1
|
Tran KN, Faries KM, Magdaong NCM, Mathews II, Weaver JB, Kirsh JM, Holten D, Kirmaier C, Boxer SG. Application of Amber Suppression To Study the Role of Tyr M210 in Electron Transfer in Rhodobacter sphaeroides Photosynthetic Reaction Centers. J Phys Chem B 2025; 129:3317-3333. [PMID: 40134359 DOI: 10.1021/acs.jpcb.5c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The initial light-induced electron transfer (ET) steps in the bacterial photosynthetic reaction center (RC) have been extensively studied and provide a paradigm for connecting structure and function. Although RCs have local pseudo-C2 symmetry, ET only occurs along the A branch of chromophores. Tyrosine M210 is a key symmetry-breaking residue adjacent to bacteriochlorophyll BA that bridges the primary electron donor P and the bacteriopheophytin acceptor HA. We used amber suppression to incorporate phenylalanine variants with different electron-withdrawing/-donating capabilities at the position M210. X-ray data generally reveal no appreciable structural changes due to the mutations. P* decay and P+HA- formation are multiexponential (∼2 to 9, ∼10 to 60, and ∼100 to 300 ps) and temperature dependent. The 1020 nm transient-absorption band of P+BA- is barely resolved for a few variants at 295 K and for none at 77 K. The results indicate a change from two-step ET for wild-type RCs to the dominance of one-step superexchange ET for the mutants. Resonance Stark spectroscopy reveals that the free energy of P+BA- changes by -57 to +66 meV among the phenylalanine variants. Because P+BA- apparently lies above P* in all phenylalanine variants, the perturbations primarily affect the energy denominator for superexchange mixing. The findings deepen insight into primary ET in the bacterial RC.
Collapse
Affiliation(s)
- Khoi N Tran
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Kaitlyn M Faries
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | | | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Jared B Weaver
- Drug Discovery, Insitro, Inc., 279 E. Grand Ave., South San Francisco, California 94080, United States
| | - Jacob M Kirsh
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Faries KM, Hanson DK, Buhrmaster JC, Hippleheuser S, Tira GA, Wyllie RM, Kohout CE, Magdaong NCM, Holten D, Laible PD, Kirmaier C. Two pathways to understanding electron transfer in reaction centers from photosynthetic bacteria: A comparison of Rhodobacter sphaeroides and Rhodobacter capsulatus mutants. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149047. [PMID: 38692451 DOI: 10.1016/j.bbabio.2024.149047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The rates, yields, mechanisms and directionality of electron transfer (ET) are explored in twelve pairs of Rhodobacter (R.) sphaeroides and R. capsulatus mutant RCs designed to defeat ET from the excited primary donor (P*) to the A-side cofactors and re-direct ET to the normally inactive mirror-image B-side cofactors. In general, the R. sphaeroides variants have larger P+HB- yields (up to ∼90%) than their R. capsulatus analogs (up to ∼60%), where HB is the B-side bacteriopheophytin. Substitution of Tyr for Phe at L-polypeptide position L181 near BB primarily increases the contribution of fast P* → P+BB- → P+HB- two-step ET, where BB is the "bridging" B-side bacteriochlorophyll. The second step (∼6-8 ps) is slower than the first (∼3-4 ps), unlike A-side two-step ET (P* → P+BA- → P+HA-) where the second step (∼1 ps) is faster than the first (∼3-4 ps) in the native RC. Substitutions near HB, at L185 (Leu, Trp or Arg) and at M-polypeptide site M133/131 (Thr, Val or Glu), strongly affect the contribution of slower (20-50 ps) P* → P+HB- one-step superexchange ET. Both ET mechanisms are effective in directing electrons "the wrong way" to HB and both compete with internal conversion of P* to the ground state (∼200 ps) and ET to the A-side cofactors. Collectively, the work demonstrates cooperative amino-acid control of rates, yields and mechanisms of ET in bacterial RCs and how A- vs. B-side charge separation can be tuned in both species.
Collapse
Affiliation(s)
- Kaitlyn M Faries
- Department of Chemistry, Washington University, St. Louis, MO 63130, United States of America
| | - Deborah K Hanson
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, United States of America
| | - James C Buhrmaster
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, United States of America
| | - Stephen Hippleheuser
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, United States of America
| | - Gregory A Tira
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, United States of America
| | - Ryan M Wyllie
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, United States of America
| | - Claire E Kohout
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, United States of America
| | - Nikki Cecil M Magdaong
- Department of Chemistry, Washington University, St. Louis, MO 63130, United States of America
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO 63130, United States of America
| | - Philip D Laible
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, United States of America
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, MO 63130, United States of America.
| |
Collapse
|
3
|
Sugiura M, Kimura M, Shimamoto N, Takegawa Y, Nakamura M, Koyama K, Sellés J, Boussac A, Rutherford AW. Tuning of the Chl D1 and Chl D2 properties in photosystem II by site-directed mutagenesis of neighbouring amino acids. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149013. [PMID: 37717932 DOI: 10.1016/j.bbabio.2023.149013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Photosystem II is the water/plastoquinone photo-oxidoreductase of photosynthesis. The photochemistry and catalysis occur in a quasi-symmetrical heterodimer, D1D2, that evolved from a homodimeric ancestor. Here, we studied site-directed mutants in PSII from the thermophilic cyanobacterium Thermosynechoccocus elongatus, focusing on the primary electron donor chlorophyll a in D1, ChlD1, and on its symmetrical counterpart in D2, ChlD2, which does not play a direct photochemical role. The main conserved amino acid specific to ChlD1 is D1/T179, which H-bonds the water ligand to its Mg2+, while its counterpart near ChlD2 is the non-H-bonding D2/I178. The symmetrical-swapped mutants, D1/T179I and D2/I178T, and a second ChlD2 mutant, D2/I178H, were studied. The D1 mutations affected the 686 nm absorption attributed to ChlD1, while the D2 mutations affected a 663 nm feature, tentatively attributed to ChlD2. The mutations had little effect on enzyme activity and forward electron transfer, reflecting the robustness of the overall enzyme function. In contrast, the mutations significantly affected photodamage and protective mechanisms, reflecting the importance of redox tuning in these processes. In D1/T179I, the radical pair recombination triplet on ChlD1 was shared onto a pheophytin, presumably PheD1 and the detection of 3PheD1 supports the proposed mechanism for the anomalously short lifetime of 3ChlD1; e.g. electron transfer quenching by QA- of 3PheD1 after triplet transfer from 3ChlD1. In D2/I178T, a charge separation could occur between ChlD2 and PheD2, a reaction that is thought to occur in ancestral precursors of PSII. These mutants help understand the evolution of asymmetry in PSII.
Collapse
Affiliation(s)
- Miwa Sugiura
- Proteo-Science Research Center, Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| | - Masaya Kimura
- Proteo-Science Research Center, Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Naohiro Shimamoto
- Proteo-Science Research Center, Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Yuki Takegawa
- Proteo-Science Research Center, Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Makoto Nakamura
- Proteo-Science Research Center, Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kazumi Koyama
- Proteo-Science Research Center, Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Julien Sellés
- Institut de Biologie Physico-Chimique, UMR CNRS 7141 and Sorbonne Université, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Alain Boussac
- Institut de Biologie Intégrative de la Cellule, UMR9198, CEA Saclay, 91191 Gif-Sur-Yvette, France.
| | | |
Collapse
|
4
|
Magdaong NCM, Faries KM, Buhrmaster JC, Tira GA, Wyllie RM, Kohout CE, Hanson DK, Laible PD, Holten D, Kirmaier C. High Yield of B-Side Electron Transfer at 77 K in the Photosynthetic Reaction Center Protein from Rhodobacter sphaeroides. J Phys Chem B 2022; 126:8940-8956. [PMID: 36315401 DOI: 10.1021/acs.jpcb.2c05905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The primary electron transfer (ET) processes at 295 and 77 K are compared for the Rhodobacter sphaeroides reaction center (RC) pigment-protein complex from 13 mutants including a wild-type control. The engineered RCs bear mutations in the L and M polypeptides that largely inhibit ET from the excited state P* of the primary electron donor (P, a bacteriochlorophyll dimer) to the normally photoactive A-side cofactors and enhance ET to the C2-symmetry related, and normally photoinactive, B-side cofactors. P* decay is multiexponential at both temperatures and modeled as arising from subpopulations that differ in contributions of two-step ET (e.g., P* → P+BB- → P+HB-), one-step superexchange ET (e.g., P* → P+HB-), and P* → ground state. [HB and BB are monomeric bacteriopheophytin and bacteriochlorophyll, respectively.] The relative abundances of the subpopulations and the inherent rate constants of the P* decay routes vary with temperature. Regardless, ET to produce P+HB- is generally faster at 77 K than at 295 K by about a factor of 2. A key finding is that the yield of P+HB-, which ranges from ∼5% to ∼90% among the mutant RCs, is essentially the same at 77 K as at 295 K in each case. Overall, the results show that ET from P* to the B-side cofactors in these mutants does not require thermal activation and involves combinations of ET mechanisms analogous to those operative on the A side in the native RC.
Collapse
Affiliation(s)
- Nikki Cecil M Magdaong
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Kaitlyn M Faries
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - James C Buhrmaster
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Gregory A Tira
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ryan M Wyllie
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Claire E Kohout
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Deborah K Hanson
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Philip D Laible
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
5
|
Photosynthetic reaction center variants made via genetic code expansion show Tyr at M210 tunes the initial electron transfer mechanism. Proc Natl Acad Sci U S A 2021; 118:2116439118. [PMID: 34907018 DOI: 10.1073/pnas.2116439118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides were engineered to vary the electronic properties of a key tyrosine (M210) close to an essential electron transfer component via its replacement with site-specific, genetically encoded noncanonical amino acid tyrosine analogs. High fidelity of noncanonical amino acid incorporation was verified with mass spectrometry and X-ray crystallography and demonstrated that RC variants exhibit no significant structural alterations relative to wild type (WT). Ultrafast transient absorption spectroscopy indicates the excited primary electron donor, P*, decays via a ∼4-ps and a ∼20-ps population to produce the charge-separated state P+HA - in all variants. Global analysis indicates that in the ∼4-ps population, P+HA - forms through a two-step process, P*→ P+BA -→ P+HA -, while in the ∼20-ps population, it forms via a one-step P* → P+HA - superexchange mechanism. The percentage of the P* population that decays via the superexchange route varies from ∼25 to ∼45% among variants, while in WT, this percentage is ∼15%. Increases in the P* population that decays via superexchange correlate with increases in the free energy of the P+BA - intermediate caused by a given M210 tyrosine analog. This was experimentally estimated through resonance Stark spectroscopy, redox titrations, and near-infrared absorption measurements. As the most energetically perturbative variant, 3-nitrotyrosine at M210 creates an ∼110-meV increase in the free energy of P+BA - along with a dramatic diminution of the 1,030-nm transient absorption band indicative of P+BA - formation. Collectively, this work indicates the tyrosine at M210 tunes the mechanism of primary electron transfer in the RC.
Collapse
|
6
|
Magdaong NCM, Buhrmaster JC, Faries KM, Liu H, Tira GA, Lindsey JS, Hanson DK, Holten D, Laible PD, Kirmaier C. In Situ, Protein-Mediated Generation of a Photochemically Active Chlorophyll Analogue in a Mutant Bacterial Photosynthetic Reaction Center. Biochemistry 2021; 60:1260-1275. [PMID: 33835797 DOI: 10.1021/acs.biochem.1c00137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
All possible natural amino acids have been substituted for the native LeuL185 positioned near the B-side bacteriopheophytin (HB) in the bacterial reaction center (RC) from Rhodobacter sphaeroides. Additional mutations that enhance electron transfer to the normally inactive B-side cofactors are present. Approximately half of the isolated RCs with Glu at L185 contain a magnesium chlorin (CB) in place of HB. The chlorin is not the common BChl a oxidation product 3-desvinyl-3-acetyl chlorophyll a with a C-C bond in ring D and a C═C bond in ring B but has properties consistent with reversal of these bond orders, giving 17,18-didehydro BChl a. In such RCs, charge-separated state P+CB- forms in ∼5% yield. The other half of the GluL185-containing RCs have a bacteriochlorophyll a (BChl a) denoted βB in place of HB. Residues His, Asp, Asn, and Gln at L185 yield RCs with ≥85% βB in the HB site, while most other amino acids result in RCs that retain HB (≥95%). To the best of our knowledge, neither bacterial RCs that harbor five BChl a molecules and one chlorophyll analogue nor those with six BChl a molecules have been reported previously. The finding that altering the local environment within a cofactor binding site of a transmembrane complex leads to in situ generation of a photoactive chlorin with an unusual ring oxidation pattern suggests new strategies for amino acid control over pigment type at specific sites in photosynthetic proteins.
Collapse
Affiliation(s)
- Nikki Cecil M Magdaong
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - James C Buhrmaster
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Kaitlyn M Faries
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Haijun Liu
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Gregory A Tira
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Deborah K Hanson
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Dewey Holten
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Philip D Laible
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Christine Kirmaier
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
7
|
Primary processes in the bacterial reaction center probed by two-dimensional electronic spectroscopy. Proc Natl Acad Sci U S A 2018; 115:3563-3568. [PMID: 29555738 DOI: 10.1073/pnas.1721927115] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the initial steps of photosynthesis, reaction centers convert solar energy to stable charge-separated states with near-unity quantum efficiency. The reaction center from purple bacteria remains an important model system for probing the structure-function relationship and understanding mechanisms of photosynthetic charge separation. Here we perform 2D electronic spectroscopy (2DES) on bacterial reaction centers (BRCs) from two mutants of the purple bacterium Rhodobacter capsulatus, spanning the Q y absorption bands of the BRC. We analyze the 2DES data using a multiexcitation global-fitting approach that employs a common set of basis spectra for all excitation frequencies, incorporating inputs from the linear absorption spectrum and the BRC structure. We extract the exciton energies, resolving the previously hidden upper exciton state of the special pair. We show that the time-dependent 2DES data are well-represented by a two-step sequential reaction scheme in which charge separation proceeds from the excited state of the special pair (P*) to P+HA- via the intermediate P+BA- When inhomogeneous broadening and Stark shifts of the B* band are taken into account we can adequately describe the 2DES data without the need to introduce a second charge-separation pathway originating from the excited state of the monomeric bacteriochlorophyll BA*.
Collapse
|
8
|
Vasilieva LG, Fufina TY, Gabdulkhakov AG, Shuvalov VA. Different effects of identical symmetry-related mutations near the bacteriochlorophyll dimer in the photosynthetic reaction center of Rhodobacter sphaeroides. BIOCHEMISTRY (MOSCOW) 2015; 80:647-53. [DOI: 10.1134/s0006297915060012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Saggu M, Carter B, Zhou X, Faries K, Cegelski L, Holten D, Boxer SG, Kirmaier C. Putative hydrogen bond to tyrosine M208 in photosynthetic reaction centers from Rhodobacter capsulatus significantly slows primary charge separation. J Phys Chem B 2014; 118:6721-32. [PMID: 24902471 PMCID: PMC4064694 DOI: 10.1021/jp503422c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Slow, ∼50
ps, P* → P+HA– electron
transfer is observed in Rhodobacter
capsulatus reaction centers (RCs) bearing the native
Tyr residue at M208 and the single amino acid change of isoleucine
at M204 to glutamic acid. The P* decay kinetics are unusually homogeneous
(single exponential) at room temperature. Comparative solid-state
NMR of [4′-13C]Tyr labeled wild-type and M204E RCs
show that the chemical shift of Tyr M208 is significantly altered
in the M204E mutant and in a manner consistent with formation of a
hydrogen bond to the Tyr M208 hydroxyl group. Models based on RC crystal
structure coordinates indicate that if such a hydrogen bond is formed
between the Glu at M204 and the M208 Tyr hydroxyl group, the −OH
would be oriented in a fashion expected (based on the calculations
by Alden et al., J. Phys. Chem.1996, 100, 16761–16770) to destabilize P+BA– in free energy. Alteration
of the environment of Tyr M208 and BA by Glu M204 via this
putative hydrogen bond has a powerful influence on primary charge
separation.
Collapse
Affiliation(s)
- Miguel Saggu
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Carter B, Boxer SG, Holten D, Kirmaier C. Photochemistry of a Bacterial Photosynthetic Reaction Center Missing the Initial Bacteriochlorophyll Electron Acceptor. J Phys Chem B 2012; 116:9971-82. [DOI: 10.1021/jp305276m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brett Carter
- Department of Chemistry, Stanford University, Stanford, California
94305-5080, United States
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, California
94305-5080, United States
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri
63130-4899, United States
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri
63130-4899, United States
| |
Collapse
|
11
|
Abstract
Photosynthetic reaction centers (PRCs) employ multiple-step tunneling (hopping) to separate electrons and holes that ultimately drive the chemistry required for metabolism. We recently developed hopping maps that can be used to interpret the rates and energetics of electron/hole hopping in three-site (donor-intermediate-acceptor) tunneling reactions, including those in PRCs. Here we analyze several key ET reactions in PRCs, including forward ET in the L-branch, and hopping that could involve thermodynamically uphill intermediates in the M-branch, which is ET-inactive in vivo. We also explore charge recombination reactions, which could involve hopping. Our hopping maps support the view that electron flow in PRCs involves strong electronic coupling between cofactors and reorganization energies that are among the lowest in biology (≤ 0.4 eV).
Collapse
|
12
|
Faries KM, Kressel LL, Wander MJ, Holten D, Laible PD, Kirmaier C, Hanson DK. High throughput engineering to revitalize a vestigial electron transfer pathway in bacterial photosynthetic reaction centers. J Biol Chem 2012; 287:8507-14. [PMID: 22247556 DOI: 10.1074/jbc.m111.326447] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosynthetic reaction centers convert light energy into chemical energy in a series of transmembrane electron transfer reactions, each with near 100% yield. The structures of reaction centers reveal two symmetry-related branches of cofactors (denoted A and B) that are functionally asymmetric; purple bacterial reaction centers use the A pathway exclusively. Previously, site-specific mutagenesis has yielded reaction centers capable of transmembrane charge separation solely via the B branch cofactors, but the best overall electron transfer yields are still low. In an attempt to better realize the architectural and energetic factors that underlie the directionality and yields of electron transfer, sites within the protein-cofactor complex were targeted in a directed molecular evolution strategy that implements streamlined mutagenesis and high throughput spectroscopic screening. The polycistronic approach enables efficient construction and expression of a large number of variants of a heteroligomeric complex that has two intimately regulated subunits with high sequence similarity, common features of many prokaryotic and eukaryotic transmembrane protein assemblies. The strategy has succeeded in the discovery of several mutant reaction centers with increased efficiency of the B pathway; they carry multiple substitutions that have not been explored or linked using traditional approaches. This work expands our understanding of the structure-function relationships that dictate the efficiency of biological energy-conversion reactions, concepts that will aid the design of bio-inspired assemblies capable of both efficient charge separation and charge stabilization.
Collapse
Affiliation(s)
- Kaitlyn M Faries
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Leonova MM, Fufina TY, Vasilieva LG, Shuvalov VA. Structure-function investigations of bacterial photosynthetic reaction centers. BIOCHEMISTRY (MOSCOW) 2012; 76:1465-83. [DOI: 10.1134/s0006297911130074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Wang H, Hao Y, Jiang Y, Lin S, Woodbury NW. Role of Protein Dynamics in Guiding Electron-Transfer Pathways in Reaction Centers from Rhodobacter sphaeroides. J Phys Chem B 2011; 116:711-7. [DOI: 10.1021/jp211702b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Haiyu Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- The Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, 1001 McAllister Ave., Tempe, Arizona 85287, United States
| | - Yawei Hao
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Ying, Jiang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Su Lin
- The Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, 1001 McAllister Ave., Tempe, Arizona 85287, United States
| | - Neal W. Woodbury
- The Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, 1001 McAllister Ave., Tempe, Arizona 85287, United States
| |
Collapse
|
15
|
Abstract
Although the three-dimensional structure of the bacterial photosynthetic reaction center (RC) reveals a high level of structural symmetry, with two nearly equivalent potential electron transfer pathways, the RC is functionally asymmetric: Electron transfer occurs along only one of the two possible pathways. In order to determine the origins of this symmetry breaking, the internal electric field present in the RC when charge is separated onto structurally characterized sites was probed by using absorption band shifts of the chromophores within the RC. The sensitivity of each probe chromophore to an electric field was calibrated by measuring the Stark effect spectrum, the change in absorption due to an externally applied electric field. A quantitative comparison of the observed absorption band shifts and those predicted from vacuum electrostatics gives information on the effective dielectric constant of the protein complex. These results reveal a significant asymmetry in the effective dielectric strength of the protein complex along the two potential electron transfer pathways, with a substantially higher dielectric strength along the functional pathway. This dielectric asymmetry could be a dominant factor in determining the functional asymmetry of electron transfer in the RC.
Collapse
|
16
|
Müller P, Bieser G, Hartwich G, Langenbacher T, Lossau H, Ogrodnik A, Michel-Beyerle ME. The internal conversion rate of the primary donor in reaction centers of Rhodobacter sphaeroides. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bbpc.19961001207] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Carter B, Boxer SG, Holten D, Kirmaier C. Trapping the P+BL− Initial Intermediate State of Charge Separation in Photosynthetic Reaction Centers from Rhodobacter capsulatus. Biochemistry 2009; 48:2571-3. [DOI: 10.1021/bi900282p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brett Carter
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, and Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, and Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899
| | - Dewey Holten
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, and Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899
| | - Christine Kirmaier
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, and Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899
| |
Collapse
|
18
|
Kirmaier C, Holten D. Low-Temperature Studies of Electron Transfer to the M Side of YFH Reaction Centers from Rhodobacter capsulatus. J Phys Chem B 2009; 113:1132-42. [DOI: 10.1021/jp807639e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889
| |
Collapse
|
19
|
Williams JC, Allen JP. Directed Modification of Reaction Centers from Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Mechanism of Charge Separation in Purple Bacterial Reaction Centers. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_19] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Jones MR. Structural Plasticity of Reaction Centers from Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Chuang JI, Boxer SG, Holten D, Kirmaier C. Temperature Dependence of Electron Transfer to the M-Side Bacteriopheophytin in Rhodobacter capsulatus Reaction Centers. J Phys Chem B 2008; 112:5487-99. [DOI: 10.1021/jp800082m] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jessica I. Chuang
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, and Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, and Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899
| | - Dewey Holten
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, and Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899
| | - Christine Kirmaier
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, and Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899
| |
Collapse
|
23
|
Johnson ET, Müh F, Nabedryk E, Williams JC, Allen JP, Lubitz W, Breton J, Parson WW. Electronic and Vibronic Coupling of the Special Pair of Bacteriochlorophylls in Photosynthetic Reaction Centers from Wild-Type and Mutant Strains of Rhodobacter Sphaeroides. J Phys Chem B 2002. [DOI: 10.1021/jp021024q] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- E. T. Johnson
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - F. Müh
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - E. Nabedryk
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - J. C. Williams
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - J. P. Allen
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - W. Lubitz
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - J. Breton
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - W. W. Parson
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| |
Collapse
|
24
|
Katilius E, Katiliene Z, Lin S, Taguchi AKW, Woodbury NW. B Side Electron Transfer in a Rhodobacter sphaeroides Reaction Center Mutant in Which the B Side Monomer Bacteriochlorophyll Is Replaced with Bacteriopheophytin: Low-Temperature Study and Energetics of Charge-Separated States. J Phys Chem B 2002. [DOI: 10.1021/jp013265o] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Evaldas Katilius
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Zivile Katiliene
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Su Lin
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Aileen K. W. Taguchi
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Neal W. Woodbury
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| |
Collapse
|
25
|
King BA, de Winter A, McAnaney TB, Boxer SG. Excited State Energy Transfer Pathways in Photosynthetic Reaction Centers. 4. Asymmetric Energy Transfer in the Heterodimer Mutant. J Phys Chem B 2001. [DOI: 10.1021/jp002318j] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brett A. King
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| | - Alex de Winter
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| | - Tim B. McAnaney
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| |
Collapse
|
26
|
Ogrodnik A, Hartwich G, Lossau H, Michel-Beyerle M. Dispersive charge separation and conformational cooling of P+HA− in reaction centers of Rb. sphaeroides R26: a spontaneous emission study. Chem Phys 1999. [DOI: 10.1016/s0301-0104(99)00037-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Hartwich G, Lossau H, Michel-Beyerle ME, Ogrodnik A. Nonexponential Fluorescence Decay in Reaction Centers of Rhodobacter sphaeroides Reflecting Dispersive Charge Separation up to 1 ns. J Phys Chem B 1998. [DOI: 10.1021/jp973472h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- G. Hartwich
- Institut für Physikalische und Theoretische Chemie, TU München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - H. Lossau
- Institut für Physikalische und Theoretische Chemie, TU München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - M. E. Michel-Beyerle
- Institut für Physikalische und Theoretische Chemie, TU München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - A. Ogrodnik
- Institut für Physikalische und Theoretische Chemie, TU München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| |
Collapse
|
28
|
King BA, Stanley RJ, Boxer SG. Excited State Energy Transfer Pathways in Photosynthetic Reaction Centers. 2. Heterodimer Special Pair. J Phys Chem B 1997. [DOI: 10.1021/jp964025p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brett A. King
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| | - Robert J. Stanley
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| |
Collapse
|
29
|
Gunner MR, Nicholls A, Honig B. Electrostatic Potentials in Rhodopseudomonas viridis Reaction Centers: Implications for the Driving Force and Directionality of Electron Transfer. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp9519070] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. R. Gunner
- Department of Physics, City College of New York, 138th St. and Convent Avenue, New York, New York 10031
| | - Anthony Nicholls
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 W. 168th St. New York, New York 10032
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 W. 168th St. New York, New York 10032
| |
Collapse
|
30
|
|
31
|
Sebban P, Maróti P, Schiffer M, Hanson DK. Electrostatic dominoes: long distance propagation of mutational effects in photosynthetic reaction centers of Rhodobacter capsulatus. Biochemistry 1995; 34:8390-7. [PMID: 7599129 DOI: 10.1021/bi00026a021] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two point mutants from the purple bacterium Rhodobacter capsulatus, both modified in the M protein of the photosynthetic reaction center, have been studied by flash-induced absorbance spectroscopy. These strains carry either the M231Arg --> Leu or M43ASN --> Asp mutations, which are located 9 and 15 A, respectively, from the terminal electron acceptor QB. In the wild-type Rb. sphaeroides structure, M231Arg is involved in a conserved salt bridge with H125Glu and H232Glu and M43Asn is located among several polar residues that form or surround the QB binding site. These substitutions were originally uncovered in phenotypic revertants isolated from the photosynthetically incompetent L212Glu-L213Asp --> Ala-Ala site-specific double mutant. As second-site suppressor mutations, they have been shown to restore the proton transfer function that is interrupted in the L212Ala-L213Ala double mutant. The electrostatic effects that are induced in reaction centers by the M231Arg --> Leu and M43Asn --> Asp substitutions are roughly the same in either the double-mutant or wild-type backgrounds. In a reaction center that is otherwise wild type in sequence, they decrease the free energy gap between the QA- and QB- states by 24 +/- 5 and 45 +/- 5 meV, respectively. The pH dependences of K2, the QA-QB <--> QAQB- equilibrium constant, are altered in reaction centers that carry either of these substitutions, revealing differences in the pKas of titratable groups compared to the wild type.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P Sebban
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif/Yvette, France
| | | | | | | |
Collapse
|
32
|
Foloppe N, Ferrand M, Breton J, Smith JC. Structural model of the photosynthetic reaction center of Rhodobacter capsulatus. Proteins 1995; 22:226-44. [PMID: 7479696 DOI: 10.1002/prot.340220304] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The reaction center (RC) from the photosynthetic bacterium Rhodobacter (Rb.) capsulatus has been the subject of a considerable amount of molecular biological and spectroscopic work aimed at improving our understanding of the primary steps of photosynthesis. However, no three-dimensional structure is available for this protein. We present here a model obtained by combining information from the structure of the highly homologous RC from Rhodopseudomonas (Rps.) viridis with molecular mechanics and simulated annealing calculations. In the Rb. capsulatus model the orientations of the bacteriochlorophyll monomer and the bacteriopheophytin on the branch inactive in electron transfer differ significantly from those in the RCs of Rps. viridis and Rb. sphaeroides. The bacteriopheophytin orientational difference is in good accord with previous linear dichroism measurements. A comparison is made of interactions between the pigments and the protein environment that may be of functional significance in Rps. viridis, Rb. sphaeroides, and Rb. capsulatus.
Collapse
Affiliation(s)
- N Foloppe
- Section de Biophysique des Protéines et des Membranes, CEA, CE-Saclay, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
33
|
Heller BA, Holten D, Kirmaier C. Characterization of bacterial reaction centers having mutations of aromatic residues in the binding site of the bacteriopheophytin intermediary electron carrier. Biochemistry 1995; 34:5294-302. [PMID: 7711051 DOI: 10.1021/bi00015a045] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report the initial characterization of a series of reaction centers (RCs) from the photosynthetic bacterium Rhodobacter capsulatus having single or double mutations of phenylalanines 97 and 121 on the L polypeptide. Substitution of these aromatic amino acids, which may interact with the photoactive bacteriopheophytin associated with the L polypeptide (BPhL), was carried out to examine their possible roles in electron transfer, charge stabilization, and/or BPhL binding. In some mutant RCs, the wild-type pigment content is obtained while in certain others a bacteriochlorophyll (BChL) replaces BPhL. The mutant RCs with wild-type pigment content are found to have overall photochemistry effectively identical to that of wild-type RCs. This indicates aromatic residues at L97 and L121 are not critical factors in the charge separation process, although an approximate 2-fold increase in the rate of electron transfer from BPhL- to QA is observed in two mutants where residue L121 is leucine. In two double mutants where L121 is histidine and L97 is either valine or cysteine, BPhL is replaced with a BChl (denoted beta). This pigment content is surprising since in the native RC structure amino acid L121 is not in optimum geometry for coordination to the Mg in the center of the pigment macrocycle. Charge separation takes place in the beta-containing mutants with an approximately 70% yield of P+QA- at 285 K compared to approximately 100% for wild-type. The photochemistry of these new beta-type RCs is very similar to that reported previously for the beta RC from Rhodobacter sphaeroides wherein the same pigment change was induced by a mutation in the M polypeptide.
Collapse
Affiliation(s)
- B A Heller
- Department of Chemistry, Washington University, St Louis, Missouri 63130, USA
| | | | | |
Collapse
|
34
|
|
35
|
|
36
|
Olivera LM, Westerhuis WH, Niederman RA. Spectral alterations in Rhodobacter capsulatus mutants with site-directed changes in the bacteriochlorophyll-binding site of the B880 light-harvesting complex. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1185:318-26. [PMID: 8180236 DOI: 10.1016/0005-2728(94)90247-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Site-directed mutagenesis has suggested that conserved histidine and alanine residues in the alpha-subunit of the B880 (LHI) antenna complex of Rhodobacter capsulatus (alpha His32 and alpha Ala28) form part of the bacteriochlorophyll binding site (Bylina, E.J., Robles, S.J. and Youvan, D.C. (1988) Isr. J. Chem. 28, 73-78). Spectroscopic characterization of chromatophores from alpha Ala28 mutants at 77 K revealed: (i) red shifts in B880 absorption and emission maxima of approximately 6 and 10 nm, respectively, with a serine exchange; (ii) red shifts of 3 nm with a glycine exchange; (iii) and no significant shifts with a cysteine exchange, despite a reduction of approximately 50% in B880 level. The strains with the serine and glycine exchanges showed characteristic fluorescence polarization increases over the red-edge of the B880 band, suggesting that the absorption red shifts arose from altered pigment-protein interactions rather than from increased oligomerization states that would be expected to show markedly diminished and red shifted rises in polarization (Westerhuis, W.H.J., Farchaus, J.W. and Niederman, R.A. (1993) Photochem. Photobiol. 58, 460-463). Excitation spectra of strains with alpha His32 to glutamine and alpha Ala28 to histidine exchanges, thought to be depleted in B880, revealed low levels of a 'pseudo-B880' complex with blue-shifted maxima and fluorescence polarization rises; when excited directly into this component, the former strain showed an emission spectrum similar to that of B880. An essentially wild-type electrochromic carotenoid response was observed only in the B880-containing mutants, since membranes isolated from the B880-depleted strains exhibited an increased permeability to ions.
Collapse
Affiliation(s)
- L M Olivera
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08855-1059
| | | | | |
Collapse
|
37
|
Molecular Genetic Manipulation and Characterization of Mutant Photosynthetic Reaction Centers from Purple Nonsulfur Bacteria. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s1569-2558(08)60398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
38
|
Probing Low-Frequency Vibrational Motion in Bacterial Reaction Centers by Femtosecond Absorption Spectroscopy. ACTA ACUST UNITED AC 1994. [DOI: 10.1007/978-3-642-85060-8_52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
39
|
Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy. Nature 1993. [DOI: 10.1038/363320a0] [Citation(s) in RCA: 453] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Arkin AP, Youvan DC. Optimizing Nucleotide Mixtures to Encode Specific Subsets of Amino Acids for Semi-Random Mutagenesis. Nat Biotechnol 1992; 10:297-300. [PMID: 1368102 DOI: 10.1038/nbt0392-297] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In random mutagenesis, synthesis of an NNN triplet (i.e. equiprobable A, C, G, and T at each of the three positions in the codon) could be considered an optimal nucleotide mixture because all 20 amino acids are encoded. NN(G,C) might be considered a slightly more intelligent "dope" because the entire set of amino acids is still encoded using only half as many codons. Using a general algorithm described herein, it is possible to formulate more complex doping schemes which encode specific subsets of the twenty amino acids, excluding others from the mix. Maximizing the equiprobability of amino acid residues contributing to such a subset is suggested as an optimal basis for performing semi-random mutagenesis. This is important for reducing the nucleotide complexity of combinatorial cassettes so that "sequence space" can be searched more efficiently. Computer programs have been developed to provide tables of optimized dopes compatible with automated DNA synthesizers.
Collapse
Affiliation(s)
- A P Arkin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
41
|
Vos MH, Lambry JC, Robles SJ, Youvan DC, Breton J, Martin JL. Femtosecond spectral evolution of the excited state of bacterial reaction centers at 10 K. Proc Natl Acad Sci U S A 1992; 89:613-7. [PMID: 1731331 PMCID: PMC48289 DOI: 10.1073/pnas.89.2.613] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The femtosecond spectral evolution of reaction centers of Rhodobacter sphaeroides R-26 was studied at 10 K. Transient spectra in the near infrared region, obtained with 45-fs pulses (pump pulses centered at 870 nm and continuum probe pulses), were analyzed with associated kinetics at specific wavelengths. The t = 0-fs transient spectrum is very rich in structure; it contains separate induced bands at 807 and 796 nm and a bleaching near 760 nm, reflecting strong changes in interaction between all pigments upon formation of the excited state. A complex spectral evolution in the 800-nm region, most notably the bleaching of the 796-nm band, takes place within a few hundred femtosecond--i.e., on a time scale much faster than electron transfer from the primary donor P to the bacteriopheophytin acceptor HL. The remarkable initial spectral features and their evolution are presumably related to the presence of HL, as they were not observed in the DLL mutant of Rhodobacter capsulatus, which lacks this pigment. A simple linear reaction scheme with an intermediate state cannot account for our data; the initial spectral evolution must reflect relaxation processes within the excited state. The importance for primary photochemistry of long distance interactions in the reaction center is discussed.
Collapse
Affiliation(s)
- M H Vos
- Laboratoire d'Optique Appliquée, Institut National de la Santé et de la Recherche Médicale Unité 275, Ecole Polytechnique-Ecole Nationale Supérieure de Techniques Avancées, Palaiseau, France
| | | | | | | | | | | |
Collapse
|
42
|
Vos MH, Lambry JC, Robles SJ, Youvan DC, Breton J, Martin JL. Direct observation of vibrational coherence in bacterial reaction centers using femtosecond absorption spectroscopy. Proc Natl Acad Sci U S A 1991; 88:8885-9. [PMID: 1924348 PMCID: PMC52615 DOI: 10.1073/pnas.88.20.8885] [Citation(s) in RCA: 244] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It is shown that vibrational coherence modulates the femtosecond kinetics of stimulated emission and absorption of reaction centers of purple bacteria. In the DLL mutant of Rhodobacter capsulatus, which lacks the bacteriopheophytin electron acceptor, oscillations with periods of approximately 500 fs and possibly also of approximately 2 ps were observed, which are associated with formation of the excited state. The kinetics, which reflect primary processes in Rhodobacter sphaeroides R-26, were modulated by oscillations with a period of approximately 700 fs at 796 nm and approximately 2 ps at 930 nm. In the latter case, at 930 nm, where the stimulated emission of the excited state, P*, is probed, oscillations could only be resolved when a sufficiently narrow (10 nm) and concomitantly long pump pulse was used. This may indicate that the potential energy surface of the excited state is anharmonic or that low-frequency oscillations are masked when higher frequency modes are also coherently excited, or both. The possibility is discussed that the primary charge separation may be a coherent and adiabatic process coupled to low-frequency vibrational modes.
Collapse
Affiliation(s)
- M H Vos
- Laboratoire d'Optique Appliquée, Institut National de la Santé et de la Recherche Médicale Unité 275, Ecole Polytechnique-Ecole Nationale Supérieure de Techniques Avancées, Palaiseau, France
| | | | | | | | | | | |
Collapse
|
43
|
Diner BA, Nixon PJ, Farchaus JW. Site-directed mutagenesis of photosynthetic reaction centers. Curr Opin Struct Biol 1991. [DOI: 10.1016/s0959-440x(05)80076-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Youvan DC. Photosynthetic reaction centers: interfacing molecular genetics and optical spectroscopy. Trends Biochem Sci 1991; 16:145-9. [PMID: 1877090 DOI: 10.1016/0968-0004(91)90057-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the elucidation of the mechanism by which certain photosynthetic bacteria convert light into chemical energy, genetics has become intertwined with biophysical techniques. While X-ray crystallography has yielded an atomic resolution structure of the photosynthetic reaction center (RC), optical spectroscopy remains the most important technique for screening mutants. Newly developed imaging devices and genetic techniques should enable biophysicists to characterize rapidly the spectra of extremely large numbers of RC and light harvesting (LH) antennae mutants. The intrinsic pigments of the RC and LH antennae act as spectroscopic reporters for assembly and function of these integral membrane proteins. To optimize this genetics/spectroscopy interface, new algorithms that relate the structure of the genetic code to the physico-chemical properties of the amino acids are being developed to design libraries of mutants.
Collapse
Affiliation(s)
- D C Youvan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139
| |
Collapse
|
45
|
Garcia AF, M�ntele W, Gad'on N, Tadros MH, Drews G. Growth and photosynthetic activities of wild-type and antenna-deficient mutant strains of Rhodobacter capsulatus. Arch Microbiol 1991. [DOI: 10.1007/bf00252201] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
|