1
|
Normoyle KP, Lillis KP, Egawa K, McNally MA, Paulchakrabarti M, Coudhury BP, Lau L, Shiu FH, Staley KJ. Displacement of extracellular chloride by immobile anionic constituents of the brain's extracellular matrix. J Physiol 2025; 603:353-378. [PMID: 39621449 PMCID: PMC11747837 DOI: 10.1113/jp285463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/01/2024] [Indexed: 01/19/2025] Open
Abstract
GABA is the primary inhibitory neurotransmitter. Membrane currents evoked by GABAA receptor activation have uniquely small driving forces: their reversal potential (EGABA) is very close to the resting membrane potential. As a consequence, GABAA currents can flow in either direction, depending on both the membrane potential and the local intra and extracellular concentrations of the primary permeant ion, chloride (Cl). Local cytoplasmic Cl concentrations vary widely because of displacement of mobile Cl ions by relatively immobile anions. Here, we use new reporters of extracellular chloride (Cl- o) to demonstrate that Cl is displaced in the extracellular space by high and spatially heterogenous concentrations of immobile anions including sulfated glycosaminoglycans (sGAGs). Cl- o varies widely, and the mean Cl- o is only half the canonical concentration (i.e. the Cl concentration in the cerebrospinal fluid). These unexpectedly low and heterogenous Cl- o domains provide a mechanism to link the varied but highly stable distribution of sGAGs and other immobile anions in the brain's extracellular space to neuronal signal processing via the effects on the amplitude and direction of GABAA transmembrane Cl currents. KEY POINTS: Extracellular chloride concentrations in the brain were measured using a new chloride-sensitive organic fluorophore and two-photon fluorescence lifetime imaging. In vivo, the extracellular chloride concentration was spatially heterogenous and only half of the cerebrospinal fluid chloride concentration Stable displacement of extracellular chloride by immobile extracellular anions was responsible for the low extracellular chloride concentration The changes in extracellular chloride were of sufficient magnitude to alter the conductance and reversal potential of GABAA chloride currents The stability of the extracellular matrix, the impact of the component immobile anions, including sulfated glycosaminoglycans on extracellular chloride concentrations, and the consequent effect on GABAA signalling suggests a previously unappreciated mechanism for modulating GABAA signalling.
Collapse
Affiliation(s)
- Kieran P Normoyle
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Kyle P Lillis
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Kiyoshi Egawa
- Department of Medicine, Hokaiddo University, Sapporo, Hokaiddo, Japan
| | - Melanie A McNally
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | | | - Biswa P Coudhury
- GlycoAnalytics Core, University of California San Diego, La Jolla, CA, USA
| | - Lauren Lau
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Fu Hung Shiu
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Kevin J Staley
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Pressey JC, de Saint-Rome M, Raveendran VA, Woodin MA. Chloride transporters controlling neuronal excitability. Physiol Rev 2023; 103:1095-1135. [PMID: 36302178 DOI: 10.1152/physrev.00025.2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Synaptic inhibition plays a crucial role in regulating neuronal excitability, which is the foundation of nervous system function. This inhibition is largely mediated by the neurotransmitters GABA and glycine that activate Cl--permeable ion channels, which means that the strength of inhibition depends on the Cl- gradient across the membrane. In neurons, the Cl- gradient is primarily mediated by two secondarily active cation-chloride cotransporters (CCCs), NKCC1 and KCC2. CCC-mediated regulation of the neuronal Cl- gradient is critical for healthy brain function, as dysregulation of CCCs has emerged as a key mechanism underlying neurological disorders including epilepsy, neuropathic pain, and autism spectrum disorder. This review begins with an overview of neuronal chloride transporters before explaining the dependent relationship between these CCCs, Cl- regulation, and inhibitory synaptic transmission. We then discuss the evidence for how CCCs can be regulated, including by activity and their protein interactions, which underlie inhibitory synaptic plasticity. For readers who may be interested in conducting experiments on CCCs and neuronal excitability, we have included a section on techniques for estimating and recording intracellular Cl-, including their advantages and limitations. Although the focus of this review is on neurons, we also examine how Cl- is regulated in glial cells, which in turn regulate neuronal excitability through the tight relationship between this nonneuronal cell type and synapses. Finally, we discuss the relatively extensive and growing literature on how CCC-mediated neuronal excitability contributes to neurological disorders.
Collapse
Affiliation(s)
- Jessica C Pressey
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Miranda de Saint-Rome
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Vineeth A Raveendran
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Staley KJ. Clarifications regarding bumetanide for neonatal seizures. Epilepsia 2022; 63:1863-1867. [PMID: 35524444 DOI: 10.1111/epi.17278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Kevin J Staley
- Neurology Department, Massachusetts General Hospital, Harvard Medical School
| |
Collapse
|
4
|
Rahmati N, Normoyle KP, Glykys J, Dzhala VI, Lillis KP, Kahle KT, Raiyyani R, Jacob T, Staley KJ. Unique Actions of GABA Arising from Cytoplasmic Chloride Microdomains. J Neurosci 2021; 41:4957-4975. [PMID: 33903223 PMCID: PMC8197632 DOI: 10.1523/jneurosci.3175-20.2021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/10/2021] [Accepted: 04/10/2021] [Indexed: 12/21/2022] Open
Abstract
Developmental, cellular, and subcellular variations in the direction of neuronal Cl- currents elicited by GABAA receptor activation have been frequently reported. We found a corresponding variance in the GABAA receptor reversal potential (EGABA) for synapses originating from individual interneurons onto a single pyramidal cell. These findings suggest a similar heterogeneity in the cytoplasmic intracellular concentration of chloride ([Cl-]i) in individual dendrites. We determined [Cl-]i in the murine hippocampus and cerebral cortex of both sexes by (1) two-photon imaging of the Cl--sensitive, ratiometric fluorescent protein SuperClomeleon; (2) Fluorescence Lifetime IMaging (FLIM) of the Cl--sensitive fluorophore MEQ (6-methoxy-N-ethylquinolinium); and (3) electrophysiological measurements of EGABA by pressure application of GABA and RuBi-GABA uncaging. Fluorometric and electrophysiological estimates of local [Cl-]i were highly correlated. [Cl-]i microdomains persisted after pharmacological inhibition of cation-chloride cotransporters, but were progressively modified after inhibiting the polymerization of the anionic biopolymer actin. These methods collectively demonstrated stable [Cl-]i microdomains in individual neurons in vitro and in vivo and the role of immobile anions in its stability. Our results highlight the existence of functionally significant neuronal Cl- microdomains that modify the impact of GABAergic inputs.SIGNIFICANCE STATEMENT Microdomains of varying chloride concentrations in the neuronal cytoplasm are a predictable consequence of the inhomogeneous distribution of anionic polymers such as actin, tubulin, and nucleic acids. Here, we demonstrate the existence and stability of these microdomains, as well as the consequence for GABAergic synaptic signaling: each interneuron produces a postsynaptic GABAA response with a unique reversal potential. In individual hippocampal pyramidal cells, the range of GABAA reversal potentials evoked by stimulating different interneurons was >20 mV. Some interneurons generated postsynaptic responses in pyramidal cells that reversed at potentials beyond what would be considered purely inhibitory. Cytoplasmic chloride microdomains enable each pyramidal cell to maintain a compendium of unique postsynaptic responses to the activity of individual interneurons.
Collapse
Affiliation(s)
- Negah Rahmati
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Kieran P Normoyle
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Joseph Glykys
- Department of Pediatrics and Neurology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Volodymyr I Dzhala
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Kyle P Lillis
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06510
| | - Rehan Raiyyani
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Theju Jacob
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Kevin J Staley
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| |
Collapse
|
5
|
Glykys J, Duquette E, Rahmati N, Duquette K, Staley KJ. Mannitol decreases neocortical epileptiform activity during early brain development via cotransport of chloride and water. Neurobiol Dis 2019; 125:163-175. [PMID: 30711483 DOI: 10.1016/j.nbd.2019.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/31/2022] Open
Abstract
Seizures and brain injury lead to water and Cl- accumulation in neurons. The increase in intraneuronal Cl- concentration ([Cl-]i) depolarizes the GABAA reversal potential (EGABA) and worsens seizure activity. Neocortical neuronal membranes have a low water permeability due to the lack of aquaporins necessary to move free water. Instead, neurons use cotransport of ions including Cl- to move water. Thus, increasing the extracellular osmolarity during seizures should result in an outward movement of water and salt, reducing [Cl-]i and improving GABAA receptor-mediated inhibition. We tested the effects of hyperosmotic therapy with a clinically relevant dose of mannitol (20 mM) on epileptiform activity, spontaneous multiunit activity, spontaneous inhibitory post-synaptic currents (sIPSCs), [Cl-]i, and neuronal volume in layer IV/V of the developing neocortex of C57BL/6 and Clomeleon mice. Using electrophysiological techniques and multiphoton imaging in acute brain slices (post-natal day 7-12) and organotypic neocortical slice cultures (post-natal day 14), we observed that mannitol: 1) decreased epileptiform activity, 2) decreased neuronal volume and [Cl-]i through CCCs, 3) decreased spontaneous multi-unit activity frequency but not amplitude, and 4) restored the anticonvulsant efficacy of the GABAA receptor modulator diazepam. Increasing extracellular osmolarity by 20 mOsm with hypertonic saline did not decrease epileptiform activity. We conclude that an increase in extracellular osmolarity by mannitol mediates the efflux of [Cl-]i and water through CCCs, which results in a decrease in epileptiform activity and enhances benzodiazepine actions in the developing neocortex in vitro. Novel treatments aimed to decrease neuronal volume may concomitantly decrease [Cl-]i and improve seizure control.
Collapse
Affiliation(s)
- J Glykys
- Department of Neurology, Massachusetts General Hospital, Boston 02114, United States; Harvard Medical School, Boston, MA 02115, United States.
| | - E Duquette
- Department of Neurology, Massachusetts General Hospital, Boston 02114, United States
| | - N Rahmati
- Department of Neurology, Massachusetts General Hospital, Boston 02114, United States; Harvard Medical School, Boston, MA 02115, United States
| | - K Duquette
- Department of Neurology, Massachusetts General Hospital, Boston 02114, United States; Northeastern University, Boston 02115, United States
| | - K J Staley
- Department of Neurology, Massachusetts General Hospital, Boston 02114, United States; Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
6
|
Olde Engberink AHO, Meijer JH, Michel S. Chloride cotransporter KCC2 is essential for GABAergic inhibition in the SCN. Neuropharmacology 2018; 138:80-86. [PMID: 29782876 DOI: 10.1016/j.neuropharm.2018.05.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/26/2018] [Accepted: 05/17/2018] [Indexed: 12/31/2022]
Abstract
One of the principal neurotransmitters of the central nervous system is GABA. In the adult brain, GABA is predominantly inhibitory, but there is growing evidence indicating that GABA can shift to excitatory action depending on environmental conditions. In the mammalian central circadian clock of the suprachiasmatic nucleus (SCN) GABAergic activity shifts from inhibition to excitation when animals are exposed to long day photoperiod. The polarity of the GABAergic response (inhibitory versus excitatory) depends on the GABA equilibrium potential determined by the intracellular Cl- concentration ([Cl-]i). Chloride homeostasis can be regulated by Cl- cotransporters like NKCC1 and KCC2 in the membrane, but the mechanisms for maintaining [Cl-]i are still under debate. This study investigates the role of KCC2 on GABA-induced Ca2+ transients in SCN neurons from mice exposed to different photoperiods. We show for the first time that blocking KCC2 with the newly developed blocker ML077 can cause a shift in the polarity of the GABAergic response. This will increase the amount of excitatory responses in SCN neurons and thus cause a shift in excitatory/inhibitory ratio. These results indicate that KCC2 is an essential component in regulating [Cl-]i and the equilibrium potential of Cl- and thereby determining the sign of the GABAergic response. Moreover, our data suggest a role for the Cl- cotransporters in the switch from inhibition to excitation observed under long day photoperiod.
Collapse
Affiliation(s)
- A H O Olde Engberink
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
| | - J H Meijer
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
| | - S Michel
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands.
| |
Collapse
|
7
|
Klein PM, Lu AC, Harper ME, McKown HM, Morgan JD, Beenhakker MP. Tenuous Inhibitory GABAergic Signaling in the Reticular Thalamus. J Neurosci 2018; 38:1232-1248. [PMID: 29273603 PMCID: PMC5792478 DOI: 10.1523/jneurosci.1345-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/20/2017] [Accepted: 11/03/2017] [Indexed: 11/21/2022] Open
Abstract
Maintenance of a low intracellular Cl- concentration ([Cl-]i) is critical for enabling inhibitory neuronal responses to GABAA receptor-mediated signaling. Cl- transporters, including KCC2, and extracellular impermeant anions ([A]o) of the extracellular matrix are both proposed to be important regulators of [Cl-]i Neurons of the reticular thalamic (RT) nucleus express reduced levels of KCC2, indicating that GABAergic signaling may produce excitation in RT neurons. However, by performing perforated patch recordings and calcium imaging experiments in rats (male and female), we find that [Cl-]i remains relatively low in RT neurons. Although we identify a small contribution of [A]o to a low [Cl-]i in RT neurons, our results also demonstrate that reduced levels of KCC2 remain sufficient to maintain low levels of Cl- Reduced KCC2 levels, however, restrict the capacity of RT neurons to rapidly extrude Cl- following periods of elevated GABAergic signaling. In a computational model of a local RT network featuring slow Cl- extrusion kinetics, similar to those we found experimentally, model RT neurons are predisposed to an activity-dependent switch from GABA-mediated inhibition to excitation. By decreasing the activity threshold required to produce excitatory GABAergic signaling, weaker stimuli are able to propagate activity within the model RT nucleus. Our results indicate the importance of even diminished levels of KCC2 in maintaining inhibitory signaling within the RT nucleus and suggest how this important activity choke point may be easily overcome in disorders such as epilepsy.SIGNIFICANCE STATEMENT Precise regulation of intracellular Cl- levels ([Cl-]i) preserves appropriate, often inhibitory, GABAergic signaling within the brain. However, there is disagreement over the relative contribution of various mechanisms that maintain low [Cl-]i We found that the Cl- transporter KCC2 is an important Cl- extruder in the reticular thalamic (RT) nucleus, despite this nucleus having remarkably low KCC2 immunoreactivity relative to other regions of the adult brain. We also identified a smaller contribution of fixed, impermeant anions ([A]o) to lowering [Cl-]i in RT neurons. Inhibitory signaling among RT neurons is important for preventing excessive activation of RT neurons, which can be responsible for generating seizures. Our work suggests that KCC2 critically restricts the spread of activity within the RT nucleus.
Collapse
Affiliation(s)
- Peter M Klein
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22903
| | - Adam C Lu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22903
| | - Megan E Harper
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22903
| | - Hannah M McKown
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22903
| | - Jessica D Morgan
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22903
| | - Mark P Beenhakker
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22903
| |
Collapse
|
8
|
Glykys J, Dzhala V, Egawa K, Kahle KT, Delpire E, Staley K. Chloride Dysregulation, Seizures, and Cerebral Edema: A Relationship with Therapeutic Potential. Trends Neurosci 2017; 40:276-294. [PMID: 28431741 DOI: 10.1016/j.tins.2017.03.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 11/18/2022]
Abstract
Pharmacoresistant seizures and cytotoxic cerebral edema are serious complications of ischemic and traumatic brain injury. Intraneuronal Cl- concentration ([Cl-]i) regulation impacts on both cell volume homeostasis and Cl--permeable GABAA receptor-dependent membrane excitability. Understanding the pleiotropic molecular determinants of neuronal [Cl-]i - cytoplasmic impermeant anions, polyanionic extracellular matrix (ECM) glycoproteins, and plasmalemmal Cl- transporters - could help the identification of novel anticonvulsive and neuroprotective targets. The cation/Cl- cotransporters and ECM metalloproteinases may be particularly druggable targets for intervention. We establish here a paradigm that accounts for recent data regarding the complex regulatory mechanisms of neuronal [Cl-]i and how these mechanisms impact on neuronal volume and excitability. We propose approaches to modulate [Cl-]i that are relevant for two common clinical sequela of brain injury: edema and seizures.
Collapse
Affiliation(s)
- Joseph Glykys
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Volodymyr Dzhala
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Kiyoshi Egawa
- Department of Pediatrics, Hokkaido University Hospital, Sapporo 0010019, Japan
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kevin Staley
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Knoflach F, Hernandez MC, Bertrand D. GABAA receptor-mediated neurotransmission: Not so simple after all. Biochem Pharmacol 2016; 115:10-7. [DOI: 10.1016/j.bcp.2016.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/17/2016] [Indexed: 12/28/2022]
|
10
|
Abstract
Epilepsy is among the most prevalent chronic neurological diseases and affects an estimated 2.2 million people in the United States alone. About one third of patients are resistant to currently available antiepileptic drugs, which are exclusively targeting neuronal function. Yet, reactive astrocytes have emerged as potential contributors to neuronal hyperexcitability and seizures. Astrocytes react to any kind of CNS insult with a range of cellular adjustments to form a scar and protect uninjured brain regions. This process changes astrocyte physiology and can affect neuronal network function in various ways. Traumatic brain injury and stroke, both conditions that trigger astroglial scar formation, are leading causes of acquired epilepsies and surgical removal of this glial scar in patients with drug-resistant epilepsy can alleviate the seizures. This review will summarize the currently available evidence suggesting that epilepsy is not a disease of neurons alone, but that astrocytes, glial cells in the brain, can be major contributors to the disease, especially when they adopt a reactive state in response to central nervous system insult.
Collapse
Affiliation(s)
- Stefanie Robel
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA
- Virginia Tech School of Neuroscience, Blacksburg, VA, USA
| |
Collapse
|
11
|
Robel S, Sontheimer H. Glia as drivers of abnormal neuronal activity. Nat Neurosci 2016; 19:28-33. [PMID: 26713746 PMCID: PMC4966160 DOI: 10.1038/nn.4184] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/04/2015] [Indexed: 12/13/2022]
Abstract
Reactive astrocytes have been proposed to become incompetent bystanders in epilepsy as a result of cellular changes rendering them unable to perform important housekeeping functions. Indeed, successful surgical treatment of mesiotemporal lobe epilepsy hinges on the removal of the glial scar. New research now extends the role of astrocytes, suggesting that they may drive the disease process by impairing the inhibitory action of neuronal GABA receptors. Here we discuss studies that include hyperexcitability resulting from impaired supply of astrocytic glutamine for neuronal GABA synthesis, and epilepsy resulting from genetically induced astrogliosis or malignant transformation, both of which render the inhibitory neurotransmitter GABA excitatory. In these examples, glial cells alter the expression or function of neuronal proteins involved in excitability. Although epilepsy has traditionally been thought of as a disease caused by changes in neuronal properties exclusively, these new findings challenge us to consider the contribution of glial cells as drivers of epileptogenesis in acquired epilepsies.
Collapse
Affiliation(s)
- Stefanie Robel
- Virginia Tech Carilion Research Institute, Glial Biology in Health, Disease, and Cancer Center, Roanoke, Virginia, USA
| | - Harald Sontheimer
- Virginia Tech Carilion Research Institute, Glial Biology in Health, Disease, and Cancer Center, Roanoke, Virginia, USA
| |
Collapse
|
12
|
Constrained by The Matrix: Will Chloride Ions Be Set Free? Epilepsy Curr 2015; 15:92-3. [DOI: 10.5698/1535-7597-15.2.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Kaila K, Price TJ, Payne JA, Puskarjov M, Voipio J. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci 2014; 15:637-54. [PMID: 25234263 DOI: 10.1038/nrn3819] [Citation(s) in RCA: 536] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electrical activity in neurons requires a seamless functional coupling between plasmalemmal ion channels and ion transporters. Although ion channels have been studied intensively for several decades, research on ion transporters is in its infancy. In recent years, it has become evident that one family of ion transporters, cation-chloride cotransporters (CCCs), and in particular K(+)-Cl(-) cotransporter 2 (KCC2), have seminal roles in shaping GABAergic signalling and neuronal connectivity. Studying the functions of these transporters may lead to major paradigm shifts in our understanding of the mechanisms underlying brain development and plasticity in health and disease.
Collapse
Affiliation(s)
- Kai Kaila
- 1] Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland. [2] Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Theodore J Price
- University of Texas at Dallas, School of Behavior and Brain Sciences, Dallas, Texas 75093, USA
| | - John A Payne
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California 95616, USA
| | - Martin Puskarjov
- 1] Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland. [2] Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Juha Voipio
- Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
14
|
The GABA excitatory/inhibitory developmental sequence: a personal journey. Neuroscience 2014; 279:187-219. [PMID: 25168736 DOI: 10.1016/j.neuroscience.2014.08.001] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/17/2014] [Accepted: 08/01/2014] [Indexed: 12/11/2022]
Abstract
The developing brain is talkative but its language is not that of the adult. Most if not all voltage and transmitter-gated ionic currents follow a developmental sequence and network-driven patterns differ in immature and adult brains. This is best illustrated in studies engaged almost three decades ago in which we observed elevated intracellular chloride (Cl(-))i levels and excitatory GABA early during development and a perinatal excitatory/inhibitory shift. This sequence is observed in a wide range of brain structures and animal species suggesting that it has been conserved throughout evolution. It is mediated primarily by a developmentally regulated expression of the NKCC1 and KCC2 chloride importer and exporter respectively. The GABAergic depolarization acts in synergy with N-methyl-d-aspartate (NMDA) receptor-mediated and voltage-gated calcium currents to enhance intracellular calcium exerting trophic effects on neuritic growth, migration and synapse formation. These sequences can be deviated in utero by genetic or environmental insults leading to a persistence of immature features in the adult brain. This "neuroarcheology" concept paves the way to novel therapeutic perspectives based on the use of drugs that block immature but not adult currents. This is illustrated notably with the return to immature high levels of chloride and excitatory actions of GABA observed in many pathological conditions. This is due to the fact that in the immature brain a down regulation of KCC2 and an up regulation of NKCC1 are seen. Here, I present a personal history of how an unexpected observation led to novel concepts in developmental neurobiology and putative treatments of autism and other developmental disorders. Being a personal account, this review is neither exhaustive nor provides an update of this topic with all the studies that have contributed to this evolution. We all rely on previous inventors to allow science to advance. Here, I present a personal summary of this topic primarily to illustrate why we often fail to comprehend the implications of our own observations. They remind us - and policy deciders - why Science cannot be programed, requiring time, and risky investigations that raise interesting questions before being translated from bench to bed. Discoveries are always on sideways, never on highways.
Collapse
|