1
|
Campillo-Balderas JA, Lazcano A, Cottom-Salas W, Jácome R, Becerra A. Pangenomic Analysis of Nucleo-Cytoplasmic Large DNA Viruses. I: The Phylogenetic Distribution of Conserved Oxygen-Dependent Enzymes Reveals a Capture-Gene Process. J Mol Evol 2023; 91:647-668. [PMID: 37526693 PMCID: PMC10598087 DOI: 10.1007/s00239-023-10126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 06/21/2023] [Indexed: 08/02/2023]
Abstract
The Nucleo-Cytoplasmic Large DNA Viruses (NCLDVs) infect a wide range of eukaryotic species, including amoeba, algae, fish, amphibia, arthropods, birds, and mammals. This group of viruses has linear or circular double-stranded DNA genomes whose size spans approximately one order of magnitude, from 100 to 2500 kbp. The ultimate origin of this peculiar group of viruses remains an open issue. Some have argued that NCLDVs' origin may lie in a bacteriophage ancestor that increased its genome size by subsequent recruitment of eukaryotic and bacterial genes. Others have suggested that NCLDVs families originated from cells that underwent an irreversible process of genome reduction. However, the hypothesis that a number of NCLDVs sequences have been recruited from the host genomes has been largely ignored. In the present work, we have performed pangenomic analyses of each of the seven known NCLDVs families. We show that these families' core- and shell genes have cellular homologs, supporting possible escaping-gene events as part of its evolution. Furthermore, the detection of sequences that belong to two protein families (small chain ribonucleotide reductase and Erv1/Air) and to one superfamily [2OG-Fe(II) oxygenases] that are for distribution in all NCLDVs core and shell clusters encoding for oxygen-dependent enzymes suggests that the highly conserved core these viruses originated after the Proterozoic Great Oxidation Event that transformed the terrestrial atmosphere 2.4-2.3 Ga ago.
Collapse
Affiliation(s)
- J A Campillo-Balderas
- Facultad de Ciencias, UNAM, Cd. Universitaria, Apdo. Postal 70-407, 04510, Mexico City, DF, Mexico
| | - A Lazcano
- Facultad de Ciencias, UNAM, Cd. Universitaria, Apdo. Postal 70-407, 04510, Mexico City, DF, Mexico
- El Colegio Nacional, Donceles 104, Centro Histórico, 06020, Mexico City, CP, Mexico
| | - W Cottom-Salas
- Facultad de Ciencias, UNAM, Cd. Universitaria, Apdo. Postal 70-407, 04510, Mexico City, DF, Mexico
- Escuela Nacional Preparatoria, Plantel 8 Miguel E. Schulz, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - R Jácome
- Facultad de Ciencias, UNAM, Cd. Universitaria, Apdo. Postal 70-407, 04510, Mexico City, DF, Mexico
| | - A Becerra
- Facultad de Ciencias, UNAM, Cd. Universitaria, Apdo. Postal 70-407, 04510, Mexico City, DF, Mexico.
| |
Collapse
|
2
|
Bhat MH, Hajam YA, Neelam, Kumar R, Diksha. Microbial Diversity and Their Role in Human Health and Diseases. ROLE OF MICROBES IN SUSTAINABLE DEVELOPMENT 2023:1-33. [DOI: 10.1007/978-981-99-3126-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Galili M, Tuller T. CSN: unsupervised approach for inferring biological networks based on the genome alone. BMC Bioinformatics 2020; 21:190. [PMID: 32414319 PMCID: PMC7227238 DOI: 10.1186/s12859-020-3479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/31/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most organisms cannot be cultivated, as they live in unique ecological conditions that cannot be mimicked in the lab. Understanding the functionality of those organisms' genes and their interactions by performing large-scale measurements of transcription levels, protein-protein interactions or metabolism, is extremely difficult and, in some cases, impossible. Thus, efficient algorithms for deciphering genome functionality based only on the genomic sequences with no other experimental measurements are needed. RESULTS In this study, we describe a novel algorithm that infers gene networks that we name Common Substring Network (CSN). The algorithm enables inferring novel regulatory relations among genes based only on the genomic sequence of a given organism and partial homolog/ortholog-based functional annotation. It can specifically infer the functional annotation of genes with unknown homology. This approach is based on the assumption that related genes, not necessarily homologs, tend to share sub-sequences, which may be related to common regulatory mechanisms, similar functionality of encoded proteins, common evolutionary history, and more. We demonstrate that CSNs, which are based on S. cerevisiae and E. coli genomes, have properties similar to 'traditional' biological networks inferred from experiments. Highly expressed genes tend to have higher degree nodes in the CSN, genes with similar protein functionality tend to be closer, and the CSN graph exhibits a power-law degree distribution. Also, we show how the CSN can be used for predicting gene interactions and functions. CONCLUSIONS The reported results suggest that 'silent' code inside the transcript can help to predict central features of biological networks and gene function. This approach can help researchers to understand the genome of novel microorganisms, analyze metagenomic data, and can help to decipher new gene functions. AVAILABILITY Our MATLAB implementation of CSN is available at https://www.cs.tau.ac.il/~tamirtul/CSN-Autogen.
Collapse
Affiliation(s)
- Maya Galili
- Biomedical Engineering Department, Tel Aviv University, Tel-Aviv, Israel
- Department of Molecular Microbiology & Biotechnology, Tel Aviv University, Tel-Aviv, Israel
| | - Tamir Tuller
- Biomedical Engineering Department, Tel Aviv University, Tel-Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
4
|
Abstract
Fungi are phylogenetically and functionally diverse ubiquitous components of almost all ecosystems on Earth, including aquatic environments stretching from high montane lakes down to the deep ocean. Aquatic ecosystems, however, remain frequently overlooked as fungal habitats, although fungi potentially hold important roles for organic matter cycling and food web dynamics. Recent methodological improvements have facilitated a greater appreciation of the importance of fungi in many aquatic systems, yet a conceptual framework is still missing. In this Review, we conceptualize the spatiotemporal dimensions, diversity, functions and organismic interactions of fungi in structuring aquatic food webs. We focus on currently unexplored fungal diversity, highlighting poorly understood ecosystems, including emerging artificial aquatic habitats.
Collapse
|
5
|
Erives AJ. Phylogenetic analysis of the core histone doublet and DNA topo II genes of Marseilleviridae: evidence of proto-eukaryotic provenance. Epigenetics Chromatin 2017; 10:55. [PMID: 29179736 PMCID: PMC5704553 DOI: 10.1186/s13072-017-0162-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/15/2017] [Indexed: 11/15/2022] Open
Abstract
Background While the genomes of eukaryotes and Archaea both encode the histone-fold domain, only eukaryotes encode the core histone paralogs H2A, H2B, H3, and H4. With DNA, these core histones assemble into the nucleosomal octamer underlying eukaryotic chromatin. Importantly, core histones for H2A and H3 are maintained as neofunctionalized paralogs adapted for general bulk chromatin (canonical H2 and H3) or specialized chromatin (H2A.Z enriched at gene promoters and cenH3s enriched at centromeres). In this context, the identification of core histone-like “doublets” in the cytoplasmic replication factories of the Marseilleviridae (MV) is a novel finding with possible relevance to understanding the origin of eukaryotic chromatin. Here, we analyze and compare the core histone doublet genes from all known MV genomes as well as other MV genes relevant to the origin of the eukaryotic replisome. Results Using different phylogenetic approaches, we show that MV histone domains encode obligate H2B-H2A and H4-H3 dimers of possible proto-eukaryotic origin. MV core histone moieties form sister clades to each of the four eukaryotic clades of canonical and variant core histones. This suggests that MV core histone moieties diverged prior to eukaryotic neofunctionalizations associated with paired linear chromosomes and variant histone octamer assembly. We also show that MV genomes encode a proto-eukaryotic DNA topoisomerase II enzyme that forms a sister clade to eukaryotes. This is a relevant finding given that DNA topo II influences histone deposition and chromatin compaction and is the second most abundant nuclear protein after histones. Conclusions The combined domain architecture and phylogenomic analyses presented here suggest that a primitive origin for MV histone genes is a more parsimonious explanation than horizontal gene transfers + gene fusions + sufficient divergence to eliminate relatedness to eukaryotic neofunctionalizations within the H2A and H3 clades without loss of relatedness to each of the four core histone clades. We thus suggest MV histone doublet genes and their DNA topo II gene possibly were acquired from an organism with a chromatinized replisome that diverged prior to the origin of eukaryotic core histone variants for H2/H2A.Z and H3/cenH3. These results also imply that core histones were utilized ancestrally in viral DNA compaction and/or protection from host endonucleases. Electronic supplementary material The online version of this article (10.1186/s13072-017-0162-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Albert J Erives
- Department of Biology, University of Iowa, Iowa City, IA, 52242-1324, USA.
| |
Collapse
|
6
|
The trajectory of microbial single-cell sequencing. Nat Methods 2017; 14:1045-1054. [DOI: 10.1038/nmeth.4469] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/04/2017] [Indexed: 12/21/2022]
|
7
|
Singer E, Wagner M, Woyke T. Capturing the genetic makeup of the active microbiome in situ. THE ISME JOURNAL 2017; 11:1949-1963. [PMID: 28574490 PMCID: PMC5563950 DOI: 10.1038/ismej.2017.59] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/02/2017] [Accepted: 03/10/2017] [Indexed: 12/21/2022]
Abstract
More than any other technology, nucleic acid sequencing has enabled microbial ecology studies to be complemented with the data volumes necessary to capture the extent of microbial diversity and dynamics in a wide range of environments. In order to truly understand and predict environmental processes, however, the distinction between active, inactive and dead microbial cells is critical. Also, experimental designs need to be sensitive toward varying population complexity and activity, and temporal as well as spatial scales of process rates. There are a number of approaches, including single-cell techniques, which were designed to study in situ microbial activity and that have been successively coupled to nucleic acid sequencing. The exciting new discoveries regarding in situ microbial activity provide evidence that future microbial ecology studies will indispensably rely on techniques that specifically capture members of the microbiome active in the environment. Herein, we review those currently used activity-based approaches that can be directly linked to shotgun nucleic acid sequencing, evaluate their relevance to ecology studies, and discuss future directions.
Collapse
Affiliation(s)
- Esther Singer
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Michael Wagner
- University of Vienna, Department of Microbial Ecology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| |
Collapse
|
8
|
Piredda R, Tomasino MP, D'Erchia AM, Manzari C, Pesole G, Montresor M, Kooistra WHCF, Sarno D, Zingone A. Diversity and temporal patterns of planktonic protist assemblages at a Mediterranean Long Term Ecological Research site. FEMS Microbiol Ecol 2016; 93:fiw200. [DOI: 10.1093/femsec/fiw200] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2016] [Indexed: 11/13/2022] Open
|
9
|
|
10
|
Eloe-Fadrosh EA, Ivanova NN, Woyke T, Kyrpides NC. Metagenomics uncovers gaps in amplicon-based detection of microbial diversity. Nat Microbiol 2016; 1:15032. [DOI: 10.1038/nmicrobiol.2015.32] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/22/2015] [Indexed: 01/21/2023]
|
11
|
Eloe-Fadrosh EA, Paez-Espino D, Jarett J, Dunfield PF, Hedlund BP, Dekas AE, Grasby SE, Brady AL, Dong H, Briggs BR, Li WJ, Goudeau D, Malmstrom R, Pati A, Pett-Ridge J, Rubin EM, Woyke T, Kyrpides NC, Ivanova NN. Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nat Commun 2016; 7:10476. [PMID: 26814032 PMCID: PMC4737851 DOI: 10.1038/ncomms10476] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/07/2015] [Indexed: 01/01/2023] Open
Abstract
Analysis of the increasing wealth of metagenomic data collected from diverse environments can lead to the discovery of novel branches on the tree of life. Here we analyse 5.2 Tb of metagenomic data collected globally to discover a novel bacterial phylum (‘Candidatus Kryptonia') found exclusively in high-temperature pH-neutral geothermal springs. This lineage had remained hidden as a taxonomic ‘blind spot' because of mismatches in the primers commonly used for ribosomal gene surveys. Genome reconstruction from metagenomic data combined with single-cell genomics results in several high-quality genomes representing four genera from the new phylum. Metabolic reconstruction indicates a heterotrophic lifestyle with conspicuous nutritional deficiencies, suggesting the need for metabolic complementarity with other microbes. Co-occurrence patterns identifies a number of putative partners, including an uncultured Armatimonadetes lineage. The discovery of Kryptonia within previously studied geothermal springs underscores the importance of globally sampled metagenomic data in detection of microbial novelty, and highlights the extraordinary diversity of microbial life still awaiting discovery. The analysis of existing metagenomic data can lead to discovery of new microorganisms. Here, Eloe-Fadrosh et al. perform a large-scale analysis of global metagenomic data, followed by genome reconstruction and single-cell genomics, to describe a new bacterial phylum that inhabits geothermal springs.
Collapse
Affiliation(s)
| | - David Paez-Espino
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Jessica Jarett
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, USA
| | - Anne E Dekas
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | | | - Allyson L Brady
- School of Geography &Earth Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Hailiang Dong
- Department of Geology and Environmental Earth Sciences, Miami University, Oxford, Ohio 45056, USA
| | - Brandon R Briggs
- Department of Biological Sciences, University of Alaska-Anchorage, Anchorage, Alaska 99508, USA
| | - Wen-Jun Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Danielle Goudeau
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Rex Malmstrom
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Amrita Pati
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | | | - Edward M Rubin
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA.,Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Natalia N Ivanova
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| |
Collapse
|
12
|
|
13
|
Abstract
This review summarizes usage of genome-editing technologies for metagenomic studies; these studies are used to retrieve and modify valuable microorganisms for production, particularly in marine metagenomics. Organisms may be cultivable or uncultivable. Metagenomics is providing especially valuable information for uncultivable samples. The novel genes, pathways and genomes can be deducted. Therefore, metagenomics, particularly genome engineering and system biology, allows for the enhancement of biological and chemical producers and the creation of novel bioresources. With natural resources rapidly depleting, genomics may be an effective way to efficiently produce quantities of known and novel foods, livestock feed, fuels, pharmaceuticals and fine or bulk chemicals.
Collapse
Affiliation(s)
- Rimantas Kodzius
- Computational Bioscience Research Center (CBRC), Saudi Arabia; Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Saudi Arabia; King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), Saudi Arabia; Biological and Environmental Sciences and Engineering Division (BESE), Saudi Arabia; King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
| |
Collapse
|
14
|
Microorganisms-A Journal and a Unifying Concept for the Science of Microbiology. Microorganisms 2014; 2:140-6. [PMID: 27682235 PMCID: PMC5029479 DOI: 10.3390/microorganisms2040140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/12/2014] [Indexed: 11/16/2022] Open
Abstract
The MDPI journal Microorganisms is still very young, having been launched in 2013, but the concept of the microorganism has been in use for at least a century as a unifying principle for the discipline of microbiology, which was cemented firmly by the intellectual work of Roger Stanier and colleagues in their Microbial World and other general microbiology textbooks and related articles from the 1950s to the 1970s [1,2]. Merging the idea of the microscopic and the very small with the older idea of an organism as a living entity or cell, the concept of a microorganism enabled a real appreciation of the microbial world as one that is amenable to study using similar tools and approaches even though representing distinctly different types of reproductive units and cell organizations. In the late 20th century following the work of Carl Woese and other molecular evolutionists, biologists came to appreciate the commonality among all organisms, all being comprised of cells that bear a remarkable similarity to one another and that share a common evolutionary ancestry, and consequently with major features of a largely shared genetic code and molecular biology. In this sense microbiology and biology as a whole became unified as they never had been before.[...].
Collapse
|