1
|
Abstract
The cystic fibrosis transmembrane regulator (CFTR) is a multi-domain integral membrane protein central to epithelial fluid secretion (see Chapter 21). Its activity is defective in the recessive genetic disease cystic fibrosis (CF). The most common CF-causing mutation is F508del in the first nucleotide binding domain (NBD1) of CFTR. This mutation is found on at least one allele of more than 90% of all CF patients. It is known to interfere with the trafficking/maturation of CFTR through the secretory pathway, leading to a loss-of-function at the plasma membrane. Notably, correction of the trafficking defect by addition of intragenic second-site suppressor mutations, or the alteration of bulk solvent conditions, such as by reducing the temperature or adding osmolytes, leads to appearance of functional channels at the membrane--thus, the rescued F508del-CFTR retains measurable function. High-resolution structural models of NBD1 from X-ray crystallographic data indicate that F508 is exposed on the surface of the domain in a position predicted by homologous ABC transporter structures to lie at the interface with the intracellular loops (ICLs) connecting the transmembrane spans. Determining the relative impact of the F508del mutation directly on NBD1 folding or on steps of domain assembly or both domain folding and assembly requires methods for evaluating the structure and stability of the isolated domain.
Collapse
Affiliation(s)
- André Schmidt
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA.
| | | | | |
Collapse
|
2
|
NMR evidence for differential phosphorylation-dependent interactions in WT and DeltaF508 CFTR. EMBO J 2009; 29:263-77. [PMID: 19927121 DOI: 10.1038/emboj.2009.329] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 10/08/2009] [Indexed: 11/09/2022] Open
Abstract
The most common cystic fibrosis (CF)-causing mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) is deletion of Phe508 (DeltaF508) in the first of two nucleotide-binding domains (NBDs). Nucleotide binding and hydrolysis at the NBDs and phosphorylation of the regulatory (R) region are required for gating of CFTR chloride channel activity. We report NMR studies of wild-type and DeltaF508 murine CFTR NBD1 with the C-terminal regulatory extension (RE), which contains residues of the R region. Interactions of the wild-type NBD1 core with the phosphoregulatory regions, the regulatory insertion (RI) and RE, are disrupted upon phosphorylation, exposing a potential binding site for the first coupling helix of the N-terminal intracellular domain (ICD). Phosphorylation of DeltaF508 NBD1 does not as effectively disrupt interactions with the phosphoregulatory regions, which, along with other structural differences, leads to decreased binding of the first coupling helix. These results provide a structural basis by which phosphorylation of CFTR may affect the channel gating of full-length CFTR and expand our understanding of the molecular basis of the DeltaF508 defect.
Collapse
|
3
|
DeCarvalho ACV, Gansheroff LJ, Teem JL. Mutations in the nucleotide binding domain 1 signature motif region rescue processing and functional defects of cystic fibrosis transmembrane conductance regulator delta f508. J Biol Chem 2002; 277:35896-905. [PMID: 12110684 DOI: 10.1074/jbc.m205644200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), an ATP binding cassette (ABC) transporter that functions as a phosphorylation- and nucleotide-regulated chloride channel, is mutated in cystic fibrosis (CF) patients. Deletion of a phenylalanine at amino acid position 508 (DeltaF508) in the first nucleotide binding domain (NBD1) is the most prevalent CF-causing mutation and results in defective protein processing and reduced CFTR function, leading to chloride impermeability in CF epithelia and heterologous systems. Using a STE6/CFTRDeltaF508 chimera system in yeast, we isolated two novel DeltaF508 revertant mutations, I539T and G550E, proximal to and within the conserved ABC signature motif of NBD1, respectively. Western blot and functional analysis in mammalian cells indicate that mutations I539T and G550E each partially rescue the CFTRDeltaF508 defect. Furthermore, a combination of both revertant mutations resulted in a 38-fold increase in CFTRDeltaF508-mediated chloride current, representing 29% of wild type channel activity. The G550E mutation increased the sensitivity of CFTRDeltaF508 and wild type CFTR to activation by cAMP agonists and blocked the enhancement of CFTRDeltaF508 channel activity by 2 mm 3-isobutyl-1-methylxanthine. The data show that the DeltaF508 defect can be significantly rescued by second-site mutations in the nucleotide binding domain 1 region, that includes the LSGGQ consensus motif.
Collapse
Affiliation(s)
- Ana C V DeCarvalho
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA
| | | | | |
Collapse
|
4
|
Karpowich N, Martsinkevich O, Millen L, Yuan YR, Dai PL, MacVey K, Thomas PJ, Hunt JF. Crystal structures of the MJ1267 ATP binding cassette reveal an induced-fit effect at the ATPase active site of an ABC transporter. Structure 2001; 9:571-86. [PMID: 11470432 DOI: 10.1016/s0969-2126(01)00617-7] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND ATP binding cassette (ABC) transporters are ubiquitously distributed transmembrane solute pumps that play a causative role in numerous diseases. Previous structures have defined the fold of the ABC and established the flexibility of its alpha-helical subdomain. But the nature of the mechanical changes that occur at each step of the chemical ATPase cycle have not been defined. RESULTS Crystal structures were determined of the MJ1267 ABC from Methanococcus jannaschii in Mg-ADP-bound and nucleotide-free forms. Comparison of these structures reveals an induced-fit effect at the active site likely to be a consequence of nucleotide binding. In the Mg-ADP-bound structure, the loop following the Walker B moves toward the Walker A (P-loop) coupled to backbone conformational changes in the intervening "H-loop", which contains an invariant histidine. These changes affect the region believed to mediate intercassette interaction in the ABC transporter complex. Comparison of the Mg-ADP-bound structure of MJ1267 to the ATP-bound structure of HisP suggests that an outward rotation of the alpha-helical subdomain is coupled to the loss of a molecular contact between the gamma-phosphate of ATP and an invariant glutamine in a segment connecting this subdomain to the core of the cassette. CONCLUSIONS The induced-fit effect and rotation of the alpha-helical subdomain may play a role in controlling the nucleotide-dependent change in cassette-cassette interaction affinity believed to represent the power-stroke of ABC transporters. Outward rotation of the alpha-helical subdomain also likely facilitates Mg-ADP release after hydrolysis. The MJ1267 structures therefore define features of the nucleotide-dependent conformational changes that drive transmembrane transport in ABC transporters.
Collapse
Affiliation(s)
- N Karpowich
- Department of Biological Sciences, 702A Fairchild Center, MC2434, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Luck LA, Johnson C. Fluorescence and 19F NMR evidence that phenylalanine, 3-L-fluorophenylalanine and 4-L-fluorophenylalanine bind to the L-leucine specific receptor of Escherichia coli. Protein Sci 2000; 9:2573-6. [PMID: 11206079 PMCID: PMC2144512 DOI: 10.1110/ps.9.12.2573] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The binding capacity of the L-leucine receptor from Escherichia coli was measured with L-phenylalanine and 4-fluoro-L-phenylalanine as substrates by fluorescence. The apparent dissociation constants (KD) for L-leucine, L-phenylalanine, and 4-fluoro-L-phenylalanine are 0.40, 0.18, and 0.26 respectively. 19F NMR data show protein-induced shifts for the 4-fluoro-L-phenylalanine peak and 3-fluoro-L-phenylalanine when receptor is present. Evidence points to the binding of only the L-isomers of these fluorine analogs.
Collapse
Affiliation(s)
- L A Luck
- Department of Chemistry, Clarkson University, Potsdam, New York 13699, USA.
| | | |
Collapse
|
6
|
Davidson AL, Sharma S. Mutation of a single MalK subunit severely impairs maltose transport activity in Escherichia coli. J Bacteriol 1997; 179:5458-64. [PMID: 9287001 PMCID: PMC179417 DOI: 10.1128/jb.179.17.5458-5464.1997] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The maltose transport system of Escherichia coli, a member of the ABC transport superfamily of proteins, consists of a periplasmic maltose binding protein and a membrane-associated translocation complex that contains two copies of the ATP-binding protein MalK. To examine the need for two nucleotide-binding domains in this transport complex, one of the two MalK subunits was inactivated by site-directed mutagenesis. Complexes with mutations in a single subunit were obtained by attaching a polyhistidine tag to the mutagenized version of MalK and by coexpressing both wild-type MalK and mutant (His)6MalK in the same cell. Hybrid complexes containing one mutant (His)6MalK subunit and one wild-type MalK subunit were separated from those containing two mutant (His)6MalK proteins based on differential affinities for a metal chelate column. Purified transport complexes were reconstituted into proteoliposome vesicles and assayed for maltose transport and ATPase activities. When a conserved lysine residue at position 42 that is involved in ATP binding was replaced with asparagine in both MalK subunits, maltose transport and ATPase activities were reduced to 1% of those of the wild type. When the mutation was present in only one of the two subunits, the complex had 6% of the wild-type activities. Replacement of a conserved histidine residue at position 192 in MalK with arginine generated similar results. It is clear from these results that two functional MalK proteins are required for transport activity and that the two nucleotide-binding domains do not function independently to catalyze transport.
Collapse
Affiliation(s)
- A L Davidson
- Department of Microbiology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
7
|
Abstract
Membrane transporter proteins are encoded by numerous genes that can be classified into several superfamilies, on the basis of sequence identity and biological function. Prominent examples include facilitative transporters, the secondary active symporters and antiporters driven by ion gradients, and active ABC (ATP binding cassette) transporters involved in multiple-drug resistance and targeting of antigenic peptides to MHC Class I molecules. Transported substrates range from nutrients and ions to a broad variety of drugs, peptides and proteins. Deleterious mutations of transporter genes may lead to genetic diseases or loss of cell viability. Transporter structure, function and regulation, genetic factors, and pharmaceutical implications are summarized in this review.
Collapse
Affiliation(s)
- W Sadée
- School of Pharmacy, University of California, San Francisco 94143-0446, USA
| | | | | |
Collapse
|
8
|
Logan J, Hiestand D, Daram P, Huang Z, Muccio DD, Hartman J, Haley B, Cook WJ, Sorscher EJ. Cystic fibrosis transmembrane conductance regulator mutations that disrupt nucleotide binding. J Clin Invest 1994; 94:228-36. [PMID: 7518829 PMCID: PMC296301 DOI: 10.1172/jci117311] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Increasing evidence suggests heterogeneity in the molecular pathogenesis of cystic fibrosis (CF). Mutations such as deletion of phenylalanine at position 508 (delta F508) within the cystic fibrosis transmembrane conductance regulator (CFTR), for example, appear to cause disease by abrogating normal biosynthetic processing, a mechanism which results in retention and degradation of the mutant protein within the endoplasmic reticulum. Other mutations, such as the relatively common glycine-->aspartic acid replacement at CFTR position 551 (G551D) appear to be normally processed, and therefore must cause disease through some other mechanism. Because delta F508 and G551D both occur within a predicted nucleotide binding domain (NBD) of the CFTR, we tested the influence of these mutations on nucleotide binding by the protein. We found that G551D and the corresponding mutation in the CFTR second nucleotide binding domain, G1349D, led to decreased nucleotide binding by CFTR NBDs, while the delta F508 mutation did not alter nucleotide binding. These results implicate defective ATP binding as contributing to the pathogenic mechanism of a relatively common mutation leading to CF, and suggest that structural integrity of a highly conserved region present in over 30 prokaryotic and eukaryotic nucleotide binding domains may be critical for normal nucleotide binding.
Collapse
Affiliation(s)
- J Logan
- Department of Biochemistry University of Kentucky Lexington 40536
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
A kinetic model is presented based on the simplest plausible mechanism for bacterial binding protein-dependent transport. The transport phenotypes of the 18 variant arabinose-binding proteins analyzed by Kehres and Hogg (1992, Protein Sci. 1, 1652-1660) (wild type and 17 mutants) are interpreted to mean that in wild-type arabinose uptake the forward transport rate (k(for)) greatly exceeds the dissociation rate (kund) of a binding protein docked with the AraG:AraH membrane complex, and that k(for) dominance is preserved in all of the binding protein surface mutants. The assumptions and predictions of the model are consistent with existing data from other periplasmic transport systems.
Collapse
Affiliation(s)
- D G Kehres
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
10
|
Abstract
Cystic fibrosis (CF) is a fatal genetic disease primarily affecting Caucasians, although cases have been reported from other ethnic groups. CF has a complex etiology, but it is chiefly a disease of electrolyte transport and is characterized by defects in fluid secretion by several epithelia, including the sweat duct, exocrine pancreas, and the pulmonary airways. The link between CF and a defect in cAMP-mediated Cl- transport in secretory epithelia was established in the early 1980s. Since then, numerous electrophysiological studies have focused on the characterization and regulation of individual Cl- channels underlying the macroscopic Cl- currents of secretory epithelia in the airways, sweat ducts, and gut. In this review the results of these studies in the light of current knowledge of the function of the CF gene product, the CF transmembrane conductance regulator (CFTR) protein, will be analyzed. The CFTR protein is a member of a family of ATP-binding proteins that act as unidirectional solute pumps. These proteins are membrane spanning, are found in both prokaryotic and eukaryotic cells, and have two ATP-binding domains. The family includes the p-glycoproteins that are involved with the expression of multidrug resistance in certain tumor cells. The majority of CF chromosomes (70%) have a single codon deletion that translates to a missing phenylalanine residue at position 508 (delta F508) of the protein. Unique for this family of proteins, the CFTR protein possesses an additional highly charged domain (the R domain) containing several consensus polypeptide sequences for kinase phosphorylation. Although CFTR bears structural resemblance to this family of ATP-dependent pumps, overexpression of the protein in a variety of different cell types is associated with the appearence of a cAMP-sensitive Cl- channel. We critically examine current information concerning the structure-function relationships of the CFTR protein obtained from both electrophysiological and biochemical approaches. We also summarize recent evidence suggesting that the CFTR protein may act as a pump and a channel, a hypothesis in keeping with the multifaceted nature of the disease.
Collapse
Affiliation(s)
- C M Fuller
- Department of Physiology and Biophysics, University of Alabama 35294
| | | |
Collapse
|
11
|
Walter C, Wilken S, Schneider E. Characterization of site-directed mutations in conserved domains of MalK, a bacterial member of the ATP-binding cassette (ABC) family [corrected]. FEBS Lett 1992; 303:41-4. [PMID: 1592114 DOI: 10.1016/0014-5793(92)80473-t] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Site-directed mutagenesis was used to change four amino acid residues (Q82, P152, L179, H192) in the MalK subunit of S. typhimurium maltose transport system which are highly conserved among members of the ATP-binding cassette (ABC) family. Replacement of H192 caused complete failure to complement the transport defect of a malK strain whereas changes of the other residues resulted in reduced or wild-type activity. The purified mutant proteins exhibited ATPase activity comparable to wild-type MalK.
Collapse
Affiliation(s)
- C Walter
- Universität Osnabrück, FB Biologie/Chemie, Germany
| | | | | |
Collapse
|
12
|
Affiliation(s)
- S A Haney
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109
| | | |
Collapse
|
13
|
Strong TV, Smit LS, Turpin SV, Cole JL, Hon CT, Markiewicz D, Petty TL, Craig MW, Rosenow EC, Tsui LC. Cystic fibrosis gene mutation in two sisters with mild disease and normal sweat electrolyte levels. N Engl J Med 1991; 325:1630-4. [PMID: 1944451 DOI: 10.1056/nejm199112053252307] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- T V Strong
- Howard Hughes Medical Institute, Ann Arbor, MI 48109-0650
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Genome mapping and sequencing projects are inappropriate and wasteful expenditures of precious research funds. By focusing on the acquisition of nucleotide sequences, the various genome projects emphasize the products of science over the process of science. It is doubtful that much of the resulting information will provide insights into human diseases or fundamental biological processes. The routine nature of genome sequencing makes it ill-suited for training young scientists. Such projects may also hamper the education of future investigators by diverting research support from universities to genome centers and commercial firms.
Collapse
Affiliation(s)
- M C Rechsteiner
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84132
| |
Collapse
|