1
|
Zhang Y, Hu J, Li Y, Gu W, Feng Z, Yan K, Zhang M, Li Y, Yuan Z, Sun X, Zhang L, Xu S, Wang Y, Yan X. Identification of major histocompatibility complex II gene in Pampus argenteus and the expression pattern in Pampus argenteus kidney cell line under the pathogen stress. AQUACULTURE 2024; 592:741249. [DOI: 10.1016/j.aquaculture.2024.741249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Li Y, Hu J, Zhang Y, Yan K, Zhang M, Li Y, Huang X, Tang J, Yao T, Wang D, Xu S, Wang X, Zhou S, Yan X, Wang Y. Identification and characterization of toll-like receptor genes in silver pomfret (Pampus argenteus) and their involvement in the host immune response to Photobacterium damselae subsp. Damselae and Nocardia seriolae infection. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109071. [PMID: 37703936 DOI: 10.1016/j.fsi.2023.109071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/26/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Toll-like receptors (TLRs) are vital pattern recognition receptors that play a critical role in the innate immune response against pathogenic attack. Among the bacteria commonly found in the culture process of silver pomfret, Photobacterium damselae subsp. Damselae (PDD, gram-negative) and Nocardia seriolae (NS, gram-positive), can cause large-scale mortality in this fish species. However, there is currently no research on the role of TLRs in mediating the immune response of silver pomfret to these two bacterial infections. Therefore, in this study, we identified nine PaTLRs family members, including several fish-specific TLRs (TLR14 and TLR21). Phylogenetic analysis revealed that these PaTLRs genes could be classified into five subfamilies, namely TLR1, TLR3, TLR5, TLR7, and TLR11, indicating their evolutionary conservation. To further explore the interactions of TLR genes with immune-related mediators, protein and protein interaction network (PPI) results were generated to explain the association of TLR genes with TNF receptor-associated factor 6 (TRAF6) and other relevant genes in the MyD88-dependent pathway and NF-κb signaling pathway. Subsequently, RT-qPCR was conducted to verify the expression patterns of the nine TLR genes in the gills, skin, kidney, liver, and spleen of healthy fish, with most of the TLRs showing high expression levels in the spleen. Following infection with PDD and NS, these PaTLRs exhibited different expression patterns in the spleen, with PaTLR2, PaTLR3, PaTLR5, PaTLR7, PaTLR9, and PaTLR14 being significantly up-regulated. Furthermore, when spleen cells were treated with bacterial compositions, the majority of PaTLRs expression was up-regulated in response to Lipopolysaccharide (LPS) and lipophosphorylcholic acid (LTA) treatment, except for PaTLR21. Finally, changes in the expression levels of TLR-interacting genes were also observed under the stimulation of bacteria and bacterial compositions. The results of this study provide a preliminary reference for further understanding the mechanism of the innate immune response of the TLR gene family in silver pomfret and offer theoretical support for addressing the disease problems encountered during large-scale fish breeding.
Collapse
Affiliation(s)
- Yuanbo Li
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jiabao Hu
- College of Marine Sciences, Ningbo University, Ningbo, China; School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| | - Youyi Zhang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Kaiheng Yan
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Man Zhang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yaya Li
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Xiang Huang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jie Tang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Tingyan Yao
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Danli Wang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Shanliang Xu
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Xubo Wang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Suming Zhou
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| | - Xiaojun Yan
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yajun Wang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| |
Collapse
|
3
|
Cody TT, Kiryu Y, Bakenhaster MD, Subramaniam K, Tabuchi M, Ahasan MS, Harris HE, Landsberg JH, Waltzek TB, Fogg AQ, Shea C, Pouder DB, Patterson WF, Emory ME, Yanong RP. Cutaneous ulcerative lesions of unknown etiology affecting lionfish Pterois spp. in the Gulf of Mexico. JOURNAL OF AQUATIC ANIMAL HEALTH 2023; 35:20-33. [PMID: 36708074 DOI: 10.1002/aah.10174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Cutaneous ulcerative skin lesions in a complex of invasive Gulf of Mexico lionfish (Red Lionfish Pterois volitans, Devil Firefish P. miles, and the hybrid Red Lionfish × Devil Firefish) became epizootic beginning in mid-August 2017. Herein, we provide the first pathological descriptions of these lesions and summarize our analyses to elucidate the etiology of the disease. METHODS We examined ulcerated and normal fish through gross pathology and histopathology, bacterial sampling, and unbiased metagenomic next-generation sequencing. We tracked prevalence of the disease, and we used biological health indicators (condition factor, splenosomatic and hepatosomatic index) to evaluate impacts to health, while considering sex and age as potential risk factors. RESULT Typical ulcerative lesions were deep, exposing skeletal muscle, and were bordered by pale or reddened areas often with some degree of scale loss. Only incidental parasites were found in our examinations. Most fish (86%; n = 50) exhibited wound healing grossly and histologically, confirmed by the presence of granulation tissues. A primary bacterial pathogen was not evident through bacterial culture or histopathology. Metagenomic next-generation sequencing did not reveal a viral pathogen (DNA or RNA) but did provide information about the microbiome of some ulcerated specimens. Compared with clinically healthy fish, ulcerated fish had a significantly lower condition factor and a higher splenosomatic index. Disease prevalence at monitored sites through July 2021 indicated that ulcerated fish were still present but at substantially lower prevalence than observed in 2017. CONCLUSION Although some common findings in a number of specimens suggest a potential role for opportunistic bacteria, collectively our suite of diagnostics and analyses did not reveal an intralesional infectious agent, and we must consider the possibility that there was no communicable pathogen.
Collapse
Affiliation(s)
- Theresa T Cody
- Fish and Wildlife Health, Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, Florida, 33701, USA
| | - Yasunari Kiryu
- Fish and Wildlife Health, Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, Florida, 33701, USA
| | - Micah D Bakenhaster
- Fish and Wildlife Health, Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, Florida, 33701, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, 32611, USA
| | - Maki Tabuchi
- Fish and Wildlife Health, Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, Florida, 33701, USA
| | | | - Holden E Harris
- Nature Coast Biological Station, Institute of Food and Agricultural Sciences, University of Florida, Cedar Key, Florida, 32625, USA
| | - Jan H Landsberg
- Fish and Wildlife Health, Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, Florida, 33701, USA
| | - Thomas B Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, 32611, USA
| | - Alexander Q Fogg
- Board of County Commissioners, Okaloosa County, Fort Walton Beach, Florida, 32548, USA
| | - Colin Shea
- Center for Biostatistics and Modeling, Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, Florida, 33701, USA
| | - Deborah B Pouder
- Tropical Aquaculture Laboratory, Fisheries and Aquatic Sciences Program, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, Florida, 33570, USA
| | - William F Patterson
- Fisheries and Aquatic Sciences Program, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, 32653, USA
| | - Meaghan E Emory
- College of Marine Science, University of South Florida, St. Petersburg, Florida, 33701, USA
| | - Roy P Yanong
- Tropical Aquaculture Laboratory, Fisheries and Aquatic Sciences Program, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, Florida, 33570, USA
| |
Collapse
|
4
|
Norfolk WA, Lipp EK. Use and Evaluation of a pES213-Derived Plasmid for the Constitutive Expression of gfp Protein in Pathogenic Vibrios: a Tagging Tool for In Vitro Studies. Microbiol Spectr 2023; 11:e0249022. [PMID: 36507673 PMCID: PMC9927583 DOI: 10.1128/spectrum.02490-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/20/2022] [Indexed: 12/14/2022] Open
Abstract
Insertion of green fluorescent protein (GFP) into bacterial cells for constitutive expression is a powerful tool for the localization of species of interest within complex mixtures. Here, we demonstrate and evaluate the efficacy of the pES213-derived donor plasmid pVSV102 (gfp Knr) as a conjugative tool for the tagging of Vibrio and related species (termed vibrios). Using a triparental mating assay assisted by the helper plasmid pEVS104 (tra trb Knr), we successfully tagged 12 species within the Vibrionaceae family representing 8 of the proposed clades. All transconjugant strains demonstrated bright fluorescence and were readily differentiable within complex mixtures of nontagged cells. Plasmid retention was assessed using persistence and subculture experimentation. Persistence experiments evaluated plasmid loss over time for nonsubcultured samples inoculated into antibiotic-free media and sterile artificial seawater, whereas subculture trials evaluated plasmid loss following one to four subculture passages. Strong plasmid retention (≥80%) was observed in persistence experiments for all transconjugant strains for up to 48 h in both antibiotic-free media and artificial seawater with the exception of Vibrio cholerae, which showed a substantial decline in media after 24 h. Subculturing experiments also demonstrated strong plasmid stability, with all transconjugant strains showing ≥80% retention after four subculture passages. The results of this research suggest that pVSV102 is a stable GFP plasmid for the tagging of a broad range of vibrios. IMPORTANCE Prior research has suggested that the use of Aliivibrio fischeri-derived donor plasmids with the pES213 origin of replication may provide increased plasmid stability for the tagging of vibrios compared to Escherichia coli-derived p15A plasmids. Here, we present a structured protocol for conjugation-based tagging of vibrios using the pES213-derived plasmid pVSV102 and evaluate the plasmid stability of tagged strains. These methods and the resulting transconjugant strains provide important standardized tools to facilitate experimentation requiring the use of traceable vibrio strains. Furthermore, the determination of the species-specific plasmid stability provides an estimation of the anticipated level of plasmid loss under the given set of culture conditions. This estimation can be used to reduce the occurrence of experimental biases introduced by plasmid drift.
Collapse
Affiliation(s)
- William A. Norfolk
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
| | - Erin K. Lipp
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Kavazos CRJ, Ricci F, Leggat W, Casey JM, Choat JH, Ainsworth TD. Intestinal Microbiome Richness of Coral Reef Damselfishes ( Actinopterygii: Pomacentridae). Integr Org Biol 2022; 4:obac026. [PMID: 36136736 PMCID: PMC9486986 DOI: 10.1093/iob/obac026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/13/2022] [Indexed: 12/03/2022] Open
Abstract
Fish gastro-intestinal system harbors diverse microbiomes that affect the host's
digestion, nutrition, and immunity. Despite the great taxonomic diversity of fish, little
is understood about fish microbiome and the factors that determine its structure and
composition. Damselfish are important coral reef species that play pivotal roles in
determining algae and coral population structures of reefs. Broadly, damselfish belong to
either of two trophic guilds based on whether they are planktivorous or algae-farming. In
this study, we used 16S rRNA gene sequencing to investigate the intestinal microbiome of 5
planktivorous and 5 algae-farming damselfish species (Pomacentridae) from
the Great Barrier Reef. We detected Gammaproteobacteria ASVs belonging to
the genus Actinobacillus in 80% of sampled individuals across the 2
trophic guilds, thus, bacteria in this genus can be considered possible core members of
pomacentrid microbiomes. Algae-farming damselfish had greater bacterial alpha-diversity, a
more diverse core microbiome and shared 35 ± 22 ASVs, whereas planktivorous species shared
7 ± 3 ASVs. Our data also highlight differences in microbiomes associated with both
trophic guilds. For instance, algae-farming damselfish were enriched in
Pasteurellaceae, whilst planktivorous damselfish in
Vibrionaceae. Finally, we show shifts in bacterial community
composition along the intestines. ASVs associated with the classes Bacteroidia,
Clostridia, and Mollicutes bacteria were predominant in the
anterior intestinal regions while Gammaproteobacteria abundance was
higher in the stomach. Our results suggest that the richness of the intestinal bacterial
communities of damselfish reflects host species diet and trophic guild.
Collapse
Affiliation(s)
- Christopher R J Kavazos
- Biological, Earth and Environmental Sciences, The University of New South Wales , Kensington, NSW 2052 , Australia
| | - Francesco Ricci
- Biological, Earth and Environmental Sciences, The University of New South Wales , Kensington, NSW 2052 , Australia
- Centre of Marine Bio-Innovation, The University of New South Wales , Kensington, NSW 2052 , Australia
| | - William Leggat
- School of Environmental and Life Sciences, The University of Newcastle , 10 Chittaway Dr, Ourimbah, NSW 2258 , Australia
| | - Jordan M Casey
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University , Townsville, QLD 4811 , Australia
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan , Perpignan 66100 , France
- Laboratoire d'Excellence “CORAIL,” Université de Perpignan , Perpignan 66100 , France
| | - J Howard Choat
- College of Science and Engineering, James Cook University , Townsville QLD 4814 , Australia
| | - Tracy D Ainsworth
- Biological, Earth and Environmental Sciences, The University of New South Wales , Kensington, NSW 2052 , Australia
- Centre of Marine Bio-Innovation, The University of New South Wales , Kensington, NSW 2052 , Australia
| |
Collapse
|
6
|
Brealey JC, Lecaudey LA, Kodama M, Rasmussen JA, Sveier H, Dheilly NM, Martin MD, Limborg MT. Microbiome "Inception": an Intestinal Cestode Shapes a Hierarchy of Microbial Communities Nested within the Host. mBio 2022; 13:e0067922. [PMID: 35502903 PMCID: PMC9239044 DOI: 10.1128/mbio.00679-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
The concept of a holobiont, a host organism and its associated microbial communities, encapsulates the vital role the microbiome plays in the normal functioning of its host. Parasitic infections can disrupt this relationship, leading to dysbiosis. However, it is increasingly recognized that multicellular parasites are themselves holobionts. Intestinal parasites share space with the host gut microbiome, creating a system of nested microbiomes within the primary host. However, how the parasite, as a holobiont, interacts with the host holobiont remains unclear, as do the consequences of these interactions for host health. Here, we used 16S amplicon and shotgun metagenomics sequencing to characterize the microbiome of the intestinal cestode Eubothrium and its effect on the gut microbiome of its primary host, Atlantic salmon. Our results indicate that cestode infection is associated with salmon gut dysbiosis by acting as a selective force benefiting putative pathogens and potentially introducing novel bacterial species to the host. Our results suggest that parasitic cestodes may themselves be holobionts nested within the microbial community of their holobiont host, emphasizing the importance of also considering microbes associated with parasites when studying intestinal parasitic infections. IMPORTANCE The importance of the parasite microbiome is gaining recognition. Of particular concern is understanding how these parasite microbiomes influence host-parasite interactions and parasite interactions with the vertebrate host microbiome as part of a system of nested holobionts. However, there are still relatively few studies focusing on the microbiome of parasitic helminths in general and almost none on cestodes in particular, despite the significant burden of disease caused by these parasites globally. Our study provides insights into a system of significance to the aquaculture industry, cestode infections of Atlantic salmon and, more broadly, expands our general understanding of parasite-microbiome-host interactions and introduces a new element, the microbiome of the parasite itself, which may play a critical role in modulating the host microbiome, and, therefore, the host response, to parasite infection.
Collapse
Affiliation(s)
- Jaelle C. Brealey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Laurène A. Lecaudey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Miyako Kodama
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob A. Rasmussen
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Nolwenn M. Dheilly
- UMR 1161 Virology ANSES/INRAE/ENVA, ANSES Animal Health Laboratory, Maisons-Alfort, France
| | - Michael D. Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Morten T. Limborg
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Su FJ, Chen MM. Protective Efficacy of Novel Oral Biofilm Vaccines against Photobacterium damselae subsp. damselae Infection in Giant Grouper, Epinephelus lanceolatus. Vaccines (Basel) 2022; 10:vaccines10020207. [PMID: 35214666 PMCID: PMC8877220 DOI: 10.3390/vaccines10020207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/19/2022] Open
Abstract
Photobacterium damselae subsp. damselae is a pathogen that mainly infects a variety of fish species. There are many antibiotic-resistant strains of Photobacterium damselae subsp. damselae. In a previously published article, we described the production method for a novel oral biofilm vaccine. In the study reported herein, we confirmed the protective effect of the oral biofilm vaccine against Photobacterium damselae subsp. damselae. Twenty-eight days after vaccination, phagocytosis increased by 256% relative to the control group. The mean albumin–globulin ratios of the vaccine groups were significantly lower than the mean albumin–globulin ratios of the control group. There were no significant intergroup differences in lysozyme activity. Mean IgM titers were significantly higher in the vaccine group than in the control group. There was a significant upregulation of the TLR 3, IL-1β, and IL-8 genes in the spleen 28 days after vaccination. The cumulative mortality of the control fish was 84% after challenging fish with the Photobacterium damselae subsp. damselae, while the cumulative mortality of the oral biofilm vaccine (PBV) group was 32%, which was significantly higher than those of the whole-cell vaccine (PWV) and chitosan particle (CP) groups. There is minimal published research on the prevention and treatment of Photobacterium damselae subsp. damselae infection; therefore, this oral biofilm vaccine may represent a new method to fill this gap.
Collapse
|
8
|
Yang J, Liu B, Li X, Li G, Wen H, Qi X, Li Y, He F. Immune correlates of NF-κB and TNFα promoter DNA methylation in Japanese flounder (Paralichthys olivaceus) muscle and immune parameters change response to vibrio anguillarum infection. FISH & SHELLFISH IMMUNOLOGY 2021; 119:578-586. [PMID: 34655738 DOI: 10.1016/j.fsi.2021.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Vibrio anguillarum infection can activate NF-κB/TNFα pathway in the immune organs of fish. Fish muscle is also an important immune organ, but the research on its immune function is few. Our aim was to study regulating mechanism of NF-κB and TNFα gene expressions in the muscle of Japanese flounder (Paralichthys olivaceus) which was under Vibrio anguillarum infection (0, 24, 48, 72 and 96 h). The results showed that the expressions of NF-κB and TNFα increased significantly at 48 h, and there was a significant positive correlation between them. In situ hybridization confirmed the co-existence of NF-κB and TNFα genes in Japanese flounder muscle. Interestingly, the expression of the TNFα gene was regulated by the DNA methylation and its methylation level was negatively correlated with the expression. The lowest methylation level of TNFα occurred at 48 h under Vibrio anguillarum infection (P < 0.05). And more, when the fragment (-2122 ∼ -730) was deleted on TNFα gene promoter, double luciferase activity was the highest, indicating that fragment (-730-0) was the transcription factor binding region. The site (-78 ~ -69) on the fragment (-730-0) binding NF-κB was mutated, and double luciferase activity decreased significantly. The results confirmed that the site (-78 ~ -69) was indeed an important binding site for NF-κB. In addition, the activity of TNFα in the serum of Japanese flounder changed with the prolongation of vibrio anguillarum infection, and the concentration of other immune factors such as ALP, ALT, AST and LDH also changed in the muscle under vibrio anguillarum infection. They all showed a trend of first increasing and then decreasing. Above studies implied that Japanese flounder responded to Vibrio anguillarum infection at the immune level with the change of its methylation status and the activation of transcription factor. By studying the mechanism of immune pathways, understanding the response to immune stress is great significant to the research of fish breeding for disease resistance.
Collapse
Affiliation(s)
- Jun Yang
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, PR China
| | - Binghua Liu
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, PR China
| | - Xiaohui Li
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, PR China
| | - Guangling Li
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, PR China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, PR China
| | - Xin Qi
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, PR China
| | - Yun Li
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, PR China
| | - Feng He
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, PR China.
| |
Collapse
|
9
|
Cascarano MC, Stavrakidis-Zachou O, Mladineo I, Thompson KD, Papandroulakis N, Katharios P. Mediterranean Aquaculture in a Changing Climate: Temperature Effects on Pathogens and Diseases of Three Farmed Fish Species. Pathogens 2021; 10:1205. [PMID: 34578236 PMCID: PMC8466566 DOI: 10.3390/pathogens10091205] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Climate change is expected to have a drastic effect on aquaculture worldwide. As we move forward with the agenda to increase and diversify aquaculture production, rising temperatures will have a progressively relevant impact on fish farming, linked to a multitude of issues associated with fish welfare. Temperature affects the physiology of both fish and pathogens, and has the potential to lead to significant increases in disease outbreaks within aquaculture systems, resulting in severe financial impacts. Significant shifts in future temperature regimes are projected for the Mediterranean Sea. We therefore aim to review and discuss the existing knowledge relating to disease outbreaks in the context of climate change in Mediterranean finfish aquaculture. The objective is to describe the effects of temperature on the physiology of both fish and pathogens, and moreover to list and discuss the principal diseases of the three main fish species farmed in the Mediterranean, namely gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax), and meagre (Argyrosomus regius). We will attempt to link the pathology of each disease to a specific temperature range, while discussing potential future disease threats associated with the available climate change trends for the Mediterranean Sea.
Collapse
Affiliation(s)
- Maria Chiara Cascarano
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
- Department of Biology, University of Crete, 71003 Heraklion, Greece
| | - Orestis Stavrakidis-Zachou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
- Department of Biology, University of Crete, 71003 Heraklion, Greece
| | - Ivona Mladineo
- Biology Center of Czech Academy of Sciences, Laboratory of Functional Helminthology, Institute of Parasitology, 370 05 Ceske Budejovice, Czech Republic;
| | - Kim D. Thompson
- Vaccines and Diagnostics, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK;
| | - Nikos Papandroulakis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
| | - Pantelis Katharios
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
| |
Collapse
|
10
|
Hayano S, Masaki T, Tadakuma R, Kashima M. Photobacterium damselae subsp. damselae bacteraemia in a patient with liver cirrhosis. BMJ Case Rep 2021; 14:14/6/e242580. [PMID: 34167981 DOI: 10.1136/bcr-2021-242580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Photobacterium damselae subsp. damselae is a family of Vibrionaceae and exists in the marine environment. The organism rarely causes soft-tissue infection in humans; moreover, most of the infected individuals have a history of fishing or exposure to brackish water. We experienced the case of a 63-year-old patient with a history of liver cirrhosis (Child-Pugh class B) who presented with a fever and swelling of the left leg with pain. His symptoms developed after fishing and eating raw fish with exposure of brackish water. He was diagnosed with cellulitis, and Photobacterium damselae spp. damselae was detected in blood culture. The patient was treated with ceftazidime and minocycline and he was discharged after recovery. We need to be aware that in immunocompromised patients with cellulitis exposed to brackish water, organisms other than Staphylococci and Streptococci may be the causative organisms.
Collapse
Affiliation(s)
- Satoshi Hayano
- Department of Internal Medicine, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Takayuki Masaki
- Department of Medical Technology, Faculty of Health Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Risako Tadakuma
- Department of Clinical Laboratory, Japanese Red Cross Kumamoto Hospital, Kumamoto, Kumamoto, Japan
| | - Masayuki Kashima
- Department of Internal Medicine, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| |
Collapse
|
11
|
Schröttner P, Tille E, Lück C, Bunk B. Wound infection caused by Photobacterium damselae in a 32-year-old woman: case report and review of the literature. GMS INFECTIOUS DISEASES 2020; 8:Doc23. [PMID: 33299740 PMCID: PMC7705356 DOI: 10.3205/id000067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The case of a 32-year-old woman is reported, who was affected by a persisting wound infection caused by Photobacterium damselae after an accident in the Mediterranean Sea. Besides the clinical case, microbiological characteristics based on the phenotypic and genotypic description of the isolate (including whole genome data) are presented and discussed.
Collapse
Affiliation(s)
- Percy Schröttner
- Institut für Medizinische Mikrobiologie und Hygiene, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Germany,*To whom correspondence should be addressed: Percy Schröttner, Institute of Medical Microbiology and Hygiene, Faculty of Medicine, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany, Phone: +49 351 458-16585, Fax: +49 351 458-6310, E-mail:
| | - Eric Tille
- UniversitätsCentrum für Orthopädie, Unfall- und Plastische Chirurgie (OUPC), Universitätsklinikum Dresden, Medizinische Fakultät Carl Gustav Carus Dresden, Germany
| | - Christian Lück
- Institut für Medizinische Mikrobiologie und Hygiene, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Boyke Bunk
- Leibniz-Institut DSMZ – Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
| |
Collapse
|
12
|
Diverse Horizontally-Acquired Gene Clusters Confer Sucrose Utilization to Different Lineages of the Marine Pathogen Photobacterium damselae subsp. damselae. Genes (Basel) 2020; 11:genes11111244. [PMID: 33105683 PMCID: PMC7690375 DOI: 10.3390/genes11111244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022] Open
Abstract
The ability to metabolize sucrose is a variable trait within the family Vibrionaceae. The marine bacterium Photobacterium damselae subsp. damselae (Pdd), pathogenic for marine animals and humans, is generally described as negative for sucrose utilization (Scr−). Previous studies have reported sucrose-utilizing isolates (Scr+), but the genetic basis of this variable phenotype remains uncharacterized. Here, we carried out the genome sequencing of five Scr+ and two Scr−Pdd isolates and conducted a comparative genomics analysis with sixteen additional Pdd genomes sequenced in previous studies. We identified two different versions of a four-gene cluster (scr cluster) exclusive of Scr+ isolates encoding a PTS system sucrose-specific IIBC component (scrA), a fructokinase (scrK), a sucrose-6-phosphate hydrolase (scrB), and a sucrose operon repressor (scrR). A scrA deletion mutant did not ferment sucrose and was impaired for growth with sucrose as carbon source. Comparative genomics analyses suggested that scr clusters were acquired by horizontal transfer by different lineages of Pdd and were inserted into a recombination hot-spot in the Pdd genome. The incongruence of phylogenies based on housekeeping genes and on scr genes revealed that phylogenetically diverse gene clusters for sucrose utilization have undergone extensive horizontal transfer among species of Vibrio and Photobacterium.
Collapse
|
13
|
Ji Q, Wang S, Ma J, Liu Q. A review: Progress in the development of fish Vibrio spp. vaccines. Immunol Lett 2020; 226:46-54. [DOI: 10.1016/j.imlet.2020.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/28/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
|
14
|
Wang Z, Shi C, Wang H, Wan X, Zhang Q, Song X, Li G, Gong M, Ye S, Xie G, Huang J. A novel research on isolation and characterization of Photobacterium damselae subsp. damselae from Pacific white shrimp, Penaeus vannamei, displaying black gill disease cultured in China. JOURNAL OF FISH DISEASES 2020; 43:551-559. [PMID: 32196691 DOI: 10.1111/jfd.13153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
In June 2019, massive mortalities of cultured Penaeus vannamei occurred in a local farm in Hainan Province, China. The diseased shrimp displayed evident black gills. Three bacterial strains 20190611001, 20190611007 and 20190611022 were isolated from hepatopancreas and gills of the diseased shrimp and identified as Photobacterium damselae subsp. damselae based on the sequence analysis of 16S rRNA and toxR genes. These three isolates showed haemolytic activities. Of them, strain 20190611022 isolated from hepatopancreas was selected and processed for pathogenic analysis. The calculated median lethal dose (LD50 ) was 9.75 ± 4.29 × 105 CFU/g (body weight) by challenging P. vannameivia reverse gavage. The diseased shrimp displayed enlarged hepatopancreatic tubules and sloughing of epithelial cells in tubular lumens. The strain 20190611022 was also characterized by the testing of API 20NE systems and antibiotic susceptibility. The results of disc diffusion test showed that strain 20190611022 was sensitive to chloramphenicol, compound sulfamethoxazole, cefoperazone, ceftriaxone, ceftazidime and cefuroxime. To our knowledge, this is the first report of isolation and characterization of Photobacterium damselae subsp. damselae from natural diseased P. vannamei. Our findings can serve as a basis for further studies of its pathogenicity and provide technological support for disease controlling in shrimp aquaculture.
Collapse
Affiliation(s)
- Ziyan Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Chengyin Shi
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Hailiang Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiaoyuan Wan
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Qingli Zhang
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiaoling Song
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ge Li
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Miao Gong
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Shigen Ye
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Guosi Xie
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jie Huang
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| |
Collapse
|
15
|
Phobalysin: Fisheye View of Membrane Perforation, Repair, Chemotaxis and Adhesion. Toxins (Basel) 2019; 11:toxins11070412. [PMID: 31315179 PMCID: PMC6669599 DOI: 10.3390/toxins11070412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 11/30/2022] Open
Abstract
Phobalysin P (PhlyP, for photobacterial lysin encoded on a plasmid) is a recently described small β-pore forming toxin of Photobacterium damselae subsp. damselae (Pdd). This organism, belonging to the family of Vibrionaceae, is an emerging pathogen of fish and various marine animals, which occasionally causes life-threatening soft tissue infections and septicemia in humans. By using genetically modified Pdd strains, PhlyP was found to be an important virulence factor. More recently, in vitro studies with purified PhlyP elucidated some basic consequences of pore formation. Being the first bacterial small β-pore forming toxin shown to trigger calcium-influx dependent membrane repair, PhlyP has advanced to a revealing model toxin to study this important cellular function. Further, results from co-culture experiments employing various Pdd strains and epithelial cells together with data on other bacterial toxins indicate that limited membrane damage may generally enhance the association of bacteria with target cells. Thereby, remodeling of plasma membrane and cytoskeleton during membrane repair could be involved. In addition, a chemotaxis-dependent attack-and track mechanism influenced by environmental factors like salinity may contribute to PhlyP-dependent association of Pdd with cells. Obviously, a synoptic approach is required to capture the regulatory links governing the interaction of Pdd with target cells. The characterization of Pdd’s secretome may hold additional clues because it may lead to the identification of proteases activating PhlyP’s pro-form. Current findings on PhlyP support the notion that pore forming toxins are not just killer proteins but serve bacteria to fulfill more subtle functions, like accessing their host.
Collapse
|
16
|
Identifying some pathogenic Vibrio/Photobacterium species during mass mortalities of cultured Gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax) from some Egyptian coastal provinces. Int J Vet Sci Med 2019. [DOI: 10.1016/j.ijvsm.2013.10.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
17
|
Yu Y, Zhang Z, Wang Y, Liao M, Rong X, Li B, Wang K, Chen J, Zhang H. Complete Genome Sequence of Photobacterium damselae Subsp. damselae Strain SSPD1601 Isolated from Deep-Sea Cage-Cultured Sebastes schlegelii with Septic Skin Ulcer. Int J Genomics 2019; 2019:4242653. [PMID: 31093490 PMCID: PMC6481104 DOI: 10.1155/2019/4242653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/16/2019] [Accepted: 02/20/2019] [Indexed: 11/21/2022] Open
Abstract
Photobacterium damselae subsp. damselae (PDD) is a Gram-negative bacterium that can infect a variety of aquatic organisms and humans. Based on an epidemiological investigation conducted over the past 3 years, PDD is one of the most important pathogens causing septic skin ulcer in deep-sea cage-cultured Sebastes schlegelii in the Huang-Bohai Sea area and present throughout the year with high abundance. To further understand the pathogenicity of this species, the pathogenic properties and genome of PDD strain SSPD1601 were analyzed. The results revealed that PDD strain SSPD1601 is a rod-shaped cell with a single polar flagellum, and the clinical symptoms were replicated during artificial infection. The SSPD1601 genome consists of two chromosomes and two plasmids, totaling 4,252,294 bp with 3,751 coding sequences (CDSs), 196 tRNA genes, and 47 rRNA genes. Common virulence factors including flagellin, Fur, RstB, hcpA, OMPs, htpB-Hsp60, VasK, and vgrG were found in strain SSPD1601. Furthermore, SSPD1601 is a pPHDD1-negative strain containing the hemolysin gene hlyAch and three putative hemolysins (emrA, yoaF, and VPA0226), which are likely responsible for the pathogenicity of SSPD1601. The phylogenetic analysis revealed SSPD1601 to be most closely related to Phdp Wu-1. In addition, the antibiotic resistance phenotype indicated that SSPD1601 was not sensitive to ceftazidime, pipemidic, streptomycin, cefalexin, bacitracin, cefoperazone sodium, acetylspiramycin, clarithromycin, amikacin, gentamycin, kanamycin, oxacillin, ampicillin, and trimethoprim-sulfamethoxazole, but only the bacitracin resistance gene bacA was detected based on Antibiotic Resistance Genes Database. These results expand our understanding of PDD, setting the stage for further studies of its pathogenesis and disease prevention.
Collapse
Affiliation(s)
- Yongxiang Yu
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao 266071, China
| | - Zheng Zhang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yingeng Wang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Meijie Liao
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaojun Rong
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Bin Li
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao 266071, China
| | - Kai Wang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao 266071, China
| | - Jing Chen
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao 266071, China
| | - Hao Zhang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
18
|
Ina-Salwany MY, Al-Saari N, Mohamad A, Mursidi FA, Mohd-Aris A, Amal MNA, Kasai H, Mino S, Sawabe T, Zamri-Saad M. Vibriosis in Fish: A Review on Disease Development and Prevention. JOURNAL OF AQUATIC ANIMAL HEALTH 2019; 31:3-22. [PMID: 30246889 DOI: 10.1002/aah.10045] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/16/2018] [Indexed: 05/19/2023]
Abstract
Current growth in aquaculture production is parallel with the increasing number of disease outbreaks, which negatively affect the production, profitability, and sustainability of the global aquaculture industry. Vibriosis is among the most common diseases leading to massive mortality of cultured shrimp, fish, and shellfish in Asia. High incidence of vibriosis can occur in hatchery and grow-out facilities, but juveniles are more susceptible to the disease. Various factors, particularly the source of fish, environmental factors (including water quality and farm management), and the virulence factors of Vibrio, influence the occurrence of the disease. Affected fish show weariness, with necrosis of skin and appendages, leading to body malformation, slow growth, internal organ liquefaction, blindness, muscle opacity, and mortality. A combination of control measures, particularly a disease-free source of fish, biosecurity of the farm, improved water quality, and other preventive measures (e.g., vaccination) might be able to control the infection. Although some control measures are expensive and less practical, vaccination is effective, relatively cheap, and easily implemented. In this review, the latest knowledge on the pathogenesis and control of vibriosis, including vaccination, is discussed.
Collapse
Affiliation(s)
- M Y Ina-Salwany
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nurhidayu Al-Saari
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- International Institute for Halal Research and Training, International Islamic University Malaysia, KICT Building, Level 3, 53100, Gombak, Selangor, Malaysia
| | - Aslah Mohamad
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Fathin-Amirah Mursidi
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Aslizah Mohd-Aris
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Biology, School of Biology, Universiti Teknologi MARA, Kampus Kuala Pilah, 72000, Kuala Pilah, Negeri Sembilan, Malaysia
| | - M N A Amal
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hisae Kasai
- Laboratory of Fish Pathology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, 041-8611, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, 041-8611, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, 041-8611, Japan
| | - M Zamri-Saad
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
19
|
Matanza XM, Osorio CR. Transcriptome changes in response to temperature in the fish pathogen Photobacterium damselae subsp. damselae: Clues to understand the emergence of disease outbreaks at increased seawater temperatures. PLoS One 2018; 13:e0210118. [PMID: 30596794 PMCID: PMC6312309 DOI: 10.1371/journal.pone.0210118] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/17/2018] [Indexed: 01/22/2023] Open
Abstract
The marine bacterium Photobacterium damselae subsp. damselae (Pdd) is a generalist and facultative pathogen that causes disease in a wide range of marine animals including fish species of importance in aquaculture. Disease outbreaks in fish farms have been correlated with an increased water temperature during summer months. In this study, we have used RNA sequencing to analyze the transcriptome of Pdd RM-71 cultured at two different temperatures, which simulated temperature conditions experienced during free swimming lifestyle at mid latitudes in winter months (15°C) and during outbreaks in aquaculture in warm summer months (25°C). The enhanced bacterial growth of Pdd observed at 25°C in comparison to 15°C suggests that an elevated seawater temperature contributes to the build-up of a sufficient bacterial population to cause disease. In comparison to growth at 15°C, growth at 25°C resulted in the upregulation of genes involved in DNA synthesis, nutrient uptake, chemotaxis, flagellar motility, secretion systems and antimicrobial resistance. Plasmid-encoded virulence factors, which include a putative adhesin/invasin OmpU, a transferrin receptor and a serum resistance protein, were also upregulated. Transcription factor RpoS, genes involved in cold shock response, modulation of cell envelope and amino acid metabolism, as well as genes of yet unknown function were downregulated at 25°C. Notably, the gene encoding damselysin cytotoxin (Dly) was among the most highly transcribed genes at the two assayed temperatures, at levels comparable to the most highly expressed housekeeping genes. This study contributes to our understanding of the regulatory networks and biology of a generalist marine bacterial pathogen, and provides evidence that temperature regulates multiple physiological and virulence-related functions in Pdd.
Collapse
Affiliation(s)
- Xosé M. Matanza
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos R. Osorio
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
20
|
Lamb RW, Smith F, Aued AW, Salinas-de-León P, Suarez J, Gomez-Chiarri M, Smolowitz R, Giray C, Witman JD. El Niño drives a widespread ulcerative skin disease outbreak in Galapagos marine fishes. Sci Rep 2018; 8:16602. [PMID: 30413801 PMCID: PMC6226461 DOI: 10.1038/s41598-018-34929-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/29/2018] [Indexed: 01/31/2023] Open
Abstract
Climate change increases local climatic variation and unpredictability, which can alter ecological interactions and trigger wildlife disease outbreaks. Here we describe an unprecedented multi-species outbreak of wild fish disease driven by a climate perturbation. The 2015–16 El Niño generated a +2.5 °C sea surface temperature anomaly in the Galapagos Islands lasting six months. This coincided with a novel ulcerative skin disease affecting 18 teleost species from 13 different families. Disease signs included scale loss and hemorrhagic ulcerated patches of skin, fin deterioration, lethargy, and erratic behavior. A bacterial culture isolated from skin lesions of two of the affected fish species was identified by sequencing of the 16S rRNA gene as a Rahnella spp. Disease prevalence rates were linearly correlated with density in three fish species. In January 2016, disease prevalence reached 51.1% in the ring-tailed damselfish Stegastes beebei (n = 570) and 18.7% in the king angelfish Holacanthus passer (n = 318), corresponding to 78% and 86% decreases in their populations relative to a 4.5-year baseline, respectively. We hypothesize that this outbreak was precipitated by the persistent warm temperatures and lack of planktonic productivity that characterize extreme El Niño events, which are predicted to increase in frequency with global warming.
Collapse
Affiliation(s)
- Robert W Lamb
- Brown University, Department of Ecology and Evolutionary Biology, Providence, RI, 02912, USA.
| | - Franz Smith
- Brown University, Department of Ecology and Evolutionary Biology, Providence, RI, 02912, USA
| | - Anaide W Aued
- Universidade Federal de Santa Catarina, Departamento de Ecologia e Zoologia, Florianopolis, Brazil
| | - Pelayo Salinas-de-León
- Department of Marine Sciences, Charles Darwin Research Station, Av. Charles Darwin s/n, Puerto Ayora, Galapagos Islands, Ecuador.,Pristine Seas, National Geographic Society, Washington, D.C., USA
| | | | | | | | - Cem Giray
- Kennebec River Biosciences, Richmond, ME, USA
| | - Jon D Witman
- Brown University, Department of Ecology and Evolutionary Biology, Providence, RI, 02912, USA
| |
Collapse
|
21
|
Osorio CR, Vences A, Matanza XM, Terceti MS. Photobacterium damselae subsp. damselae, a generalist pathogen with unique virulence factors and high genetic diversity. J Bacteriol 2018; 200:e00002-18. [PMID: 29440249 PMCID: PMC6040198 DOI: 10.1128/jb.00002-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Photobacterium damselae subsp. damselae causes vibriosis in a variety of marine animals, including fish species of importance in aquaculture. It also may cause wound infections in humans that can progress into a fatal outcome. Two major virulence factors are encoded within the large conjugative plasmid pPHDD1: the phospholipase-D damselysin (Dly) and the pore-forming toxin Phobalysin P (PhlyP). The two toxins exert hemolytic and cytolytic activity in a synergistic manner. Albeit PhlyP has close homologues in many Vibrio species, it has unique features that differentiate it from related toxins. Dly phospholipase constitutes a singular trait of P. damselae subsp. damselae among the Vibrionaceae, although related toxins are found in members of the Aeromonadaceae Fish farm outbreaks can also be caused by plasmidless strains. Such observation led to the characterization of two ubiquitous, chromosome-encoded toxins with lesser cytolytic activity: the pore forming-toxin Phobalysin C (PhlyC) and the phospholipase-hemolysin PlpV. Special attention deserves the high genetic diversity of this pathogen, with a number of strain-specific features including the cell envelope polysaccharide synthesis clusters. Fish outbreaks are likely caused by multiclonal populations which contain both plasmidless and pPHDD1-harbouring isolates, and not by well-adapted clonal complexes. Still, among such a genetic heterogeneity, it is feasible to identify conserved weak points in the biology of this bacterium: the two-component regulatory system RstAB (CarSR) was found to be necessary for maximal production of virulence factors and its inactivation severely impaired virulence.
Collapse
Affiliation(s)
- Carlos R Osorio
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Ana Vences
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Xosé Manuel Matanza
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Mateus S Terceti
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| |
Collapse
|
22
|
Carraro R, Dalla Rovere G, Ferraresso S, Carraro L, Franch R, Toffan A, Pascoli F, Patarnello T, Bargelloni L. Development of a real-time PCR assay for rapid detection and quantification of Photobacterium damselae subsp. piscicida in fish tissues. JOURNAL OF FISH DISEASES 2018; 41:247-254. [PMID: 28857188 DOI: 10.1111/jfd.12703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
The availability of a rapid and accurate method for the diagnosis of Photobacterium damselae subsp. piscicida (Phdp), able to discriminate its strictly correlated subsp. damselae (Phdd), formally known as Vibrio damsela, is essential for managing fish pasteurellosis outbreaks in farmed fish. A single-step, high-sensitivity real-time PCR assay for simultaneous detection and quantification of P. damselae was designed targeting partial of the sequence of the bamB gene and tested for specificity and sensitivity on laboratory-generated samples as well as on experimentally infected seabream tissue samples. With a limit of detection (LOD) of one copy in pure bacterial DNA, the sensitivity was higher than all methods previously reported. Validation in target and non-target bacterial species proved the assay was able to discriminate Phdd-Phdp subspecies from diverse hosts/geographical origins and between non-target species. In addition, two SNPs in the target amplicon region determine two distinctive qPCR dissociation curves distinguishing between Phdp-Phdd. This is the first time that a molecular method for P. damselae diagnosis combines detection, quantification and subspecies identification in one step. The assay holds the potential to improve the knowledge of infection dynamics and the development of better strategies to control an important fish disease.
Collapse
Affiliation(s)
- R Carraro
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| | - G Dalla Rovere
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| | - S Ferraresso
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| | - L Carraro
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| | - R Franch
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| | - A Toffan
- Fish Virology Department, National Reference Laboratory for Fish, Crustacean and Mollusc Diseases, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - F Pascoli
- Fish Virology Department, National Reference Laboratory for Fish, Crustacean and Mollusc Diseases, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - T Patarnello
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| | - L Bargelloni
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| |
Collapse
|
23
|
|
24
|
Eissa IAM, Derwa HI, Ismail M, El-Lamie M, Dessouki AA, Elsheshtawy H, Bayoumy EM. Molecular and phenotypic characterization of Photobacterium damselae among some marine fishes in Lake Temsah. Microb Pathog 2017; 114:315-322. [PMID: 29225092 DOI: 10.1016/j.micpath.2017.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/23/2017] [Accepted: 12/04/2017] [Indexed: 11/25/2022]
Abstract
Photobacterium damselae species are one of the most devastating bacterial pathogens in mariculture worldwide. Some species of Photobacterium are pathogenic for marine animals and human. They are the causative agents of photobacteriosis, formerly known as pasteurellosis. A total of (202) marine fishes of three different species were represented as: seabass (Dicentrarchus labrax), seabream (Sparus aurata) and gray mullet (Mugil capitus) randomly collected from Lake Temsah at Ismailia governorate along the parallel Pelagic road to the lake in the governorate from August 2015 to July 2016. The clinical picture and gross lesions of the diseased fishes were recorded. Isolation and identification of suspected bacteria using traditional and molecular methods. Samples from affected organs were collected for studying the histopathological alterations of these pathogens. Fifty one fishes were found to be infected with Photobacterium damselae subsp. Piscicida. Seabass (Dicentrarchus labrax) was the most infected fish species (23), followed by seabream (Sparus aurata) (18) finally gray mullet (Mugil capitus) was (10). 91fishes were found to be infected with P. damselae subsp. damselae, seabass (Dicentrarchus labrax) was the most infected fish sp. (36), followed by seabream (Sparus aurata) (32), then gray mullet (Mugil capitus) (23). The results indicated that, the total prevalence of P. damselae subsp. piscicida in all examined species (25.24%), the highest seasonal prevalence was recorded in summer season (37.09%) followed by autumn (26%) then spring (20.37%) and winter (11.11%). On the other hand, the total prevalence of P. damselae subsp. damselae in all examined species (45.04%), the highest seasonal prevalence was recorded in summer season (67.74%) followed by autumn (52%) then spring (29.62%) and winter (19.44%). Molecular diagnosis with conventional PCR used to confirm the traditional isolation was applied by using specific primers of two genes (polycapsular saccharide gene and urease C gene). The histopathological studies of naturally infected marine fishes showed severe inflammatory reactions in different organs with accumulation of melanomacrophages and necrosis. The results confirm that P. damselae subspecies damsalea is the most prevalent pathogen between marine fishes, and seabass (Dicentrarchus labrax) was the highly affected marine fishes in this study.
Collapse
Affiliation(s)
- I A M Eissa
- Fish Diseases and Management Dept., Fac. of Vet. Medicine, Suez Canal University, Egypt
| | - H I Derwa
- Fish Diseases and Management Dept., Fac. of Vet. Medicine, Suez Canal University, Egypt
| | - Mona Ismail
- Fish Diseases and Management Dept., Fac. of Vet. Medicine, Suez Canal University, Egypt
| | - Maather El-Lamie
- Fish Diseases and Management Dept., Fac. of Vet. Medicine, Suez Canal University, Egypt
| | - Amina A Dessouki
- Pathology Dept., Fac. of Vet. Medicine, Suez Canal University, Egypt
| | - Hassnaa Elsheshtawy
- Fish Diseases and Management Dept., Fac. of Vet. Medicine, Suez Canal University, Egypt
| | - Elsayed M Bayoumy
- Hydrobiology Department, National Research Centre, Dokki, Giza, Egypt; Biology Department, Girls Science College, IAU, Dammam, Saudi Arabia.
| |
Collapse
|
25
|
Lee K, Kim HK, Sohn H, Cho Y, Choi YM, Jeong DG, Kim JH. Genomic insights into Photobacterium damselae subsp. damselae strain KC-Na-1, isolated from the finless porpoise (Neophocaena asiaeorientalis). Mar Genomics 2017; 37:26-30. [PMID: 33250122 DOI: 10.1016/j.margen.2017.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 01/31/2023]
Abstract
Photobacterium damselae subsp. damselae (PDD) is a marine bacterium that can infect a variety of marine animals and humans. Although this bacterium has been isolated from several stranded dolphins and whales, its pathogenic role in cetaceans is still unclear. In this study, we report the complete genome of PDD strain KC-Na-1 isolated from a finless porpoise (Neophocaena asiaeorientalis) rescued from the South Sea (Republic of Korea). The sequenced genome comprised two chromosomes and four plasmids. Among the recently identified major virulence factors in PDD, only phospholipase (plpV) was found in strain KC-Na-1. Interestingly, two genes homologous to Vibrio thermostable direct hemolysin (tdh) and its transcriptional regulator toxR, which are known virulence factors associated with Vibrio parahaemolyticus, were encoded on the plasmid pPDD-Na-1-3. Based on these results, strain KC-Na-1 may have potential pathogenicity in humans and other marine animals and also could act as a potential virulent strain. To the best of our knowledge, this is the first report of the complete genome sequence of P. damselae.
Collapse
Affiliation(s)
- Kyunglee Lee
- Cetacean Research Institute (CRI), National Institute of Fisheries Science (NIFS), Ulsan 44780, Republic of Korea
| | - Hye Kwon Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hawsun Sohn
- Cetacean Research Institute (CRI), National Institute of Fisheries Science (NIFS), Ulsan 44780, Republic of Korea
| | - Yuna Cho
- Cetacean Research Institute (CRI), National Institute of Fisheries Science (NIFS), Ulsan 44780, Republic of Korea
| | - Young-Min Choi
- Cetacean Research Institute (CRI), National Institute of Fisheries Science (NIFS), Ulsan 44780, Republic of Korea
| | - Dae Gwin Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
| | - Ji Hyung Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
26
|
Sharma SRK, Pradeep MA, Sadu N, Dube PN, Vijayan KK. First report of isolation and characterization of Photobacterium damselae subsp. damselae from cage-farmed cobia (Rachycentron canadum). JOURNAL OF FISH DISEASES 2017; 40:953-958. [PMID: 27696450 DOI: 10.1111/jfd.12557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Affiliation(s)
- S R Krupesha Sharma
- Central Marine Fisheries Research Institute (Indian Council of Agricultural Research), Karwar Research Centre, Karwar, India
| | - M A Pradeep
- Central Marine Fisheries Research Institute, Kochi, India
| | - N Sadu
- Central Marine Fisheries Research Institute (Indian Council of Agricultural Research), Karwar Research Centre, Karwar, India
| | - Praveen N Dube
- Central Marine Fisheries Research Institute (Indian Council of Agricultural Research), Karwar Research Centre, Karwar, India
| | - K K Vijayan
- Central Institute of Brackish Water Aquaculture, Chennai, India
| |
Collapse
|
27
|
Chromosome-Encoded Hemolysin, Phospholipase, and Collagenase in Plasmidless Isolates of Photobacterium damselae subsp. damselae Contribute to Virulence for Fish. Appl Environ Microbiol 2017; 83:AEM.00401-17. [PMID: 28341681 DOI: 10.1128/aem.00401-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/18/2017] [Indexed: 11/20/2022] Open
Abstract
Photobacterium damselae subsp. damselae is a pathogen of marine animals, including fish of importance in aquaculture. The virulence plasmid pPHDD1, characteristic of highly hemolytic isolates, encodes the hemolysins damselysin (Dly) and phobalysin (PhlyP). Strains lacking pPHDD1 constitute the vast majority of the isolates from fish outbreaks, but genetic studies to identify virulence factors in plasmidless strains are scarce. Here, we show that the chromosome I-encoded hemolysin PhlyC plays roles in virulence and cell toxicity in pPHDD1-negative isolates of this pathogen. By combining the analyses of whole genomes and of gene deletion mutants, we identified two hitherto uncharacterized chromosomal loci encoding a phospholipase (PlpV) and a collagenase (ColP). PlpV was ubiquitous in the subspecies and exerted hemolytic activity against fish erythrocytes, which was enhanced in the presence of lecithin. ColP was restricted to a fraction of the isolates and was responsible for the collagen-degrading activity in this subspecies. Consistent with the presence of signal peptides in PlpV and ColP sequences, mutants for the type II secretion system (T2SS) genes epsL and pilD exhibited impairments in phospholipase and collagenase activities. Sea bass virulence experiments and cell culture assays demonstrated major contributions of PhlyC and PlpV to virulence and toxicity.IMPORTANCE This study constitutes genetic and genomic analyses of plasmidless strains of an emerging pathogen in marine aquaculture, Photobacterium damselae subsp. damselae To date, studies on the genetic basis of virulence were restricted to the pPHDD1 plasmid-encoded toxins Dly and PhlyP. However, the vast majority of the recent isolates of this pathogen from fish farm outbreaks lack this plasmid. Here we demonstrate that the plasmidless strains produce two hitherto uncharacterized ubiquitous toxins encoded in chromosome I, namely, the hemolysin PhlyC and the phospholipase PlpV. We report the main roles of these two toxins in fish virulence and in cell toxicity. Our results constitute the basis for a better understanding of the virulence of a widespread marine pathogen.
Collapse
|
28
|
Franco Monsreal J, Serralta-Peralta LEDS, Hernández Gómez JR, Sosa-Castilla F, Castillo-Cocom JA. [Prevalence of clinically important species of the genus Vibrio in catered seafood of city and port of Progreso de Castro, Yucatan, Mexico]. Medwave 2015; 15:e6147. [PMID: 26056937 DOI: 10.5867/medwave.2015.05.6147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/18/2015] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Species of the genus Vibrio are invariably gram-negative bacilli, between 2 and 3 µm long and curved in shape, sometimes equipped with a single polar flagellum that allows high mobility. They tolerate well alkaline media and high-salt concentrations in their environment. They do not form spores, are oxidase-positive and facultative anaerobes. The aim of this study was to determine the prevalence of clinically-important species of the genus Vibrio in raw, marinated without heat, partially cooked with heat and completely cooked with heat seafood. METHODS This is a study with a quantitative approach. We obtained a list of 38 caterers that specialized in the sale of marine foods of animal origin for human consumption. The number of marine animal foods in those caterers was 790. For homogenization and enrichment of samples and for the isolation and identification of species, we proceeded according to the methodology described in the Bacteriological Analytical Manual. Intervals to estimate a confidence level of 95% were applied. RESULTS The prevalence obtained in raw, marinated without heat, partially cooked with heat and completely cooked with heat seafood were 44.30% (276/623), 32.00% (8/25), 30.53% (29/95) and 17.02% (8/47), respectively. CONCLUSIONS These results should be taken into consideration when planning to avoid healthcare problems and food-borne diseases in the population that consumes this type of food in the city and port of Progreso de Castro, in Yucatán, Mexico.
Collapse
Affiliation(s)
- José Franco Monsreal
- Departamento de Salud y Desarrollo Comunitario, Universidad Intercultural Maya de Quintana Roo, Quintana Roo, México. Address: Carretera Muna Felipe Carrillo Puerto s/n, km. 137 Col. Centro, C.P.77870, José María Morelos Quintana, México.
| | | | - José Ricardo Hernández Gómez
- Departamento de Salud y Desarrollo Comunitario, Universidad Intercultural Maya de Quintana Roo, Quintana Roo, México
| | - Florinda Sosa-Castilla
- Departamento de Salud y Desarrollo Comunitario, Universidad Intercultural Maya de Quintana Roo, Quintana Roo, México
| | - Juan Ariel Castillo-Cocom
- Departamento de Salud y Desarrollo Comunitario, Universidad Intercultural Maya de Quintana Roo, Quintana Roo, México
| |
Collapse
|
29
|
Yamaki S, Kawai Y, Yamazaki K. Characterization of a novel bacteriophage, Phda1, infecting the histamine-producing Photobacterium damselae
subsp. damselae. J Appl Microbiol 2015; 118:1541-50. [DOI: 10.1111/jam.12809] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/12/2015] [Accepted: 03/17/2015] [Indexed: 01/21/2023]
Affiliation(s)
- S. Yamaki
- Laboratory of Marine Food Science and Technology; Faculty of Fisheries Sciences; Hokkaido University; Minato Hakodate Japan
| | - Y. Kawai
- Laboratory of Marine Food Science and Technology; Faculty of Fisheries Sciences; Hokkaido University; Minato Hakodate Japan
| | - K. Yamazaki
- Laboratory of Marine Food Science and Technology; Faculty of Fisheries Sciences; Hokkaido University; Minato Hakodate Japan
| |
Collapse
|
30
|
Gauthier DT. Bacterial zoonoses of fishes: a review and appraisal of evidence for linkages between fish and human infections. Vet J 2014; 203:27-35. [PMID: 25466575 DOI: 10.1016/j.tvjl.2014.10.028] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 10/18/2014] [Accepted: 10/22/2014] [Indexed: 11/24/2022]
Abstract
Human contact with and consumption of fishes presents hazards from a range of bacterial zoonotic infections. Whereas many bacterial pathogens have been presented as fish-borne zoonoses on the basis of epidemiological and phenotypic evidence, genetic identity between fish and human isolates is not frequently examined or does not provide support for transmission between these hosts. In order to accurately assess the zoonotic risk from exposure to fishes in the context of aquaculture, wild fisheries and ornamental aquaria, it is important to critically examine evidence of linkages between bacteria infecting fishes and humans. This article reviews bacteria typically presented as fish-borne zoonoses, and examines the current strength of evidence for this classification. Of bacteria generally described as fish-borne zoonoses, only Mycobacterium spp., Streptococcus iniae, Clostridium botulinum, and Vibrio vulnificus appear to be well-supported as zoonoses in the strict sense. Erysipelothrix rhusiopathiae, while transmissible from fishes to humans, does not cause disease in fishes and is therefore excluded from the list. Some epidemiological and/or molecular linkages have been made between other bacteria infecting both fishes and humans, but more work is needed to elucidate routes of transmission and the identity of these pathogens in their respective hosts at the genomic level.
Collapse
Affiliation(s)
- David T Gauthier
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia 23529, USA.
| |
Collapse
|
31
|
Virulence properties, biofilm formation and random amplified polymorphic DNA analysis of Photobacterium damselae subsp. damselae isolates from cultured sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax). Microb Pathog 2014; 69-70:13-9. [DOI: 10.1016/j.micpath.2014.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 11/20/2022]
|
32
|
Rivas AJ, Lemos ML, Osorio CR. Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans. Front Microbiol 2013; 4:283. [PMID: 24093021 PMCID: PMC3782699 DOI: 10.3389/fmicb.2013.00283] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/02/2013] [Indexed: 11/13/2022] Open
Abstract
Photobacterium damselae subsp. damselae (formerly Vibrio damsela) is a pathogen of a variety of marine animals including fish, crustaceans, molluscs, and cetaceans. In humans, it can cause opportunistic infections that may evolve into necrotizing fasciitis with fatal outcome. Although the genetic basis of virulence in this bacterium is not completely elucidated, recent findings demonstrate that the phospholipase-D Dly (damselysin) and the pore-forming toxins HlyApl and HlyAch play a main role in virulence for homeotherms and poikilotherms. The acquisition of the virulence plasmid pPHDD1 that encodes Dly and HlyApl has likely constituted a main driving force in the evolution of a highly hemolytic lineage within the subspecies. Interestingly, strains that naturally lack pPHDD1 show a strong pathogenic potential for a variety of fish species, indicating the existence of yet uncharacterized virulence factors. Future and deep analysis of the complete genome sequence of Photobacterium damselae subsp. damselae will surely provide a clearer picture of the virulence factors employed by this bacterium to cause disease in such a varied range of hosts.
Collapse
Affiliation(s)
- Amable J Rivas
- Institute of Aquaculture, University of Santiago de Compostela Santiago de Compostela, Spain
| | | | | |
Collapse
|
33
|
Severe Wound Infection with Photobacterium damselae ssp. damselae and Vibrio harveyi, following a Laceration Injury in Marine Environment: A Case Report and Review of the Literature. Case Rep Med 2013; 2013:610632. [PMID: 24171004 PMCID: PMC3792539 DOI: 10.1155/2013/610632] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 11/18/2022] Open
Abstract
Marine microorganisms are uncommon etiologies of skin and skin structure infections, that is, wound infections. We report a case of severe wound infection, caused by the marine Photobacterium damselae (Vibrionaceae), in a 64-year-old male patient, returning from Australia. The isolate tested positive for pPHDD1, a plasmid conferring high-level virulence. Furthermore, the wound was coinfected with Vibrio harveyi, a halophile bacterium, which has never been reported from human infections before. Identification was achieved by use of Matrix-Assisted Laser Desorption-Ionization Time of Flight Mass Spectrometry (MALDI-TOF) and confirmed by 16S rDNA sequencing. Data retrieval from bibliography was complicated since P. damselae has been renamed often with a number of synonyms present in the literature: Photobacterium damsela, Vibrio damselae, Vibrio damsela, Pasteurella damselae, and Listonella damsela. With all synonyms used as query terms, a literature search provided less than 20 cases published worldwide. A majority of those cases presenting as severe wound infection are even fatal following progression into necrotizing fasciitis. Management with daily wound dressing and antibiotic therapy (ofloxacin empirically, followed by doxycycline after availability of microbiology) led in the reported case to a favorable outcome, which seems to be, however, the exception based on a review of the available literature.
Collapse
|
34
|
Synergistic and additive effects of chromosomal and plasmid-encoded hemolysins contribute to hemolysis and virulence in Photobacterium damselae subsp. damselae. Infect Immun 2013; 81:3287-99. [PMID: 23798530 DOI: 10.1128/iai.00155-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Photobacterium damselae subsp. damselae causes infections and fatal disease in marine animals and in humans. Highly hemolytic strains produce damselysin (Dly) and plasmid-encoded HlyA (HlyA(pl)). These hemolysins are encoded by plasmid pPHDD1 and contribute to hemolysis and virulence for fish and mice. In this study, we report that all the hemolytic strains produce a hitherto uncharacterized chromosome-encoded HlyA (HlyAch). Hemolysis was completely abolished in a single hlyAch mutant of a plasmidless strain and in a dly hlyApl hlyAch triple mutant. We found that Dly, HlyA(pl), and HlyAch are needed for full hemolytic values in strains harboring pPHDD1, and these values are the result of the additive effects between HlyApl and HlyAch, on the one hand, and of the synergistic effect of Dly with HlyApl and HlyAch, on the other hand. Interestingly, Dly-producing strains produced synergistic effects with strains lacking Dly production but secreting HlyA, constituting a case of the CAMP (Christie, Atkins, and Munch-Petersen) reaction. Environmental factors such as iron starvation and salt concentration were found to regulate the expression of the three hemolysins. We found that the contributions, in terms of the individual and combined effects, of the three hemolysins to hemolysis and virulence varied depending on the animal species tested. While Dly and HlyApl were found to be main contributors in the virulence for mice, we observed that the contribution of hemolysins to virulence for fish was mainly based on the synergistic effects between Dly and either of the two HlyA hemolysins rather than on their individual effects.
Collapse
|
35
|
Nonaka L, Maruyama F, Miyamoto M, Miyakoshi M, Kurokawa K, Masuda M. Novel conjugative transferable multiple drug resistance plasmid pAQU1 from Photobacterium damselae subsp. damselae isolated from marine aquaculture environment. Microbes Environ 2012; 27:263-72. [PMID: 22446310 PMCID: PMC4036041 DOI: 10.1264/jsme2.me11338] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/30/2012] [Indexed: 01/08/2023] Open
Abstract
The emergence of drug-resistant bacteria is a severe problem in aquaculture. The ability of drug resistance genes to transfer from a bacterial cell to another is thought to be responsible for the wide dissemination of these genes in the aquaculture environment; however, little is known about the gene transfer mechanisms in marine bacteria. In this study, we show that a tetracycline-resistant strain of Photobacterium damselae subsp. damselae, isolated from seawater at a coastal aquaculture site in Japan, harbors a novel multiple drug resistance plasmid. This plasmid named pAQU1 can be transferred to Escherichia coli by conjugation. Nucleotide sequencing showed that the plasmid was 204,052 base pairs and contained 235 predicted coding sequences. Annotation showed that pAQU1 did not have known repA, suggesting a new replicon, and contained seven drug resistance genes: bla(CARB-9)-like, floR, mph(A)-like, mef(A)-like, sul2, tet(M) and tet(B). The plasmid has a complete set of genes encoding the apparatus for the type IV secretion system with a unique duplication of traA. Phylogenetic analysis of the deduced amino acid sequence of relaxase encoded by traI in pAQU1 demonstrated that the conjugative transfer system of the plasmid belongs to MOB(H12), a sub-group of the MOB(H) plasmid family, closely related to the IncA/C type of plasmids and SXT/R391 widely distributed among species of Enterobacteriaceae and Vibrionaceae. Our data suggest that conjugative transfer is involved in horizontal gene transfer among marine bacteria and provide useful insights into the molecular basis for the dissemination of drug resistance genes among bacteria in the aquaculture environment.
Collapse
Affiliation(s)
- Lisa Nonaka
- Department of Microbiology, Dokkyo Medical University School of Medicine, Mibu, Tochigi 321-0293, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
The Photobacterium damselae subsp. damselae hemolysins damselysin and HlyA are encoded within a new virulence plasmid. Infect Immun 2011; 79:4617-27. [PMID: 21875966 DOI: 10.1128/iai.05436-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Photobacterium damselae subsp. damselae (formerly Vibrio damsela) is a marine bacterium that causes infections and fatal disease in a wide range of marine animals and in humans. Highly hemolytic strains produce damselysin (Dly), a cytolysin encoded by the dly gene that is lethal for mice and has hemolytic activity. We found that Dly is encoded in the highly hemolytic strain RM-71 within a 153,429-bp conjugative plasmid that we dubbed pPHDD1. In addition to Dly, pPHDD1 also encodes a homologue of the pore-forming toxin HlyA. We found a direct correlation between presence of pPHDD1 and a strong hemolytic phenotype in a collection of P. damselae subsp. damselae isolates. Hemolysis was strongly reduced in a double dly hlyA mutant, demonstrating the role of the two pPHDD1-encoded genes in hemolysis. Interestingly, although single hlyA and dly mutants showed different levels of hemolysis reduction depending on the erythrocyte source, hemolysis was not abolished in any of the single mutants, suggesting that the hemolytic phenotype is the result of the additive effect of Dly and HlyA. We found that pPHDD1-encoded dly and hlyA genes are necessary for full virulence for mice and fish. Our results suggest that pPHDD1 can be considered as a driving force for the emergence of a highly hemolytic lineage of P. damselae subsp. damselae.
Collapse
|
37
|
Kajiwara H, Toda M, Mine T, Nakada H, Wariishi H, Yamamoto T. Visualization of sialic acid produced on bacterial cell surfaces by lectin staining. Microbes Environ 2011; 25:152-5. [PMID: 21576867 DOI: 10.1264/jsme2.me10118] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Oligosaccharides containing N-acetylneuraminic acid on the cell surface of some pathogenic bacteria are important for host-microbe interactions. N-acetylneuraminic acid (Neu5Ac) plays a major role in the pathogenicity of bacterial pathogens. For example, cell surface sialyloligosaccharide moieties of the human pathogen Haemophilus influenzae are involved in virulence and adhesion to host cells. In this study, we have established a method of visualizing Neu5Ac linked to a glycoconjugate on the bacterial cell surface based on lectin staining. Photobacterium damselae strain JT0160, known to produce a-2,6-sialyltransferase, was revealed to possess Neu5Ac by HPLC. Using the strain, a strong Sambucus sieboldiana lectin-binding signal was detected. The bacteria producing α-2,6-sialyltransferases could be divided into two groups: those with a lot of α-2,6-linked Neu5Ac on the cell surface and those with a little. In the present study, we developed a useful method for evaluating the relationship between Neu5Ac expression on the cell surface and the degree of virulence of marine bacteria.
Collapse
Affiliation(s)
- Hitomi Kajiwara
- Glycotechnology Business Unit, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka 438–0802, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Thompson FL, Thompson CC, Dias GM, Naka H, Dubay C, Crosa JH. The genus Listonella MacDonell and Colwell 1986 is a later heterotypic synonym of the genus Vibrio Pacini 1854 (Approved Lists 1980)--a taxonomic opinion. Int J Syst Evol Microbiol 2011; 61:3023-3027. [PMID: 21296930 DOI: 10.1099/ijs.0.030015-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We analysed the taxonomic position of the genus Listonella based on phylogenetic, genomic and phenotypic data. The species of the genus Listonella were nested within the genus Vibrio according to the 16S rRNA gene sequence-based phylogenetic tree. The closest neighbour of Vibrio (Listonella) anguillarum strains LMG 4437(T) and ATCC 68554 (=strain 775) was Vibrio ordalii LMG 13544(T), with more than 99.5% 16S rRNA gene sequence similarity. Furthermore, Vibrio (Listonella) pelagius is highly related to Vibrio splendidus. According to average amino acid identity (AAI), multilocus sequence analysis (MLSA) and Karlin genome signature, the closest neighbour of L. anguillarum ATCC 68554 is V. ordalii LMG 13544(T), with 95% AAI, 98% MLSA and 5 in Karlin. V. anguillarum ATCC 68554 and Vibrio cholerae N16961 had 77% similarity in AAI, 85% in MLSA and 14 in the Karlin signature. Phenotypic analyses of previously published data for V. (L.) anguillarum and V. (L.) pelagius revealed that the genus Listonella is extremely similar to the genus Vibrio. V. ordalii and L. anguillarum strains yielded up to 67% DNA-DNA hybridization. There are only a few phenotypic features that might be used to discriminate these two species: L. anguillarum is positive for the Voges-Proskauer reaction, citrate utilization, starch hydrolysis, lipase activity and acid production from glycerol, sorbitol and trehalose, whereas V. ordalii is negative for these traits. We suggest that the genus Listonella is a later heterotypic synonym of the genus Vibrio and propose to use the names Vibrio anguillarum and Vibrio pelagius in place of Listonella anguillarum and Listonella pelagia, respectively.
Collapse
Affiliation(s)
- Fabiano L Thompson
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Cristiane C Thompson
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Graciela M Dias
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Hiroaki Naka
- Molecular Microbiology & Immunology, Mail Code L220, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97201-3098, USA
| | - Christopher Dubay
- Molecular Microbiology & Immunology, Mail Code L220, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97201-3098, USA
| | - Jorge H Crosa
- Molecular Microbiology & Immunology, Mail Code L220, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97201-3098, USA
| |
Collapse
|
39
|
Dikow RB. Systematic relationships within the Vibrionaceae (Bacteria: Gammaproteobacteria): steps toward a phylogenetic taxonomy. Cladistics 2011; 27:9-28. [DOI: 10.1111/j.1096-0031.2010.00312.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
40
|
Yamamoto T. Marine bacterial sialyltransferases. Mar Drugs 2010; 8:2781-94. [PMID: 21139844 PMCID: PMC2996176 DOI: 10.3390/md8112781] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/25/2010] [Accepted: 11/02/2010] [Indexed: 01/04/2023] Open
Abstract
Sialyltransferases transfer N-acetylneuraminic acid (Neu5Ac) from the common donor substrate of these enzymes, cytidine 5′-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac), to acceptor substrates. The enzymatic reaction products including sialyl-glycoproteins, sialyl-glycolipids and sialyl-oligosaccharides are important molecules in various biological and physiological processes, such as cell-cell recognition, cancer metastasis, and virus infection. Thus, sialyltransferases are thought to be important enzymes in the field of glycobiology. To date, many sialyltransferases and the genes encoding them have been obtained from various sources including mammalian, bacterial and viral sources. During the course of our research, we have detected over 20 bacteria that produce sialyltransferases. Many of the bacteria we isolated from marine environments are classified in the genus Photobacterium or the closely related genus Vibrio. The paper reviews the sialyltransferases obtained mainly from marine bacteria.
Collapse
Affiliation(s)
- Takeshi Yamamoto
- Glycotechnology Business Unit, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka 438-0802, Japan.
| |
Collapse
|
41
|
Mohi MM, Kuratani M, Miyazaki T, Yoshida T. Histopathological studies on Vibrio harveyi- infected tiger puffer, Takifugu rubripes (Temminck et Schlegel), cultured in Japan. JOURNAL OF FISH DISEASES 2010; 33:833-840. [PMID: 20726939 DOI: 10.1111/j.1365-2761.2010.01184.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Vibrio harveyi infection occurred with a moderate mortality in tiger puffer, Takifugu rubripes (Temminck et Schlegel), in autumn 2007, at a mariculture farm in western Japan. The diseased fish showed nodular lesions in the branchial chamber and the inner surface of the operculum. Histopathologically, the lesions comprised granulation tissue containing many suppurative foci allowing propagation of the bacteria and granuloma encapsulating abscesses with a decrease in bacteria. The bacteria were disseminated in visceral organs including the spleen, kidney, liver, and myocardium, resulting in the formation of granulomatous lesions. Two groups of tiger puffer juveniles were artificially infected by an intramuscular injection with an isolate (1.0_10(8) CFU/fish). During the experimental period, 20% mortality occurred within 4-6 days post-infection (d.p.i). The fish sampled on 4 d.p.i showed abscesses in the lateral musculature at the injection site. The fish sampled 5 d.p.i. displayed the production of granulation tissue containing many suppurative foci, which replaced the necrotic dermis and lateral musculature. Surviving fish (15 d.p.i.) had granulomatous lesions in the lateral musculature at the injection site. Pyogranulomatosis is pathognomonic in V. harveyi infection of tiger puffer.
Collapse
Affiliation(s)
- M M Mohi
- Graduate school of Bioresources, Mie University, Tsu, Mie, Japan.
| | | | | | | |
Collapse
|
42
|
Urbanczyk H, Ast JC, Dunlap PV. Phylogeny, genomics, and symbiosis of Photobacterium. FEMS Microbiol Rev 2010; 35:324-42. [PMID: 20883503 DOI: 10.1111/j.1574-6976.2010.00250.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Photobacterium comprises several species in Vibrionaceae, a large family of Gram-negative, facultatively aerobic, bacteria that commonly associate with marine animals. Members of the genus are widely distributed in the marine environment and occur in seawater, surfaces, and intestines of marine animals, marine sediments and saline lake water, and light organs of fish. Seven Photobacterium species are luminous via the activity of the lux genes, luxCDABEG. Much recent progress has been made on the phylogeny, genomics, and symbiosis of Photobacterium. Phylogenetic analysis demonstrates a robust separation between Photobacterium and its close relatives, Aliivibrio and Vibrio, and reveals the presence of two well-supported clades. Clade 1 contains luminous and symbiotic species and one species with no luminous members, and Clade 2 contains mostly nonluminous species. The genomes of Photobacterium are similar in size, structure, and organization to other members of Vibrionaceae, with two chromosomes of unequal size and multiple rrn operons. Many species of marine fish form bioluminescent symbioses with three Photobacterium species: Photobacterium kishitanii, Photobacterium leiognathi, and Photobacterium mandapamensis. These associations are highly, but not strictly species specific, and they do not exhibit symbiont-host codivergence. Environmental congruence instead of host selection might explain the patterns of symbiont-host affiliation observed from nature.
Collapse
Affiliation(s)
- Henryk Urbanczyk
- Interdisciplinary Research Organization, University of Miyazaki, Miyazaki, Japan
| | | | | |
Collapse
|
43
|
Austin B. Vibrios as causal agents of zoonoses. Vet Microbiol 2010; 140:310-7. [DOI: 10.1016/j.vetmic.2009.03.015] [Citation(s) in RCA: 275] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/09/2009] [Accepted: 03/02/2009] [Indexed: 01/01/2023]
|
44
|
Lauwers G, Mino-Kenudson M, Kradin RL. Infections of the Gastrointestinal Tract. DIAGNOSTIC PATHOLOGY OF INFECTIOUS DISEASE 2010. [PMCID: PMC7152102 DOI: 10.1016/b978-1-4160-3429-2.00009-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Labella A, Manchado M, Alonso M, Castro D, Romalde J, Borrego J. Molecular intraspecific characterization ofPhotobacterium damselaessp.damselaestrains affecting cultured marine fish. J Appl Microbiol 2009; 108:2122-32. [DOI: 10.1111/j.1365-2672.2009.04614.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Pedersen K, Skall HF, Lassen-Nielsen AM, Bjerrum L, Olesen NJ. Photobacterium damselae subsp. damselae, an emerging pathogen in Danish rainbow trout, Oncorhynchus mykiss (Walbaum), mariculture. JOURNAL OF FISH DISEASES 2009; 32:465-472. [PMID: 19364386 DOI: 10.1111/j.1365-2761.2009.01041.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A selection of 16 field isolates of Photobacterium damselae from marine rainbow trout farms in Denmark was subjected to phenotypic and genotypic characterization and pathogenicity to fish. All isolates belonged to the subspecies damselae, being positive for haemolysis, motility and urease. There were considerable differences in haemolytic properties, some isolates presenting a broad zone of haemolysis and others only a narrow zone. Pulsed-field gel electrophoresis revealed a high diversity indicating that P. damselae subsp. damselae is an opportunistic, not clonal pathogen in Danish marine rainbow trout. Virulence of the strains to rainbow trout was highly variable with LD(50) values ranging from 3.9 x 10(3) to 1.5 x 10(8) cfu at 20 degrees C. The virulence was significantly higher at 20 degrees C than at 13 degrees C. The strains with the strongest haemolytic properties were the most virulent suggesting a strong involvement of haemolysin in the pathogenesis. The pathological changes were consistent with a bacterial septicaemia and the haemorrhages were more pronounced than for most other bacterial infections.
Collapse
Affiliation(s)
- K Pedersen
- National Veterinary Institute, Technical University of Denmark, Arhus N, Denmark.
| | | | | | | | | |
Collapse
|
47
|
Takahashi H, Miya S, Kimura B, Yamane K, Arakawa Y, Fujii T. Difference of genotypic and phenotypic characteristics and pathogenicity potential of Photobacterium damselae subsp. damselae between clinical and environmental isolates from Japan. Microb Pathog 2008; 45:150-8. [DOI: 10.1016/j.micpath.2008.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 04/17/2008] [Accepted: 04/29/2008] [Indexed: 11/25/2022]
|
48
|
|
49
|
NAKAMURA Y, UCHIHIRA M, ICHIMIYA M, MORITA K, MUTO M. Necrotizing fasciitis of the leg due to Photobacterium damsela. J Dermatol 2007; 35:44-5. [DOI: 10.1111/j.1346-8138.2007.00412.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Vaseeharan B, Sundararaj S, Murugan T, Chen JC. Photobacterium damselae ssp. damselae associated with diseased black tiger shrimp Penaeus monodon Fabricius in India. Lett Appl Microbiol 2007; 45:82-6. [PMID: 17594465 DOI: 10.1111/j.1472-765x.2007.02139.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To characterize and identify Photobacterium damselae ssp. damselae present in black gill diseased Penaeus monodon collected from east coast of India. METHODS AND RESULTS Photobacterium damselae ssp. damselae was isolated from hepatopancreas, muscles and gills by using the thiosulfate citrate bile salts sucrose agar supplemented with 1.5% NaCl (TCBS-1) medium. A total of 32 Ph. damselae ssp. damselae isolates were studied together with two reference strains. The biochemical tests and analysis of ureC and 16S rRNA genes confirmed the phenotypic characterization of the isolates as Ph damselae ssp. damselae. Experimental infection studies revealed that the LD50 values of P. monodon and P. indicus ranged from 2x10(3) to 5x10(5) CFU per shrimp and from 4x10(2) to 2x10(4) CFU per shrimp, respectively. CONCLUSIONS Photobacterium damselae ssp. damselae was found in the internal organs of P. monodon and it showed pathogenic to shrimp. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study on the Ph. damselae ssp. damselae present in the black gill diseased P. monodon in India and therefore might serve as a basis for future studies and diagnosis purpose to shrimp culturists.
Collapse
Affiliation(s)
- B Vaseeharan
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan, ROC.
| | | | | | | |
Collapse
|