1
|
Chi Z, Gupta V, Query C. U2-2 snRNA Mutations Alter the Transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642709. [PMID: 40161847 PMCID: PMC11952416 DOI: 10.1101/2025.03.12.642709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Intron removal from pre-mRNA is catalyzed by the spliceosome, which comprises 5 snRNPs containing small nuclear RNAs (snRNAs). U2 snRNA makes critical RNA-RNA and RNA-protein contacts throughout the splicing cycle. Mutations in U2 snRNA, particularly at position C28, have been linked to cancers. To study gene expression changes mediated by mutated U2 snRNAs, U2-2 C28 mutants, U2-2 knockout (KO), and U2-2 overexpression (OE) cell lines were constructed followed by RNA sequencing. We observed significant changes in splicing and over 4,000 differentially expressed genes enriched in pathways like RNA processing and non-coding RNAs upon knocking out U2-2 snRNA. Splicing patterns were more influenced by U2-2 dosage than mutations alone. Therefore, the mutant exhibits a compound phenotype, resulting from reduced U2-2 levels (and thus mostly phenocopying the KO) and additional mutant-specific splicing changes. HIGHLIGHTS U2-2 snRNA BSL mutants alter splicing and the transcriptomeU2-2 KO phenocopies most altered splice events in the mutantsBoth U2-2 levels and mutations alter splicingMany altered splice events lead to NMD.
Collapse
|
2
|
Wong J, Yellamaty R, Gallante C, Lawrence E, Martelly W, Sharma S. Examining the capacity of human U1 snRNA variants to facilitate pre-mRNA splicing. RNA (NEW YORK, N.Y.) 2024; 30:271-280. [PMID: 38164604 PMCID: PMC10870369 DOI: 10.1261/rna.079892.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
The human U1 snRNA is encoded by a multigene family consisting of transcribed variants and defective pseudogenes. Many variant U1 (vU1) snRNAs have been demonstrated to not only be transcribed but also processed by the addition of a trimethylated guanosine cap, packaged into snRNPs, and assembled into spliceosomes; however, their capacity to facilitate pre-mRNA splicing has, so far, not been tested. A recent systematic analysis of the human snRNA genes identified 178 U1 snRNA genes that are present in the genome as either tandem arrays or single genes on multiple chromosomes. Of these, 15 were found to be expressed in human tissues and cell lines, although at significantly low levels from their endogenous loci, <0.001% of the canonical U1 snRNA. In this study, we found that placing the variants in the context of the regulatory elements of the RNU1-1 gene improves the expression of many variants to levels comparable to the canonical U1 snRNA. Application of a previously established HeLa cell-based minigene reporter assay to examine the capacity of the vU1 snRNAs to support pre-mRNA splicing revealed that even though the exogenously expressed variant snRNAs were enriched in the nucleus, only a few had a measurable effect on splicing.
Collapse
Affiliation(s)
- Jason Wong
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona 85004, USA
| | - Ryan Yellamaty
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona 85004, USA
| | - Christina Gallante
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona 85004, USA
| | - Ethan Lawrence
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona 85004, USA
| | - William Martelly
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona 85004, USA
| | - Shalini Sharma
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona 85004, USA
| |
Collapse
|
3
|
Mabin JW, Lewis PW, Brow DA, Dvinge H. Human spliceosomal snRNA sequence variants generate variant spliceosomes. RNA (NEW YORK, N.Y.) 2021; 27:1186-1203. [PMID: 34234030 PMCID: PMC8457000 DOI: 10.1261/rna.078768.121] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/29/2021] [Indexed: 06/02/2023]
Abstract
Human pre-mRNA splicing is primarily catalyzed by the major spliceosome, comprising five small nuclear ribonucleoprotein complexes, U1, U2, U4, U5, and U6 snRNPs, each of which contains the corresponding U-rich snRNA. These snRNAs are encoded by large gene families exhibiting significant sequence variation, but it remains unknown if most human snRNA genes are untranscribed pseudogenes or produce variant snRNAs with the potential to differentially influence splicing. Since gene duplication and variation are powerful mechanisms of evolutionary adaptation, we sought to address this knowledge gap by systematically profiling human U1, U2, U4, and U5 snRNA variant gene transcripts. We identified 55 transcripts that are detectably expressed in human cells, 38 of which incorporate into snRNPs and spliceosomes in 293T cells. All U1 snRNA variants are more than 1000-fold less abundant in spliceosomes than the canonical U1, whereas at least 1% of spliceosomes contain a variant of U2 or U4. In contrast, eight U5 snRNA sequence variants occupy spliceosomes at levels of 1% to 46%. Furthermore, snRNA variants display distinct expression patterns across five human cell lines and adult and fetal tissues. Different RNA degradation rates contribute to the diverse steady state levels of snRNA variants. Our findings suggest that variant spliceosomes containing noncanonical snRNAs may contribute to different tissue- and cell-type-specific alternative splicing patterns.
Collapse
Affiliation(s)
- Justin W Mabin
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | - Peter W Lewis
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | - Heidi Dvinge
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| |
Collapse
|
4
|
Lardelli RM, Lykke-Andersen J. Competition between maturation and degradation drives human snRNA 3' end quality control. Genes Dev 2020; 34:989-1001. [PMID: 32499401 PMCID: PMC7328512 DOI: 10.1101/gad.336891.120] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022]
Abstract
Polymerases and exonucleases act on 3' ends of nascent RNAs to promote their maturation or degradation but how the balance between these activities is controlled to dictate the fates of cellular RNAs remains poorly understood. Here, we identify a central role for the human DEDD deadenylase TOE1 in distinguishing the fates of small nuclear (sn)RNAs of the spliceosome from unstable genome-encoded snRNA variants. We found that TOE1 promotes maturation of all regular RNA polymerase II transcribed snRNAs of the major and minor spliceosomes by removing posttranscriptional oligo(A) tails, trimming 3' ends, and preventing nuclear exosome targeting. In contrast, TOE1 promotes little to no maturation of tested U1 variant snRNAs, which are instead targeted by the nuclear exosome. These observations suggest that TOE1 is positioned at the center of a 3' end quality control pathway that selectively promotes maturation and stability of regular snRNAs while leaving snRNA variants unprocessed and exposed to degradation in what could be a widespread mechanism of RNA quality control given the large number of noncoding RNAs processed by DEDD deadenylases.
Collapse
Affiliation(s)
- Rea M Lardelli
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Jens Lykke-Andersen
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
5
|
Yandım C, Karakülah G. Expression dynamics of repetitive DNA in early human embryonic development. BMC Genomics 2019; 20:439. [PMID: 31151386 PMCID: PMC6545021 DOI: 10.1186/s12864-019-5803-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The last decade witnessed a number of genome-wide studies on human pre-implantation, which mostly focused on genes and provided only limited information on repeats, excluding the satellites. Considering the fact that repeats constitute a large portion of our genome with reported links to human physiology and disease, a thorough understanding of their spatiotemporal regulation during human embryogenesis will give invaluable clues on chromatin dynamics across time and space. Therefore, we performed a detailed expression analysis of all repetitive DNA elements including the satellites across stages of human pre-implantation and embryonic stem cells. RESULTS We uncovered stage-specific expressions of more than a thousand repeat elements whose expressions fluctuated with a mild global decrease at the blastocyst stage. Most satellites were highly expressed at the 4-cell level and expressions of ACRO1 and D20S16 specifically peaked at this point. Whereas all members of the SVA elements were highly upregulated at 8-cell and morula stages, other transposons and small RNA repeats exhibited a high level of variation among their specific subtypes. Our repeat enrichment analysis in gene promoters coupled with expression correlations highlighted potential links between repeat expressions and nearby genes, emphasising mostly 8-cell and morula specific genes together with SVA_D, LTR5_Hs and LTR70 transposons. The DNA methylation analysis further complemented the understanding on the mechanistic aspects of the repeatome's regulation per se and revealed critical stages where DNA methylation levels are negatively correlating with repeat expression. CONCLUSIONS Taken together, our study shows that specific expression patterns are not exclusive to genes and long non-coding RNAs but the repeatome also exhibits an intriguingly dynamic pattern at the global scale. Repeats identified in this study; particularly satellites, which were historically associated with heterochromatin, and those with potential links to nearby gene expression provide valuable insights into the understanding of key events in genomic regulation and warrant further research in epigenetics, genomics and developmental biology.
Collapse
Affiliation(s)
- Cihangir Yandım
- İzmir Biomedicine and Genome Center (IBG), 35340, İnciraltı, İzmir, Turkey.,Department of Genetics and Bioengineering, İzmir University of Economics, Faculty of Engineering, 35330, Balçova, İzmir, Turkey.,Department of Medicine, Division of Brain Sciences, Hammersmith Hospital, Imperial College London, Faculty of Medicine, W12 0NN, London, UK
| | - Gökhan Karakülah
- İzmir Biomedicine and Genome Center (IBG), 35340, İnciraltı, İzmir, Turkey. .,İzmir International Biomedicine and Genome Institute (iBG-İzmir), Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey.
| |
Collapse
|
6
|
Guiro J, Murphy S. Regulation of expression of human RNA polymerase II-transcribed snRNA genes. Open Biol 2018; 7:rsob.170073. [PMID: 28615474 PMCID: PMC5493778 DOI: 10.1098/rsob.170073] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022] Open
Abstract
In addition to protein-coding genes, RNA polymerase II (pol II) transcribes numerous genes for non-coding RNAs, including the small-nuclear (sn)RNA genes. snRNAs are an important class of non-coding RNAs, several of which are involved in pre-mRNA splicing. The molecular mechanisms underlying expression of human pol II-transcribed snRNA genes are less well characterized than for protein-coding genes and there are important differences in expression of these two gene types. Here, we review the DNA features and proteins required for efficient transcription of snRNA genes and co-transcriptional 3′ end formation of the transcripts.
Collapse
Affiliation(s)
- Joana Guiro
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Dvinge H. Regulation of alternative
mRNA
splicing: old players and new perspectives. FEBS Lett 2018; 592:2987-3006. [DOI: 10.1002/1873-3468.13119] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Heidi Dvinge
- Department of Biomolecular Chemistry School of Medicine and Public Health University of Wisconsin‐Madison WI USA
| |
Collapse
|
8
|
Abstract
Much evidence is now accumulating that, in addition to their general role in splicing, the components of the core splicing machinery have extensive regulatory potential. In particular, recent evidence has demonstrated that de-regulation of these factors cause the highest extent of alternative splicing changes compared to de-regulation of the classical splicing regulators. This lack of a general inhibition of splicing resonates the differential splicing effects observed in different disease pathologies associated with specific mutations targeting core spliceosomal components. In this review we will summarize what is currently known regarding the involvement of core spliceosomal U-snRNP complexes in perturbed tissue development and human diseases and argue for the existence of a compensatory mechanism enabling cells to cope with drastic perturbations in core splicing components. This system maintains the correct balance of spliceosomal snRNPs through differential expression of variant (v)U-snRNPs.
Collapse
Affiliation(s)
- Pilar Vazquez-Arango
- a Nuffield Department of Obstetrics and Gynaecology, Level 3 , Women's Centre, John Radcliffe Hospital , Oxford , England
| | - Dawn O'Reilly
- b Sir William Dunn School of pathology , University of Oxford , South Parks Road, Oxford , England
| |
Collapse
|
9
|
Ohtani M. Transcriptional regulation of snRNAs and its significance for plant development. JOURNAL OF PLANT RESEARCH 2017; 130:57-66. [PMID: 27900551 DOI: 10.1007/s10265-016-0883-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/01/2016] [Indexed: 05/05/2023]
Abstract
Small nuclear RNA (snRNA) represents a distinct class of non-coding RNA molecules. As these molecules have fundamental roles in RNA metabolism, including pre-mRNA splicing and ribosomal RNA processing, it is essential that their transcription be tightly regulated in eukaryotic cells. The genome of each organism contains hundreds of snRNA genes. Although the structures of these genes are highly diverse among organisms, the trans-acting factors that regulate snRNA transcription are evolutionarily conserved. Recent studies of the Arabidopsis thaliana srd2-1 mutant, which is defective in the snRNA transcription factor, provide insight into the physiological significance of snRNA regulation in plant development. Here, I review the current understanding of the molecular mechanisms underlying snRNA transcription.
Collapse
Affiliation(s)
- Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
- Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| |
Collapse
|
10
|
Vazquez-Arango P, Vowles J, Browne C, Hartfield E, Fernandes H, Mandefro B, Sareen D, James W, Wade-Martins R, Cowley SA, Murphy S, O'Reilly D. Variant U1 snRNAs are implicated in human pluripotent stem cell maintenance and neuromuscular disease. Nucleic Acids Res 2016; 44:10960-10973. [PMID: 27536002 PMCID: PMC5159530 DOI: 10.1093/nar/gkw711] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 02/06/2023] Open
Abstract
The U1 small nuclear (sn)RNA (U1) is a multifunctional ncRNA, known for its pivotal role in pre-mRNA splicing and regulation of RNA 3' end processing events. We recently demonstrated that a new class of human U1-like snRNAs, the variant (v)U1 snRNAs (vU1s), also participate in pre-mRNA processing events. In this study, we show that several human vU1 genes are specifically upregulated in stem cells and participate in the regulation of cell fate decisions. Significantly, ectopic expression of vU1 genes in human skin fibroblasts leads to increases in levels of key pluripotent stem cell mRNA markers, including NANOG and SOX2. These results reveal an important role for vU1s in the control of key regulatory networks orchestrating the transitions between stem cell maintenance and differentiation. Moreover, vU1 expression varies inversely with U1 expression during differentiation and cell re-programming and this pattern of expression is specifically de-regulated in iPSC-derived motor neurons from Spinal Muscular Atrophy (SMA) type 1 patient's. Accordingly, we suggest that an imbalance in the vU1/U1 ratio, rather than an overall reduction in Uridyl-rich (U)-snRNAs, may contribute to the specific neuromuscular disease phenotype associated with SMA.
Collapse
Affiliation(s)
- Pilar Vazquez-Arango
- University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK
| | - Jane Vowles
- University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK,Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Cathy Browne
- University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK
| | - Elizabeth Hartfield
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK,Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Hugo J. R. Fernandes
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK,Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Berhan Mandefro
- Cedars-Sinai Medical Center, Board of Governors-Regenerative Medicine Institute and Department of Biomedical Sciences, 8700 Beverly Blvd, AHSP A8418, Los Angeles, CA 90048, USA,iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dhruv Sareen
- Cedars-Sinai Medical Center, Board of Governors-Regenerative Medicine Institute and Department of Biomedical Sciences, 8700 Beverly Blvd, AHSP A8418, Los Angeles, CA 90048, USA,iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - William James
- University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK,Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Sally A. Cowley
- University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK,Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Shona Murphy
- University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK
| | - Dawn O'Reilly
- University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
11
|
Abstract
Pre-mRNA splicing is a critical step in eukaryotic gene expression that contributes to proteomic, cellular, and developmental complexity. Small nuclear (sn)RNAs are core spliceosomal components; however, the extent to which differential expression of snRNA isoforms regulates splicing is completely unknown. This is partly due to difficulties in the accurate analysis of the spatial and temporal expression patterns of snRNAs. Here, we use high-throughput RNA-sequencing (RNA-seq) data to profile expression of four major snRNAs throughout Drosophila development. This analysis shows that individual isoforms of each snRNA have distinct expression patterns in the embryo, larva, and pharate adult stages. Expression of these isoforms is more heterogeneous during embryogenesis; as development progresses, a single isoform from each snRNA subtype gradually dominates expression. Despite the lack of stable snRNA orthologous groups during evolution, this developmental switching of snRNA isoforms also occurs in distantly related vertebrate species, such as Xenopus, mouse, and human. Our results indicate that expression of snRNA isoforms is regulated and lays the foundation for functional studies of individual snRNA isoforms.
Collapse
|
12
|
Guiro J, O'Reilly D. Insights into the U1 small nuclear ribonucleoprotein complex superfamily. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:79-92. [DOI: 10.1002/wrna.1257] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/17/2014] [Accepted: 07/14/2014] [Indexed: 12/12/2022]
Affiliation(s)
- J Guiro
- Institute of Biosciences; University of Sao Paulo; Sao Paulo Brazil
| | - D O'Reilly
- Sir William Dunn School of Pathology; Oxford United Kingdom
| |
Collapse
|
13
|
O'Reilly D, Dienstbier M, Cowley SA, Vazquez P, Drozdz M, Taylor S, James WS, Murphy S. Differentially expressed, variant U1 snRNAs regulate gene expression in human cells. Genome Res 2012; 23:281-91. [PMID: 23070852 PMCID: PMC3561869 DOI: 10.1101/gr.142968.112] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human U1 small nuclear (sn)RNA, required for splicing of pre-mRNA, is encoded by genes on chromosome 1 (1p36). Imperfect copies of these U1 snRNA genes, also located on chromosome 1 (1q12-21), were thought to be pseudogenes. However, many of these "variant" (v)U1 snRNA genes produce fully processed transcripts. Using antisense oligonucleotides to block the activity of a specific vU1 snRNA in HeLa cells, we have identified global transcriptome changes following interrogation of the Affymetrix Human Exon ST 1.0 array. Our results indicate that this vU1 snRNA regulates expression of a subset of target genes at the level of pre-mRNA processing. This is the first indication that variant U1 snRNAs have a biological function in vivo. Furthermore, some vU1 snRNAs are packaged into unique ribonucleoproteins (RNPs), and many vU1 snRNA genes are differentially expressed in human embryonic stem cells (hESCs) and HeLa cells, suggesting developmental control of RNA processing through expression of different sets of vU1 snRNPs.
Collapse
Affiliation(s)
- Dawn O'Reilly
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Jia Y, Mu JC, Ackerman SL. Mutation of a U2 snRNA gene causes global disruption of alternative splicing and neurodegeneration. Cell 2012; 148:296-308. [PMID: 22265417 DOI: 10.1016/j.cell.2011.11.057] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 08/06/2011] [Accepted: 11/08/2011] [Indexed: 12/30/2022]
Abstract
Although uridine-rich small nuclear RNAs (U-snRNAs) are essential for pre-mRNA splicing, little is known regarding their function in the regulation of alternative splicing or of the biological consequences of their dysfunction in mammals. Here, we demonstrate that mutation of Rnu2-8, one of the mouse multicopy U2 snRNA genes, causes ataxia and neurodegeneration. Coincident with the observed pathology, the level of mutant U2 RNAs was highest in the cerebellum and increased after granule neuron maturation. Furthermore, neuron loss was strongly dependent on the dosage of mutant and wild-type snRNA genes. Comprehensive transcriptome analysis identified a group of alternative splicing events, including the splicing of small introns, which were disrupted in the mutant cerebellum. Our results suggest that the expression of mammalian U2 snRNA genes, previously presumed to be ubiquitous, is spatially and temporally regulated, and dysfunction of a single U2 snRNA causes neuron degeneration through distortion of pre-mRNA splicing.
Collapse
Affiliation(s)
- Yichang Jia
- Howard Hughes Medical Institute and The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | |
Collapse
|
15
|
Mukherjee S, Manna S, Mukherjee P, Panda CK. Differential alterations in metabolic pattern of the spliceosomal uridylic acid-rich small nuclear RNAs (UsnRNAs) during malignant transformation of 20-methylcholanthrene-induced mouse CNCI-PM-20 embryonic fibroblasts. Mol Carcinog 2009; 48:773-8. [PMID: 19496104 DOI: 10.1002/mc.20556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Differential alterations of the spliceosomal Uridylic acid rich small nuclear RNAs (UsnRNAs) (U1, U2, U4, U5, and U6) are reported to be associated with cellular proliferation and development, but definitive information is scarce and also elusive. An attempt is made in this study to analyze the metabolic patterns of major spliceosomal UsnRNAs, during tumor development, in an in vitro carcinogenesis model of 20-methylcholanthrene (MCA)-transformed Swiss Mouse Embryonic Fibroblast (MEF), designated as CNCI-PM-20. MEF cells, after treatment with 20-MCA, progressed through a sequence of passages with distinct and heritable changes, finally becoming neoplastic at passage-42 (P42). A differential expression pattern of major UsnRNAs was observed during this process. The abundance of U1 was 20% below control (P1) at passage-20 (P20), followed by a gradual increase up until P42 (approximately 12% above the P1 value). The abundance of U2 was more or less constant during the cellular transformation. U4 showed a trend of increase, with above 30% abundance than control at P20, followed by a significant increase at P36 and P42 (1.5- and 2-fold, respectively, P-value <0.01). U5 also followed an identical pattern, with an increase of 70% compared to control (P-value <0.05) at P42. Interestingly, U6 gradually decreased from P20 onwards up until P42, with 22% at P20 and 67% at P42 (P-value <0.01). An overall significant quantitative alteration in abundance of U4, U5, and U6, observed in our study, contributes to the understanding of the fact that, the metabolism of major spliceosomal UsnRNAs is differentially regulated during the process of neoplastic transformation.
Collapse
Affiliation(s)
- Sudeshna Mukherjee
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | | | | | | |
Collapse
|
16
|
Manna S, Banerjee S, Mukherjee S, Das S, Panda CK. Epigallocatechin gallate induced apoptosis in Sarcoma180 cells in vivo: mediated by p53 pathway and inhibition in U1B, U4-U6 UsnRNAs expression. Apoptosis 2007; 11:2267-76. [PMID: 17041754 DOI: 10.1007/s10495-006-0198-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of this study was to understand the mode of action of tea polyphenol epigallocatechin gallate (EGCG) in vivo. Swiss albino mice were treated i.p. with EGCG at two different doses i.e. 12-mg/kg body weight and 15-mg/kg body weight, for 7 days prior to inoculation of Sarcoma180 (S180) cells and continued for another 7 days. The growth of the S180, harvested 7 days after inoculation, was significantly reduced due to treatment with EGCG. The flowcytometric analysis of S180 cells, showed significant increase in apoptosis and reduction in the number of cells in G2/M phase of cell cycle due to treatment with EGCG. The induction of apoptosis has also been confirmed by the TUNEL and DNA fragmentation assays. Both RT-PCR and Western blot analysis showed significant up-regulation of p53 and bax, and down-regulation of bcl-2 and c-myc due to EGCG treatment. No changes in the expression pattern of p21, p27, bcl-xl, mdm2 and cyclin D1 were seen. Interestingly, there was significant down-regulation of spliceosomal uridylic acid rich small nuclear RNAs (UsnRNAs) U1B and U4-U6 due to EGCG treatment. This indicates that these UsnRNAs may be involved in the apoptosis process. Taken together, our study suggests that in vivo EGCG could induce apoptosis in S180 cells through alteration in G2/M phase of the cell cycle by up-regulation of p53, bax and down-regulation of c-myc, bcl-2 and U1B, U4-U6 UsnRNAs.
Collapse
Affiliation(s)
- Sugata Manna
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
| | | | | | | | | |
Collapse
|
17
|
Manna S, Banerjee S, Saha P, Roy A, Das S, Panda CK. Differential Alterations in Metabolic Pattern of the Spliceosomal UsnRNAs during Pre-Malignant Lung Lesions Induced by Benzo(a)pyrene: Modulation by Tea Polyphenols. Mol Cell Biochem 2006; 289:149-57. [PMID: 16718374 DOI: 10.1007/s11010-006-9158-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
The differential alterations of the spliceosomal UsnRNAs (U1, U2, U4, U5, and U6) were reported to be associated with cellular proliferation and development. The attempt was made in this study to analyze the metabolic pattern of the spliceosomal UsnRNAs during the development of pre-malignant lung lesions induced in experimental mice model system by benzo(a)pyrene (BP) and also to see how tea polyphenols, epigallocatechin gallate (EGCG) and epicatechin gallate (ECG), modulate the metabolism of these UsnRNAs during the lung carcinogenesis. No significant changes in the level of the UsnRNAs were seen in the inflammatory lung lesions at 9th week due to treatment of BP. However, there was significant increase in the level of U1 ( approximately 2.5 fold) and U5 ( approximately 47%) in the hyperplastic lung lesions at 17th week. But in the mild dysplastic lung lesions at 26th week, the level of UsnRNAs did not change significantly. Whereas, in the dysplastic lung lesions at 36th week there was significant increase in the level of the U2 ( approximately 2 fold), U4 ( approximately 2.5 fold) and U5 ( approximately 2 fold). Due to the EGCG and ECG treatment the lung lesions at 9th week appeared normal and in the 17th, 26th, and 36th week it appeared as hyperplasia. The level of the UsnRNAs was significantly low in the lung lesions at 9th week (only U2 and U4 by EGCG), at 17th week (only U1 by EGCG/ECG), at 26th week (U1 by ECG; U2, U4 and U5 by EGCG/ECG) and at 36th week (U1 by ECG, U2 and U4 by EGCG/ECG). Whereas, there was significant increase in the level of U5 (by EGCG/ECG) and U6 (by EGCG only) in the lung lesions at 36th and 26th week respectively. This indicates that the metabolism of the spliceosomal UsnRNAs differentially altered during the development of pre-malignant lung lesions by BP as well as during the modulation of the lung lesions by the tea polyphenols.
Collapse
Affiliation(s)
- Sugata Manna
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, India
| | | | | | | | | | | |
Collapse
|
18
|
Sierra-Montes JM, Pereira-Simon S, Smail SS, Herrera RJ. The silk moth Bombyx mori U1 and U2 snRNA variants are differentially expressed. Gene 2005; 352:127-36. [PMID: 15894437 DOI: 10.1016/j.gene.2005.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 12/16/2004] [Accepted: 02/22/2005] [Indexed: 10/25/2022]
Abstract
Five U1 and eight U2 isoforms of the silk moth Bombyx mori exhibiting internal nucleotide differences have been previously identified and characterized in various tissues and developmental stages. In this investigation, it is demonstrated that the levels of some snRNA variants differ in egg and silk gland tissue and change during development. Qualitative and quantitative differences in the U1 and U2 variant populations were observed at three developmental points (early, middle and late) of the silk gland (SG) during the fifth instar larval stage of the silk moth. Statistical analyses of the various isoform populations across the fifth instar larval and egg stages show significant differences for some of the U1 and U2 variants. The representation of variant sequences in expressed U1 and U2 sequences (RT-PCR libraries) and in a whole-genome shotgun (WGS) assembly database was confirmed. In addition, conserved elements in the promoter 5'-flanking region of the U1 and U2 variants were identified in the WGS.
Collapse
Affiliation(s)
- Julie M Sierra-Montes
- Department of Biological Sciences, OE304, Florida International University, Miami, FL 33199, United States
| | | | | | | |
Collapse
|
19
|
Chen X, Wolin SL. The Ro 60 kDa autoantigen: insights into cellular function and role in autoimmunity. J Mol Med (Berl) 2004; 82:232-9. [PMID: 15168680 DOI: 10.1007/s00109-004-0529-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An RNA-binding protein, the Ro 60 kDa autoantigen, is a major target of the immune response in patients suffering from two systemic rheumatic diseases, systemic lupus erythematosus and Sjogren's syndrome. In lupus patients, anti-Ro antibodies are associated with photosensitive skin lesions and with neonatal lupus, a syndrome in which mothers with anti-Ro antibodies give birth to children with photosensitive skin lesions and a cardiac conduction defect, third degree heart block. In vertebrate cells, the Ro protein binds small RNAs of unknown function known as Y RNAs. Although the cellular function of Ro has long been mysterious, recent studies have implicated Ro in two distinct processes: small RNA quality control and the enhancement of cell survival following exposure to ultraviolet irradiation. Most interestingly, mice lacking the Ro protein develop an autoimmune syndrome that shares some features with systemic lupus erythematosus in patients, suggesting that the normal function of Ro may be important for the prevention of this autoimmune disease. In this review, we summarize recent progress towards understanding the role of the Ro 60 kDa protein and discuss whether the cellular function of Ro could be related to certain manifestations of lupus in patients.
Collapse
Affiliation(s)
- Xinguo Chen
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | | |
Collapse
|
20
|
Chen X, Smith JD, Shi H, Yang DD, Flavell RA, Wolin SL. The Ro autoantigen binds misfolded U2 small nuclear RNAs and assists mammalian cell survival after UV irradiation. Curr Biol 2004; 13:2206-11. [PMID: 14680639 DOI: 10.1016/j.cub.2003.11.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Ro 60 kDa autoantigen, an RNA binding protein, is a major target of the immune response in patients with systemic lupus erythematosus. As mice lacking Ro develop a lupus-like syndrome, Ro may be important for preventing autoimmunity. However, the cellular function of Ro, which binds small cytoplasmic RNAs of unknown function called Y RNAs, has been enigmatic. Ro has been proposed to function in 5S rRNA quality control based on experiments in Xenopus laevis oocytes, and a Ro ortholog enhances survival of the eubacterium Deinococcus radiodurans after ultraviolet irradiation. To test the general importance of these two observations for Ro function, we investigated the role of Ro in mammalian cells. We report that, in mouse embryonic stem (ES) cells, Ro binds variant spliceosomal U2 snRNAs. Expression of mouse U2 snRNAs in Xenopus oocytes reveals that binding occurs in nuclei and appears to involve recognition of misfolded RNA. Moreover, mouse ES cells lacking Ro exhibit decreased survival after ultraviolet irradiation. In irradiated cells, both Ro and a Y RNA accumulate in nuclei. We propose that Ro plays a general role in small RNA quality control and that this function is important for cell survival after ultraviolet irradiation.
Collapse
Affiliation(s)
- Xinguo Chen
- Department of Cell Biology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | | | | | | | | | | |
Collapse
|
21
|
Sierra-Montes JM, Pereira-Simon S, Freund AV, Ruiz LM, Szmulewicz MN, Herrera RJ. A diversity of U1 small nuclear RNAs in the silk moth Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:29-39. [PMID: 12459198 DOI: 10.1016/s0965-1748(02)00164-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Variants of U1 small nuclear RNAs (snRNAs) have been previously detected in a permanent cell line (BmN) of the silk moth Bombyx mori. In this study, the existence of U1 snRNA isoforms in the silk gland (SG) of the organism is investigated. The polyploidy (approximately 200,000X the 2N somatic value) state of the B. mori silk gland cells represents a unique system to explore the potential presence and differential expression of multiple U1 variants in a normal tissue. B. mori U1-specific RT-PCR libraries from the silk gland were generated and five U1 isoforms were isolated and characterized. Nucleotide differences, structural alterations, as well as protein and RNA interaction sites were examined in these variants and compared to the previously reported isoforms from the transformed BmN cell line. In all these SG U1 variants, variant sites and inter-species differences are located in moderately conserved regions. Substitutional or compensatory changes were found in the double stranded areas and clustered in moderately conserved regions. Some of the changes generate stronger base pairing. Calculated free energy (DeltaG) values for the entire U1 snRNA secondary structures and for the individual stem/loops (I, II, III and IV) domains of the isoforms were generated and compared to determine their structural stability. Using phylogenetic analysis, an evolutionary parallelism is observed between the polymorphic sites in B. mori and variant locations found among animal and plant species.
Collapse
Affiliation(s)
- J M Sierra-Montes
- Department of Biological Sciences, OE 304, Florida International University, Miami, FL 33199, USA
| | | | | | | | | | | |
Collapse
|
22
|
Sierra-Montes JM, Freund AV, Ruiz LM, Szmulewicz MN, Rowold DJ, Herrera RJ. Multiple forms of U2 snRNA coexist in the silk moth Bombyx mori. INSECT MOLECULAR BIOLOGY 2002; 11:105-114. [PMID: 11841508 DOI: 10.1046/j.0962-1075.2001.00313.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Eight U2 snRNA variants were isolated from several Bombyx mori U2-specific RT-PCR libraries. U2 sequences and secondary structures were generated and examined in terms of potential RNA and protein interactions. Analysis indicated that nucleotide changes occurred in both stem/loop and single-stranded areas. Changes in the double stranded areas were either compensatory, single substitutions (e.g. C <--> U) or prevented the double-stranded formation of one or two base pairs. The polymorphisms were clustered in moderately conserved regions. Some of the changes observed generated stronger base pairing. Inter-species conserved protein or RNA-binding sites were relatively unaffected. No polymorphic sites were found in known functional sequences. Bombyx mori and Drosophila melanogaster U2 sequences are 95% and 70% similar at the 5'- and the 3'-ends of the molecule, respectively. Phylogenetic analysis of the U2 sequences demonstrates remarkable conservation across species.
Collapse
Affiliation(s)
- J M Sierra-Montes
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | | | | | | | | | | |
Collapse
|
23
|
Ray R, Ray K, Panda CK. Differential alterations in metabolic pattern of the six major UsnRNAs during development. Mol Cell Biochem 1997; 177:79-88. [PMID: 9450648 DOI: 10.1023/a:1006879718779] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The uridylic acid rich nuclear RNAs (U1-U6 snRNAs) are involved mainly in the processing of pre-mRNA and pre-rRNA. So, any control of cell growth through pre-mRNA/pre-rRNA processing may have some regulation through altered UsnRNAs metabolism. With this idea, attempts have been made to see how the metabolism of the six major UsnRNAs' changed during the normal process of cellular proliferation associated with differentiation from pluripotent/totipotent stem cells of early embryonic stage to much more differentiated state of different cell/tissue lineages in different tissues/organs during the fetal and neonatal stages of growth. It has been seen that the levels of the six major UsnRNAs were high in day 8 embryo when the cells were mainly pluripotent/totipotent in nature, and during the progression of embryonic development the levels of these UsnRNAs gradually decreased (approximately 35-65%) up to the midgestational period (day 13) with some exception, when the organogenesis has already been started. However in the fetal life, the levels of these UsnRNAs were maximum or comparable around 18 +/- 2 days of gestation in comparison to that in day 8 embryo when the kinetics of the maturational status of the different organs were quite high. But, the levels of these UsnRNAs' became low during day 21 of fetal life or in day 0 of birth (perturation period) in all the tissues/organs except high UsnRNAs' level in spleen. In the neonatal life, around 3 +/- 1 days of birth these UsnRNAs' levels again became maximum in all the tissues/organs (except in thymus) followed by decrease up to 5/6 days, and to become steady with slight increase within one to two weeks, when the kinetics of the organ maturation reached to a steady state. In case of thymus, the levels of the U3-U6 snRNAs were high on day 0 of birth followed by decrease in their level on day 1/2 and then increased to become steady within 2-4 weeks; whereas the U1 and U2 snRNAs' levels were high on day 3 of birth and the subsequent changes were similar to that in other tissues/organs. Thus the different UsnRNAs' metabolism in the perturation period and in the early stages of neonatal life has indicated the differential cellular functions in these two stages of development. These alterations in the metabolism of these UsnRNAs might be due to the differential changes in the rate of synthesis of these UsnRNAs and/or with their differential turnover rate in the different stages of development. Also, the differential variations of these UsnRNAs' levels have been observed among the different tissues/organs at the respective stages of development indicating the differences in the UsnRNAs' metabolism among the different cell/tissue lineages. Thus, it can be concluded that the metabolism of these UsnRNAs were developmentally regulated with some cell/tissue lineage variations, which might have some role in the developmentally regulated cellular process of proliferation and differentiation, through altered RNA splicing and processing.
Collapse
Affiliation(s)
- R Ray
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Calcutta, India
| | | | | |
Collapse
|
24
|
Cheng Y, Lund E, Kahan BW, Dahlberg JE. Control of mouse U1 snRNA gene expression during in vitro differentiation of mouse embryonic stem cells. Nucleic Acids Res 1997; 25:2197-204. [PMID: 9153321 PMCID: PMC146704 DOI: 10.1093/nar/25.11.2197] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Early in mouse development, two classes of U1 RNAs, mU1a and mU1b, are synthesized, but as development proceeds, transcription of the embryo-specific mU1b genes is selectively down-regulated to a barely detectable level. We show here that during in vitro differentiation of mouse embryonic stem (ES) cells, both exogenously introduced and endogenous U1b genes are subject to normal developmental regulation. Thus, ES cells represent a convenient isogenic system for studying the control of expression of developmentally regulated snRNA genes. Using this system, we have identified a region in the proximal 5'flanking region, located outside the PSE element, that is responsible for differential transcription of the mU1a and mU1b genes in both developing cells and transiently transfected NIH 3T3 cells.
Collapse
Affiliation(s)
- Y Cheng
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Evidence for at least four U1 snRNA variants were obtained from a U1 cDNA library using U1 snRNA from Bombyx mori BmN cells in culture. Sequence analysis of thirty cDNA clones showed that: (1) the nucleotide changes are in the hairpin structures I, II and III; (2) the majority of the base changes in stem structures between a posterior silk gland (PSG) U1 RNA and the BmN U1 clones, as well as among the BmN U1 clones, are compensatory; (3) although the base differences between PSG U1 and BmN U1 clones, and among the BmN U1 clones, are not the same, they are located in similar positions in moderately conserved sites, frequently at the bases of loops; (4) when comparing the PSG U1 with the BmN U1 clones, twelve out of nineteen stem differences generate stronger pairing resulting in a more stable hairpin II in the BmN U1 clones; and (5) the Sm and 70K proteins binding site sequences are highly conserved among these U1 clones. Although a comparison of sequences changes associated with U1 isoforms from different species indicate that there are no common base changes with the B. mori U1 clones reported here, similarities in the multitude and location of base differences in hairpins I, II and III are observed in mouse and/or Xenopus. It is possible that U1 variants like the ones reported here play a role in alternative pre-mRNA splicing by way of different RNA-protein factor interactions.
Collapse
Affiliation(s)
- J P Gao
- Department of Biological Sciences, Florida International University, Miami 33199, USA
| | | |
Collapse
|
26
|
Ray R, Panda CK, Chakraborty BK, Mukherji S, Chaudhury K, Roychoudhury J. Changes in UsnRNA biosynthesis during rat liver regeneration. Mol Cell Biochem 1994; 141:71-7. [PMID: 7877611 DOI: 10.1007/bf00935593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Partial hepatectomy (P.H.) induces a partially synchronized growth response of liver under normal regulation of growth. In this phase changes in cellular morphology, radial distribution pattern of cells and other biological as well as major biochemical changes are well documented. Here, we have shown that the cellular content of UsnRNAs altered during this proliferative phase as well. The level of spliceosomal UsnRNAs (U1, U2, U4-U6) gradually decreased by 30-50% upto 48 hrs of P.H. followed by gradual increase to reach the normal level within one month of P.H. The U3 snRNA level on the other hand, was nearly equal to that in normal liver at 48 hrs of P.H. but in 24 and 72 hrs of P.H. its level was high (4 fold) in contrast to that in other UsnRNAs. Thus, it is clear from our data that the level of all the six UsnRNAs decreased during 48 hrs of P.H. compared to that after first 24 hrs. This has been correlated in the kinetics of UsnRNAs' synthesis (in terms of labelling) in isolated hepatocytes, where the rate of labelling of all the six UsnRNAs increased 20-30% in 24 hrs regenerating hepatocytes (R.H.) followed by sharp decrease by 30-50% within next 24 hrs, compared to that in the normal hepatocytes. But from 72 hrs onwards in R.H. the rate of labelling of all the six UsnRNAs again increased by 30-50% (compared to that in normal hepatocytes) followed by decrease of their labelling-rate to reach the normal level in R.H. within one month of P.H.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R Ray
- Department of Biochemistry, Chittaranjan National Cancer Institute, Calcutta, India
| | | | | | | | | | | |
Collapse
|
27
|
Ray R, Panda CK, Chakraborty BK, Mukherji S, Chaudhury K, Roychoudhury J. Changes in UsnRNA biosynthesis during rat liver regeneration. Mol Cell Biochem 1994; 131:67-73. [PMID: 8047067 DOI: 10.1007/bf01075726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Partial hepatectomy (P.H.) induces a partially synchronized growth response of liver under normal regulation of growth. In this phase changes in cellular morphology, radial distribution pattern of cells and other biological as well as major biochemical changes are well documented [24]. Here, we have shown that the cellular content of UsnRNAs altered during this proliferative phase as well. The level of spliceosomal UsnRNAs (U1, U2, U4-U6) gradually decreased by 30-50% upto 48 hrs of P.H. followed by gradual increase to reach the normal level within one month of P.H. The U3 snRNA level on the other hand, was nearly equal to that in normal liver at 48 hrs of P.H. but in 24 and 72 hrs of P.H. its level was high (4 fold) in contrast to that in other UsnRNAs. Thus, it is clear from our data that the level of all the six UsnRNAs decreased during 48 hrs of P.H. compared to that after first 24 hrs. This has been correlated in the kinetics of UsnRNAs' synthesis (in terms of labelling) in isolated hepatocytes, where the rate of labelling of all the six UsnRNAs increased 20-30% in 24 hrs regenerating hepatocytes (R.H.) followed by sharp decrease by 30-50% within next 24 hrs, compared to that in the normal hepatocytes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R Ray
- Department of Biochemistry, Chittaranjan National Cancer Institute, Calcutta, India
| | | | | | | | | | | |
Collapse
|
28
|
Lillycrop K, Latchman D. Alternative splicing of the Oct-2 transcription factor RNA is differentially regulated in neuronal cells and B cells and results in protein isoforms with opposite effects on the activity of octamer/TAATGARAT-containing promoters. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)73991-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
29
|
Glibetic M, Larson DE, Sienna N, Bachellerie JP, Sells BH. Regulation of U3 snRNA expression during myoblast differentiation. Exp Cell Res 1992; 202:183-9. [PMID: 1380919 DOI: 10.1016/0014-4827(92)90418-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Differentiation of proliferating rat L6 myoblasts to syncytial multinucleated myotubes results in a significant downshift in the rate of U3 snRNA gene transcription, paralleling the decrease in rRNA synthesis previously documented. Coordinate production of U3 snRNA and rRNA during the differentiation process adds further support for a role of U3 snRNA in ribosome biogenesis. Despite the dramatic decrease in U3 snRNA transcription during differentiation, a corresponding drop in the cellular level of U3 snRNA does not occur. In myotubes, the amount of U3 snRNA is regulated at the post-transcriptional level in which there is a significant accumulation of U3 snRNA in the cytoplasm of myotubes. This intracellular redistribution of U3 snRNA may significantly affect the entire process of rRNA maturation or result from the decrease in ribosome production accompanying terminal differentiation of myoblasts.
Collapse
Affiliation(s)
- M Glibetic
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|
30
|
Cáceres JF, McKenzie D, Thimmapaya R, Lund E, Dahlberg JE. Control of mouse U1a and U1b snRNA gene expression by differential transcription. Nucleic Acids Res 1992; 20:4247-54. [PMID: 1508717 PMCID: PMC334132 DOI: 10.1093/nar/20.16.4247] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The expression of mouse embryonic U1 snRNA (mU1b) genes is subject to stage- and tissue-specific control, being restricted to early embryos and adult tissues that contain a high proportion of stem cells capable of further differentiation. To determine the mechanism of this control we have sought to distinguish between differential RNA stability and regulation of U1 gene promoter activity in several cell types. We demonstrate here that mU1b RNA can accumulate to high levels in permanently transfected mouse 3T3 and C127 fibroblast cells which normally do not express the endogenous U1b genes, and apparently can do so without significantly interfering with cell growth. Expression of transfected chimeric U1 genes in such cells is much more efficient when their promoters are derived from a constitutively expressed mU1a gene rather than from an mU1b gene. In transgenic mice, introduced U1 transgenes with an mU1b 5' flanking region are subject to normal tissue-specific control, indicating that U1b promoter activity is restricted to tissues that normally express U1b genes. Inactivation of the embryonic genes during normal differentiation is not associated with methylation of upstream CpG-rich sequences; however, in NIH 3T3 fibroblasts, the 5' flanking regions of endogenous mU1b genes are completely methylated, indicating that DNA methylation serves to imprint the inactive state of the mU1b genes in cultured cells. Based on these results, we propose that the developmental control of U1b gene expression is due to differential activity of mU1a and mU1b promoters rather than to differential stability of U1a and U1b RNAs.
Collapse
Affiliation(s)
- J F Cáceres
- Department of Biomolecular Chemistry, University of Wisconsin, Madison 53706
| | | | | | | | | |
Collapse
|
31
|
Wendelburg BJ, Marzluff WF. Two promoter elements are necessary and sufficient for expression of the sea urchin U1 snRNA gene. Nucleic Acids Res 1992; 20:3743-51. [PMID: 1641340 PMCID: PMC334027 DOI: 10.1093/nar/20.14.3743] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The essential elements of the sea urchin L. variegatus U1 snRNA promoter were mapped by microinjection of a U1 maxigene into sea urchin zygotes. Two elements are required for expression: a distal sequence element (DSE) located between -318 and -300 and a proximal sequence element (PSE) centered at -55. Removal or alteration of other sequences conserved in different sea urchin snRNA U1 genes, including deletion of all sequence between -90 and -273, did not affect the expression. Sequences around the start site were not required for expression. Deletion of nucleotides between the PSE and the start site resulted in initiation inside the U1 coding region, suggesting that the PSE determines the start site of transcription. There is no obvious similarity between the sequences required for the sea urchin U1 snRNA expression and the sequences required for the expression of other sea urchin snRNAs.
Collapse
Affiliation(s)
- B J Wendelburg
- Department of Chemistry, Florida State University, Tallahassee 32306
| | | |
Collapse
|
32
|
Mazan S, Gulli MP, Joseph N, Bachellerie JP. Structure of the differentially expressed mouse U3A gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 205:1033-41. [PMID: 1576989 DOI: 10.1111/j.1432-1033.1992.tb16871.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two markedly different forms of U3 RNA are present in mouse, the relative abundance of which largely depends upon the tissues. In all cases studied so far, the more abundant form is U3B, encoded by four previously characterized genes. We report here the isolation and analysis of the unique gene encoding the U3A variant, which completes the characterization of the mouse U3 multigene family. Comparisons with rat U3 genes indicate that the diversification of the A and B forms has predated the mouse/rat separation. The two forms of U3 RNA are submitted to similar, but not identical, primary and secondary structure constraints. As for the sequences flanking the RNA coding region, similar observations emerge for both types of genes: for each type, the 5' flanks are strongly conserved between mouse and rat, over at least the proximal 500 bp, whereas only about 30 bp of proximal 3' flanks are preserved, which include a signal for the formation of vertebrate U small nRNA 3' end. By contrast the 5' flanks of the two types of genes diverge extensively from each other, either in mouse or in rat, and could be involved in the differential expression of the two forms. Even over the few conserved motifs thought to be involved in the basic transcriptional control of vertebrate U small nRNA genes, the A and B forms of U3 genes exhibit specific differences maintained in the two rodent species.
Collapse
Affiliation(s)
- S Mazan
- Centre de Recherche de Biochimie et de Génétique Cellulaires du CNRS, Université Paul-Sabatier, Toulouse, France
| | | | | | | |
Collapse
|
33
|
Abstract
We have identified and characterized three new variants of U5 small nuclear RNA (snRNA) from HeLa cells, called U5D, U5E, and U5F. Each variant has a 2,2,7-trimethylguanosine cap and is packaged into an Sm-precipitable small nuclear ribonucleoprotein (snRNP) particle. All retain the evolutionarily invariant 9-base loop at the top of stem 1; however, numerous base changes relative to the abundant forms of U5 snRNA are present in other regions of the RNAs, including a loop that is part of the yeast U5 minimal domain required for viability and has been shown to bind a protein in HeLa extracts. U5E and U5F each constitute 7% of the total U5 population in HeLa cells and are slightly longer than the previously characterized human U5 (A, B, and C) species. U5D, which composes 5% of HeLa cell U5 snRNAs, is present in two forms: a full-length species, U5DL, and a shorter species, U5DS, which is truncated by 15 nucleotides at its 3' end and therefore resembles the short form of U5 (snR7S) in Saccharomyces cerevisiae. We have established conditions that allow specific detection of the individual U5 variants by either Northern blotting (RNA blotting) or primer extension; likewise, U5E and U5F can be specifically and completely degraded in splicing extracts by oligonucleotide-directed RNase H cleavage. All variant U5 snRNAs are assembled into functional particles, as indicated by their immunoprecipitability with anti-(U5) RNP antibodies, their incorporation into the U4/U5/U6 tri-snRNP complex, and their presence in affinity-purified spliceosomes. The higher abundance of these U5 variants in 293 cells compared with that in HeLa cells suggests possible roles in alternative splicing.
Collapse
|
34
|
Abstract
We have identified and characterized three new variants of U5 small nuclear RNA (snRNA) from HeLa cells, called U5D, U5E, and U5F. Each variant has a 2,2,7-trimethylguanosine cap and is packaged into an Sm-precipitable small nuclear ribonucleoprotein (snRNP) particle. All retain the evolutionarily invariant 9-base loop at the top of stem 1; however, numerous base changes relative to the abundant forms of U5 snRNA are present in other regions of the RNAs, including a loop that is part of the yeast U5 minimal domain required for viability and has been shown to bind a protein in HeLa extracts. U5E and U5F each constitute 7% of the total U5 population in HeLa cells and are slightly longer than the previously characterized human U5 (A, B, and C) species. U5D, which composes 5% of HeLa cell U5 snRNAs, is present in two forms: a full-length species, U5DL, and a shorter species, U5DS, which is truncated by 15 nucleotides at its 3' end and therefore resembles the short form of U5 (snR7S) in Saccharomyces cerevisiae. We have established conditions that allow specific detection of the individual U5 variants by either Northern blotting (RNA blotting) or primer extension; likewise, U5E and U5F can be specifically and completely degraded in splicing extracts by oligonucleotide-directed RNase H cleavage. All variant U5 snRNAs are assembled into functional particles, as indicated by their immunoprecipitability with anti-(U5) RNP antibodies, their incorporation into the U4/U5/U6 tri-snRNP complex, and their presence in affinity-purified spliceosomes. The higher abundance of these U5 variants in 293 cells compared with that in HeLa cells suggests possible roles in alternative splicing.
Collapse
MESH Headings
- Base Sequence
- Blotting, Northern
- Centrifugation, Density Gradient
- Electrophoresis, Gel, Two-Dimensional
- HeLa Cells
- Humans
- Molecular Sequence Data
- Multigene Family/genetics
- Nucleic Acid Conformation
- Precipitin Tests
- RNA Caps/analysis
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/isolation & purification
- RNA, Small Nuclear/metabolism
- Ribonuclease H/metabolism
Collapse
Affiliation(s)
- E J Sontheimer
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536-0182
| | | |
Collapse
|
35
|
Stevenson KA, Yu JC, Marzluff WF. A conserved region in the sea urchin U1 snRNA promoter interacts with a developmentally regulated factor. Nucleic Acids Res 1992; 20:351-7. [PMID: 1741261 PMCID: PMC310377 DOI: 10.1093/nar/20.2.351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The expression of the sea urchin L. variegatus U1 snRNA gene is temporally regulated during embryogenesis. Using a microinjection assay we show that a region between 203 and 345 nts 5' of the gene is required for expression. There are four conserved regions between two sea urchin species in the 345 nts 5' to the U1 gene. One region, located at about -300, binds a protein factor which is present in blastula but not gastrula nuclei. Three other potential protein binding sites within the first 200 nts 5' to the gene have been identified using a mobility shift assay and/or DNase I footprinting. Two of these regions bind factors which are not developmentally regulated and one binds a factor which is developmentally regulated. It is likely that the factor which binds at -300 is involved in expression and developmental regulation of the sea urchin U1 snRNA gene.
Collapse
Affiliation(s)
- K A Stevenson
- Department of Chemistry, Florida State University, Tallahassee 32306
| | | | | |
Collapse
|
36
|
Lund E, Dahlberg JE. Cyclic 2',3'-phosphates and nontemplated nucleotides at the 3' end of spliceosomal U6 small nuclear RNA's. Science 1992; 255:327-30. [PMID: 1549778 DOI: 10.1126/science.1549778] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spliceosomal U6 small nuclear RNA (U6 RNA) in species as diverse as man, frog, fruitfly, and soybean have at their 3' ends a cyclic 2',3'-phosphate (greater than p) apparently derived from uridylic acid residues that were added post-transcriptionally. The 3' ends of U6 RNA's from various sources may be processed in different ways, or to different extents, depending on the organism or stage of development. The presence of a greater than p terminus on U6 RNA may influence the activity of U6 RNA either directly during splicing or indirectly by ensuring that the RNA has a defined length or proper conformation (or both).
Collapse
Affiliation(s)
- E Lund
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison 53706
| | | |
Collapse
|
37
|
Abstract
Although the number of plant U1, U2, U4 and U5 small nuclear RNA (snRNA) variants sequenced has steadily increased over the past few years, the function of these variants in plant splicing is still not understood. In an effort to elucidate the function of plant snRNA variants, we have examined the expression of U1-U6 snRNA variants during pea seedling development. In contrast to mammalian nuclei which express a single, abundant form of each snRNA, pea nuclei express several equally abundant variants of the same snRNA. Comparison of the snRNAs in pea seeds and seedlings has revealed that four (U1, U2, U4, U5) of the five snRNAs required for pre-mRNA splicing have differentially- and developmentally-regulated forms detectable on Northerns. Only U6 snRNA, which fractionates as a single species on Northerns, appears to be constitutively expressed. Switches in the expression of the pea U1, U2 and U4 snRNAs occur at three distinct stages in development: seed maturation, seed germination and seedling maturation. Surprisingly, the snRNA profiles of mature desiccated seeds and mature leaf tissues are nearly identical and different from developing seeds and seedlings suggesting that switches in the snRNA population occur at transitions between active and inactive transcription. Sequence analysis and differential hybridization of the U1 snRNA variants has demonstrated that some of the developmentally-regulated forms represent sequence variants. We conclude that select subsets of pea snRNAs accumulate at particular stages during plant development.
Collapse
Affiliation(s)
- B A Hanley
- Department of Biochemistry, University of Illinois, Urbana 61801
| | | |
Collapse
|
38
|
Waugh R, Clark G, Brown JW. Sequence variation and linkage of potato U2snRNA-encoding genes established by PCR. Gene 1991; 107:197-204. [PMID: 1836193 DOI: 10.1016/0378-1119(91)90319-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plant uridylate-rich small nuclear RNA (UsnRNA)-encoding genes (UsnRNA) are present as multigene families exhibiting greater sequence variation than has been described in animal UsnRNA families. The potato U2snRNA multigene family has 25 to 40 potential gene members. Four gene variants have been analysed to date, two of which are linked. In order to investigate U2snRNA expression in potato in terms of the function of such sequence variation in development, the degree of sequence variation in both the coding region and flanking regions in this gene family must be assessed. On the assumption that at least some U2snRNA genes are linked, a polymerase chain reaction (PCR) approach, using primers designed to amplify intergenic nucleotide sequences including coding and 5' flanking regions, has been devised. Six new U2snRNA gene variant sequences and one U2snRNA pseudogene sequence have been generated. In addition, six new flanking region sequences have been produced which, in contrast to other plant UsnRNA gene families, show considerable variation in the important upstream sequence element. This PCR approach may be applicable to the analysis of genomic organisation and sequence variation of other multigene families.
Collapse
Affiliation(s)
- R Waugh
- Cell and Molecular Genetics Department, Scottish Crop Research Institute, Invergowrie, Dundee, U.K
| | | | | |
Collapse
|
39
|
Stefanovic B, Li JM, Sakallah S, Marzluff WF. Isolation and characterization of developmentally regulated sea urchin U2 snRNA genes. Dev Biol 1991; 148:284-94. [PMID: 1936565 DOI: 10.1016/0012-1606(91)90337-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Genes encoding the U2 snRNA have been isolated from the sea urchins, Strongylocentrotus purpuratus and Lytechinus variegatus. Representatives of tandemly repeated gene sets have been isolated from both sea urchin species and a unique U2 gene has also been isolated from L. variegatus. The sequence of the U2 snRNA encoded by the tandemly repeated genes differs in two nucleotides between S. purpuratus and L. variegatus. The unique U2 gene from L. variegatus encodes the same U2 RNA as the tandemly repeated genes. There is a change in the U2 genes expressed between morula and pluteus embryos as judged by a change in the U2 RNA sequence in S. purpuratus embryos. The tandemly repeated genes were expressed at a higher rate in blastula than in gastrula stage relative to the single-copy gene, when the two genes were injected into sea urchin zygotes.
Collapse
Affiliation(s)
- B Stefanovic
- Department of Chemistry, Florida State University, Tallahassee 32306
| | | | | | | |
Collapse
|
40
|
Tsai DE, Harper DS, Keene JD. U1-snRNP-A protein selects a ten nucleotide consensus sequence from a degenerate RNA pool presented in various structural contexts. Nucleic Acids Res 1991; 19:4931-6. [PMID: 1717938 PMCID: PMC328792 DOI: 10.1093/nar/19.18.4931] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The U1snRNP-A (U1-A) protein was used to select specific RNA sequences from a degenerate pool of transcripts using direct RNA binding and polymerase chain reaction amplification (PCR). Sequences were randomized in loops of 10 or 13 nucleotides or as a linear stretch of 25 nucleotides. From all three structural contexts, an unpaired ten nucleotide consensus sequence was obtained. A selected stem-loop structure that resembled the natural U1-A protein binding site on loop II of U1 RNA demonstrated the highest affinity of binding in comparison with the other structural contexts. A data profile of selected sequences identified U1 RNA upon searching the GenBank database. Thus, this method was useful in determining the sequence specificity of an RNA binding protein and may complement the use of phylogenetic comparisons to predict conserved recognition elements. These findings also suggest that the evolutionary conservation of loop II of U1 RNA results from constraints imposed by protein binding.
Collapse
Affiliation(s)
- D E Tsai
- Department of Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | | | | |
Collapse
|
41
|
The B-cell and neuronal forms of the octamer-binding protein Oct-2 differ in DNA-binding specificity and functional activity. Mol Cell Biol 1991. [PMID: 2072899 DOI: 10.1128/mcb.11.8.3925] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B lymphocytes contain an octamer-binding transcription factor, Oct-2, that is absent in most other cell types and plays a critical role in the B-cell-specific transcription of the immunoglobulin genes. A neuronal form of this protein has also been detected in brain and neuronal cell lines by using a DNA mobility shift assay, and an Oct-2 mRNA is observed in these cells by Northern (RNA) blotting and in situ hybridization. We show that the neuronal form of Oct-2 differs from that found in B cells with respect to both DNA-binding specificity and functional activity. In particular, whereas the B-cell protein activates octamer-containing promoters, the neuronal protein inhibits octamer-mediated gene expression. The possible role of the neuronal form of Oct-2 in the regulation of neuronal gene expression and its relationship to B-cell Oct-2 are discussed.
Collapse
|
42
|
Lea I, Moore HD, Latchman DS. Differential expression of the mouse U1a and U1b SnRNA genes is not dependent on sequence differences in the octamer motif. Biochem J 1991; 277 ( Pt 3):719-22. [PMID: 1872807 PMCID: PMC1151303 DOI: 10.1042/bj2770719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mouse U1b SnRNA gene is expressed in only a limited range of cell types, whereas the U1a SnRNA gene is expressed in all cells. These two genes differ in the sequence of the octamer motif, which plays a critical role in SnRNA gene regulation. We show that the U1b octamer binds the octamer-binding protein Oct-1 with higher affinity than does the U1a octamer in both U1b-expressing and -non-expressing cell lines and tissues. Moreover, the U1b octamer can direct a higher level of gene expression than the U1a octamer when linked to a heterologous promoter and introduced into a non-U1b-expressing cell line. Hence the tissue-specific expression of the U1b gene is not determined by the failure of its octamer motif to bind Oct-1 or the weak affinity of this binding.
Collapse
Affiliation(s)
- I Lea
- Department of Biochemistry, University College and Middlesex School of Medicine, London, U.K
| | | | | |
Collapse
|
43
|
Dent CL, Lillycrop KA, Estridge JK, Thomas NS, Latchman DS. The B-cell and neuronal forms of the octamer-binding protein Oct-2 differ in DNA-binding specificity and functional activity. Mol Cell Biol 1991; 11:3925-30. [PMID: 2072899 PMCID: PMC361185 DOI: 10.1128/mcb.11.8.3925-3930.1991] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
B lymphocytes contain an octamer-binding transcription factor, Oct-2, that is absent in most other cell types and plays a critical role in the B-cell-specific transcription of the immunoglobulin genes. A neuronal form of this protein has also been detected in brain and neuronal cell lines by using a DNA mobility shift assay, and an Oct-2 mRNA is observed in these cells by Northern (RNA) blotting and in situ hybridization. We show that the neuronal form of Oct-2 differs from that found in B cells with respect to both DNA-binding specificity and functional activity. In particular, whereas the B-cell protein activates octamer-containing promoters, the neuronal protein inhibits octamer-mediated gene expression. The possible role of the neuronal form of Oct-2 in the regulation of neuronal gene expression and its relationship to B-cell Oct-2 are discussed.
Collapse
Affiliation(s)
- C L Dent
- Department of Biochemistry, University College and Middlesex School of Medicine, London, United Kingdom
| | | | | | | | | |
Collapse
|
44
|
Hanley BA, Schuler MA. cDNA cloning of U1, U2, U4 and U5 snRNA families expressed in pea nuclei. Nucleic Acids Res 1991; 19:1861-9. [PMID: 2030967 PMCID: PMC328116 DOI: 10.1093/nar/19.8.1861] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Differences observed between plant and animal pre-mRNA splicing may be the result of primary or secondary structure differences in small nuclear RNAs (snRNAs). A cDNA library of pea snRNAs was constructed from anti-trimethylguanosine (m3(2,2,7)G immunoprecipitated pea nuclear RNA. The cDNA library was screened using oligo-deoxyribonucleotide probes specific for the U1, U2, U4 and U5 snRNAs. cDNA clones representing U1, U2, U4 and U5 snRNAs expressed in seedling tissue have been isolated and sequenced. Comparison of the pea snRNA variants with other organisms suggest that functionally important primary sequences are conserved phylogenetically even though the overall sequences have diverged substantially. Structural variations in U1 snRNA occur in regions required for U1-specific protein binding. In light of this sequence analysis, it is clear that the dicot snRNA variants do not differ in sequences implicated in RNA:RNA interactions with pre-mRNA. Instead, sequence differences occur in regions implicated in the binding of small ribonucleoproteins (snRNPs) to snRNAs and may result in the formation of unique snRNP particles.
Collapse
Affiliation(s)
- B A Hanley
- Department of Biochemistry, University of Illinois, Urbana 61801
| | | |
Collapse
|
45
|
Waugh R, Clark G, Vaux P, Brown JW. Sequence and expression of potato U2 snRNA genes. Nucleic Acids Res 1991; 19:249-56. [PMID: 2014165 PMCID: PMC333587 DOI: 10.1093/nar/19.2.249] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Plant UsnRNA multigene families show a high degree of sequence variation among individual gene members. The potato U2snRNA gene family consists of between twenty-five and forty genes. Four potato U2snRNA gene variants have been isolated. Despite the sequence variation in coding and flanking regions, all maintain the conserved U2snRNA secondary structure and all contain the plant UsnRNA promoter elements: the upstream sequence element (USE) and TATA-like box in the -70 and -30 regions respectively. In RNase A/T1 protection analyses, one of the genes, PotU2-22, protected high levels of full length U2snRNA transcripts in potato leaf, stem, root and tuber RNA. Thus, PotU2-22 or genes with identical coding regions, are highly expressed in these potato organs and therefore represent a major subset of functional U2snRNA genes. Similar expression levels of the PotU2-22 sequence variant were also found in four genetically different potato cultivars and also in tobacco, a species closely related to potato, suggesting conservation of the coding regions of expressed U2snRNA genes. A second gene, PotU2-4, protected very low levels of full length transcripts while a third gene, PotU2-11, was not expressed in the potato organs analysed. The relative expression levels of the gene variants may reflect individual gene differences in, for example, the USE and TATA regulatory elements, or variations in gene copy number.
Collapse
Affiliation(s)
- R Waugh
- Department of Cellular and Molecular Genetics, Scottish Crop Research Institute, Invergowrie, Dundee, UK
| | | | | | | |
Collapse
|
46
|
Lo PC, Mount SM. Drosophila melanogaster genes for U1 snRNA variants and their expression during development. Nucleic Acids Res 1990; 18:6971-9. [PMID: 2124674 PMCID: PMC332758 DOI: 10.1093/nar/18.23.6971] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have cloned and characterized a complete set of seven U1-related sequences from Drosophila melanogaster. These sequences are located at the three cytogenetic loci 21D, 82E, and 95C. Three of these sequences have been previously studied: one U1 gene at 21D which encodes the prototype U1 sequence (U1a), one U1 gene at 82E which encodes a U1 variant with a single nucleotide substitution (U1b), and a pseudogene at 82E. The four previously uncharacterized genes are another U1b gene at 82E, two additional U1a genes at 95C, and a U1 gene at 95C which encodes a new variant (U1c) with a distinct single nucleotide change relative to U1a. Three blocks of 5' flanking sequence similarity are common to all six full length genes. Using specific primer extension assays, we have observed that the U1b RNA is expressed in Drosophila Kc cells and is associated with snRNP proteins, suggesting that the U1b-containing snRNP particles are able to participate in the process of pre-mRNA splicing. We have also examined the expression throughout Drosophila development of the two U1 variants relative to the prototype sequence. The U1c variant is undetectable by our methods, while the U1b variant exhibits a primarily embryonic pattern reminiscent of the expression of certain U1 variants in sea urchin, Xenopus, and mouse.
Collapse
Affiliation(s)
- P C Lo
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | |
Collapse
|
47
|
Lührmann R, Kastner B, Bach M. Structure of spliceosomal snRNPs and their role in pre-mRNA splicing. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1087:265-92. [PMID: 2147394 DOI: 10.1016/0167-4781(90)90001-i] [Citation(s) in RCA: 293] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- R Lührmann
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg F.R.G
| | | | | |
Collapse
|
48
|
Mazan S, Qu LH, Sri-Widada J, Nicoloso M, Bachellerie JP. Presence of a differentially expressed U3A RNA variant in mouse. Structure and evolutive implications. FEBS Lett 1990; 267:121-5. [PMID: 2365077 DOI: 10.1016/0014-5793(90)80304-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A U3 RNA variant has been identified in mouse, the abundance of which relative to the previously characterized major form (U3B) appears to vary to a large extent depending upon the cell origin. Its partial sequence analysis shows that it is clearly related to the U3A form previously described in rat. Sequence comparisons suggest that the separation of the two forms of U3 genes now found in rat and mouse represent a relatively ancient event in rodent evolution. While mouse U3B RNA is encoded by four clustered genes, the U3A variant is encoded by a unique gene. Both mouse U3 RNAs differ substantially in primary structure (more than 10% divergence). Although rodent U3 RNAs exhibit a largely similar secondary structure, a specific difference between the A and B form can nevertheless be observed.
Collapse
Affiliation(s)
- S Mazan
- Centre de Recherche de Biochimie et Génétique Cellulaires du CNRS, Toulouse, France
| | | | | | | | | |
Collapse
|
49
|
Bach M, Krol A, Lührmann R. Structure-probing of U1 snRNPs gradually depleted of the U1-specific proteins A, C and 70k. Evidence that A interacts differentially with developmentally regulated mouse U1 snRNA variants. Nucleic Acids Res 1990; 18:449-57. [PMID: 2137909 PMCID: PMC333447 DOI: 10.1093/nar/18.3.449] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The interaction of the U1-specific proteins 70k, A and C with U1 snRNP was studied by depleting gradually U1 snRNPs of the U1-specific proteins by Mono-Q chromatography at elevated temperatures (20-37 degrees C). U1 snRNP species were obtained which were selectively depleted of either protein C, A, C and A, or of all three U1-specific proteins C, A and 70k while retaining the common proteins B' to G. These various types of U1 snRNP particles were used to study the differential accessibility of defined regions of U1 RNA towards nucleases V1 and S1 dependent on the U1 snRNP protein composition. The data indicate that in the U1 snRNP protein 70k interacts with stem/loop A and protein A with stem/loop B of U1 RNA. The presence or absence of protein C did not affect the nuclease digestion patterns of U1 RNA. Our results suggest further that the binding of protein A to the U1 snRNP particle should be independent of proteins 70k and C. Mouse cells contain two U1 RNA species, U1a and U1b, which differ in the structure of stem/loop B, with U1a exhibiting the same stem/loop B sequence as U1 RNA from HeLa cells. When we used Mono Q chromatography to investigate possible structural differences in the two types of U1 snRNPs, we observed that protein A was always preferentially lost from U1b snRNP as compared to U1a snRNPs. This indicates that one consequence of the structural difference between U1a and U1b is a lowering of the strength of binding of protein A to U1b snRNP. The possible functional significance of this finding is discussed with respect to the fact that U1b RNA is preferentially expressed in embryonal cells.
Collapse
Affiliation(s)
- M Bach
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, FRG
| | | | | |
Collapse
|
50
|
Kemp LM, Dent CL, Latchman DS. Octamer motif mediates transcriptional repression of HSV immediate-early genes and octamer-containing cellular promoters in neuronal cells. Neuron 1990; 4:215-22. [PMID: 2155008 DOI: 10.1016/0896-6273(90)90096-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
C1300 mouse neuroblastoma cells are nonpermissive for infection with herpes simplex virus owing to a failure of viral immediate-early gene transcription following infection. The weak activity of the immediate-early gene promoters in these cells is mediated by the binding of a repressor factor to the octamer-related TAATGARAT motifs in these promoters. This repressor activity is specific to cells of neuronal origin (being absent in a range of permissive nonneuronal cells) and is also able to repress the activity of cellular octamer-containing promoters introduced into C1300 cells. The role of this repressor in the regulation of octamer-containing cellular genes in neuronal cells and in the control of latent infections with herpes simplex virus is discussed.
Collapse
Affiliation(s)
- L M Kemp
- Department of Biochemistry, University College and Middlesex School of Medicine, London, England
| | | | | |
Collapse
|