
Sex differences in lifespan are ubiquitous across the tree of life and exhibit broad taxonomic patterns that remain a puzzle, such as males living longer than females in birds and vice versa in mammals. The prevailing unguarded X hypothesis explains sex differences in lifespan by differential expression of recessive mutations on the X or Z chromosome of the heterogametic sex, but has only received indirect support to date. An alternative hypothesis is that the accumulation of deleterious mutations and repetitive elements on the Y or W chromosome might lower the survival of the heterogametic sex ('toxic Y' hypothesis). Here, we use a new database to report lower survival of the heterogametic relative to the homogametic sex across 136 species of birds, mammals, reptiles and amphibians, as expected if sex chromosomes shape sex-specific lifespans, and consistent with previous findings. We also found that the relative sizes of both the X and the Y chromosomes in mammals (but not the Z or the W chromosomes in birds) are associated with sex differences in lifespan, as predicted by the unguarded X and the 'toxic Y'. Furthermore, we report that the relative size of the Y is negatively associated with male lifespan in mammals, so that small Y size correlates with increased male lifespan. In theory, toxic Y effects are expected to be particularly strong in mammals, and we did not find similar effects in birds. Our results confirm the role of sex chromosomes in explaining sex differences in lifespan across tetrapods and further suggest that, at least in mammals, 'toxic Y' effects may play an important part in this role.
Collapse
Affiliation(s)
- Zahida Sultanova
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Philip A Downing
- Department of Biology, Lund University, Lund, Sweden.,Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Pau Carazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
32
|
Smith J, Alfieri JM, Anthony N, Arensburger P, Athrey GN, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin PM, Carroll R, Casono MC, Charles M, Cheng H, Chiodi M, Cigan L, Coghill LM, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers JM, Derks M, Diack AB, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman SR, Formenti G, Frantz LA, Fulton JE, Gaginskaya E, Galkina S, Gallardo RA, Geibel J, Gheyas AA, Godinez CJP, Goodell A, Graves JA, Griffin DK, Haase B, Han JL, Hanotte O, Henderson LJ, Hou ZC, Howe K, Huynh L, Ilatsia E, Jarvis ED, Johnson SM, Kaufman J, Kelly T, Kemp S, Kern C, Keroack JH, Klopp C, Lagarrigue S, Lamont SJ, Lange M, Lanke A, Larkin DM, Larson G, Layos JKN, Lebrasseur O, Malinovskaya LP, Martin RJ, Martin Cerezo ML, Mason AS, McCarthy FM, McGrew MJ, Mountcastle J, Muhonja CK, Muir W, Muret K, Murphy TD, Ng'ang'a I, Nishibori M, O'Connor RE, Ogugo M, Okimoto R, Ouko O, Patel HR, Perini F, Pigozzi MI, Potter KC, Price PD, Reimer C, Rice ES, Rocos N, Rogers TF, Saelao P, Schauer J, Schnabel RD, Schneider VA, Simianer H, Smith A, et alSmith J, Alfieri JM, Anthony N, Arensburger P, Athrey GN, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin PM, Carroll R, Casono MC, Charles M, Cheng H, Chiodi M, Cigan L, Coghill LM, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers JM, Derks M, Diack AB, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman SR, Formenti G, Frantz LA, Fulton JE, Gaginskaya E, Galkina S, Gallardo RA, Geibel J, Gheyas AA, Godinez CJP, Goodell A, Graves JA, Griffin DK, Haase B, Han JL, Hanotte O, Henderson LJ, Hou ZC, Howe K, Huynh L, Ilatsia E, Jarvis ED, Johnson SM, Kaufman J, Kelly T, Kemp S, Kern C, Keroack JH, Klopp C, Lagarrigue S, Lamont SJ, Lange M, Lanke A, Larkin DM, Larson G, Layos JKN, Lebrasseur O, Malinovskaya LP, Martin RJ, Martin Cerezo ML, Mason AS, McCarthy FM, McGrew MJ, Mountcastle J, Muhonja CK, Muir W, Muret K, Murphy TD, Ng'ang'a I, Nishibori M, O'Connor RE, Ogugo M, Okimoto R, Ouko O, Patel HR, Perini F, Pigozzi MI, Potter KC, Price PD, Reimer C, Rice ES, Rocos N, Rogers TF, Saelao P, Schauer J, Schnabel RD, Schneider VA, Simianer H, Smith A, Stevens MP, Stiers K, Tiambo CK, Tixier-Boichard M, Torgasheva AA, Tracey A, Tregaskes CA, Vervelde L, Wang Y, Warren WC, Waters PD, Webb D, Weigend S, Wolc A, Wright AE, Wright D, Wu Z, Yamagata M, Yang C, Yin ZT, Young MC, Zhang G, Zhao B, Zhou H. Fourth Report on Chicken Genes and Chromosomes 2022. Cytogenet Genome Res 2023; 162:405-528. [PMID: 36716736 PMCID: PMC11835228 DOI: 10.1159/000529376] [Show More Authors] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Affiliation(s)
- Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - James M. Alfieri
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Biology, Texas A&M University, College Station, Texas, USA
- Department of Poultry Science, Texas A&M University, College Station, Texas, USA
| | | | - Peter Arensburger
- Biological Sciences Department, California State Polytechnic University, Pomona, California, USA
| | - Giridhar N. Athrey
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Poultry Science, Texas A&M University, College Station, Texas, USA
| | | | - Adam Balic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Philippe Bardou
- Université de Toulouse, INRAE, ENVT, GenPhySE, Sigenae, Castanet Tolosan, France
| | | | - Yves Bigot
- PRC, UMR INRAE 0085, CNRS 7247, Centre INRAE Val de Loire, Nouzilly, France
| | - Heath Blackmon
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Pavel M. Borodin
- Department of Molecular Genetics, Cell Biology and Bioinformatics, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Rachel Carroll
- Department of Animal Sciences, Data Science and Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | | | - Mathieu Charles
- University Paris-Saclay, INRAE, AgroParisTech, GABI, Sigenae, Jouy-en-Josas, France
| | - Hans Cheng
- USDA, ARS, USNPRC, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | | | | | - Lyndon M. Coghill
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | - Richard Crooijmans
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Sean Davey
- University of Arizona, Tucson, Arizona, USA
| | - Asya Davidian
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Fabien Degalez
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Jack M. Dekkers
- Department of Animal Science, University of California, Davis, California, USA
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
| | - Martijn Derks
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Abigail B. Diack
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Appolinaire Djikeng
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | | | - Alexander Dyomin
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | | | | | | | - Laurent A.F. Frantz
- Queen Mary University of London, Bethnal Green, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Janet E. Fulton
- Hy-Line International, Research and Development, Dallas Center, Iowa, USA
| | - Elena Gaginskaya
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Svetlana Galkina
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Rodrigo A. Gallardo
- School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Animal Science, University of California, Davis, California, USA
| | - Johannes Geibel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Almas A. Gheyas
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Cyrill John P. Godinez
- Department of Animal Science, College of Agriculture and Food Science, Visayas State University, Baybay City, Philippines
| | | | - Jennifer A.M. Graves
- Department of Environment and Genetics, La Trobe University, Melbourne, Victoria, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | | | | | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre for Tropical Livestock Genetics and Health, The Roslin Institute, Edinburgh, UK
| | - Lindsay J. Henderson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | - Lan Huynh
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Evans Ilatsia
- Dairy Research Institute, Kenya Agricultural and Livestock Organization, Naivasha, Kenya
| | | | | | - Jim Kaufman
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Terra Kelly
- School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Animal Science, University of California, Davis, California, USA
| | - Steve Kemp
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, Saint-Gilles, France
| | - Colin Kern
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, California, USA
| | | | - Christophe Klopp
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Sandrine Lagarrigue
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Susan J. Lamont
- Department of Animal Science, University of California, Davis, California, USA
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
| | - Margaret Lange
- Centre for Tropical Livestock Genetics and Health (CTLGH) − The Roslin Institute, Edinburgh, UK
| | - Anika Lanke
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Denis M. Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, Oxford, UK
| | - John King N. Layos
- College of Agriculture and Forestry, Capiz State University, Mambusao, Philippines
| | - Ophélie Lebrasseur
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Toulouse III Paul Sabatier, Toulouse, France
- Instituto Nacional de Antropología y Pensamiento Latinoamericano, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lyubov P. Malinovskaya
- Department of Cytology and Genetics, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Rebecca J. Martin
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | | | | | | | - Michael J. McGrew
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | | | - Christine Kamidi Muhonja
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - William Muir
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Kévin Muret
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Terence D. Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Masahide Nishibori
- Laboratory of Animal Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | | | - Moses Ogugo
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Ron Okimoto
- Cobb-Vantress, Siloam Springs, Arkansas, USA
| | - Ochieng Ouko
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | - Hardip R. Patel
- The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Francesco Perini
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - María Ines Pigozzi
- INBIOMED (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Peter D. Price
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Christian Reimer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Edward S. Rice
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Nicolas Rocos
- USDA, ARS, USNPRC, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | - Thea F. Rogers
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, California, USA
- Veterinary Pest Genetics Research Unit, USDA, Kerrville, Texas, USA
| | - Jens Schauer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Robert D. Schnabel
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Valerie A. Schneider
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Henner Simianer
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Adrian Smith
- Department of Zoology, University of Oxford, Oxford, UK
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Kyle Stiers
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | | | | | - Anna A. Torgasheva
- Department of Molecular Genetics, Cell Biology and Bioinformatics, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Alan Tracey
- University Paris-Saclay, INRAE, AgroParisTech, GABI, Sigenae, Jouy-en-Josas, France
| | - Clive A. Tregaskes
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Ying Wang
- Department of Animal Science, University of California, Davis, California, USA
| | - Wesley C. Warren
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Science, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - David Webb
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Steffen Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Anna Wolc
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
- Hy-Line International, Research and Development, Dallas Center, Iowa, USA
| | - Alison E. Wright
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology, IFM Biology, Linköping University, Linköping, Sweden
| | - Zhou Wu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Masahito Yamagata
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | - Zhong-Tao Yin
- Department of Animal Sciences, Data Science and Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | | | - Guojie Zhang
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingru Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
33
|
Pensabene E, Yurchenko A, Kratochvíl L, Rovatsos M. Madagascar Leaf-Tail Geckos ( Uroplatus spp.) Share Independently Evolved Differentiated ZZ/ZW Sex Chromosomes. Cells 2023; 12:260. [PMID: 36672195 PMCID: PMC9856856 DOI: 10.3390/cells12020260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/10/2023] Open
Abstract
Geckos are an excellent group to study the evolution of sex determination, as they possess a remarkable variability ranging from a complete absence of sex chromosomes to highly differentiated sex chromosomes. We explored sex determination in the Madagascar leaf-tail geckos of the genus Uroplatus. The cytogenetic analyses revealed highly heterochromatic W chromosomes in all three examined species (Uroplatus henkeli, U. alluaudi, U. sikorae). The comparative gene coverage analysis between sexes in U. henkeli uncovered an extensive Z-specific region, with a gene content shared with the chicken chromosomes 8, 20, 26 and 28. The genomic region homologous to chicken chromosome 28 has been independently co-opted for the role of sex chromosomes in several vertebrate lineages, including monitors, beaded lizards and monotremes, perhaps because it contains the amh gene, whose homologs were repeatedly recruited as a sex-determining locus. We demonstrate that all tested species of leaf-tail geckos share homologous sex chromosomes despite the differences in shape and size of their W chromosomes, which are not homologous to the sex chromosomes of other closely related genera. The rather old (at least 40 million years), highly differentiated sex chromosomes of Uroplatus geckos can serve as a great system to study the convergence of sex chromosomes evolved from the same genomic region.
Collapse
Affiliation(s)
| | | | | | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| |
Collapse
|
34
|
Moreira LR, Klicka J, Smith BT. Demography and linked selection interact to shape the genomic landscape of codistributed woodpeckers during the Ice Age. Mol Ecol 2023; 32:1739-1759. [PMID: 36617622 DOI: 10.1111/mec.16841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/10/2023]
Abstract
The influence of genetic drift on population dynamics during Pleistocene glacial cycles is well understood, but the role of selection in shaping patterns of genomic variation during these events is less explored. We resequenced whole genomes to investigate how demography and natural selection interact to generate the genomic landscapes of Downy and Hairy Woodpecker, species codistributed in previously glaciated North America. First, we explored the spatial and temporal patterns of genomic diversity produced by neutral evolution. Next, we tested (i) whether levels of nucleotide diversity along the genome are correlated with intrinsic genomic properties, such as recombination rate and gene density, and (ii) whether different demographic trajectories impacted the efficacy of selection. Our results revealed cycles of bottleneck and expansion, and genetic structure associated with glacial refugia. Nucleotide diversity varied widely along the genome, but this variation was highly correlated between the species, suggesting the presence of conserved genomic features. In both taxa, nucleotide diversity was positively correlated with recombination rate and negatively correlated with gene density, suggesting that linked selection played a role in reducing diversity. Despite strong fluctuations in effective population size, the maintenance of relatively large populations during glaciations may have facilitated selection. Under these conditions, we found evidence that the individual demographic trajectory of populations modulated linked selection, with purifying selection being more efficient in removing deleterious alleles in large populations. These results highlight that while genome-wide variation reflects the expected signature of demographic change during climatic perturbations, the interaction of multiple processes produces a predictable and highly heterogeneous genomic landscape.
Collapse
Affiliation(s)
- Lucas R Moreira
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, USA.,Department of Ornithology, American Museum of Natural History, New York City, New York, USA.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - John Klicka
- Burke Museum of Natural History and Culture and Department of Biology, University of Washington, Seattle, Washington, USA
| | - Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, New York City, New York, USA
| |
Collapse
|
35
|
Long X, Charlesworth D, Qi J, Wu R, Chen M, Wang Z, Xu L, Fu H, Zhang X, Chen X, He L, Zheng L, Huang Z, Zhou Q. Independent Evolution of Sex Chromosomes and Male Pregnancy-Related Genes in Two Seahorse Species. Mol Biol Evol 2022; 40:6964685. [PMID: 36578180 PMCID: PMC9851323 DOI: 10.1093/molbev/msac279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/14/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Unlike birds and mammals, many teleosts have homomorphic sex chromosomes, and changes in the chromosome carrying the sex-determining locus, termed "turnovers", are common. Recent turnovers allow studies of several interesting questions. One question is whether the new sex-determining regions evolve to become completely non-recombining, and if so, how and why. Another is whether (as predicted) evolutionary changes that benefit one sex accumulate in the newly sex-linked region. To study these questions, we analyzed the genome sequences of two seahorse species of the Syngnathidae, a fish group in which many species evolved a unique structure, the male brood pouch. We find that both seahorse species have XY sex chromosome systems, but their sex chromosome pairs are not homologs, implying that at least one turnover event has occurred. The Y-linked regions occupy 63.9% and 95.1% of the entire sex chromosome of the two species and do not exhibit extensive sequence divergence with their X-linked homologs. We find evidence for occasional recombination between the extant sex chromosomes that may account for their homomorphism. We argue that these Y-linked regions did not evolve by recombination suppression after the turnover, but by the ancestral nature of the low crossover rates in these chromosome regions. With such an ancestral crossover landscape, a turnover can instantly create an extensive Y-linked region. Finally, we test for adaptive evolution of male pouch-related genes after they became Y-linked in the seahorse.
Collapse
Affiliation(s)
- Xin Long
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China,Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou 311100, China
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3LF, UK
| | - Jianfei Qi
- Department of Aquaculture, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Ruiqiong Wu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Meiling Chen
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Zongji Wang
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Luohao Xu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Honggao Fu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Xueping Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Xinxin Chen
- Department of Aquaculture, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Libin He
- Department of Aquaculture, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | | | | | - Qi Zhou
- Corresponding authors: E-mails: ; ;
| |
Collapse
|
36
|
Kostmann A, Kratochvíl L, Rovatsos M. ZZ/ZW Sex Chromosomes in the Madagascar Girdled Lizard, Zonosaurus madagascariensis (Squamata: Gerrhosauridae). Genes (Basel) 2022; 14:genes14010099. [PMID: 36672840 PMCID: PMC9859402 DOI: 10.3390/genes14010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Scincoidea, the reptilian clade that includes girdled lizards, night lizards, plated lizards and skinks, are considered as a lineage with diversity in sex-determining systems. Recently, the hypothesis on the variability in sex determination in skinks and even more the absence of sex chromosomes in some of them has been rivalling. Homologous, evolutionary stable XX/XY sex chromosomes were documented to be widespread across skinks. However, sex determination in the other scincoidean families is highly understudied. ZZ/ZW sex chromosomes have been identified only in night lizards and a single species of plated lizards. It seems that although there are different sex chromosome systems among scincoidean lineages, they share one common trait: they are mostly poorly differentiated and often undetectable by cytogenetic methods. Here, we report one of the exceptions, demonstrating for the first time ZZ/ZW sex chromosomes in the plated lizard Zonosaurus madagascariensis. Its sex chromosomes are morphologically similar, but the W is clearly detectable by comparative genomic hybridization (CGH), suggesting that the Z and W chromosomes highly differ in sequence content. Our findings confirm the presence of female heterogamety in plated lizards and provides novel insights to expand our understanding of sex chromosome evolution in scincoidean lizards.
Collapse
|
37
|
Han W, Liu L, Wang J, Wei H, Li Y, Zhang L, Guo Z, Li Y, Liu T, Zeng Q, Xing Q, Shu Y, Wang T, Yang Y, Zhang M, Li R, Yu J, Pu Z, Lv J, Lian S, Hu J, Hu X, Bao Z, Bao L, Zhang L, Wang S. Ancient homomorphy of molluscan sex chromosomes sustained by reversible sex-biased genes and sex determiner translocation. Nat Ecol Evol 2022; 6:1891-1906. [PMID: 36280781 DOI: 10.1038/s41559-022-01898-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/05/2022] [Indexed: 12/15/2022]
Abstract
Contrary to classic theory prediction, sex-chromosome homomorphy is prevalent in the animal kingdom but it is unclear how ancient homomorphic sex chromosomes avoid chromosome-scale degeneration. Molluscs constitute the second largest, Precambrian-originated animal phylum and have ancient, uncharacterized homomorphic sex chromosomes. Here, we profile eight genomes of the bivalve mollusc family of Pectinidae in a phylogenetic context and show 350 million years sex-chromosome homomorphy, which is the oldest known sex-chromosome homomorphy in the animal kingdom, far exceeding the ages of well-known heteromorphic sex chromosomes such as 130-200 million years in mammals, birds and flies. The long-term undifferentiation of molluscan sex chromosomes is potentially sustained by the unexpected intertwined regulation of reversible sex-biased genes, together with the lack of sexual dimorphism and occasional sex chromosome turnover. The pleiotropic constraint of regulation of reversible sex-biased genes is widely present in ancient homomorphic sex chromosomes and might be resolved in heteromorphic sex chromosomes through gene duplication followed by subfunctionalization. The evolutionary dynamics of sex chromosomes suggest a mechanism for 'inheritance' turnover of sex-determining genes that is mediated by translocation of a sex-determining enhancer. On the basis of these findings, we propose an evolutionary model for the long-term preservation of homomorphic sex chromosomes.
Collapse
Affiliation(s)
- Wentao Han
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Liangjie Liu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jing Wang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Huilan Wei
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuli Li
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lijing Zhang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhenyi Guo
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yajuan Li
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Tian Liu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qifan Zeng
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Qiang Xing
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ya Shu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Tong Wang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yaxin Yang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Meiwei Zhang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ruojiao Li
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jiachen Yu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhongqi Pu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jia Lv
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shanshan Lian
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingjie Hu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Xiaoli Hu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Lisui Bao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.
| | - Lingling Zhang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Shi Wang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China.
| |
Collapse
|
38
|
Ma W, Rovatsos M. Sex chromosome evolution: The remarkable diversity in the evolutionary rates and mechanisms. J Evol Biol 2022; 35:1581-1588. [DOI: 10.1111/jeb.14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 12/03/2022]
Affiliation(s)
- Wen‐Juan Ma
- Department of Molecular Biosciences University of Kansas Lawrence Kansas USA
| | | |
Collapse
|
39
|
Nath S, Welch LA, Flanagan MK, White MA. Meiotic pairing and double-strand break formation along the heteromorphic threespine stickleback sex chromosomes. Chromosome Res 2022; 30:429-442. [PMID: 35635635 DOI: 10.1007/s10577-022-09699-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/25/2023]
Abstract
Double-strand break repair during meiosis is normally achieved using the homologous chromosome as a repair template. Heteromorphic sex chromosomes share little sequence homology, presenting unique challenges to the repair of double-strand breaks. Our understanding of how heteromorphic sex chromosomes behave during meiosis has been focused on ancient sex chromosomes, where the X and Y differ markedly in overall structure and gene content. It remains unclear how more recently evolved sex chromosomes that share considerably more sequence homology with one another pair and form double-strand breaks. One possibility is barriers to pairing evolve rapidly. Alternatively, recently evolved sex chromosomes may exhibit pairing and double-strand break repair that more closely resembles that of their autosomal ancestors. Here, we use the recently evolved X and Y chromosomes of the threespine stickleback fish (Gasterosteus aculeatus) to study patterns of pairing and double-stranded break formation using molecular cytogenetics. We found that the sex chromosomes of threespine stickleback fish did not pair exclusively in the pseudoautosomal region. Instead, the chromosomes fully paired in a non-homologous fashion. To achieve this, the X chromosome underwent synaptic adjustment during pachytene to match the axis length of the Y chromosome. Double-strand break formation and repair rate also matched that of the autosomes. Our results highlight that recently evolved sex chromosomes exhibit meiotic behavior that is reminiscent of autosomes and argues for further work to identify the homologous templates that are used to repair double-strand breaks on the X and Y chromosomes.
Collapse
Affiliation(s)
- Shivangi Nath
- Department of Genetics, University of Georgia, 120 Green St, Athens, GA, 30602, USA
| | - Lucille A Welch
- Department of Genetics, University of Georgia, 120 Green St, Athens, GA, 30602, USA
| | - Mary K Flanagan
- Department of Genetics, University of Georgia, 120 Green St, Athens, GA, 30602, USA
| | - Michael A White
- Department of Genetics, University of Georgia, 120 Green St, Athens, GA, 30602, USA.
| |
Collapse
|
40
|
Evans BJ, Mudd AB, Bredeson JV, Furman BLS, Wasonga DV, Lyons JB, Harland RM, Rokhsar DS. New insights into Xenopus sex chromosome genomics from the Marsabit clawed frog X. borealis. J Evol Biol 2022; 35:1777-1790. [PMID: 36054077 PMCID: PMC9722552 DOI: 10.1111/jeb.14078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/23/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022]
Abstract
In many groups, sex chromosomes change frequently but the drivers of their rapid evolution are varied and often poorly characterized. With an aim of further understanding sex chromosome turnover, we investigated the polymorphic sex chromosomes of the Marsabit clawed frog, Xenopus borealis, using genomic data and a new chromosome-scale genome assembly. We confirmed previous findings that 54.1 Mb of chromosome 8L is sex-linked in animals from east Kenya and a laboratory strain, but most (or all) of this region is not sex-linked in natural populations from west Kenya. Previous work suggests possible degeneration of the Z chromosomes in the east population because many sex-linked transcripts of this female heterogametic population have female-biased expression, and we therefore expected this chromosome to not be present in the west population. In contrast, our simulations support a model where most or all of the sex-linked portion of the Z chromosome from the east acquired autosomal segregation in the west, and where much genetic variation specific to the large sex-linked portion of the W chromosome from the east is not present in the west. These recent changes are consistent with the hot-potato model, wherein sex chromosome turnover is favoured by natural selection if it purges a (minimally) degenerate sex-specific sex chromosome, but counterintuitively suggest natural selection failed to purge a Z chromosome that has signs of more advanced and possibly more ancient regulatory degeneration. These findings highlight complex evolutionary dynamics of young, rapidly evolving Xenopus sex chromosomes and set the stage for mechanistic work aimed at pinpointing additional sex-determining genes in this group.
Collapse
Affiliation(s)
- Ben J Evans
- Biology Department, Life Sciences Building Room 328, McMaster University, Hamilton, Ontario, Canada
| | - Austin B Mudd
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Jessen V Bredeson
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Benjamin L S Furman
- Biology Department, Life Sciences Building Room 328, McMaster University, Hamilton, Ontario, Canada
- Canexia Health, Vancouver, British Columbia, Canada
| | | | - Jessica B Lyons
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Richard M Harland
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Dan S Rokhsar
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Okinawa Institute of Science and Technology Graduate University, Onna, Japan
- Chan-Zuckerberg BioHub, San Francisco, California, USA
| |
Collapse
|
41
|
Zhang S, Wu Z, Ma D, Zhai J, Han X, Jiang Z, Liu S, Xu J, Jiao P, Li Z. Chromosome-scale assemblies of the male and female Populus euphratica genomes reveal the molecular basis of sex determination and sexual dimorphism. Commun Biol 2022; 5:1186. [PMCID: PMC9636151 DOI: 10.1038/s42003-022-04145-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Reference-quality genomes of both sexes are essential for studying sex determination and sex-chromosome evolution, as their gene contents and expression profiles differ. Here, we present independent chromosome-level genome assemblies for the female (XX) and male (XY) genomes of desert poplar (Populus euphratica), resolving a 22.7-Mb X and 24.8-Mb Y chromosome. We also identified a relatively complete 761-kb sex-linked region (SLR) in the peritelomeric region on chromosome 14 (Y). Within the SLR, recombination around the partial repeats for the feminizing factor ARR17 (ARABIDOPSIS RESPONSE REGULATOR 17) was potentially suppressed by flanking palindromic arms and the dense accumulation of retrotransposons. The inverted small segments S1 and S2 of ARR17 exhibited relaxed selective pressure and triggered sex determination by generating 24-nt small interfering RNAs that induce male-specific hyper-methylation at the promoter of the autosomal targeted ARR17. We also detected two male-specific fusion genes encoding proteins with NB-ARC domains at the breakpoint region of an inversion in the SLR that may be responsible for the observed sexual dimorphism in immune responses. Our results show that the SLR appears to follow proposed evolutionary dynamics for sex chromosomes and advance our understanding of sex determination and the evolution of sex chromosomes in Populus. Reference-quality genomes of both sexes of the dioecious tree species, Populus euphratica, provide further insight into the evolution of Populus sex chromosomes and highlight male-specific fusion genes that may contribute to sexual dimorphism.
Collapse
Affiliation(s)
- Shanhe Zhang
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Zhihua Wu
- grid.453534.00000 0001 2219 2654College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004 China
| | - De Ma
- grid.410753.4Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Juntuan Zhai
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Xiaoli Han
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Zhenbo Jiang
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Shuo Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074 China
| | - Jingdong Xu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074 China
| | - Peipei Jiao
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Zhijun Li
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| |
Collapse
|
42
|
Gong G, Xiong Y, Xiao S, Li XY, Huang P, Liao Q, Han Q, Lin Q, Dan C, Zhou L, Ren F, Zhou Q, Gui JF, Mei J. Origin and chromatin remodeling of young X/Y sex chromosomes in catfish with sexual plasticity. Natl Sci Rev 2022; 10:nwac239. [PMID: 36846302 PMCID: PMC9945428 DOI: 10.1093/nsr/nwac239] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/22/2022] [Accepted: 10/21/2022] [Indexed: 11/15/2022] Open
Abstract
Assembly of a complete Y chromosome is a significant challenge in animals with an XX/XY sex-determination system. Recently, we created YY-supermale yellow catfish by crossing XY males with sex-reversed XY females, providing a valuable model for Y-chromosome assembly and evolution. Here, we assembled highly homomorphic Y and X chromosomes by sequencing genomes of the YY supermale and XX female in yellow catfish, revealing their nucleotide divergences with only less than 1% and with the same gene compositions. The sex-determining region (SDR) was identified to locate within a physical distance of 0.3 Mb by FST scanning. Strikingly, the incipient sex chromosomes were revealed to originate via autosome-autosome fusion and were characterized by a highly rearranged region with an SDR downstream of the fusion site. We found that the Y chromosome was at a very early stage of differentiation, as no clear evidence of evolutionary strata and classical structure features of recombination suppression for a rather late stage of Y-chromosome evolution were observed. Significantly, a number of sex-antagonistic mutations and the accumulation of repetitive elements were discovered in the SDR, which might be the main driver of the initial establishment of recombination suppression between young X and Y chromosomes. Moreover, distinct three-dimensional chromatin organizations of the Y and X chromosomes were identified in the YY supermales and XX females, as the X chromosome exhibited denser chromatin structure than the Y chromosome, while they respectively have significantly spatial interactions with female- and male-related genes compared with other autosomes. The chromatin configuration of the sex chromosomes as well as the nucleus spatial organization of the XX neomale were remodeled after sex reversal and similar to those in YY supermales, and a male-specific loop containing the SDR was found in the open chromatin region. Our results elucidate the origin of young sex chromosomes and the chromatin remodeling configuration in the catfish sexual plasticity.
Collapse
Affiliation(s)
- Gaorui Gong
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Xiong
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Shijun Xiao
- Jiaxing Key Laboratory for New Germplasm Breeding of Economic Mycology, Jiaxing 314000, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Peipei Huang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China,School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qian Liao
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingqing Han
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaohong Lin
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China,State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Cheng Dan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Fan Ren
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | | | - Jie Mei
- Corresponding author. E-mail:
| |
Collapse
|
43
|
Elkrewi M, Khauratovich U, Toups MA, Bett VK, Mrnjavac A, Macon A, Fraisse C, Sax L, Huylmans AK, Hontoria F, Vicoso B. ZW sex-chromosome evolution and contagious parthenogenesis in Artemia brine shrimp. Genetics 2022; 222:iyac123. [PMID: 35977389 PMCID: PMC9526061 DOI: 10.1093/genetics/iyac123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Eurasian brine shrimp (genus Artemia) have closely related sexual and asexual lineages of parthenogenetic females, which produce rare males at low frequencies. Although they are known to have ZW chromosomes, these are not well characterized, and it is unclear whether they are shared across the clade. Furthermore, the underlying genetic architecture of the transmission of asexuality, which can occur when rare males mate with closely related sexual females, is not well understood. We produced a chromosome-level assembly for the sexual Eurasian species Artemia sinica and characterized in detail the pair of sex chromosomes of this species. We combined this new assembly with short-read genomic data for the sexual species Artemia sp. Kazakhstan and several asexual lineages of Artemia parthenogenetica, allowing us to perform an in-depth characterization of sex-chromosome evolution across the genus. We identified a small differentiated region of the ZW pair that is shared by all sexual and asexual lineages, supporting the shared ancestry of the sex chromosomes. We also inferred that recombination suppression has spread to larger sections of the chromosome independently in the American and Eurasian lineages. Finally, we took advantage of a rare male, which we backcrossed to sexual females, to explore the genetic basis of asexuality. Our results suggest that parthenogenesis is likely partly controlled by a locus on the Z chromosome, highlighting the interplay between sex determination and asexuality.
Collapse
Affiliation(s)
- Marwan Elkrewi
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Uladzislava Khauratovich
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna 1030, Austria
| | - Melissa A Toups
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
- Faculty of Science and Technology, Department of Life and Environmental Sciences, Bournemouth University, Poole BH12 5BB, UK
| | | | - Andrea Mrnjavac
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Ariana Macon
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Christelle Fraisse
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
- CNRS, Univ. Lille, UMR 8198—Evo-Eco-Paleo, 59000 Lille, France
| | - Luca Sax
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
- Lewis and Clark College, Portland, OR 97219, USA
| | - Ann Kathrin Huylmans
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg Universität Mainz, Mainz 55122, Germany
| | - Francisco Hontoria
- Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes (Castellón), Spain
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| |
Collapse
|
44
|
Wang D, Li Y, Li M, Yang W, Ma X, Zhang L, Wang Y, Feng Y, Zhang Y, Zhou R, Sanderson BJ, Keefover-Ring K, Yin T, Smart LB, DiFazio SP, Liu J, Olson M, Ma T. Repeated turnovers keep sex chromosomes young in willows. Genome Biol 2022; 23:200. [PMID: 36151581 PMCID: PMC9502649 DOI: 10.1186/s13059-022-02769-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/08/2022] [Indexed: 01/10/2023] Open
Abstract
Background Salicaceae species have diverse sex determination systems and frequent sex chromosome turnovers. However, compared with poplars, the diversity of sex determination in willows is poorly understood, and little is known about the evolutionary forces driving their turnover. Here, we characterized the sex determination in two Salix species, S. chaenomeloides and S. arbutifolia, which have an XY system on chromosome 7 and 15, respectively. Results Based on the assemblies of their sex determination regions, we found that the sex determination mechanism of willows may have underlying similarities with poplars, both involving intact and/or partial homologs of a type A cytokinin response regulator (RR) gene. Comparative analyses suggested that at least two sex turnover events have occurred in Salix, one preserving the ancestral pattern of male heterogamety, and the other changing heterogametic sex from XY to ZW, which could be partly explained by the “deleterious mutation load” and “sexually antagonistic selection” theoretical models. We hypothesize that these repeated turnovers keep sex chromosomes of willow species in a perpetually young state, leading to limited degeneration. Conclusions Our findings further improve the evolutionary trajectory of sex chromosomes in Salicaceae species, explore the evolutionary forces driving the repeated turnovers of their sex chromosomes, and provide a valuable reference for the study of sex chromosomes in other species. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02769-w.
Collapse
Affiliation(s)
- Deyan Wang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Yiling Li
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Mengmeng Li
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Wenlu Yang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Xinzhi Ma
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Lei Zhang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Yubo Wang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Yanlin Feng
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Yuanyuan Zhang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Ran Zhou
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Brian J Sanderson
- Department of Biology, West Virginia University, Morgantown, WV, USA.,Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin-Madison, Madison, WI, USA
| | - Tongming Yin
- The Key Laboratory of Tree Genetics and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, Nanjing, China
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Jianquan Liu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China.
| | - Matthew Olson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
| | - Tao Ma
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China.
| |
Collapse
|
45
|
Li X, Gao R, Chen G, Price AL, Øksnebjerg DB, Hosner PA, Zhou Y, Zhang G, Feng S. Draft genome assemblies of four manakins. Sci Data 2022; 9:564. [PMID: 36100590 PMCID: PMC9470731 DOI: 10.1038/s41597-022-01680-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022] Open
Abstract
Manakins are a family of small suboscine passerine birds characterized by their elaborate courtship displays, non-monogamous mating system, and sexual dimorphism. This family has served as a good model for the study of sexual selection. Here we present genome assemblies of four manakin species, including Cryptopipo holochlora, Dixiphia pipra (also known as Pseudopipra pipra), Machaeropterus deliciosus and Masius chrysopterus, generated by Single-tube Long Fragment Read (stLFR) technology. The assembled genome sizes ranged from 1.10 Gb to 1.19 Gb, with average scaffold N50 of 29 Mb and contig N50 of 169 Kb. On average, 12,055 protein-coding genes were annotated in the genomes, and 9.79% of the genomes were annotated as repetitive elements. We further identified 75 Mb of Z-linked sequences in manakins, containing 585 to 751 genes and an ~600 Kb pseudoautosomal region (PAR). One notable finding from these Z-linked sequences is that a possible Z-to-autosome/PAR reversal could have occurred in M. chrysopterus. These de novo genomes will contribute to a deeper understanding of evolutionary history and sexual selection in manakins.
Collapse
Affiliation(s)
- Xuemei Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Rongsheng Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Guangji Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Alivia Lee Price
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Daniel Bilyeli Øksnebjerg
- GLOBE Institute, Section for Evolutionary Genomics, University of Copenhagen, Copenhagen, Øster Farimagsgade 5, 1014, Copenhagen, Denmark
| | - Peter Andrew Hosner
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Villum Center for Global Mountain Biodiversity, Biodiversity Section, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Yang Zhou
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Guojie Zhang
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
- Evolutionary & Organismal Biology Research Center, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, 314102, China
| | - Shaohong Feng
- Evolutionary & Organismal Biology Research Center, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, 314102, China.
| |
Collapse
|
46
|
Lovell JT, Sreedasyam A, Schranz ME, Wilson M, Carlson JW, Harkess A, Emms D, Goodstein DM, Schmutz J. GENESPACE tracks regions of interest and gene copy number variation across multiple genomes. eLife 2022; 11:78526. [PMID: 36083267 PMCID: PMC9462846 DOI: 10.7554/elife.78526] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
The development of multiple chromosome-scale reference genome sequences in many taxonomic groups has yielded a high-resolution view of the patterns and processes of molecular evolution. Nonetheless, leveraging information across multiple genomes remains a significant challenge in nearly all eukaryotic systems. These challenges range from studying the evolution of chromosome structure, to finding candidate genes for quantitative trait loci, to testing hypotheses about speciation and adaptation. Here, we present GENESPACE, which addresses these challenges by integrating conserved gene order and orthology to define the expected physical position of all genes across multiple genomes. We demonstrate this utility by dissecting presence–absence, copy-number, and structural variation at three levels of biological organization: spanning 300 million years of vertebrate sex chromosome evolution, across the diversity of the Poaceae (grass) plant family, and among 26 maize cultivars. The methods to build and visualize syntenic orthology in the GENESPACE R package offer a significant addition to existing gene family and synteny programs, especially in polyploid, outbred, and other complex genomes. The genome is the complete DNA sequence of an individual. It is a crucial foundation for many studies in medicine, agriculture, and conservation biology. Advances in genetics have made it possible to rapidly sequence, or read out, the genome of many organisms. For closely related species, scientists can then do detailed comparisons, revealing similar genes with a shared past or a common role, but comparing more distantly related organisms remains difficult. One major challenge is that genes are often lost or duplicated over evolutionary time. One way to be more confident is to look at ‘synteny’, or how genes are organized or ordered within the genome. In some groups of species, synteny persists across millions of years of evolution. Combining sequence similarity with gene order could make comparisons between distantly related species more robust. To do this, Lovell et al. developed GENESPACE, a software that links similarities between DNA sequences to the order of genes in a genome. This allows researchers to visualize and explore related DNA sequences and determine whether genes have been lost or duplicated. To demonstrate the value of GENESPACE, Lovell et al. explored evolution in vertebrates and flowering plants. The software was able to highlight the shared sequences between unique sex chromosomes in birds and mammals, and it was able to track the positions of genes important in the evolution of grass crops including maize, wheat, and rice. Exploring the genetic code in this way could lead to a better understanding of the evolution of important sections of the genome. It might also allow scientists to find target genes for applications like crop improvement. Lovell et al. have designed the GENESPACE software to be easy for other scientists to use, allowing them to make graphics and perform analyses with few programming skills.
Collapse
Affiliation(s)
- John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, United States.,Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, United States
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Melissa Wilson
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, United States
| | - Joseph W Carlson
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Alex Harkess
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, United States.,Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, United States
| | - David Emms
- Oxford University, Oxford, United Kingdom
| | - David M Goodstein
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, United States.,Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
47
|
Meisel RP. Ecology and the evolution of sex chromosomes. J Evol Biol 2022; 35:1601-1618. [PMID: 35950939 DOI: 10.1111/jeb.14074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Sex chromosomes are common features of animal genomes, often carrying a sex determination gene responsible for initiating the development of sexually dimorphic traits. The specific chromosome that serves as the sex chromosome differs across taxa as a result of fusions between sex chromosomes and autosomes, along with sex chromosome turnover-autosomes becoming sex chromosomes and sex chromosomes 'reverting' back to autosomes. In addition, the types of genes on sex chromosomes frequently differ from the autosomes, and genes on sex chromosomes often evolve faster than autosomal genes. Sex-specific selection pressures, such as sexual antagonism and sexual selection, are hypothesized to be responsible for sex chromosome turnovers, the unique gene content of sex chromosomes and the accelerated evolutionary rates of genes on sex chromosomes. Sex-specific selection has pronounced effects on sex chromosomes because their sex-biased inheritance can tilt the balance of selection in favour of one sex. Despite the general consensus that sex-specific selection affects sex chromosome evolution, most population genetic models are agnostic as to the specific sources of these sex-specific selection pressures, and many of the details about the effects of sex-specific selection remain unresolved. Here, I review the evidence that ecological factors, including variable selection across heterogeneous environments and conflicts between sexual and natural selection, can be important determinants of sex-specific selection pressures that shape sex chromosome evolution. I also explain how studying the ecology of sex chromosome evolution can help us understand important and unresolved aspects of both sex chromosome evolution and sex-specific selection.
Collapse
Affiliation(s)
- Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
48
|
Zhang H, Sigeman H, Hansson B. Assessment of phylogenetic approaches to study the timing of recombination cessation on sex chromosomes. J Evol Biol 2022; 35:1721-1733. [PMID: 35895083 PMCID: PMC10086819 DOI: 10.1111/jeb.14068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/18/2022] [Accepted: 06/26/2022] [Indexed: 12/01/2022]
Abstract
The evolution of sex chromosomes is hypothesized to be punctuated by consecutive recombination cessation events, forming "evolutionary strata" that ceased to recombine at different time points. The demarcation of evolutionary strata is often assessed by estimates of the timing of recombination cessation (tRC ) along the sex chromosomes, commonly inferred from the level of synonymous divergence or with species phylogenies at gametologous (X-Y or Z-W) sequence data. However, drift and selection affect sequences unpredictably and introduce uncertainty when inferring tRC . Here, we assess two alternative phylogenetic approaches to estimate tRC ; (i) the expected likelihood weight (ELW) approach that finds the most likely topology among a set of hypothetical topologies and (ii) the BEAST approach that estimates tRC with specified calibration priors on a reference species topology. By using Z and W gametologs of an old and a young evolutionary stratum on the neo-sex chromosome of Sylvioidea songbirds, we show that the ELW and BEAST approaches yield similar tRC estimates, and that both outperform two frequently applied approaches utilizing synonymous substitution rates (dS) and maximum likelihood (ML) trees, respectively. Moreover, we demonstrate that both ELW and BEAST provide more precise tRC estimates when sequences of multiple species are included in the analyses.
Collapse
Affiliation(s)
- Hongkai Zhang
- Department of Biology, Lund University, Lund, Sweden
| | - Hanna Sigeman
- Department of Biology, Lund University, Lund, Sweden
| | - Bengt Hansson
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
49
|
Xu X, Wang Y, Wang C, Guo G, Yu X, Dai Y, Liu Y, Wei G, He X, Jin G, Zhang Z, Guan Q, Pain A, Wang S, Zhang W, Young ND, Gasser RB, McManus DP, Cao J, Zhou Q, Zhang Q. Chromosome-level genome assembly defines female-biased genes associated with sex determination and differentiation in the human blood fluke Schistosoma japonicum. Mol Ecol Resour 2022; 23:205-221. [PMID: 35844053 DOI: 10.1111/1755-0998.13689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022]
Abstract
Schistosomiasis is a neglected tropical disease of humans caused by blood flukes of the genus Schistosoma, the only dioecious parasitic flatworm. Although aspects of sex determination, differentiation and reproduction have been studied in some Schistosoma species, almost nothing is known for Schistosoma japonicum, the causative agent of schistosomiasis japonica. This mainly reflects the lack of high-quality genomic and transcriptomic resources for this species. As current genomes for S. japonicum are highly fragmented, we assembled and report a chromosome-level reference genome (seven autosomes, the Z-chromosome and partial W-chromosome), achieving a substantially enhanced gene annotation. Utilizing this genome, we discovered that the sex chromosomes of S. japonicum and its congener S. mansoni independently suppressed recombination during evolution, forming five and two evolutionary strata, respectively. By exploring the W-chromosome and sex-specific transcriptomes, we identified 35 W-linked genes and 257 female-preferentially transcribed genes (FTGs) from our chromosomal assembly and uncovered a signature for sex determination and differentiation in S. japonicum. These FTGs clustering within autosomes or the Z-chromosome exhibit a highly dynamic transcription profile during the pairing of female and male schistosomula, thereby representing a critical phase for the maturation of the female worms and suggesting distinct layers of regulatory control of gene transcription at this development stage. Collectively, these data provide a valuable resource for further functional genomic characterization of S. japonicum, shed light on the evolution of sex chromosomes in this highly virulent human blood fluke, and provide a pathway to identify novel targets for development of intervention tools against schistosomiasis.
Collapse
Affiliation(s)
- Xindong Xu
- Laboratory of Molecular Parasitology, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, and Clinical Center for Brain and Spinal Cord Research School of Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Yifeng Wang
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Changhong Wang
- Laboratory of Molecular Parasitology, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, and Clinical Center for Brain and Spinal Cord Research School of Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Gangqiang Guo
- Laboratory of Molecular Parasitology, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, and Clinical Center for Brain and Spinal Cord Research School of Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Xinyu Yu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yang Dai
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Guiying Wei
- Laboratory of Molecular Parasitology, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, and Clinical Center for Brain and Spinal Cord Research School of Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Xiaohui He
- Laboratory of Molecular Parasitology, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, and Clinical Center for Brain and Spinal Cord Research School of Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Ge Jin
- Novogene Bioinformatics Institute, Beijing, China
| | - Ziqiu Zhang
- Novogene Bioinformatics Institute, Beijing, China
| | - Qingtian Guan
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Shengyue Wang
- National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Donald P McManus
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria.,Center for Reproductive Medicine, the Second Affiliated Hospital School of Medicine and Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qingfeng Zhang
- Laboratory of Molecular Parasitology, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, and Clinical Center for Brain and Spinal Cord Research School of Medicine, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
50
|
Filatov DA. Recent expansion of the non-recombining sex-linked region on Silene latifolia sex chromosomes. J Evol Biol 2022; 35:1696-1708. [PMID: 35834179 PMCID: PMC10083954 DOI: 10.1111/jeb.14063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022]
Abstract
Evolution of a non-recombining sex-specific region on the Y (or W) chromosome (NRY) is a key step in sex chromosome evolution, but how recombination suppression evolves is not well understood. Studies in many different organisms indicated that NRY evolution often involves several expansion steps. Why such NRY expansions occur remains unclear, although it is though that they are likely driven by sexually antagonistic selection. This paper describes a recent NRY expansion due to shift of the pseudoautosomal boundary on the sex chromosomes of a dioecious plant Silene latifolia. The shift resulted in inclusion of at least 16 pseudoautosomal genes into the NRY. This region is pseudoautosomal in closely related Silene dioica and Silene diclinis, indicating that the NRY expansion occurred in S. latifolia after it speciated from the other species ~120 thousand years ago. As S. latifolia and S. dioica actively hybridise across Europe, interspecific gene flow could blur the PAR boundary in these species. The pseudoautosomal genes have significantly elevated genetic diversity (π ~ 3% at synonymous sites), which is consistent with balancing selection maintaining diversity in this region. The recent shift of the PAR boundary in S. latifolia offers an opportunity to study the process of on-going NRY expansion.
Collapse
|