1
|
Anbuhl KL, Diez Castro M, Lee NA, Lee VS, Sanes DH. The cingulate cortex facilitates auditory perception under challenging listening conditions. Proc Natl Acad Sci U S A 2025; 122:e2412453122. [PMID: 40168120 PMCID: PMC12002281 DOI: 10.1073/pnas.2412453122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/23/2025] [Indexed: 04/03/2025] Open
Abstract
We often exert greater cognitive resources (i.e., listening effort) to understand speech under challenging acoustic conditions. This mechanism can be overwhelmed in those with hearing loss, resulting in cognitive fatigue in adults and potentially impeding language acquisition in children. However, the neural mechanisms that support listening effort are uncertain. Evidence from human studies suggests that the cingulate cortex is engaged under difficult listening conditions and may exert top-down modulation of the auditory cortex (AC). Here, we asked whether the gerbil cingulate cortex (Cg) sends anatomical projections to the AC that facilitate perceptual performance. To model challenging listening conditions, we used a sound discrimination task in which stimulus parameters were presented in either "Easy" or "Hard" blocks (i.e., long or short stimulus duration, respectively). Gerbils achieved statistically identical psychometric performance in Easy and Hard blocks. Anatomical tracing experiments revealed a strong, descending projection from layer 2/3 of the Cg1 subregion of the cingulate cortex to superficial and deep layers of the primary and dorsal AC. To determine whether Cg improves task performance under challenging conditions, we bilaterally infused muscimol to inactivate Cg1 and found that psychometric thresholds were degraded for only Hard blocks. To test whether the Cg-to-AC projection facilitates task performance, we chemogenetically inactivated these inputs and found that performance was only degraded during Hard blocks. Taken together, the results reveal a descending cortical pathway that facilitates perceptual performance during challenging listening conditions.
Collapse
Affiliation(s)
- Kelsey L. Anbuhl
- Center for Neural Science, New York University, New York, NY10003
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE68178
| | | | - Nikki A. Lee
- Center for Neural Science, New York University, New York, NY10003
| | - Vivian S. Lee
- Center for Neural Science, New York University, New York, NY10003
| | - Dan H. Sanes
- Center for Neural Science, New York University, New York, NY10003
- Department of Psychology, New York University, New York, NY10003
- Department of Biology, New York University, New York, NY10003
- Neuroscience Institute, New York University School of Medicine, New York, NY10016
| |
Collapse
|
2
|
Mallick A, Dacks AM, Gaudry Q. Olfactory Critical Periods: How Odor Exposure Shapes the Developing Brain in Mice and Flies. BIOLOGY 2024; 13:94. [PMID: 38392312 PMCID: PMC10886215 DOI: 10.3390/biology13020094] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Neural networks have an extensive ability to change in response to environmental stimuli. This flexibility peaks during restricted windows of time early in life called critical periods. The ubiquitous occurrence of this form of plasticity across sensory modalities and phyla speaks to the importance of critical periods for proper neural development and function. Extensive investigation into visual critical periods has advanced our knowledge of the molecular events and key processes that underlie the impact of early-life experience on neuronal plasticity. However, despite the importance of olfaction for the overall survival of an organism, the cellular and molecular basis of olfactory critical periods have not garnered extensive study compared to visual critical periods. Recent work providing a comprehensive mapping of the highly organized olfactory neuropil and its development has in turn attracted a growing interest in how these circuits undergo plasticity during critical periods. Here, we perform a comparative review of olfactory critical periods in fruit flies and mice to provide novel insight into the importance of early odor exposure in shaping neural circuits and highlighting mechanisms found across sensory modalities.
Collapse
Affiliation(s)
- Ahana Mallick
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Quentin Gaudry
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
3
|
Anbuhl KL, Diez Castro M, Lee NA, Lee VS, Sanes DH. Cingulate cortex facilitates auditory perception under challenging listening conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566668. [PMID: 38014324 PMCID: PMC10680599 DOI: 10.1101/2023.11.10.566668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
We often exert greater cognitive resources (i.e., listening effort) to understand speech under challenging acoustic conditions. This mechanism can be overwhelmed in those with hearing loss, resulting in cognitive fatigue in adults, and potentially impeding language acquisition in children. However, the neural mechanisms that support listening effort are uncertain. Evidence from human studies suggest that the cingulate cortex is engaged under difficult listening conditions, and may exert top-down modulation of the auditory cortex (AC). Here, we asked whether the gerbil cingulate cortex (Cg) sends anatomical projections to the AC that facilitate perceptual performance. To model challenging listening conditions, we used a sound discrimination task in which stimulus parameters were presented in either 'Easy' or 'Hard' blocks (i.e., long or short stimulus duration, respectively). Gerbils achieved statistically identical psychometric performance in Easy and Hard blocks. Anatomical tracing experiments revealed a strong, descending projection from layer 2/3 of the Cg1 subregion of the cingulate cortex to superficial and deep layers of primary and dorsal AC. To determine whether Cg improves task performance under challenging conditions, we bilaterally infused muscimol to inactivate Cg1, and found that psychometric thresholds were degraded for only Hard blocks. To test whether the Cg-to-AC projection facilitates task performance, we chemogenetically inactivated these inputs and found that performance was only degraded during Hard blocks. Taken together, the results reveal a descending cortical pathway that facilitates perceptual performance during challenging listening conditions. Significance Statement Sensory perception often occurs under challenging conditions, such a noisy background or dim environment, yet stimulus sensitivity can remain unaffected. One hypothesis is that cognitive resources are recruited to the task, thereby facilitating perceptual performance. Here, we identify a top-down cortical circuit, from cingulate to auditory cortex in the gerbils, that supports auditory perceptual performance under challenging listening conditions. This pathway is a plausible circuit that supports effortful listening, and may be degraded by hearing loss.
Collapse
|
4
|
Anbuhl KL, Yao JD, Hotz RA, Mowery TM, Sanes DH. Auditory processing remains sensitive to environmental experience during adolescence in a rodent model. Nat Commun 2022; 13:2872. [PMID: 35610222 PMCID: PMC9130260 DOI: 10.1038/s41467-022-30455-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/02/2022] [Indexed: 11/09/2022] Open
Abstract
Elevated neural plasticity during development contributes to dramatic improvements in perceptual, motor, and cognitive skills. However, malleable neural circuits are vulnerable to environmental influences that may disrupt behavioral maturation. While these risks are well-established prior to sexual maturity (i.e., critical periods), the degree of neural vulnerability during adolescence remains uncertain. Here, we induce transient hearing loss (HL) spanning adolescence in gerbils, and ask whether behavioral and neural maturation are disrupted. We find that adolescent HL causes a significant perceptual deficit that can be attributed to degraded auditory cortex processing, as assessed with wireless single neuron recordings and within-session population-level analyses. Finally, auditory cortex brain slices from adolescent HL animals reveal synaptic deficits that are distinct from those typically observed after critical period deprivation. Taken together, these results show that diminished adolescent sensory experience can cause long-lasting behavioral deficits that originate, in part, from a dysfunctional cortical circuit.
Collapse
Affiliation(s)
- Kelsey L Anbuhl
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA.
| | - Justin D Yao
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA
| | - Robert A Hotz
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA
| | - Todd M Mowery
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA
- Department of Otolaryngology, Rutgers University, New Brunswick, NJ, USA
| | - Dan H Sanes
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA.
- Department of Psychology, New York University, New York, NY, USA.
- Department of Biology, New York University, New York, NY, USA.
- Neuroscience Institute at NYU Langone School of Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Wang G, Li Y, Cai Z, Dou X. A Colorimetric Artificial Olfactory System for Airborne Improvised Explosive Identification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907043. [PMID: 31995260 DOI: 10.1002/adma.201907043] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/04/2020] [Indexed: 06/10/2023]
Abstract
The detection of ultralow or nonvolatile target analytes remains a significant challenge for artificial olfactory systems even after decades of development, which severely limits their widespread application. To overcome this challenge, an artificial olfactory system based on a colorimetric hydrogel array is constructed for the first time as a universal representative. As an effective extension of conventional artificial olfactory systems that integrates the merits of its predecessors, the proposed system accurately mimics olfactory mucosa and specific odorant binding proteins using hydrogels endowed with specific colorimetric reagents for the detection of hypochlorite, chlorate, perchlorate, urea, and nitrate. Therefore, the proposed system is capable of detecting and discriminating between these five airborne improvised explosive microparticulates with a detection limit as low as 39.4 pg. Additionally, the system demonstrates good reusability over ten cycles, rapid response time of ≈0.2 s, and excellent discrimination properties, despite significant variation. This proof-of-concept study on colorimetric artificial olfactory systems yields a novel strategy for the direct and discriminative detection of nonvolatile airborne microparticulates.
Collapse
Affiliation(s)
- Guangfa Wang
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yushu Li
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Zhenzhen Cai
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Coppola DM, White LE. Forever young: Neoteny, neurogenesis and a critique of critical periods in olfaction. J Bioenerg Biomembr 2018; 51:53-63. [PMID: 30421031 DOI: 10.1007/s10863-018-9778-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022]
Abstract
The critical period concept has been one of the most transcendent in science, education, and society forming the basis of our fixation on 'quality' of childhood experiences. The neural basis of this process has been revealed in developmental studies of visual, auditory and somatosensory maps and their enduring modification through manipulations of experience early in life. Olfaction, too, possesses a number of phenomena that share key characteristics with classical critical periods like sensitive temporal windows and experience dependence. In this review, we analyze the candidate critical period-like phenomena in olfaction and find them disanalogous to classical critical periods in other sensory systems in several important ways. This leads us to speculate as to why olfaction may be alone among exteroceptive systems in lacking classical critical periods and how life-long neurogenesis of olfactory sensory neurons and bulbar interneurons-a neotenic vestige-- relates to the structure and function of the mammalian olfactory system.
Collapse
Affiliation(s)
- David M Coppola
- Department of Biology, Randolph Macon College, Ashland, VA, 23005, USA.
| | - Leonard E White
- Department of Neurology, Duke Institute for Brain Sciences, Duke University School of Medicine, Durham, NC, 27708, USA
| |
Collapse
|
7
|
Terni B, Pacciolla P, Masanas H, Gorostiza P, Llobet A. Tight temporal coupling between synaptic rewiring of olfactory glomeruli and the emergence of odor-guided behavior in Xenopus tadpoles. J Comp Neurol 2017; 525:3769-3783. [PMID: 28815589 DOI: 10.1002/cne.24303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/13/2022]
Abstract
Olfactory sensory neurons (OSNs) are chemoreceptors that establish excitatory synapses within glomeruli of the olfactory bulb. OSNs undergo continuous turnover throughout life, causing the constant replacement of their synaptic contacts. Using Xenopus tadpoles as an experimental system to investigate rewiring of glomerular connectivity, we show that novel OSN synapses can transfer information immediately after formation, mediating olfactory-guided behavior. Tadpoles recover the ability to detect amino acids 4 days after bilateral olfactory nerve transection. Restoration of olfactory-guided behavior depends on the efficient reinsertion of OSNs to the olfactory bulb. Presynaptic terminals of incipient synaptic contacts generate calcium transients in response to odors, triggering long lasting depolarization of olfactory glomeruli. The functionality of reconnected terminals relies on well-defined readily releasable and cytoplasmic vesicle pools. The continuous growth of non-compartmentalized axonal processes provides a vesicle reservoir to nascent release sites, which contrasts to the gradual development of cytoplasmic vesicle pools in conventional excitatory synapses. The immediate availability of fully functional synapses upon formation supports an age-independent contribution of OSNs to the generation of odor maps.
Collapse
Affiliation(s)
- Beatrice Terni
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Paolo Pacciolla
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Helena Masanas
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Institut de Bioenginyeria de Catalunya (IBEC), Barcelona, Spain
| | - Pau Gorostiza
- Institut de Bioenginyeria de Catalunya (IBEC), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Network Biomedic Research Center in Biophysics, Bioengineering and Nanomedicine (CIBER-bbn), Madrid, Spain
| | - Artur Llobet
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
The onset of visual experience gates auditory cortex critical periods. Nat Commun 2016; 7:10416. [PMID: 26786281 PMCID: PMC4736048 DOI: 10.1038/ncomms10416] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/08/2015] [Indexed: 01/19/2023] Open
Abstract
Sensory systems influence one another during development and deprivation can lead to cross-modal plasticity. As auditory function begins before vision, we investigate the effect of manipulating visual experience during auditory cortex critical periods (CPs) by assessing the influence of early, normal and delayed eyelid opening on hearing loss-induced changes to membrane and inhibitory synaptic properties. Early eyelid opening closes the auditory cortex CPs precociously and dark rearing prevents this effect. In contrast, delayed eyelid opening extends the auditory cortex CPs by several additional days. The CP for recovery from hearing loss is also closed prematurely by early eyelid opening and extended by delayed eyelid opening. Furthermore, when coupled with transient hearing loss that animals normally fully recover from, very early visual experience leads to inhibitory deficits that persist into adulthood. Finally, we demonstrate a functional projection from the visual to auditory cortex that could mediate these effects. Visual and auditory systems influence each other during development. Here, the authors show that the onset of eyelid opening regulates critical points during which the auditory cortex is sensitive to hearing loss or the restoration of hearing
Collapse
|
9
|
Elliott KL, Houston DW, Fritzsch B. Sensory afferent segregation in three-eared frogs resemble the dominance columns observed in three-eyed frogs. Sci Rep 2015; 5:8338. [PMID: 25661240 PMCID: PMC4648447 DOI: 10.1038/srep08338] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/14/2015] [Indexed: 12/17/2022] Open
Abstract
The formation of proper sensory afferent connections during development is essential for brain function. Activity-based competition is believed to drive ocular dominance columns (ODC) in mammals and in experimentally-generated three-eyed frogs. ODC formation is thus a compromise of activity differences between two eyes and similar molecular cues. To gauge the generality of graphical map formation in the brain, we investigated the inner ear projection, known for its well-defined and early segregation of afferents from vestibular and auditory endorgans. In analogy to three eyed-frogs, we generated three-eared frogs to assess to what extent vestibular afferents from two adjacent ears could segregate. Donor ears were transplanted either in the native orientation or rotated by 90 degrees. These manipulations should result in either similar or different induced activity between both ears, respectively. Three-eared frogs with normal orientation showed normal swimming whereas those with a rotated third ear showed aberrant behaviors. Projection studies revealed that only afferents from the rotated ears segregated from those from the native ear within the vestibular nucleus, resembling the ocular dominance columns formed in three-eyed frogs. Vestibular segregation suggests that mechanisms comparable to those operating in the ODC formation of the visual system may act on vestibular projection refinements.
Collapse
Affiliation(s)
| | | | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
10
|
Weiss J, Pyrski M, Weissgerber P, Zufall F. Altered synaptic transmission at olfactory and vomeronasal nerve terminals in mice lacking N-type calcium channel Cav2.2. Eur J Neurosci 2014; 40:3422-35. [PMID: 25195871 DOI: 10.1111/ejn.12713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 12/19/2022]
Abstract
We investigated the role of voltage-activated calcium (Cav) channels for synaptic transmission at mouse olfactory and vomeronasal nerve terminals at the first synapse of the main and accessory olfactory pathways, respectively. We provided evidence for a central role of the N-type Cav channel subunit Cav2.2 in presynaptic transmitter release at these synapses. Striking Cav2.2 immunoreactivity was localised to the glomerular neuropil of the main olfactory bulb (MOB) and accessory olfactory bulb (AOB), and co-localised with presynaptic molecules such as bassoon. Voltage-clamp recordings of sensory nerve-evoked, excitatory postsynaptic currents (EPSCs) in mitral/tufted (M/T) and superficial tufted cells of the MOB and mitral cells of the AOB, in combination with established subtype-specific Cav channel toxins, indicated a predominant role of N-type channels in transmitter release at these synapses, whereas L-type, P/Q-type, and R-type channels had either no or only relatively minor contributions. In Cacna1b mutant mice lacking the Cav2.2 (α1B) subunit of N-type channels, olfactory nerve-evoked M/T cell EPSCs were not reduced but became blocker-resistant, thus indicating a major reorganisation and compensation of Cav channel subunits as a result of the Cav2.2 deletion at this synapse. Cav2.2-deficient mice also revealed that Cav2.2 was critically required for paired-pulse depression of olfactory nerve-evoked EPSCs in M/T cells of the MOB, and they demonstrated an essential requirement for Cav2.2 in vomeronasal nerve-evoked EPSCs of AOB mitral cells. Thus, Cacna1b loss-of-function mutations are unlikely to cause general anosmia but Cacna1b emerges as a strong candidate in the search for mutations causing altered olfactory perception, such as changes in general olfactory sensitivity and altered social responses to chemostimuli.
Collapse
Affiliation(s)
- Jan Weiss
- Department of Physiology, University of Saarland School of Medicine, Kirrbergerstrasse, Building 58, D-66421, Homburg, Germany
| | | | | | | |
Collapse
|